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Nas ultimas duas décadas, a comunidade de processamento de imagens acom-

panhou o surgimento de um novo campo de pesquisa denominado fusão de imagens.

O termo se refere ao processo de integração de informações complementares e re-

dundantes de diversas imagens com o objetivo de produzir uma imagem final capaz

de descrever uma cena melhor do que as imagens individuais.

Este trabalho tem o intuito de apresentar algoritmos avançados de fusão de

imagens usando decomposições em multiresolução. A partir da análise de desem-

penho de tais decomposições, dois novos métodos de fusão são apresentados. No

primeiro método, mostramos que os resultados podem ser significativamente aper-

feiçoados após a aplicação de uma nova técnica de fusão, que divide o processo de

decomposição de imagens em duas operações sucessivas de filtragem. Além disso,

introduzimos uma nova classe de bancos de filtros, que exibem propriedades úteis,

como uma robustez elevada contra artefatos de “ringing”, por exemplo.

Para guiar a fusão de imagens infravermelhas e viśıveis, o primeiro sistema de

fusão opera somente ao ńıvel de pixel enquanto o segundo utiliza informação ao ńıvel

de regiões. Mais especificamente, através de um novo algoritmo de segmentação,

inclúımos informações sobre a presença de alvos nas imagens infravermelhas. Diante

disso, asseguramos que a informação mais relevante destas imagens é preservada na

imagem fundida.

Devido à frequente falta de imagens fontes, a última parte deste trabalho propôs

uma nova técnica de registro de imagens infravermelhas e viśıveis. Utilizando esta

técnica, foi criado um banco de imagens e v́ıdeos que poderá ser utilizado para testar

futuras técnicas de fusão de imagens.
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Over the past two decades, image fusion has emerged as a new and exciting

field of research within the image processing community. Generally speaking, image

fusion refers to the process of integrating complementary and redundant information

from multiple images into one composite image that describes a given scene better

than any of the individual source images.

In this work, we aim at providing new and improved image fusion algorithms by

means of multiscale transforms. Based on the performance analysis of a variety of

multiscale transforms, two novel fusion methods are proposed. In the first approach

we show that results can be significantly improved using a novel fusion strategy

which splits the image decomposition process into two successive filter operations

using spectral factorization of the analysis filters. Moreover, we will introduce a new

class of filter banks which exhibits useful properties such as being more robust to

ringing artifacts introduced during the fusion process.

Whereas the first fusion system operates solely on the pixel-level, the second one

employs region-level information to guide the fusion of infrared-visible image pairs.

More specifically, by means of a novel infrared segmentation algorithm, we include

information about the presence of targets within the infrared image to the fusion

process.

Motivated by the frequent lack of source images, the final part of this work

introduces a novel spatiotemporal registration technique for infrared-visible images.

By means of the proposed methodology an image and video database was created

which can be used by the research community to test and assess novel fusion schemes.
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Chapter 1

Introduction

Within the last decades substantial progress was achieved in the imagery sensor

field. Improved robustness and increased resolution of modern imaging sensors and,

more importantly, cheap fabrication costs have made the use of multiple sensors

common in a wide range of imaging applications. This development led to the avail-

ability of a vast amount of data, depicting the same scene coming from multiple

sensors. However, the subsequent processing of the gathered sensor information can

be cumbersome since an increase in the number of sensors automatically leads to an

increase in the raw amount of sensor data which needs to be stored and processed.

This means that longer execution times have to be accepted or the number of pro-

cessing units and storage devices has to be increased, leading to solutions which

may be quite expensive. In addition, when imaging systems are operated by hu-

mans, presenting various images may be an overwhelming task for a single observer

and may lead to a significant performance drop [4].

One solution for these problems is to replace the entire set of sensor information

by a single composite representation which incorporates all relevant sensor data.

In image-based applications this plethora of techniques became generally known as

image fusion and is nowadays a promising research area.

Image fusion can be summarized as the process of integrating complementary

and redundant information from multiple images into one composite image that

contains a ‘better’ description of the underlying scene than any of the individual

source images could provide. Hence, the fused image should be more useful for

visual inspection or further machine processing [5]. Nevertheless, fusing images is

often not a trivial process, since: a) the source images may come from different

types of sensors (e.g. with different dynamic range and resolution); b) they tend

to exhibit complementary information (e.g. features which appear in some source

images but not in all) or c) they may show common information but with reversed

contrast, which significantly complicates the fusion process. Furthermore, a fusion

approach which is independent of a priori information about the inputs and produces
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a composite image that appears ‘natural’ to a human interpreter is highly desirable.

In general, the following requirements can be imposed on the fusion algorithm [6, 7]:

• it should preserve all relevant information contained in the input images;

• it should not introduce any artifacts or inconsistencies which can distract or

mislead a human observer or any subsequent image processing task;

• it should be reliable, robust and tolerant of imperfections such as noise and

misregistrations.

Image fusion may be applied to images coming from different sensors (multisensor

fusion), taken at different times (multitemporal fusion), obtained using various focal

lengths (multifocus fusion), taken from different viewpoints (multiview fusion) or

captured under different exposure settings (multiexposure fusion).

1.1 Categorization of image fusion

The process of image fusion can be performed at three different levels of information

representation, namely pixel-, region- or decision-level [5]. In the following we briefly

introduce each one of them.

Pixel-level image fusion

Image fusion at pixel-level represents the combination of information at the lowest

level of information representation, since each pixel in the fused image is determined

by a set of pixels in the source images. Usually, this set consists of a single pixel or

comprises of all pixels within a small window, typically of size 3× 3 or 5× 5.

The advantage of pixel-level fusion, apart from its easy and time-efficient imple-

mentation, is that the resulting image contains the original information from the

sources [7]. However, since pixel-level fusion methods are very sensitive to misregis-

tration, co-registered images at subpixel accuracy are required. Today, most image

fusion applications employ pixel-level fusion methods.

Region-level image fusion

Region-level fusion approaches typically start by extracting all salient features

from the various input images. This is done by applying an appropriate segmentation

algorithm which identifies all salient features within the input images with respect

to certain properties such as size, shape, contrast, texture or gray-level. Based on

this segmentation, a region map is created which links each pixel to a corresponding

feature. Consequently, the fusion process is performed on the extracted regions
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(as opposed to pixel-level image fusion where the fusion result is determined by an

arbitrary set of pixels).

Region-level image fusion usually yields advantages compared to pixel-based

techniques since some drawbacks, such as blurring effects, high sensitivity to noise

and misregistration can be avoided [7]. However, the final fusion performance of

region-level image fusion methods highly depends on the quality of the segmentation

process. In other words, segmentation errors such as under- or over-segmentation

may lead to the absence or degradation of certain features in the fused image [8].

Decision-level image fusion

Fusion at decision-level allows the information from multiple sensors to be effec-

tively combined at the highest level of abstraction. In this context, first a decision

map is built for each source image by performing a decision (labeling) procedure on

all input pixels. Finally, a fused decision map is constructed based on the individual

decision maps. For this purpose decision rules are used which reinforce common

interpretation and are able to resolve differences between the individual decision

maps [7, 9]. �

The choice of the appropriate level depends on many different criteria such as the

underlying application, the characteristics of the physical sources as well as on other

factors such as execution time and the available tools. However, there exists a strong

inter-linkage between the different levels of image fusion. Many fusion rules which

are used to determine the individual pixels in the composite image at pixel-level can,

for instance, also be used at region-level to fuse the extracted features. Furthermore,

decision-level fusion often resorts to the segmentation map created at region-level to

aid with decision-making. In this work we are mainly concerned with the fusion of

images at pixel-level. However, in Chapter 5 we introduce a fusion framework which

uses concepts of both pixel- and region-level fusion to merge visible and infrared

(IR) images.

1.2 Application fields

Image fusion has attracted a great deal of attention in a wide variety of different

application areas in the last decades. Generally speaking, all imaging applications

that require the analysis of more than one image can benefit from image fusion. In

what follows we try to classify all these applications into the four main categories:

military, remote sensing, medical science and industrial applications.
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(a) (b) (c)

Figure 1.1: Military fusion example. (a) Visible image. (b) Infrared image. (c) Resulting
image using the fusion framework of Chapter 5 with target detection and target highlighting.
Source images kindly provided by Mr. David Dwyer from OCTEC Limited.

Military

Historically, military appeared as one of the first application areas for image fu-

sion. It covers applications such as concealed weapon detection [10–13], identifi-

cation, detection and tracking of targets [14, 15], mine detection [16] and tactical

situation assessment [17].

Fig. 1.1 illustrates how the fusion of an IR and visible image pair can be utilized

to improve the situation awareness at a location with heavy smoke concentration.

It can be noticed that the visible image in Fig. 1.1(a) exhibits a high degree of

textural information but is not able to penetrate the smoke. On the other hand,

the IR image in Fig. 1.1(b) is able to “see through” the smoke but lacks most of the

details depicted in the visible image. The fused image, however, is able to provide

the most salient1 information from both source images.

Remote sensing

Remote sensing is defined as the measurement of object properties on the earth’s

surface using data acquired from aircrafts and satellites by means of optical sensors.

These systems, particularly those deployed on satellites, provide a repetitive and

consistent view of the earth providing valuable information about short- and long-

term changes and the impact of human activities [18].

In most remote sensing applications, due to physical constraints, a trade-off be-

tween spectral and spatial resolution has to be accepted. In other words, some satel-

lite sensors supply the spectral bands needed to distinguish some features spectrally

but not spatially (multispectral image), whereas other sensors include the spatial in-

formation needed to distinguish features spatially but not spectrally (panchromatic

image). In the context of image fusion we are interested in means to merge images

from various sensors into a single image which provide, both, a high spatial and

spectral resolution.

1We define saliency in this context as the “most relevant information with respect to the un-
derlying application”
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(a) (b) (c)

Figure 1.2: Remote sensing fusion example. (a) Multispectral image (pseudo-color). (b)
Panchromatic image. (c) Resulting image using a PCA-based fusion strategy (pseudo-
color). Source images are taken from http: // www. AmericaView. org .

Many image fusion methods have been proposed for this purpose, among them

the intensity-hue-saturation transform [19], the Brovey transform [20, 21] and the

Principal Component Analysis (PCA) [20, 21] as well as approaches based on mul-

tiscale transforms [20–25]. Fig. 1.2 exemplifies the fusion of a multispectral image

(Fig. 1.2(a)), consisting of four spectral bands, with the panchromatic image of

Fig. 1.2(b), using the PCA method as explained in [20]. It can be observed that the

composite image in Fig. 1.2(c) provides more spatial information than Fig. 1.2(a)

without losing spectral information. Note that for displaying purposes, Fig. 1.2(a)

and Fig. 1.2(c) show only the first three spectral bands in the RGB color space,

resulting in the depicted pseudo-color images.

Medical science

Within the medical community, image fusion has gained an increasing amount of

attention in the last decade. Its main application areas can be found in clinical appli-

cations such as medical diagnostics, treatment planning and during curative phases

such as guided/assisted surgical procedures. The set of input data covers imaging

sensors such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI),

Positron-Emission-Tomography, Single Photon Emission Computed Tomography,

Ultra-Sound and many variants thereof [26].

The fusion of a sample CT and MRI image pair is shown in Fig. 1.3. Here,

the information provided by the CT image in Fig. 1.3(a) and the MRI image of

Fig. 1.3(b) is complementary. It is well established that soft tissues are better visu-

alized in MRI images than in CT images. Thus, MRI images are commonly used to

diagnose pathological soft tissues such as brain tumors. However, the spatial accu-
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(a) (b) (c)

Figure 1.3: Medical fusion example. (a) CT image. (b) MRI image. (c) Resulting image
using a fusion strategy based on the Dual-Tree Complex Wavelet Transform (DTCWT).
Source images kindly provided by Dr. Oliver Rockinger.

racy of the MRI image for stereotactic2 localization (e.g. localization of the tissue

bone in stereotactic surgery) is very poor due to magnetic susceptibility effects and

may result in geometric shifts and distortion effects of up to 4 mm [27]. On the

other hand, CT imagery does not suffer from this shortcoming. The fusion of CT

and MRI images, as illustrated in Fig. 1.3(c), can therefore be used to remove the ge-

ometric distortions inherent in MRI imagery and improve the results in stereotactic

radiotherapy.

Industrial engineering

Image fusion is used in a wide variety of industrial and civil applications. In

robotics, multisensor information is used to estimate the position and orientation

[28, 29] as well as to navigate a robot in order to avoid collisions and stay on a preset

path [28]. Moreover, image fusion is applied in computerized quality management

for defect inspection of products [30, 31].

Fig. 1.4 shows an example how image fusion can be used to extend the depth-

of-focus of existing image capturing systems. Due to the limited depth-of-focus

of individual optical lenses (see Figs. 1.4(a) and 1.4(b)), it is often impossible to

get a single image with all objects in focus. One way to overcome this problem is

to collect several images from the same scene but with different focus points and

combine them into a single composite image which contains the focused regions of

all input images.

Another application of image fusion in the industrial context is the combination

of multiexposure images [32–34]. A natural scene often has a high dynamic range

that exceeds the capture range of common digital cameras. Therefore, a single

2stereotactic methods refer to surgical techniques for precisely directing the tip of a delicate
instrument (e.g. needle) or beam of radiation in three planes using coordinates provided by medical
imaging in order to reach a specific locus in the body
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(a) (b) (c)

Figure 1.4: Industrial fusion example. (a) image with focus on the front. (b) image with
focus on the back. (c) Resulting image using a fusion strategy based on the Nonsubsampled
Contourlet Transform (NSCT). Source images kindly provided by Dr. Oliver Rockinger.

captured image is usually insufficient to reveal all the details due to under- or over-

exposed regions. To solve this problem, images of the same scene can first be

captured under different exposure settings and then be combined into a single image

using image fusion techniques. �

The presented list is by no means exhaustive and should merely provide an insight

into the most important developments in the field of image fusion. Furthermore, we

would like to point out that the image fusion research community is still very active,

thus, new application fields are still explored.

In this work we will be restricted to the fusion of multisensor images, exhibiting

a high degree of diverging information. Hence, our main focus is placed on the fusion

of IR-visible and CT-MRI image pairs as found in military and medical applications.

1.3 Fusion techniques

A variety of different image fusion approaches have been developed since the late

80s. In the following we give an excerpt on the most common approaches found in

the literature. We divided them into the two groups, transform domain techniques

and spatial domain techniques.

1.3.1 Transform domain techniques

Transform domain techniques map (transform) each source image into the transform

domain (e.g. wavelet or Karhunen-Loève transform (KLT) domain), where the actual

fusion process takes place. The final fused image is obtained by taking the inverse

transform of the composite representation. The main motivation behind moving
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Figure 1.5: Generic fusion scheme in the transform domain according to eq. (1.1).

to a transform domain is to work within a framework where the image’s salient

features are more clearly depicted than in the spatial domain. If we let T {·} and

T −1{·} represent the forward and inverse transform, respectively, and assume that

g(·) represents a function which governs the combination of the (transformed) input

images Ik, k = 1, . . . , K, commonly known as the “fusion rule”, transform domain

techniques can be defined as [35]

IF [m,n] = T −1{g(T {I1[m,n]}, . . . , T {IK [m,n]})}, (1.1)

where m,n represents the spatial location in the input images and the fused image

IF . Fig. 1.5 illustrates this process for two input images. For the purpose of image

fusion, transform domain techniques can be roughly categorized into color space

transforms, KLT-like transforms and multiscale transforms.

Color space transforms

Image fusion by color space transforms takes advantage of the possibility of rep-

resenting data in different color channels. In the simplest case the individual source

images are mapped to a particular color channel (e.g. to the red, green or blue color

channel in the RGB space), resulting in a pseudo-color image. These techniques

belong to the most frequently used image fusion methods in remote sensing applica-

tions. Commonly utilized transforms are the IHS and the Brovey transform [19–21].

In general, color spaces are only defined for three different bands, restricting its use

to applications with at most three input images. Often, to escape from this restric-

tion, PCA-based fusion methods are used which allow for an arbitrary number of

bands.

KLT-like transforms

In order to uncover the underlying structure of an image, it is common practice

in image processing applications to represent a source image as the synthesis of

several basis images. For this purpose transforms such as the Fourier Transform,

the Cosine Transform or the Wavelet Transform have been developed to decompose
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an input image using a fixed set of basis images. KLT-like transforms, on the other

hand, permit the decomposition of an input image using a basis image set which is

especially tailored to the input data. Furthermore, the basis image set can be chosen

to be optimal in some statistical sense. For example, the resulting basis images may

be desired to be uncorrelated (PCA) or statistically independent, as in case of the

Independent Component Analysis (ICA).

In [35] the authors use ICA bases to fuse multifocus and multisensor imagery. In

their approach, in order to find proper basis images, the ICA is performed on a set of

images with similar content than the ones that will be used for image fusion. After

decomposing the actual input images using the previously calculated ICA basis, the

fusion is performed in the transform domain in a similar manner as depicted in

eq. (1.1). A conceptually similar ICA-based fusion approach is described in [36] for

the fusion of IR/visible image pairs.

Fig. 1.2 shows the result for the fusion of multispectral and panchromatic imagery

in the context of remote sensing using a PCA-based fusion approach.

Multiscale transforms

Among the transform domain techniques, the most frequently used methods are

based on multiscale transforms where fusion is performed on a number of different

scales and orientations, independently. The multiscale transforms usually employed

are Pyramid Transforms [17, 32, 37, 38], the Discrete Wavelet Transform (DWT)

[5, 7, 10, 39–43], the Undecimated Wavelet Transform (UWT) [5, 6, 22, 23, 44, 45],

the Dual-Tree Complex Wavelet Transform (DTCWT) [8, 46, 47], the Curvelet

Transform (CVT) [24, 25, 48], the Contourlet Transform (ConT) [49] and the Non-

subsampled Contourlet Transform (NSCT) [50–52]. Due to their importance, the

subsequent chapters provide a more detailed view on the use of multiscale transforms

in image fusion. �

Another transform which gained increasing popularity within the image fusion

community, and somehow does not fit into any of our categories, is the Empirical

Mode Decomposition (EMD). The EMD decomposes a given data set into a number

of basis functions, called intrinsic mode functions, which are derived directly from the

data. Since the decomposition is based on the local spatial-domain characteristics

of the source data, no harmonic analysis is necessary and, thus, it is also applicable

to nonlinear and non-stationary processes [53]. Examples for the use of the EMD in

image fusion can be found in [54], [55] and [56].
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1.3.2 Spatial domain techniques

As for spatial domain techniques, the fusion is performed by combining all input

images in a linear or non-linear fashion. If we let g(·) represent the chosen fusion

rule as in eq. (1.1), spatial domain techniques can be defined as [35]

IF [m,n] = g(I1[m,n], . . . , IK [m,n]). (1.2)

In general, spatial domain techniques can be divided into weighted averaging-

based, optimization-based and artificial neural network-based approaches.

Weighted averaging

A straightforward approach to image fusion is to take the pixel-by-pixel average

of the source images. This method, however, leads to undesirable side effects such as

reduced contrast as can be observed in Fig. 2.1. A more sophisticated approach to

image fusion is to compute each pixel in the composite image as a weighted super-

position of all source images. The optimal weighting coefficients can be determined

e.g. by performing the PCA of the covariance matrix of the source images [57]. In

this approach, the weights for each input image are obtained from the eigenvector

corresponding to the largest eigenvalue. Another example is given in [58] where the

authors used adaptive weighted averaging for the fusion of IR and visible images.

Probabilistic fusion

Probabilistic fusion approaches are based on an image formation model which

considers the various input images as being noisy, linearly-transformed versions of

an underlying, true scene. The most common image formation model which relates

the true scene I0 to the measured, source images Ik, k = 1, . . . , K, is given by [59]

Ik[m,n] = βk[m,n]I0[m,n] + εk[m,n], (1.3)

where βk[m,n] and εk[m,n] are the gain and sensor noise, respectively, of the kth

sensor at pixel location m,n. Thus, the fusion goal is to estimate I0 from Ik, k =

1, . . . , K, and can be seen as an inverse problem with eq. (1.3) used as the forward

model.

In order to estimate the parameters several approaches can be found in the lit-

erature. Sharma et al. [59] used a Bayesian approach whereas in [12] the authors

proposed an Expectation-Maximization-based algorithm to estimate the fused im-

age. More recently, Kumar and Dass [60] employed a total variation-based algorithm

in conjunction with PCA to estimate the model parameters. Another interesting

approach is presented in [61], where Bootstrap sampling in combination with the
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Non-parametric Expectation-Maximization algorithm is used.

Artificial neural networks

Inspired by the fusion of different sensor signals in biological systems, several

researchers have used neural networks to perform image fusion tasks. One of the

most famous examples for sensor fusion in a living organism is the visual system

of rattlesnakes [62]. These snakes possess an organ which is sensitive to thermal

radiation. The IR signals provided by these organs are combined with the nerve

signals obtained from the visual sensors, yielding a unique wide-spectrum image of

the rattlesnakes environment.

Most fusion techniques employing artificial neural networks concentrate on mul-

tifocus image fusion [63–65]. Nevertheless, alternatives exist. In [66], for example,

the authors propose the use of a modified pulse-coupled neural network for the fu-

sion of medical image pairs. A further pulse-coupled neural network-based fusion

framework for the detection of objects of interest in medical and radar images is

introduced in [67]. �

Henceforth, we confine our discussion to image fusion approaches based on mul-

tiscale transforms.

1.4 Image Registration

As observed before, an important pre-processing step in image fusion is image reg-

istration. In a nutshell, image registration is the process of overlaying images of the

same scene taken at different time instants, from different viewpoints, and/or differ-

ent sensors such that the individual pixels in all images refer to the same physical

structure. It is usually accomplished by following four main steps. In what follows

we will briefly discuss each one of them [68].

Feature Detection

As a first step, salient structures such as closed-boundary regions, edges, contours,

line intersections, corners, are detected within the source images. Ideally, these

features should be distinct, spread all over the image and efficiently detectable in

all source images. In general, feature detection is performed using off-the-shelf

solutions such as the Kanade-Lucas-Tomasi feature tracker [69], the scale-invariant

feature transform (SIFT) [70] or Harris corners [71], among others.

Please note that there exists a second group of image registration techniques

which do not rely on the detection of features. These techniques, coined area-based

or direct registration methods exploit common scene characteristics within the input
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(a) (b) (c) (d)

Figure 1.6: Illustration of the three different types of linear transforms commonly em-
ployed for image registration purposes. (a) Original image. (b) Similarity transform. (c)
Affine transform. (d) Projective transform. Original source image taken from [1].

images and put emphasis on the feature matching step rather than on their detection.

For more information on direct registration methods we refer the interested reader

to [72].

Feature Matching

In this step, correspondences between the detected features within the source im-

ages are established. Various feature descriptors and similarity measures along with

spatial relationships among the features are used for that purpose. After establish-

ing an initial set of correspondences between the extracted feature points, methods

such as random sample consensus (RANSAC)[73] may subsequently be employed to

refine the matches.

Transform Model Estimation

After the feature correspondences have been established, the parameters of the

transform model need to be estimated. In this context we can differentiate be-

tween three types of transforms, namely, similarity transforms, affine transforms

and perspective transforms (see Fig. 1.6) [1]. The similarity transform is the sim-

plest model consisting solely of rotation, translation and scaling. It is often called

‘shape-preserving mapping’ since it preserves angles. A slightly more general model

is the affine model which is capable of mapping parallelograms onto squares. It

preserves straight line parallelism and is usually used in registration scenarios where

the distance of the camera to the scene is large when compared to the field-of-view

of the camera. If the condition on the distance of the camera from the scene is not

satisfied a projective transform should be used. Projective transforms can map a

general quadrangle onto a square and describe the exact deformation of a flat scene

photographed by a pinhole camera whose optical axis is not perpendicular to the

scene.

Note that the type of mapping function used should correspond to the geometric
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deformation assumed between the source images. Furthermore, in order to improve

the overall registration accuracy it is often necessary to consider nonlinear distortion

effects arising from the optical lens employed in the camera (see Chapter 6 for more

details).

Image Resampling and Transformation

The mapping function estimated during the previous step is used to transform the

source images, thereby registering the misaligned input images. Image values at non-

integer coordinate positions are computed by employing an appropriate interpolation

technique. In this context, spline functions [74], Gaussians [75] and truncated sinc

functions [76] belong to the most commonly used interpolants. �

In the remainder of this work we assume that all images are adequately aligned and

registered prior to the fusion process. The used images were acquired from the inter-

net and represent the same set of images commonly employed by the image fusion

community. However, due to the inherent difficulties in producing registered source

images at sub-pixel accuracy, they are small in number. Based on this observation,

Chapter 6 introduces a novel IR/visible-light image registration technique which is

able to register spatially and temporally misaligned image sequences. Thereby, the

entire work flow, starting from image acquisition and ending with image fusion, is

covered in the presented work.

1.5 Outline

Chapter 2 gives a more detailed view on multiscale image fusion. In particular,

we discuss the most relevant work reported within the last decades and present

a generic framework which encompasses the most important aspects of multiscale

image fusion.

In Chapter 3 a performance analysis and performance comparison of several

multiscale transforms for the purpose of image fusion is held, representing the first

contribution of this work. We start off by conducting a theoretical review on or-

thogonal and redundant multiscale decompositions such as the DWT, CVT, ConT,

UWT, DTCWT and NTSC. Subsequently, the suitability of these transforms for

image fusion is investigated using a generic fusion rule. The chapter is concluded

with an analysis of the obtained results.

Another contribution of this work is presented in Chapter 4. Based on the con-

clusions drawn in Chapter 3, we introduce a novel pixel-level UWT-based multiscale

fusion framework which uses spectral factorization of the analysis filter pair in com-

bination with non-orthogonal filter banks. We show that this approach is able to
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improve the fusion results compared to traditional approaches for a large class of

input images.

For IR/visible-light image pairs, fusion results can be further improved by in-

cluding information about the presence of targets within the IR image into the fusion

process. For this purpose, Chapter 5 introduces a novel IR segmentation method

which ensures that all identified targets are properly incorporated in the fused image.

Additionally, a new hybrid fusion scheme is proposed which utilizes both pixel-level

and region-level information to fuse the source images.

Most conclusions drawn in the course of this work are based on the results ob-

tained for a comparatively small set of input image pairs. Thus, Chapter 6 describes

the creation of an exhaustive IR/visible-light image data base suitable for image fu-

sion purposes. In this context, a novel IR/visible-light video registration framework

is introduced which significantly improves the registration results when compared to

the state-of-the-art. By means of the proposed methodology 30 different IR/visible-

light video sequences, recorded at 6 different locations, were generated.

Finally, our conclusions are given in Chapter 7.
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Chapter 2

Multiscale pixel-level fusion

In the last two decades pixel-level image fusion gained considerable attention from

the image processing community. The simplest pixel-level image fusion scheme is

to take the pixel-by-pixel average of the source images. Such a scheme is presented

in Fig. 2.1, where a medical image pair, illustrated in Figs. 2.1(a) and 2.1(b), is

fused by averaging. Although the averaging method is very simple to implement, it

presents several drawbacks including reduced contrast, which can lead to a severe

loss of information, as depicted in Fig. 2.1(c). For comparison purposes, Fig. 2.1(d)

represents the fusion result obtained by applying a novel fusion approach which is

described in detail in Chapter 4.

Most image fusion approaches operating on pixel-level rely on transform domain

techniques to properly combine the source images. While many such transforms have

been proposed for image fusion purposes (see Section 1.3.1 for an overview), most

transform domain approaches use multiscale decompositions. This is motivated by

the fact that images tend to present features in many different scales. In addition,

the human visual system seems to exhibit high similarities with the properties of

multiscale transforms. More precisely, strong evidence exists that the entire human

visual field is covered by neurons that are selective to a limited range of orientations

and spatial frequencies, and can detect local features like edges and lines. This makes

the neurons response very similar to the basis functions of multiscale transforms [77].

The basic idea underlying multiscale image fusion is to perform a multiscale

transform on each source image and, following some specific fusion rules, construct

a single composite multiscale representation from these. The final fused image is

obtained by taking the inverse transform of the composite representation. This

process is illustrated in Fig. 1.5 in Chapter 1 for two input images I1 and I2, where

T {·} and T −1{·} represent the forward and inverse tranform, respectively.

In the literature plenty of pixel-level multiscale image fusion works can be found.

In what follows, we review some of these approaches and present a generic multiscale

pixel-level framework which is able to incorporate most of them. This framework
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(a) (b)

(c) (d)

Figure 2.1: Average fusion vs. multiscale fusion. (a) and (b) Medical source image pair.
(c) Fusion result by averaging. (d) Fusion result by applying the novel multiscale fusion
framework of Chapter 4.

was first introduced by Piella in [7] and can be seen as an extension of the multiscale

methodology proposed by Zhang and Blum in [5].

2.1 Notation

Let us start by fixing some notation which is needed in the remainder of this work.

When using multiscale transforms, an input image can be represented in the trans-

form domain by a sequence of detail images along with an approximation image at

the coarsest scale. Henceforth, the multiscale decomposition of an input image Ik is

represented as

yk = {y1
k, y

2
k, . . . , y

J
k , x

J
k}, (2.1)

where xJk represents the approximation image at the lowest scale J and yjk, j =

1, . . . , J represent the detail images at level j. The detail images comprise in general

of various orientation bands, depending on the multiscale transform in use. We

assume henceforth that a detail image yjk at level j is composed of P detail images

yjk = {yjk[· , 1], yjk[· , 2], . . . , yjk[· , P ]}. As in the previous chapter, we let m,n index

the location of the pixel or coefficient. When convenient, we also use the vector
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n = [m,n] to specify the spatial location. In such a case yjk[n, p] represents the

detail coefficient of the kth input image at location n, decomposition level j and

orientation band p. In order to simplify the discussion, we assume, without loss of

generality, that the fused image IF is generated from two source images, IA and IB.

However, most presented techniques are easily expandable to an arbitrary number

of input images.

2.2 Overview of some existing approaches

The usage of multiscale image transforms is not a recent approach in image fusion

applications. The first multiscale image fusion approach was proposed by Burt [37]

in 1984 and is based on the Laplacian Pyramid. As for the fusion rule, a simple

pixel-based maximum selection rule was used. Thus, each composite coefficient is

obtained by

yjF [m,n] =

y
j
A[m,n] if

∣∣yjA[m,n]
∣∣ > ∣∣yjB[m,n]

∣∣
yjB[m,n] otherwise

. (2.2)

Motivated by the fact that the human eye is more sensitive to contrast changes than

to absolute luminance differences, Toet [78] presented a similar algorithm using the

Ratio-of-Low-Pass Pyramid instead of the Laplacian Pyramid.

Burt and Kolczynski [32] proposed the use of the Gradient Pyramid for the

fusion of multisensor, multiexposure and multifocus images. In their approach two

measures are used to guide the fusion process. The first one is an activity measure ajk
which is in charge of determining the saliency of the source images at each coefficient

position n. It is defined as a local energy measure such that

ajk[n, p] =
∑

∆n∈W

∣∣yjk[n + ∆n, p]
∣∣2 , (2.3)

with W representing a window of size 1 × 1, 3 × 3 or 5 × 5 centered at the origin.

The second one is a match measure mj
AB which is used to quantify the similarity

between the two pyramid-transformed, input images. It is given by

mj
AB[n, p] =

2
∑

∆n∈W

yjA[n + ∆n, p]yjB[n + ∆n, p]

ajA[n, p] + ajB[n, p]
(2.4)

and corresponds to a local correlation function. Again, the window W may include

only a single coefficient or a small local area. The actual fusion is defined as a

weighted average where at each coefficient position, weights wjA and wjB are assigned

to the transformed, source images. Thus, the fused image in the pyramid transform
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domain is defined as

yjF [n, p] = wjA[n, p]yjA[n, p] + wjB[n, p]yjB[n, p], (2.5)

where the weights are determined by

wjA[n, p] =



1 if mj
AB[n, p] ≤ T and aAk [n, p] > aBk [n, p]

0 if mj
AB[n, p] ≤ T and aAk [n, p] ≤ aBk [n, p]

1
2

+ 1
2

(
1−mjAB [n,p]

1−T

)
if mj

AB[n, p] > T and aAk [n, p] > aBk [n, p]

1
2
− 1

2

(
1−mjAB [n,p]

1−T

)
if mj

AB[n, p] > T and aAk [n, p] ≤ aBk [n, p]

(2.6a)

wjB[n, p] = 1− wjA[n, p] (2.6b)

for some threshold T . Observe that in case of a low similarity between the input

images (the match measure is below or equal the threshold T ), the weights are either

1 or 0 which corresponds to a maximum selection rule such as depicted in eq. (2.2).

On the other hand, if the similarity is high (match measure is above the threshold

T ) a weighted sum of the coefficients is used.

The use of the Discrete Wavelet Transform (DWT) in image fusion was proposed

by Li et al. [40]. In their implementation the maximum absolute value within a

window of size 3 × 3 or 5 × 5 is used as an activity measure and associated to the

pixel centered in the window W such that

ajk[n, p] = max
∆n∈W

∣∣yjk[n + ∆n, p]
∣∣ . (2.7)

A binary decision map is then created to record the selection results based on a

maximum selection rule. This decision map is then subject to a consistency verifi-

cation. Specifically, if the center pixel value comes from IA while the majority of

the surrounding pixel values come from IB, the center pixel is switched to that of

IB.

In [79] the authors present a fusion approach which makes use of a steerable

dyadic wavelet transform. In their approach, first the local oriented energy is ob-

tained from a quadrature pair of steerable filters and the local dominant orientation

(the angle that maximizes the local oriented energy) is computed at each level and

position. Based on these calculations, the filters are then steered to the local domi-

nant orientation and the local oriented energies of the input images are compared.

The fusion is performed by transferring those coefficients to the composite represen-

tation which correspond to the greater local energy. Finally, the filters are steered

back to their original orientation and reconstruction is carried out. Liu et al. [38]

present another approach based on a steerable dyadic wavelet transform. However,
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rather than using it to fuse the source images, they fuse the various bands of the

decomposition by means of a Laplacian pyramid.

To overcome the shift dependency of the DWT fusion schemes, Rockinger pro-

posed the use of the Undecimated Wavelet Transform (UWT) instead [44, 57]. The

fusion of the detail coefficients was accomplished using two selection schemes: i)

a point-based maximum selection rule and ii) an area-based selection scheme with

window size 5 × 5 and subsequent consistency verification as proposed by Li et

al. [40]. The coarse approximation coefficients were combined by a simple averaging

operation. The author shows that this approach is particularly useful for image se-

quence fusion, where a composite image sequence has to be built from various input

image sequences.

In 1999, Zhang and Blum [5] tried to map all previously published multiscale

image fusion proposals into one generic framework. In this framework, after ap-

plication of the multiscale transform, an activity-level measure is computed which

attempts to determine the quality of each source image. This is followed by an

optional grouping of coefficients belonging to the same spatial position in the source

image. Based on the activity measure and the coefficient grouping, the composite

multiscale representation is obtained using some fusion rule. A consistency verifi-

cation procedure is then performed which incorporates the idea that a composite

coefficient is unlikely to be generated in a completely different manner from all its

neighbors. In order to asses the different alternatives for each step of the generic

framework, a performance comparison is conducted. The authors conclude that

coefficient grouping and consistency verification generally improve the final fusion

result, whereas the proper choice of activity measurement and combination method

depend to a high extend on the underlying application. As for the multiscale trans-

form, the authors claim that the UWT provides better performance than the DWT

and pyramid-based transforms.

Pu and Ni [39] proposed a contrast-based image fusion method using the DWT.

For this purpose they introduced an activity measure such that

ajk[m,n, p] =

∣∣∣∣∣yjk[m,n, p]xJk [m,n]

∣∣∣∣∣ , (2.8)

which they called directive contrast and use a maximum selection rule to combine

the wavelet coefficients.

In [45] an alternative implementation of the UWT is used for the fusion of mul-

tisensor images. Since the filters do not need to be (bi)orthogonal (as opposed to

the DWT), they proposed the use of a filter bank where the wavelet coefficients can
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be obtained by a simple difference between two successive approximations

yj+1
k [m,n] = xjk[m,n]− xj+1

k [m,n]. (2.9)

After decomposing both source images, the activity measure given in eq. (2.3) is

calculated for all detail coefficients. Following the maximum selection fusion rule, the

detail coefficient yielding a higher activity is directly transferred to the decomposed,

composite image whereas the approximation images are fused by simple averaging.

The reconstructed, fused image is obtained by a simple co-addition of all detail

images to the approximation image by

IF [m,n] = xJF [m,n] +
J∑
j=1

yjF [m,n]. (2.10)

Note that, in this approach, for each scale only one detail image is produced and

not three as in the general two-dimensional wavelet case.

Another DWT image fusion approach is introduced by Petrović and Xydeas in

[41]. In the proposed methodology, the input images are represented at each scale

through gradient maps which express the information contained in these images as

changes in pixel values, rather than absolute gray-level values. These gradient maps

are subsequently fused using a so-called “cross-band pyramid fusion method” [80]

where fusion decisions are taken jointly for all coefficients representing the same

spatial position in the horizontal, vertical and diagonal directional detail images.

Furthermore, since it is assumed that there exists a strong linkage between coeffi-

cients in neighboring scales, inter-scale relationships between coefficients belonging

to the same spatial position are considered as well. The activity is therefore given

by

ajk[m,n, p] =
3∑
q=1

∣∣yjk[m,n, q]∣∣+
∣∣yj+1
k [u, v, q]

∣∣ , (2.11)

where q = 1, 2, 3 specifies the orientation band and u and v are defined as
⌈
m
2

⌉
and⌈

n
2

⌉
, respectively, due to the downsampling involved in every decomposition step.

Next, a similarity measure is calculated

mj
AB[m,n, p] =

∣∣∣∣∣∣∣∣∣∣∣

3∑
q=1

∣∣yjA[m,n, q]
∣∣− 3∑

q=1

∣∣yjB[m,n, q]
∣∣

max

(
3∑
q=1

∣∣yjA[m,n, q]
∣∣ , 3∑

q=1

∣∣yjB[m,n, q]
∣∣)
∣∣∣∣∣∣∣∣∣∣∣

(2.12)

which, in combination with the activity measure, is used to determine the fusion
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weights:

[
wjA[n, p]

wjB[n, p]

]T
=



[0.5, 0.5] if mj
AB[n, p] < T1

[1, 0] if T1 < mj
AB[n, p] < T2 and ajA[n, p] ≥ ajB[n, p]

[0, 1] if T1 < mj
AB[n, p] < T2 and ajA[n, p] < ajB[n, p]

[1, 1] if mj
AB[n, p] > T2

. (2.13)

The fused gradient maps are then computed by using a weighted averaging as given

in eq. (2.5). The proposed weight calculation is in spirit very similar to eq. (2.6) since

a high similarity (match measure is below the threshold T1) leads to the averaging

of the input coefficients whereas in case of low similarity (match measure is between

thresholds T1 and T2), a maximum selection rule is used. However, the authors

consider a further case where the fused coefficients are evaluated as the sum of

both inputs. They motivate this choice by claiming that in situations where the

input coefficients are substantially different (mj
AB > T2) both source images exhibit

independent features which need to be conserved. Please note that after calculating

the composite gradient maps, they are further decomposed into a simplified version

of the DWT. Since the actual fusion is performed on the gradient maps rather than

in the DWT domain, the authors referred to their contribution as a “fuse-then-

decompose” technique.

At the same time Forster et al. [43] proposed the use of complex wavelets for

the fusion of multichannel microscopy images. First, the multichannel (color) data

is converted to a single channel by an adaptive weighted linear combination of all

input channels using a PCA-like approach. Next, a complex-valued discrete wavelet

transform is applied on the converted, gray-scale images and the fusion is performed

in the transform domain. For this purpose, the largest absolute value of the wavelet

coefficients at each point is used (maximum selection rule) and a coefficient grouping

and consistency verification step is performed. Finally, the corresponding inverse

complex-valued DWT is applied and the fused, gray-scale image is reconverted to

obtain multichannel data. This reconversion is accomplished by utilizing the weights

computed during the multi-to-single-channel conversion. The authors show that the

added phase information of complex wavelets yields stability and better preserves

image details during the fusion step, compared to real-valued DWTs.

In order to overcome the shift-variance and limited directionality of the DWT

while maintaining the perfect reconstruction property with limited redundancy, Ray

and Adhami [46] used the DTCWT for multifocus and multisensor image fusion. In

the proposed methodology, the actual fusion is performed by selecting the coefficient

with the largest magnitude in the transform domain. However, since the DTCWT

is implemented using two filter bank trees, with the first tree representing the real
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part and the second tree representing the imaginary part, the coefficient magnitudes

are calculated as

ajk[m,n, p] =
√
yjreal,k[m,n, p]

2 + yjimag,k[m,n, p]
2, (2.14)

with yjreal,k and yjimag,k representing the coefficients of the real and imaginary trees,

respectively, of the kth source image.

A multifocus image fusion algorithm which combines the DWT and the Curvelet

Transform (CVT) is introduced by Li and Yang [48]. In their approach the source

images are first decomposed using the CVT. The resulting detail and approxima-

tion images form the input image set for the DWT, which is applied to all CVT-

decomposed images subsequently. Finally, the fusion is employed in the wavelet

domain by using a maximum selection rule in combination with a consistency ver-

ification step. In order to obtain the final fused image, first, the inverse DWT is

applied followed by the inverse CVT. The authors motivate this approach with the

complementary properties of the two transforms. Whereas the DWT is very efficient

in representing isotropic elements such as textures (detail information), the CVT

is suitable for catching the edges in an image (structural information). Thus, by

combining the two transforms, the authors claim that the fusion process considers

both detail and structural information, leading to a fused image which is superior

than the result of applying any of the two transforms individually.

In [51] another fusion framework is proposed which attempts to avoid the short-

comings of wavelet-based methods by using the Nonsubsampled Contourlet Trans-

form (NSCT) for the fusion of multifocus images. Like the CVT and the Contourlet

Transform (ConT), the NSCT is a further representative of a new family of trans-

forms which possess anisotropic basis elements and can be implemented using an

(almost) arbitrary number of directions at each scale. As for the fusion of the ap-

proximation images, in the presented work a so-called “clarity measure” is utilized

that measures the activity of the detail images at the coarsest scale in the NSCT-

domain such that

aJk [m,n] =

√√√√ P∑
p=1

yJk [m,n, p]2. (2.15)

The composite approximation image is then defined as

xJF [m,n] =


xJA[m,n] if aJA[m,n]− aJB[m,n] > T

xJA[m,n] + xJB[m,n]

2
if
∣∣aJA[m,n]− aJB[m,n]

∣∣ < T

xJB[m,n] if aJB[m,n]− aJA[m,n] > T

, (2.16)

where T is an experimentally obtained threshold. For the combination of the detail
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images, first, an activity measure is defined which uses the directive contrast of

eq. (2.8) in combination with the standard deviation of the set of detail coefficients

representing the same spatial position at the same scale. Hence, the activity measure

for the detail images in the NSCT-domain is given by

ajk[m,n, p] =

∣∣∣∣∣yjk[m,n, p]xJk [m,n]

∣∣∣∣∣
√√√√ 1

Q

Q∑
q=1

(
yjk[m,n, q]− ȳ

j
k[m,n]

)2
, (2.17)

where q = 1, . . . , Q specifies the orientation band and

ȳjk[m,n] =
1

Q

Q∑
q=1

∣∣yjk[m,n, q]∣∣ . (2.18)

The authors argue that by this choice, the influence of noise is minimized since

its energy distribution is uniformly spread over all directions, leading to a small

standard deviation. The combination of the detail coefficients is finally accomplished

by a maximum selection rule which transfers the coefficient with higher activity

directly to the fused NSCT decomposition.

More recently, Li et al. [2] conducted a performance study on different multiscale

transforms for image fusion. They concluded that the best results for medical,

multifocus and multisensor image fusion can be achieved using the NSCT, followed

by the DTCWT and the UWT. In their experiments they utilized the maximum

selection rule for all detail coefficients whereas a simple averaging operation was

applied to the approximation images. Additionally, recommendations regarding

filter choices and number of directional decompositions, where applicable, are given.

2.3 A generic multiscale pixel-level image fusion

framework

Inspired by the fusion methodology proposed by Zhang and Blum in [5], Fig. 2.2

shows a generic multiscale pixel-level image fusion framework which is able to en-

compass most fusion schemes discussed so far. It was first introduced by Piella [7]

and can be seen as a more detailed version of Fig. 1.5 in which the combination

algorithm is elaborated more carefully. In the remainder of this section, we describe

the individual building blocks in more detail.
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Figure 2.2: Generic multiscale pixel-level fusion framework.

2.3.1 Multiscale Decomposition (Ψ)

As we have already seen before, a multiscale transform decomposes a given input

signal into a set of signals which comprises information at different scales. In such

a representation the high levels contain low-frequency information while low levels

contain the high-frequency information. Furthermore, multiscale representations are

generally able to reveal the information we are looking for in a few coefficients which

allows for a very efficient representation of the underlying input data [81]. The use

of multiscale transforms is suitable for image fusion, not only because it enables us

to consider and fuse image features separately at different scales, but also because

such a sparse representation only produces large coefficients near important image

structures like edges, thus revealing salient information. A large part of research

on multiscale image fusion has been focused on choosing an appropriate transform.

Apart from the fact that the final decision is highly application dependent, the main

issues addressed in this respect are:

Shift-invariance

As stated in various studies (e.g. [2], [5] and [23]), shift-invariance, as provided by

the UWT, NSCT and approximately by the DTCWT is a highly desirable property

in image fusion applications. Shift-dependency is especially problematic considering

misregistration problems and in image sequence fusion. However, shift-invariant

transforms often come with the handicap of an increased degree of redundancy.
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Isotropic Anisotropic

Figure 2.3: Representation of a curve, separating two smooth regions using isotropic and
anistropic basis elements.

Orthogonality

In general, redundant transforms lead to better fusion results than orthogonal

transforms such as the DWT. This is mainly due to the over-complete set of basis

functions, provided by redundant transforms, which are able to capture the intrin-

sic properties of images better than orthogonal decompositions [81]. Furthermore,

the sampling involved in orthogonal transforms often causes a deterioration in the

quality of the fused image by introducing heavier blocking effects [7]. However,

redundant transforms generally lead to an increase in data volume and complex-

ity which may limit their use in some situations. Note that shift-invariance and

redundancy often go hand in hand.

Anisotropy

To turn the feature selection process more robust and minimize the introduction

of distortions in the fused image, it is advantageous to represent salient information

in the source images with as few coefficients as possible. In natural images such

information is typically exhibited by discontinuity points such as edges which are

located along curves belonging to the boundaries of physical objects [82]. Traditional

transforms such as the DWT, UWT and most pyramid-based transforms, however,

fail to efficiently represent these structures since they rely on a dictionary of roughly

isotropic basis elements. In other words, these transforms do not “see” the smooth-

ness along the curve and require a significant number of coefficients to represent it.

Transforms like the CVT, ConT and the NSCT, on the other hand, use anisotropic

basis elements with elongated shape which are able to represent smooth curves more

efficiently. Fig. 2.3 illustrates the effect of using isotropic and anisotropic basis ele-

ments to represent a smooth contour.

Directionality

Another important attribute of multiscale transforms is the number of directional
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decompositions offered per scale. While most pyramid-based transforms fail do

provide any directional information, wavelet transforms exhibit three directional

detail images, corresponding to the horizontal, vertical and diagonal direction. By

using the CVT, ConT or NSCT an (almost) arbitrary number of directions can be

implemented. In general, a higher directional selectivity results in a more compact

representation of image features. Usually, there exists a strong connection between

anisotropy and multidirectionality. In fact, it is because of these anisotropic basis

elements that multidirectionality is possible [82]. �

Other important aspects which may influence the overall fusion performance are

the number of decomposition levels and the used filter bank. In Chapter 3 a perfor-

mance comparison of several multiscale transforms together with an analysis of the

results for different numbers of decomposition levels and filter settings is conducted.

2.3.2 Activity measure

The activity measure is in charge of reflecting the degree of saliency exhibited by

a single coefficient within a given subband. For example, when combining images

having different foci, a desirable activity measure would provide a quantitative value

that increases whenever an object is in focus. At pixel-level there exist two classes

of methods to compute the activity, namely, coefficient-based and window-based

measures [5]. The coefficient-based activity measures consider each coefficient sep-

arately. In this case, the activity is usually calculated by taking the absolute value

of the coefficient, given by

ajk[m,n, p] =
∣∣yjk[m,n, p]∣∣ . (2.19)

In contrast, window-based activity measures employ a small (typically 3 × 3 or

5 × 5) window centered at the current coefficient position. A diagram illustrating

these two types of activity measures is shown for a single subband in Fig. 2.4.

Based on the fact that the human visual system is primarily sensitive to local

contrast changes, most window-based activity measures employ some sort of energy

calculation

ajk[n, p] =
∑

∆n∈W

wk[∆n]
∣∣yjk[n + ∆n, p]

∣∣γ , γ ∈ R+, (2.20)

where wk are the window weights with
∑

∆n∈W wk[∆n] = 1. Alternatively, one can

compute the activity as the contrast of a single coefficient with its neighbors

ajk[n, p] =

∣∣yjk[n, p]∣∣∑
∆n∈W

wk[∆n]
∣∣yjk[n + ∆n, p]

∣∣ . (2.21)
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Figure 2.4: Fusion of a single subband using a coefficient-based and a window-based
activity measure.

Another approach is to use a non-linear criteria such as the so-called rank filter

which considers the ith highest value within a small window

ajk[n, p] = rank(i)
∆n∈W

∣∣yjk[n + ∆n, p]
∣∣ (2.22)

as an appropriate activity measure. A special case of the rank filter is the me-

dian filter which can be used to e.g. turn the activity measure more robust against

impulsive noise.

Finally, we would like to point out that the presented list of activity measures

is not exhaustive. For example, one might also consider to calculate the activity by

computing the spatial frequency measure as described in [83] or utilize statistical

properties such as the mean or the standard deviation within a window.

2.3.3 Match measure

The match or similarity measure between the transform coefficients of the source

images expresses to which extent the source images differ. In combination with the

activity measure, this information is used to reach an appropriate fusion decision.

The match measure between yjA and yjB is usually expressed in terms of a local

correlation measure averaged over a neighborhood of the samples

mj
AB[n, p] =

2
∑

∆n∈W

wk[∆n]yjA[n + ∆n, p]yjB[n + ∆n, p]∑
∆n∈W

wk[∆n]
(∣∣yjA[n + ∆n, p]

∣∣2 +
∣∣yjB[n + ∆n, p]

∣∣2) , (2.23)
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where, again, wk are the window weights such that
∑

∆n∈W wk[∆n] = 1.

2.3.4 Decision method

The decision on how to combine the source images is the key point in most image

fusion approaches since it controls the construction of the fused, decomposed image.

The output of the decision step is, in general, a set of fusion weights which are stored

in a so-called decision map.

Decision mechanisms can be broadly divided into purely selective, purely arith-

metic or composite schemes which represent a combination of the first two. As for

selective schemes, a natural approach would be to assign a fixed weight of one to

the coefficient which exhibits the highest degree of saliency, e.g. the one with the

largest activity. This is one of the simplest weighting schemes and is known in the

literature as a “choose max” selection or maximum selection rule. For the case of

two input sources, the fusion weights are defined as

wjA[m,n, p] =

1 if ajA[m,n, p] > ajB[m,n, p]

0 otherwise
(2.24a)

wjB[m,n, p] = 1− wjA[m,n, p]. (2.24b)

Since the sum of the individual weights always has to be one, we henceforth omit

the calculation of wjB and consider eq. (2.24b) to be valid for all remaining cases.

Eq. (2.24) works well under the assumption that at each image location, only one of

the source images provides the most useful information. However, like most selective

schemes, the maximum selection approach suffers from a low robustness to noise and

random selections, resulting in a “salt and pepper” appearance of the decision maps.

Alternatively, we could use an arithmetic method which assigns to each coefficient

a weight that depends increasingly on the activity, for example

wjA[m,n, p] =
ajA[m,n, p]

ajA[m,n, p] + ajB[m,n, p]
. (2.25)

In general, these schemes lead to a stabilization of the decision map but introduce

the problem of contrast reduction in the fused image, in case of opposite contrast in

the source images.

In order to overcome, to a certain extend, the problems associated with the se-

lective and arithmetic decision schemes, a composite scheme may be utilized. These

decision methods usually employ a match measure to decide whether a selective or
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Figure 2.5: Related coefficients in the DWT domain (dark squares), belonging to the
same location in the spatial domain.

arithmetic weight calculation should be performed, for instance,

wjA[m,n, p] =


1 if mj

AB[m,n, p] ≤ T and ajA[m,n, p] > ajB[m,n, p]

0 if mj
AB[m,n, p] ≤ T and ajA[m,n, p] ≤ ajB[m,n, p]

1
2

if mj
AB[m,n, p] > T

(2.26)

for some threshold T . Thus, at locations where the source images are distinctly

different, the combination process selects the most salient component, while at lo-

cations where they are similar, the average of the source images is taken. In this

way, averaging reduces noise and provides stability at locations where source im-

ages contain similar information, whereas selection retains salient information and

reduces artifacts due to opposite contrast at locations where both source images are

different.

In the examples presented so far, the decision is taken for each coefficient in-

dependently without reference to the others. However, as illustrated in Fig. 2.5,

each coefficient has a set of corresponding coefficients in other directional bands and

other decomposition levels which refer to the same spatial location in the source

image. Thus, in order to conserve a certain feature from one of the source images

in the fused image, all the corresponding coefficients have to be transferred to the

composite multiscale representation. Failing to do so may result in a degradation

of the fusion result due to the possibility of feature cancellation when the inverse

transform is applied. It seems therefore reasonable to consider all (or a subset of)

these coefficients when calculating the fusion weights. For example, one may use
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the intra-scale dependencies at each decomposition level to obtain

wjA[m,n, p] =


1 if

Q∑
q=1

ajA[m,n, q] >

Q∑
q=1

ajB[m,n, q]

0 otherwise

, (2.27)

where q = 1, . . . , Q defines the directional band. In this case, the fusion weights

are obtained by a selective rule which takes into account the corresponding activity

values of all directional detail images. The most restrictive case is to consider inter-

scale dependencies as well, ensuring that all corresponding coefficients receive the

same fusion weight. Such a scheme may be given by

wjA[m,n, p] =


1 if

L∑
l=1

Q∑
q=1

alA[m,n, q] >
L∑
l=1

Q∑
q=1

alB[m,n, q]

0 otherwise

, (2.28)

where l = 1, . . . , L and q = 1, . . . , Q represent the decomposition level and direc-

tional band, respectively.

Another possibility to improve the overall fusion result is to exploit the fact

that it is very likely that a good fusion method computes neighboring coefficients in

the composite representation in a similar manner. One example which is based on

this idea is the consistency verification method, proposed by Li et al. in [40]. This

approach consists of applying a majority filter to a binary decision map, obtained

by e.g. a maximum selection rule. For example, consider the case where the center

weight within a small window (3×3 or 5×5) indicates that the composite coefficient

yjF should be selected from yjA whereas the majority of the surrounding coefficients

should be taken from yjB. After applying consistency verification, the decision map

indicates that the composite coefficient yjF should also be selected from yjB. Note

that this mechanism is able to remove the largest amount of selection randomness

from the decision map, thus minimizing noise effects. �

So far in this subsection we made no explicit distinction between approximation

and detail images. In fact, all presented techniques so far may also be applied to

obtain the fusion weights for the low-pass coefficients. However, because of their

different physical meaning, the approximation and detail images are usually treated

differently by the decision algorithm. As for the detail images, perceptually impor-

tant information can be related to the absolute coefficient values. Here, a large value

corresponds to sharp intensity changes and, thus, to salient features in the image

such as edges, lines or other discontinuities. The nature of the approximation im-

age, however, is different. It represents a coarse representation of the source image
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and may exhibit some of its properties such as the main intensity or some coarse

textural information. Thus, approximation coefficients with a large absolute value

do not necessarily correspond to important features within the source image.

In many approaches, the composite approximation coefficients are obtained by

a simple averaging operation. Thus, the approximation fusion weights v are

vA[m,n] = vB[m,n] =
1

2
. (2.29)

We would like to point out that this approach is based on the assumption that all

relevant features have already been captured by the detail images. If this is not valid,

one might also consider decision schemes which utilize some activity measurement,

based on quantities such as entropy or variance. However, as was pointed out in

[41], approximation image fusion methods have little influence on the overall fusion

performance. �

Finally, we want to remark that other factors may also influence the assembling of

the decision map. In particular, if some a priori knowledge about the source images

is available, the decision block can use such information to further improve fusion

performance.

2.3.5 Combination method

This block is in charge of performing the actual combination of the transform coeffi-

cients of the two source images. This is usually accomplished using a linear mapping

yjF [m,n, p] = wjA[m,n, p]yjA[m,n, p] + wjB[m,n, p]yjB[m,n, p], (2.30a)

xJF [m,n, p] = vA[m,n]xJA[m,n] + vB[m,n]xJB[m,n], (2.30b)

where the weights wjA, wjB, vA and vB are obtained from the decision map. �

In the next chapter the influence of different multiscale transforms for the purpose

of pixel-level image fusion is investigated. We start our discussion with a theoretical

review of traditional as well as recently developed image decomposition methods.

Next, some fusion results obtained by using each transform with varying decomposi-

tion levels and filter banks are presented. Finally, by comparing the achieved fusion

results, we give the best candidates for the fusion of three different classes of input

images.
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Chapter 3

Performance comparison of

different multiscale transforms for

image fusion

Multiscale transforms are among the most popular techniques in image fusion appli-

cations. The basic methodology underlying these approaches is to first decompose

the source images into a set of images at different scales and orientations before com-

bining each subband image individually in the transform domain. The final fused

image is obtained by applying the inverse transform to the composite multiscale

representation. This process is illustrated in Fig. 1.5 of Chapter 1 for the case of

two input images where T and T −1 represent the forward and inverse transform,

respectively.

The main reason of performing the fusion in the transform domain is that salient

features within the source images, such as edges, lines or other discontinuities, result

in high coefficient values and are therefore more clearly depicted than in the spatial

domain. In addition, strong evidence exists that the human visual system exhibits

high similarities with the properties of multiscale transforms, further motivating its

use for the purpose of image fusion.

Plenty of multiscale transforms have been proposed in the context of image fusion

(see Section 2.2 for a general overview). They range from traditional transforms such

as the Discrete Wavelet Transform (DWT) and the Undecimated Wavelet Transform

(UWT) to recently developed decompositions like the Dual-Tree Complex Wavelet

Transform (DTCWT), the Curvelet Transform (CVT), the Contourlet Transform

(ConT) and the Nonsubsampled Contourlet Transform (NSCT).

In the literature only little research effort can be found which attempts to assess

the fusion performance of these transforms. For this purpose, a detailed performance

comparison of multiscale transforms in the context of image fusion is conducted in
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this chapter. We start off by giving a theoretical background on each decomposi-

tion before investigating its suitability for image fusion using the generic “choose

max” fusion rule for all detail images in combination with a simple averaging of the

approximation images. In addition, each transform is tested for a varying number of

decomposition levels and different filter banks, thus permitting us to better under-

stand the influence of these settings on the final fusion result. Finally, we conclude

the chapter with an analysis of the obtained results.

3.1 Multiscale transforms

In this section we briefly review the theory behind some of the most utilized multi-

scale transform in the context of image fusion. For the sake of consistency with the

subsequent chapters we start our discussion with the DWT, CVT and ConT before

moving on to shift-invariant transforms such as the UWT, DTCWT and NSCT.

Where applicable, the same notation as described in Section 2.1 is used.

3.1.1 Discrete Wavelet Transform

With the advent of wavelet theory in the last decade, multiscale methods have be-

come increasingly popular within the signal processing community, with applications

ranging from quantum physics to signal coding [84]. In what follows, we give a brief

introduction to the DWT emphasizing its relation to filter banks. More detailed

background texts analyzing the DWT from other points of view can be found in

e.g. [81], [85], [86] and [87].

In a nutshell, the DWT replaces the infinitely oscillating sinusoidal basis func-

tions of the Fourier transform with a set of locally oscillating basis functions called

wavelets. In the classical setting, wavelets are stretched and shifted versions of a fun-

damental, real-valued bandpass function ψ(t). When carefully chosen and combined

with shifts of a real-valued low-pass scaling function φ(t), the discrete approximation

x0 of an one-dimensional (1-D) finite-energy analog signal x can be decomposed in

terms of wavelet and scaling functions via [85]

x0[n] =
∞∑

l=−∞

xJ [l]φ̃J,l(n) +
∞∑

l=−∞

J∑
j=1

yj[l]ψ̃j,l(n), (3.1)

with φ̃j,l(t) = 2−j/2φ̃(2−jt− l) and ψ̃j,l(t) = 2−j/2ψ̃(2−jt− l). The approximation (or

scaling) coefficients xJ and the detail (or wavelet) coefficients yj at scale j = 1, . . . , J
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are computed via the inner products

xJ [n] = 〈x0, φJ,l〉 =
∞∑

l=−∞

x0[l]φJ,l(n), (3.2)

yj[n] = 〈x0, ψj,l〉 =
∞∑

l=−∞

x0[l]ψj,l(n), (3.3)

where the family of functions {φJ,l}l∈Z and {ψj,l}j,l∈Z are the duals of (orthogonal

to) {φ̃J,l}l∈Z and {ψ̃j,l}j,l∈Z, respectively. For the particular case where φ = φ̃ and

ψ = ψ̃ the scaling and wavelet functions form a orthonormal basis expansion. Note

that the scaling coefficients xJ and wavelet coefficients yj provide a time-frequency

analysis of the signal by measuring its frequency content (controlled by the scale

factor j) at different sampling positions (controlled by the spatial shift l). This is

conceptually very close to the windowed or short-time Fourier transform where a

signal is also decomposed using a window which is localized in both the spatial and

frequency domain. However, as opposed to the windowed Fourier transform, the

DWT uses a time-frequency resolution that changes.

There exists a very efficient way to obtain the wavelet decomposition of the signal

x0 without explicitly computing eqs. (3.1), (3.2) and (3.3). More specifically, it was

shown in [81] that the scaling and wavelet coefficients xJ and yj can be related to a

two-channel perfect reconstruction filter bank by

xj+1[n] =
∞∑

l=−∞

h[l − 2n]xj[l] =
(
h̄ ∗ xj

)
[2n], (3.4)

yj+1[n] =
∞∑

l=−∞

g[l − 2n]xj[l] =
(
ḡ ∗ xj

)
[2n], (3.5)

where h and g are the deployed low-pass and high-pass analysis filters, respectively,

and h̄[n] = h[−n]. The reconstruction at scale j is obtained by upsampling the

coefficients xj+1 and yj+1, filtering with the synthesis filters h̃ and g̃ and summing

the respective outputs. This is given by

xj[n] =
∞∑

l=−∞

h̃[n− 2l]xj+1[l] +
∞∑

l=−∞

g̃[n− 2l]yj+1[l]

= (h̃ ∗ x̌j+1)[n] + (g̃ ∗ y̌j+1)[n], (3.6)

where x̌ denotes the upsampling of x achieved by

x̌[n] =

x[p] if n = 2p

0 if n = 2p+ 1.
(3.7)
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Figure 3.1: DWT two-channel perfect reconstruction filter bank with one decomposition
level.

Fig. 3.1 shows such a two-channel filter bank with a single decomposition level.

For perfect reconstruction, the analysis and synthesis filters need to satisfy the

perfect reconstruction condition

H(z)H̃(z) +G(z)G̃(z) = 1 (3.8)

and the anti-aliasing condition

H(−z)H̃(z) +G(−z)G̃(z) = 0 (3.9)

in the z-transform domain [81].

The two-dimensional (2-D) DWT decomposition at location m,n is given by

xj+1[m,n] =
(
h̄h̄ ∗ xj

)
[2m, 2n] (3.10)

yj+1
1 [m,n] =

(
h̄ḡ ∗ xj

)
[2m, 2n] (3.11)

yj+1
2 [m,n] =

(
ḡh̄ ∗ xj

)
[2m, 2n] (3.12)

yj+1
3 [m,n] =

(
ḡḡ ∗ xj

)
[2m, 2n] (3.13)

where the rows and columns are filtered separately by h and g, leading to three high-

pass (or detail) images y1, y2, y3 per stage, corresponding to the horizontal, vertical

and diagonal directions. The approximation (or low-pass) image xj is recovered

from the coarser-scale approximation image xj+1 and the detail images yj+1 by two-

dimensional separable convolutions in a similar way than in the 1-D case

xj[m,n] =
(
h̃h̃ ∗ x̌j+1

)
[m,n] +

(
h̃g̃ ∗ y̌j+1

1

)
[m,n]

+
(
g̃h̃ ∗ y̌j+1

2

)
[m,n] +

(
g̃g̃ ∗ y̌j+1

3

)
[m,n]. (3.14)

Fig. 3.2 shows the DWT decomposition of Fig. 1.3(a) using the biorthogonal

CDF 5/3 filter bank with 2 decomposition levels. This filter bank is also used in the

JPEG-2000 standard [88] for lossless compression.
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Figure 3.2: DWT decomposition of Fig. 1.3(a) using the biorthogonal CDF 5/3 filter
bank with 2 decomposition levels. Each scale and direction has been normalized such that
the full dynamic range is occupied.

3.1.2 Curvelet Transform

Despite considerable success of the wavelet theory, research has shown that the clas-

sical DWT is far from being universally effective. In image processing for example,

one has to deal with the fact that salient information may be located along curves

or edges. While wavelets are good at isolating the discontinuities at edge points,

they are in general ill-suited for providing a compact representation of such geo-

metric structures. For this purpose, considerable research effort has been put into

the development of new transforms which combine ideas from geometry with ideas

from traditional multiscale analysis. A special member of this emerging family of

multiscale transforms is the Curvelet Transform (CVT) which is briefly introduced

in the remainder of this subsection. A more thorough discussion on the CVT can

be found in [89] and [90].

In order to better understand the CVT, we start with its continuous implemen-

tation and a pair of windows W (r) and V (s) which we call the “radial window” and

the “angular window”. They are both smooth, non-negative and real-valued, with

W taking positive real arguments and being supported on r ∈ (1
2
, 2) and V taking

real arguments and being supported on s ∈ [−1, 1]. Now, for each scale j a frequency

window Uj is introduced which is defined in the Fourier domain by

Uj(r, θ) = 2−3j/4W (2−jr)V

(
2bj/2cθ

2π

)
, (3.15)

where r and θ are polar coordinates. Thus, the support of Uj in the frequency

domain is a polar “wedge” defined by the support of W and V .

The “mother” curvelet φj(x) for x = (x, y) is defined by means of its Fourier
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Figure 3.3: Curvelet tiling of space and frequency. The figure on the left represents the
induced tiling of the frequency plane. In the frequency domain, curvelets are supported near
a “parabolic” wedge, represented by the the highlighted black area. The figure on the right
schematically represents the Cartesian grid associated with a given scale and orientation.

transform φ̂j(ω) = Uj(ω) with ω = (ω1, ω2), where we slightly abuse notations by

letting Uj(ω1, ω2) be the window defined in the polar coordinate system by eq. (3.15).

Finally, all curvelets at scale j are obtained by rotations and translations of the

mother curvelet φj(x). A CVT coefficient c is then simply the inner product between

a given function f ∈ L2(R2) and a curvelet φj,k,l such that

c(j, k, l) = 〈f, φj,k,l〉 =

∫
R2

f(x)φj,k,l(x)dx, (3.16)

where j, k and l are the scale, rotation and translation parameters, respectively, and

φ(x) donates the complex conjugate of φ(x).

As in wavelet theory, we also have coarse-scale elements which, as opposed to

fine-scale elements, are non-directional. At scale j0 these coarse-scale curvelets are

defined as

φ̂j0(ω) = 2−j0W0

(
2j0 |ω|

)
(3.17)

in the frequency domain. Fig. 3.3 summarizes the key components of the CVT

construction by showing the curvelet tiling of space and frequency. Note that the

effective support length and width of φj obeys the anisotropic scaling relation

length ≈ 2−
j
2 , width ≈ 2−j ⇒ width ≈ length2. (3.18)

Thus, the CVT achieves optimal approximation behavior for 2-D piecewise smooth

functions that are C2 (twice continuously differentiable functions) except for discon-

tinuities along C2 curves.
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To compute the discrete CVT of a digital image I one must take into account

the discrete sampling grid, which imposes constraints on the curvelet angles. In a

nutshell, the discrete CVT replaces the polar tiling in the frequency domain (see

Fig. 3.3) by a discrete rectar-polar tiling. It is implemented by the following steps:

1. Apply the 2-D Fast Fourier Transform (FFT) to the discrete image and obtain

Fourier samples f̂ [ω1, ω2]

2. For each scale/angle pair (j, k) resample f̂ [ω1, ω2] to obtain sampled values

f̂ [ω1, ω2 − ω1 tan θl]

3. Multiply the interpolated, Fourier transformed image f̂ with the parabolic

window Ũj, localizing f̂ near the wedge with orientation θl, and obtain

f̃j,k[ω1, ω2] = f̂ [ω1, ω2 − ω1 tan θk]Ũj[ω1, ω2], (3.19)

where Ũj is the Cartesian equivalent to the “polar” window Uj of eq. (3.15).

4. Apply the inverse 2-D FFT to each f̃j,k hence collecting the discrete curvelet

coefficients c.

Note that the design of appropriate digital curvelets at the finest scale is not as

straightforward as it is for the coarser scales. This is mainly a boundary/periodicity

issue. More specifically, the wedge-shaped frequency support of the CVT at finer

scales does not fit entirely in the fundamental cell and its periodization may in-

troduce energy at unwanted angles. This problem can be solved by assigning non-

directional wavelets to the finest scale.

The discrete implementation of the CVT does not represent a critically-sampled

transform such as the DWT and comes with a redundancy factor of 2.8 when wavelets

are chosen at the finest scale and 7.2, otherwise [90].

3.1.3 Contourlet Transform

As seen in the previous subsection, the CVT tiles the 2-D frequency plane using

the polar coordinate system. This makes its construction simple in the continuous

domain but causes the implementation for discrete images - sampled on a rectangular

grid - to be very challenging. This fact motivated the development of a further

directional multiscale transform called Contourlet Transform (ConT) which, unlike

the CVT, is defined directly in the discrete domain. It is worth emphasizing that,

although the ConT and CVT have some similar properties and goals, the former is

not a discretized version of the latter. Generally speaking, the ConT consists of a

double filter bank structure where, first, a Laplacian pyramid (LP) [91] is used to

38



capture the point discontinuities before applying a directional filter bank (DFB) [92]

which links the point discontinuities into linear structures. In what follows these

two building blocks are introduced in more detail.

One of the earliest multiscale approaches in image processing is the pyramid

representation. A classical image pyramid consists of a sequence of versions of an

original image in which the resolution is gradually decreased by filtering and down-

sampling. The bottom (or zero) level x0 of the pyramid is equal to the original image

I. This image is low-pass filtered and downsampled to obtain the next level x1. Fur-

ther repetitions of this filtering/downsampling procedure generate the subsequent

levels of the pyramid. This can be expressed by

xj+1[m,n] =
∞∑

k=−∞

∞∑
l=−∞

w[k, l]xj[2m− k, 2n− l], (3.20)

where w are the filter coefficients and j is the current decomposition level. In general

w is separable and can be expressed such that w[m,n] = h[m]h[n]. If w is chosen in

a way that it resembles a Gaussian function, the resulting pyramid is referred to as

the Gaussian pyramid.

By interpolating each image xj+1 of the Gaussian pyramid and subtracting it

from its predecessor xj we obtain the LP. The interpolation operation is defined as

x̂j[m,n] = 4
∞∑

k=−∞

∞∑
l=−∞

w[k, l]xj+1

[
m− k

2
,
n− l

2

]
, (3.21)

where only the terms for which m − k and n − l are even are included in the

summation. Note that the image x̂j can be interpreted as a prediction of xj. Thus,

each detail image yj+1 of the LP corresponds to the error of approximation

yj+1[m,n] = xj[m,n]− x̂j[m,n], 0 ≤ j ≤ J (3.22)

with the exception of the top-level detail image yJ+1, which is defined as

yJ+1[m,n] = xJ [m,n], (3.23)

where xJ is the coarsest image in the Gaussian pyramid.

The original image I = x0 can be recovered exactly by interpolating yJ+1 and

adding it to yJ to form xJ−1. This procedure is repeated until x0 is reached. Note

that the LP does not represent a critically-sampled transform and comes with a

redundancy of approximately 33%. Furthermore we would like to point out that the

LP accounts for the multiscale property of the ConT.

The multidirectionality of the ConT is achieved by a maximally decimated DFB.
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Figure 3.4: Wedge-shaped frequency partition of the 3-level DFB.
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Figure 3.5: The first two levels of the DFB. The black regions represent the ideal frequency
support of the fan filters. The depicted set of numbers at the output of the DFB correspond
to the directional subbands given in Fig. 3.4.

It is intuitively constructed by combining fan filters [93] with resampling operations,

leading to a 2l wedge-shaped frequency partition as illustrated in Fig. 3.4 for l = 3.

To obtain a four directional frequency partitioning, the first two decomposition

levels of the DFB are given in Fig. 3.5, where the sampling matrices Q0 and Q1 are

defined as

Q0 =

[
1 −1

1 1

]
, Q1 =

[
1 1

−1 1

]
. (3.24)

Note that Q0Q1 = 2 ·I2 with I2 donating the 2×2 identity matrix so that the overall

sampling after two levels corresponds to a downsampling of two in each dimension.

Using the noble identities of multirate systems [84] we can interchange the filters at

the second level in Fig. 3.5 with the sampling matrix Q0. This change transforms

the fan filter into a filter with checker-board frequency support (see second level of

the nonsubsampled DFB in Fig. 3.8(b) for a schematic presentation of the idealized
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↓2I2

Figure 3.6: ConT filter bank. First, a multiscale decomposition into octave bands by the
LP is computed, and then a DFB is applied to each detail image.

frequency support of these filters). The combination of the fan filters of the first level

with the transformed filters of the second level results in four directional subbands

as depicted at the output of the DFB in Fig. 3.5. From the third level onwards, to

achieve finer frequency partition, the sampling matrices Q0 and Q1 are combined

with the matrices

R0 =

[
1 1

0 1

]
, R1 =

[
1 −1

0 1

]
,

R2 =

[
1 0

1 1

]
, R3 =

[
1 0

−1 1

]
.

(3.25)

After applying the noble identities, this leads to so-called parallelogram filters. In

connection with the filters of the first and second level, this leads to eight directional

subbands as shown in Fig. 3.4. The idealized frequency support of the parallelogram

filters is illustrated at the third level of the nonsubsampled DFB in Fig. 3.8.

The ConT is obtained by simply concatenating the LP with the DFB, resulting

in the overall double filter bank structure shown in Fig. 3.6. Due to the iterated

directional filter bank approach, the ConT permits any number of 2l directions at

each scale. Moreover, like in case of the CVT if the number of directions is doubled

at every other scale, the ConT satisfies the anisotropic scaling law, hence, it is able

to efficiently approximate smooth objects having discontinuities along C2 curves.

We would like to point out that, due to the application of the LP, the ConT comes

with a small redundancy of 33 percent. More detailed background information on

the ConT can be found in [82].
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3.1.4 Undecimated Wavelet Transform

While the decimated (bi)orthogonal wavelet transform is widely used in image com-

pression algorithms such as JPEG-2000 [88], results are far from optimal for other

applications like image fusion. This is mainly due to the downsampling in each

decomposition step of the DWT which may cause a large number of artifacts when

reconstructing an image after modification of its wavelet coefficients [94]. Thus,

for applications such as image fusion, where redundancy is not a crucial factor,

performance can be improved significantly by removing the decimation step in the

DWT, leading to the non-orthogonal, translation-invariant Undecimated Wavelet

Transform (UWT).

Like the DWT, the UWT is implemented using a filter bank which decomposes

a discrete 1-D signal x0 into a set S = {y1, . . . , yJ , xJ} in which yj represent the

detail (or wavelet) coefficients at scale j and xJ are the approximation (or scaling)

coefficients at the coarsest scale J . The passage from one resolution to the next one

is obtained using the “à trous” algorithm [94, 95], where the analysis low-pass and

analysis high-pass filter h and g are upsampled by 2j when processing the jth scale

and j = 0, . . . , J . Thus, the UWT decomposition is defined as

xj+1[n] =
∞∑

l=−∞

h[2jl − n]xj[l] =
(
h̄(j) ∗ xj

)
[n], (3.26)

yj+1[n] =
∞∑

l=−∞

g[2jl − n]xj[l] =
(
ḡ(j) ∗ xj

)
[n], (3.27)

where h̄[n] = h[−n] and h(j)[n] = h[ n
2j

] if n
2j

is an integer and 0, otherwise. The

reconstruction at scale j is obtained by

xj[n] =
1

2

[(
h̃(j) ∗ xj+1

)
[n] +

(
g̃(j) ∗ yj+1

)
[n]
]

, (3.28)

where h̃ and g̃ are the upsampled low-pass and high-pass synthesis filters, respec-

tively.

The original signal can be recovered exactly from its UWT decomposition if

the used analysis and synthesis filters satisfy the perfect reconstruction condition

of eq. (3.8). This provides additional freedom during the filter selection process

compared to the DWT where, in addition to the perfect reconstruction condition,

the anti-aliasing condition of eq. (3.9) has to be satisfied as well.

The UWT can be extended to 2-D by filtering the rows and columns separately

by h and g as given in eqs. (3.10) to (3.13), leading to three oriented detail images

that isolate the horizontal, vertical and diagonal directions. The redundancy factor

of an UWT J-level decomposition is 3J + 1, since each detail image has the same
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size than the original image.

Due to the fact that the filters do not need to be (bi)orthogonal, an alternative

approach in multispectral image fusion (e.g. fusion of high-resolution panchromatic

images with low-resolution multispectral images) is to define g[n] = δ[n] − h[n],

where δ[n] represents an impulse at n = 0 [20, 22, 23]. In 2-D this yields g[m,n] =

δ[m,n] − h[m,n], which suggests that the detail images can be obtained by taking

the difference between two successive approximation images

yj+1[m,n] = xj[m,n]− xj+1[m,n]. (3.29)

Please note that, in this case, we only obtain one detail image for each scale and

not three as in the general case. The reconstruction is obtained by co-addition of

all detail images to the approximation image, that is

x0[m,n] = xJ [m,n] +
J∑
j=1

yj[m,n], (3.30)

which implies that the synthesis filters are all-pass filters with h̃[m,n] = g̃[m,n] =

δ[m,n] [94]. A common choice for the analysis, low-pass filter h is a B-spline filter.

In the literature this implementation of the UWT is known as Isotropic Undecimated

Wavelet Transform [94] or Additive Wavelet Transform [22].

3.1.5 Dual-Tree Complex Wavelet Transform

Despite the success of classical wavelet methods, some limitations reduce their ef-

fectiveness in certain situations. For example the DWT and the UWT rely on a dic-

tionary of roughly isotropic elements and contain only a small number of directions

due to the standard tensor product construction in 2-D. Moreover, since wavelets

are bandpass functions, their coefficients tend to oscillate around singularities which

might complicate singularity extraction [96, 97].

A transform which attempts to circumvent the shortcomings of wavelet-based

transforms is the Dual-Tree Complex Wavelet Transform (DTCWT). One way to

understand the DTCWT is to note that the Fourier Transform does not suffer from

many of the problems associated with wavelet transforms. The reason is that, unlike

wavelet transforms, the Fourier Transform is based on complex-valued oscillating

sinusoids

ejωn = cos(ωn) + j sin(ωn) (3.31)

which form a Hilbert transform pair (they are 90° out of phase with each other), thus

constituting an analytic signal that is supported on only one-half of the frequency

axis (ω > 0). The DTCWT attempts to imitate the behavior of the Fourier Trans-
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form by defining a complex-valued scaling and complex-valued wavelet function

φc(n) = φr(n) + jφi(n)

ψc(n) = ψr(n) + jψi(n)
, (3.32)

where φr and φi as well as ψr and ψi are (approximately) 90° out of phase with

each other. By computing the inner product between the input signal x0 and the

complex-valued wavelet function ψc the complex detail coefficients

yjc [n] = yjr [n] + jyji [n] (3.33)

with magnitude ∣∣yjc [n]
∣∣ =

√
yjr [n]2 + yji [n]2 (3.34)

and phase

∠yjc [n] = arctan

(
yji [n]

yjr [n]

)
(3.35)

are obtained. Here, a large magnitude indicates the presence of a singularity while

the phase indicates its position within the support of the wavelet [96]. Note, that

the complex approximation coefficients are defined similarly.

The implementation of the DTCWT is done using two filter bank trees, each

employing a real DWT, thus giving the transform its name. The first tree repre-

sents the real part of the transform while the second tree gives the imaginary part.

The two trees use two different sets of filters, with each set satisfying the perfect

reconstruction conditions of eqs. (3.8) and (3.9). In order for the two filter pairs

to be analytic, the two analysis low-pass filters h0 and h1 should be a half-sample

delay of the other

h1[n] ≈ h0[n− 0.5], (3.36)

which can only be satisfied approximately since h0[n] and h1[n] are defined solely

for integers [96]. However, we can make the statement rigorous using the Fourier

transform

H1

(
ejω
)

= e−j0.5ωH0

(
ejω
)

. (3.37)

The reconstruction of the original signal is obtained by simply inverting the two real

DWTs, using the corresponding synthesis filters, and averaging the outputs of each

tree.

It turns out that for the half-sample delay condition of eqs. (3.36) and (3.37) to be

satisfied any perfect reconstruction filter bank can be used at the first decomposition

stage. It is only necessary to translate the filter bank of one tree by one sample with

respect to the filter bank of the other tree. As for all further stages so-called quarter
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Figure 3.7: Idealized support of the six oriented wavelets of the DTCWT in the 2-D
frequency plane.

sample shift (q-shift) orthogonal filter banks are used.

In addition, due to the (approximately) analytic nature of the DTCWT it is pos-

sible in 2-D to obtain complex wavelets which cover more distinct directions than the

DWT. Fig. 3.7 illustrates this, showing the idealized support of each wavelet in the

frequency domain. Note that, in 2-D, independent of the number of decomposition

levels, the DTCWT is four times redundant.

Another attractive property of the DTCWT is its near shift-invariance which

implies that a small shift of the input signal only results in a corresponding transla-

tion of the transform coefficients. This is in contrast to other transforms such as the

DWT, CVT and ConT where transform coefficients may disappear arbitrarily under

image translation. We see later in this work that shift-invariance (or translation-

invariance) is a desirable property in image fusion applications. The interested

reader can find more information on the DTCWT in [96] and [98].

3.1.6 Nonsubsampled Contourlet Transform

The Nonsubsampled Contourlet Transform (NSCT) represents the undecimated,

shift-invariant counterpart of the ConT. Like the ConT, it can be conceptually

divided into two parts: a) a nonsubsampled pyramid structure that ensures the

multiscale property and b) a nonsubsampled DFB structure that gives directionality

[99].

The pyramidal decomposition is obtained by removing the downsamplers and

upsamplers of the Laplacian pyramid (LP) described in Section 3.1.3. This is in spirit

similar to the Isotropic Undecimated Wavelet Transform where also a two-channel

nonsubsampled filter bank is employed, yielding one detail image per stage. The

filters at every subsequent stage are obtained by upsampling those of the previous

stage according to the “à trous” algorithm. The idealized frequency support of

the three-stage, nonsubsampled pyramid decomposition of a sample image x0 is

illustrated in Fig. 3.8(a), where the dark-gray areas correspond to the support of

the deployed filters.

After decomposing the original image using the nonsubsampled LP, the resulting

detail images are further processed using a nonsubsampled directional filter bank

(DFB). In analogy to the nonsubsampled pyramid decomposition, it is constructed
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Figure 3.8: Idealized frequency support of the two building blocks of the NSCT. (a)
Nonsubsampled pyramid decomposition and (b) Nonsubsampled DFB.

by eliminating the subsampling operations of the critically sampled DFB introduced

in Section 3.1.3. A schematic diagram of the 3-level nonsubsampled DFB is illus-

trated in Fig. 3.8(b), showing the idealized frequency support of the resampled filters

at each stage. Note that U(z) and V (z) correspond to the prototype fan filter pair

in the z-transform domain that divides the 2-D frequency spectrum into horizontal

and vertical directions, respectively. The resampling matrices Q0, R0, R1, R2 and

R3 are the same than those utilized in the critically sampled DFB (see eqs. (3.24)

and (3.25)). The NSCT has a redundancy factor of 1 +
∑J

j=1 2lj , where lj denotes

the number of levels of the nonsubsampled DFB at the jth scale. �

Before presenting the fusion results obtained for each multiscale transform intro-

duced in this section, we first elaborate on the question how the “quality” of a fused

image can be measured. This issue represents an inherent problem of image fusion

since in most scenarios no ideal fusion result is available that may be used as ground

truth.

3.2 Objective performance evaluation

The widespread use of image fusion has led to an increasing need for pertinent quality

assessment tools in order to compare results obtained with different algorithms or to

obtain an optimal setting of parameters for a given fusion algorithm. In general we

are interested in measures that express the success of an image fusion technique in

creating a composite image that retains as much salient information as possible from

the source images while minimizing the number of artifacts that may incommode
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human observers [7].

The most reliable and trusted methods of fusion assessment are subjective or

perceptual image fusion evaluation trials in which an audience of potential users is

employed to evaluate the fusion system under test. However, subjective tests are

impractical in many cases due to heavy organizational and equipment requirements

and strict test conditions that have to be obeyed. Objective fusion metrics that

require no display equipment and are less time-consuming are therefore highly de-

sirable. Of particular interest are fully automatic, non-reference fusion metrics which

evaluate fusion without presuming knowledge of a ground truth as e.g. is needed for

the root mean squared error evaluation [40, 45] of multifocus fusion. These metrics

consider only the input images and the fused image to produce a single numerical

score that indicates the success of the fusion process [100]. In the remainder of

this section three of the most frequently used non-reference fusion metrics, namely,

the performance measure proposed by Xydeas and Petrović QAB/F [101], Piella QP

[102] as well as the Mutual Information (MI), first introduced by Qu et al. [103] in

the context of image fusion, are discussed. Please note that these metrics are also

employed in the remainder of this work to objectively assess the obtained fusion

results. An exhaustive study on different objective metrics in the context of image

fusion can be found in [104].

3.2.1 QAB/F

The QAB/F fusion metric associates important visual information with the edge in-

formation present in an image. Thus, a fused image containing the edge information

from all input images is considered to be the ideal fusion result.

Consider two input images IA and IB, together with a fused image IF . The

QAB/F fusion metric starts by applying a Sobel edge operator to the input image

pair yielding the edge strength g[m,n] and orientation information α[m,n] at each

pixel position m,n. For the case of IA these values are defined as

gIA [m,n] =
√
sHIA [m,n]2 + sVIA [m,n]2 (3.38)

and

αIA [m,n] = tan−1

(
sVIA [m,n]

sHIA [m,n]

)
(3.39)

where sHIA [m,n] and sVIA [m,n] are the outputs of the horizontal and vertical Sobel

operator, respectively.

Next, the relative edge strength and orientation values G[m,n] and A[m,n],

respectively, between the input images and the fused image IF are calculated. For
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IA this yields

GIAIF [m,n] =


gIF [m,n]

gIA [m,n]
if gIA [m,n] > gIF [m,n]

gIA [m,n]

gIF [m,n]
otherwise

(3.40)

and

AIAIF [m,n] = 1− |αIA [m,n]− αIF [m,n]|
π/2

. (3.41)

These values are now used to derive the so-called edge strength and orientation

preservation values Qg[m,n] and Qα[m,n] which model the perceptual loss of in-

formation in the fused image IF in terms of how well the relative strength and

orientation values G[m,n] and A[m,n] are represented in the fused image. For the

input image IA these values are given by

Qg
IAIF

[m,n] =
Γg

1 + eκg(GIAIF [m,n]−σg)
(3.42)

and

Qα
IAIF

[m,n] =
Γα

1 + eκα(AIAIF [m,n]−σα)
. (3.43)

where the constants Γg, κg, σg and Γα, κα, σα are used to determine the exact shape

of the corresponding sigmoid functions. The overall edge information preservation

value between the input image IA and the fused image IF is then defined as

QIAIF [m,n] = Qg
IAIF

[m,n]Qα
IAIF

[m,n]. (3.44)

Finally, the overall fusion metric QAB/F is defined as

QAB/F =

M∑
m=1

N∑
n=1

QIAIF [m,n]gIA [m,n] +QIBIF [m,n]gIB [m,n]

M∑
m=1

N∑
n=1

gIA [m,n] + gIB [m,n]

, (3.45)

where g[m,n] is the result of applying a Sobel edge operator to the input image pair

as given in eq. (3.38). Note that the resulting fusion score falls within a range of

0 and 1, with 0 representing total loss of edge information and 1 ideal fusion. In

practice, however, this range is much narrower and small differences may indicate

significant changes when perceptually analyzing the fused images.
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3.2.2 Mutual Information

The Mutual Information (MI) fusion metric is a simple adaption of the mutual

information concept of information theory. In the context of image fusion, the MI

measure indicates how much information the composite image conveys about each

of the source images. It is defined by simply adding the mutual information between

the composite image IF and each of the input images IA and IB such that

MI = I(IA; IF ) + I(IB; IF ), (3.46)

where I(Ik; IF ) is given by

I(Ik; IF ) =
L∑
u=1

L∑
v=1

pIkIF [u, v] log2

pIkIF [u, v]

pIk [u]pIF [v]
. (3.47)

Here, pIk and pIF are the normalized gray level histograms of Ik and IF , respectively,

pIkIF is the joint gray level histogram of Ik and IF , and L is the number of bins

(e.g. 256). Thus, the higher the mutual information between the fused image and

the input images, the better the composite image resembles the ideal fusion result.

Please note that in order to remove the dependency of the final score on the entropy

of the input images, as well as to bound the final result to the interval [0, 1], we

additionally divided the metric by the sum of the individual entropies of the input

images.

3.2.3 QP

Piella’s performance metric QP is based on the structural similarity (SSIM) index

[105], introduced by Wang et al. and is given by the following expressions

QW (A,B, F ) =
∑
n∈S

c(n)

(
s(A,n)Q0(A,F,n)

s(A,n) + s(B,n)
+
s(B,n)Q0(B,F,n)

s(A,n) + s(B,n)

)
(3.48a)

QP (IA, IB, IF ) = QW (IA, IB, IF ) ·QW (∇IA,∇IB,∇IF ), (3.48b)

with

c(n) =
max

(
s(A,n), s(B,n)

)∑
m∈S

max
(
s(A,m), s(B,m)

) , (3.49)

where {A,B, F} represents a set of input images which either consists of the source

images IA, IB and the fused image IF or their corresponding gradient images ∇IA,

∇IB and ∇IF , and S is the whole image.

In her approach, first two SSIM maps Q0 are calculated, expressing the similarity

between the first source image and the fused image as well as between the second
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source image and the fused image. The SSIM index between the input image IA

and the fused image IF at pixel position n is defined as

Q0(IA, IF ,n) =
σxy
σxσy

· 2x̄ȳ

x̄2 + ȳ2
· 2σxσy
σ2
x + σ2

y

, (3.50)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are two real-valued sequences, repre-

senting the gray-scale values of IA and IF , respectively, within an arbitrary window

centered at pixel position n. x̄, ȳ and σ2
x, σ

2
y denote the mean and variance of the

two sequences x and y, respectively, and σxy is the covariance of x and y.

The two SSIM maps are afterwards refined by giving more weight to areas with

a higher (perceptual) importance, according to some saliency measure s. In our

implementation this saliency is expressed as the variance between the two input

images IA, IB and the fused image IF , respectively, within a window of size 8× 8.

Finally, QW is calculated by pooling and averaging the weighted SSIM values of

both maps, resulting in a score between -1 and 1, where values closer to 1 indicate a

higher quality of the composite images. Furthermore, in order to take the importance

of edge information into account, the above mentioned procedure is also applied to

the corresponding gradient images ∇IA, ∇IB and ∇IF . The final QP fusion metric

is calculated by multiplying the QW score obtained from the original images with

the QW score coming from the gradient images.

3.2.4 Objective metric validation

The fusion metrics described above represent three different paradigms on how an

ideally fused image should be assembled from an arbitrary set of source images.

However, in order for these metrics to be truly applicable, their perceptual signifi-

cance has to be established.

Such a validation was done in [100] where the author compared the objective

fusion scores of the QAB/F , MI and QP with the results of eight subjective trials

including a total of 109 participants for 9 different multiscale fusion algorithms. As

for the subjective evaluation trials, the participants were shown a series of image

sets consisting of two inputs and two fused alternatives of these inputs. For each

image set, the subjects were asked to express their individual preference for one or

none of the fused images offered. In order to quantify the correlation between the

objective and subjective evaluation results, two distinct correspondence measures

were defined. The first measure, entitled correct ranking measure CR, evaluates

the ability of an objective metric to predict the subjective preference for one of the

two fused images offered for a particular input image pair. Thus, it expresses the

proportion in which the subjective and objective ranking correspond. The second
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Objective
QAB/F MI QPmetric

r 0.833 0.742 0.737
CR 0.725 0.625 0.633

Table 3.1: Subjective correspondence of the three objective fusion performance metrics
QAB/F , MI and QP .

measure r is implemented in a similar fashion than the CR measure but additionally

takes into account the relative certainty of the subjective scores. For example, if

all participants of the subjective trial unanimously voted for the same fusion result,

a high correlation between the subjective and objective ranking is considered more

crucial and is thus given more weight than in the case where the fused image received

an evenly distributed number of votes.

Table 3.1 gives the subjective correspondence of the three fusion metrics QAB/F ,

MI and QP in terms of the correct ranking CR and subjective relevance r scores, as

presented in [100]. Note that both scores are bounded to the interval [0, 1] with 1

indicating that the metric agrees in all cases with the subjective evaluation. From

these results it is evident that all objective fusion scores correlate well with the

results achieved in subjective trails. Thus, they can indeed be used to assess the

suitability of different image fusion schemes. �

Even though the perceptual effectiveness of all three employed fusion metrics

could be established successfully, some open problems remain. For example, an

ideal image fusion metric should not change with the content of the input images

but rather evaluate the success of the fusion algorithm in creating an “ideal” fused

image - a requirement which is satisfied by none of these metrics. Additionally, even

though the fusion metrics considered in this work are bounded to the interval [0, 1]

(QAB/F and MI) and [−1, 1] (QP ), respectively, the distribution within this range

is not clear. In other words, given two metric values 0.99 and 0.96, for instance, we

do not know how significant the difference 0.03 is.

Thus, based on these two examples, we can conclude that there still exists a

pertinent need for new fusion metrics which do not suffer from any of these short-

comings and consequently allow for stronger assertions regarding the overall quality

of the fused image.

3.3 Results

In this section, we compare the performance of different multiscale transforms using

three fusion scenarios. The first scenario considers the fusion of images with different
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Figure 3.9: Two IR-visible image pairs used for evaluation purposes. Left column consists
of IR images, whereas the right column shows the corresponding visible images. Source
images kindly provided by Dr. Oliver Rockinger and TNO, The Netherlands, respectively.

focus points whereas the second and third scenario deal with the fusion of IR-

visible and medical image pairs, respectively. All utilized source images, arranged

in correspondence to their underlying fusion scenario, are illustrated in Figs. 3.9 to

3.11.

In all of our simulations the decomposed detail images yjA and yjB are fused using

a simple “choose max” fusion rule. As discussed in Section 2.3, by this rule the

coefficient yielding the highest energy is directly transferred to the fused decomposed

representation. Hence, the fused, detail images yjF are defined as

yjF [m,n, p] =

y
j
A[m,n, p] if

∣∣yjA[m,n, p]
∣∣ > ∣∣yjB[m,n, p]

∣∣
yjB[m,n, p] otherwise

, (3.51)

where m,n represent the spatial location in a given orientation band p at decom-

position level j. This choice is motivated by the fact that salient features result in

large magnitude coefficients, and thus can be effectively captured using this fusion

scheme. The low-pass approximation images xJA and xJB are treated differently since

high magnitudes in the approximation images do not necessarily correspond to im-
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Figure 3.10: Medical image pair used for evaluation purposes.

Figure 3.11: Multifocus image pair used for evaluation purposes.

portant features within the source images. Thus, in our experiments, the composite

approximation image xJF is obtained by a simple averaging operation,

xJF [m,n] =
xJA[m,n] + xJB[m,n]

2
. (3.52)

In the literature more sophisticated fusion rules can be found. However, since the

focus of this chapter is on assessing the suitability of different multiscale transforms

for image fusion rather than on the used fusion rule, the “choose max” rule in

combination with an averaging of the approximation images suffices for our purposes.

The multiscale transforms investigated in this section include all previously in-

troduced decompositions, namely, the DWT, CVT, ConT as well as the UWT,

DTCWT and NSCT using various filter bank settings and number of directions (in

case of the CVT, ConT and NSCT). All simulations were conducted in Matlab®.

In all cases the number of tested decomposition levels varies from two to five. As for

the objective evaluation of the obtained fusion results the three objective metrics

of Section 3.2 are utilized. In the remainder of this section we first individually as-
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Fusion Scenario Filter Bank Levels QAB/F MI QP

Infrared- bior2.2 5 0.5268 0.1155 0.7059
visible bior2.2 2 0.4757 0.1372 0.6013

Medical
db1 5 0.6625 0.3461 0.5912
bior2.2 2 0.5262 0.4053 0.4926

Multifocus
sym8 5 0.6368 0.4542 0.8663
bior2.2 2 0.6000 0.4710 0.7988
db4 5 0.6329 0.4505 0.8676

Table 3.2: Summary of the best fusion results for the DWT.

sess the fusion performance of each multiscale decomposition, before giving a global

comparison of the achieved results.

3.3.1 Discrete Wavelet Transform

In order to assess the fusion performance of the DWT we con-

sider four different wavelet families1 in our simulations: Daubechies

(dBN , N = 1, 2, . . . , 10), Symlets (symN , N = 2, 3, . . . , 10), Coiflets

(coifN , N = 1, 2, . . . , 5) and Biorthogonal (bior{M.N},M.N =

1. 3, 1. 5, 2. 2, 2. 4, 2. 6, 2. 8, 3. 1, 3. 3, 3. 5, 3. 7, 3. 9, 4. 4, 5. 5, 6. 8). Additionally, for

each wavelet basis, the number of decomposition levels is varied from two to five.

The best results for each fusion metric, highlighted in bold, are presented in Table

3.2. Please note that in case of the IR-visible fusion scenario, all reported values

correspond to the average values of the two image pairs depicted in Fig. 3.9. At first

glance it can be noted that a good performance is achieved using Biorthogonal and

Daubechies filters for all three fusion scenarios. As for the fusion of IR-visible and

medical image pairs the best results are obtained by using the ‘bior2. 2’ and ‘db1’ (or

Haar) filter bank, respectively, which exhibit short support sizes. In general it can

be deduced that for multisensor images better fusion results are achieved using short

filters.

In addition, it can be noted that a high number of decomposition levels seems to

provide better fusion scores than a low number. However, it would be presumptuous

to deduce that a higher decomposition depth automatically leads to better results.

In fact, it may produce low-resolution bands where neighboring features overlap.

This gives rise to discontinuities in the composite multiscale representation and

may introduce distortions such as blocking or ‘ringing’ artifacts in the final fused

image. Furthermore, the ideal decomposition depth is also related to the support of

1In the course of this work filters are referred to by their respective names
within the Matlab® Wavelet Toolbox™. More information can be found at
http://www.mathworks.com/products/wavelet/.
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the employed filter bank and the size of the relevant objects in the source images,

thus making it highly application dependent. However, as a rule of thumb, it seems

that good performance is achieved for four to five decomposition levels. Please note

that the MI fusion metric associates the best fusion performance to the use of only

two decomposition levels, independent of the underlying fusion scenario. This is

so because, as reported in various studies [2, 102, 103, 106], the MI fusion metric

constantly assigns the best ranking to the averaging fusion rule which, in our case,

is used to fuse the approximation images. Thus, since a small decomposition depth

implies that more information is fused using the averaging method, the MI fusion

metric tends to favor smaller decomposition numbers. However, as long as the

performance comparison is carried out at the same number of decomposition levels,

MI has been shown to be a good indicator of the quality of multiscale image fusion

[103].

3.3.2 Curvelet Transform

The CVT is a member of the new, emerging family of directional multiscale trans-

forms which can be implemented using any multiple of 4 directional decompositions

per scale. Please note that in this work we utilized a ready-made Matlab® imple-

mentation of the CVT which is available under http://http://www.curvelet.org

in its latest version 2.1.2.

In order to test the influence of the number of directional decompositions on the

final fusion result, we conduct experiments with a varying number of orientations.

More specifically, we consider 4·N,N = 2, 3, . . . , 8 numbers of directional decom-

positions at the 2nd coarsest scale. As for the remaining, finer scales, we derive the

number of orientations from the anisotropic scaling law given in eq. (3.18) which

implies that we have to double the number of directions at every other scale. For

example, for 6 frequency scales (including the coarsest non-directional scale) and

8 directional decompositions at the 2nd coarsest scale, we obtain the following set

of orientations, assorted from coarsest to finest scale: {1, 8, 16, 16, 32, 32}. Please

note that in this context the use of 6 frequency scales results in the same num-

ber of frequency partitions than in the case of filter bank-based transforms with 5

decomposition levels.

As mentioned in Section 3.1.2, the design of appropriate digital curvelets at the

finest scale is not straightforward because of boundary/periodicity issues. For this

purpose we compare two constructions of the CVT, one employing non-directional

wavelets and the other one using curvelets at the coarsest scale. Furthermore, we

performed tests for three to six frequency scales. This corresponds to the same

decomposition depths used to assess transforms implemented via filter banks.
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Fusion Scenario Directions QAB/F MI QP

Infrared-
{1, 8, 16, 16, 32, 32} 0.5302 0.1158 0.7178

visible
{1, 8, 16} 0.4671 0.1362 0.5977
{1, 8, 16, 16, 32} 0.5234 0.1183 0.7229

Medical
{1, 8, 16, 16, 1} 0.6260 0.2250 0.5807
{1, 8, 16} 0.5091 0.3998 0.4678
{1, 8, 16, 16, 32} 0.6257 0.2251 0.5808

Multifocus {1, 8, 16, 16, 32, 32} 0.6649 0.4785 0.8831

Table 3.3: Summary of the best fusion results for the CVT.

Table 3.3 summarizes the best fusion results for the CVT. Note that the set

of directions (2nd column) also provides information about the number of frequency

scales and the utilized transform at the finest scale. For instance, the set of directions

{1, 8, 16, 16, 1} implies that five frequency scales with wavelets at the finest scale and

8 directional decompositions at the 2nd coarsest scale are used. Similar to the DWT,

we notice that in all fusion scenarios a higher number of frequency scales results in a

better QAB/F and QP fusion score. For the IR-visible and medical fusion scenarios,

the MI metric yields the best results for 3 frequency scales whereas for multifocus

image fusion the best MI results are achieved using 6 frequency partitions. The last

result is in strong contrast to the previous affirmation that the MI fusion metric

always favors the lowest decomposition depth. In general, it can be observed that

the performance of multifocus image fusion does not depend as strongly on the used

number of frequency partitions than in the other tested fusion scenarios. We believe

that this is due to the nature of multifocus image pairs which only differ in their

high frequency content but are identical otherwise. More specifically, it seems that

the differing information can already be captured successfully at coarser frequency

scales, hence rendering finer frequency partitions less significant. As for the number

of orientations per scale, the use of 8 directional decompositions at the 2nd coarsest

scale results in the best overall fusion performance. Moreover, it can be observed

that Curvelets at the finest scale produce slightly better results than the use of

wavelets. This shows that for image fusion applications, the unwanted spilling of

directional information to other unrelated angles due to aliasing is not influencing

the final result strongly enough to cancel out the advantages of directionality.

3.3.3 Contourlet Transform

As shown in Section 3.1.3, the implementation of the ConT is based on a double filter

bank structure where the source images are first decomposed using the Laplacian

Pyramid (LP) before applying a directional filter bank (DFB). This results in a
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Fusion Pyramid DFB
Directions QAB/F MI QPScenario Filter Filter

Infrared-
5/3 9/7 {1, 2, 2, 4, 4} 0.5113 0.1138 0.6914

visible
5/3 pkv12 {1, 2} 0.4705 0.1355 0.6036
5/3 pkv6 {1, 2, 2, 4, 4} 0.5100 0.1134 0.6928

Medical
5/3 9/7 {2, 4, 4, 8} 0.6196 0.2450 0.5832
5/3 5/3 {2, 4} 0.5361 0.4014 0.5029
5/3 5/3 {2, 4, 4, 8} 0.6163 0.2497 0.5852

Multi-
5/3 9/7 {1, 2, 2, 4} 0.6350 0.4467 0.8697

focus
5/3 9/7 {2, 4} 0.5991 0.4719 0.7900
9/7 pkv12 {1, 2, 2, 4, 4} 0.6257 0.4408 0.8740

Table 3.4: Summary of the best fusion results for the ConT.

multiscale and multidirectional decomposition similar to the CVT.

In order to assess the performance of the ConT, we utilize four different filters for

the pyramid decomposition in conjunction with six (bi)orthogonal DFB prototype

filters. This results in a total of 24 tested filter bank combinations. As for the LP,

we implement the CDF 5/3 and CDF 9/7 filter banks, the original LP filter bank

introduced by Burt in [91] and the 12-tap biorthogonal FIR filter proposed in [107].

Please note that in our simulations we refer to these filters as ‘5/3’, ‘9/7’, ‘Burt’ and

‘pkv12’, respectively. In case of the DFB, we employ the ‘5/3’, ‘9/7’ and ‘pkv12’ filter

banks which are also used during the multiscale LP decomposition as well as the

orthogonal Haar filter bank and the 6-tap and 8-tap FIR filter banks of [107]. In our

experiments we address the three latter filter banks as ‘Haar’, ‘pkv6’ and ‘pkv8 ’,

respectively. Note that the corresponding fan filters can be obtained by modulation

of the six (bi)orthogonal prototype DFB filters.

The ConT allows for the implementation of any 2l directions at each scale. Thus,

in order to evaluate the influence of the number of directional decompositions, we

perform experiments with 2l, l = 0, 1, 2, 3 directions at the coarsest decomposition

stage. Like in the case of the CVT, the directions for the remaining decomposition

levels are derived from the anisotropic scaling law, given in eq. (3.18). The number

of tested multiscale decompositions ranges from two to five.

For each metric and fusion scenario, the best results are listed in Table 3.4,

where the number of decomposition levels corresponds to the cardinality of the

depicted set of directional decompositions. It can be seen that independent of the

underlying fusion scenario and fusion metric, the best fusion performance is achieved

by employing the CDF 5/3 filter bank during pyramid decomposition. As for the

DFB, it is more difficult to give an explicit recommendation since several filter

banks result in (almost) similar results. The only outlier is the Haar filter bank
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Fusion Scenario Filter Bank Levels QAB/F MI QP

Infrared-
db1 5 0.5716 0.1230 0.7160

visible
db1 2 0.5369 0.1422 0.6576
db1 4 0.5704 0.1272 0.7234

Medical
db1 5 0.7302 0.2829 0.6559
bior2.2 2 0.5910 0.4389 0.5183

Multifocus
db1 5 0.6806 0.4651 0.8787
db1 2 0.6731 0.4864 0.8345
db1 4 0.6786 0.4813 0.8804

Table 3.5: Summary of the best fusion results for the UWT.

which shows the worst fusion performance in all cases and can therefore be safely

discarded. In addition, the best results are obtained by applying a comparably small

number of directional decompositions. In fact in almost all cases the fusion scores

deteriorate for an increase in the number of orientations. This phenomenon could

also be observed in the case of the CVT. Finally, the highest scores for the QAB/F

and QP are again obtained by employing four to five decomposition levels, whereas

the MI yields the best performance for two decomposition levels.

The implementation of the ConT used in this work can be obtained at Mat-

lab® Central http://www.mathworks.com/matlabcentral/fileexchange/8837.

3.3.4 Undecimated Wavelet Transform

To assess the performance of the UWT, we consider the same wavelet families and

number of decomposition levels as in the case of the DWT.

Table 3.5 gives the best fusion results for the UWT. It can be seen that indepen-

dent of the underlying fusion scenario and fusion metric, best results are achieved

for the ‘db1’ (or Haar) filter bank which exhibits the shortest support size among

all tested filters. In general, it can be deduced from the obtained results that the

UWT fusion performance improves with decreasing filter support length. This ap-

plies especially to multisensor image fusion where vast differences between the source

images can be observed. As previously, the fusion metrics QAB/F and QP produce

the highest scores for four and five decomposition levels, respectively. In contrast,

two decomposition levels result in the best fusion scores for the MI measure.

3.3.5 Dual-Tree Complex Wavelet Transform

The implementation of the DTCWT is done using a dual-tree filter bank where

each tree employs a real DWT. In order for the two filter bank trees to form an

approximately analytic decomposition, the half-sample delay condition of eq. (3.36)
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Fusion
Filter Banks Levels QAB/F MI QPScenario

1st stage Other

Infrared-
near sym a qshift10-6 5 0.5671 0.1234 0.7307

visible
5/3 qshift10-6 2 0.4974 0.1411 0.6148
near sym a qshift18 5 0.5650 0.1219 0.7319

Medical
5/3 qshift10-6 4 0.6611 0.2619 0.6082
9/7 qshift10-6 2 0.5414 0.4279 0.4891

Multi- 5/3 qshift10-6 5 0.6718 0.4867 0.8865
Focus 5/3 qshift10-10 5 0.6715 0.4875 0.8863

Table 3.6: Summary of the best fusion results for the DTCWT.

needs to be satisfied, resulting in so-called quarter sample shift (q-shift) orthogonal

filter banks. In the course of our experiments we compare the performance of five

such filter banks. More specifically, we utilize three q-shift filters with 18-, 16-

and 14-taps, respectively, as well as two 10-tap q-shift filter banks. Note that the

difference between the two 10-tap q-shift filters is that the first exhibits 10 non-

zero taps whereas the second comes with only 6 non-zero taps. We refer to the

five q-shift filters (in order of their appearance) as ‘qshift18’, ‘qshift16’, ‘qshift14’,

‘qshift10-10’ and ‘qshift10-6’, respectively. A comprehensive guide on the design of

q-shift filter banks, including a detailed list of all filter bank coefficients, can be

found in [108]. As discussed in Section 3.1.5, for eq. (3.36) to be satisfied at the first

decomposition level it is sufficient to merely translate one set of filters by one sample

with respect to the other one. Consequently, any perfect reconstruction filter bank

can be used. In our simulations the CDF 5/3 (‘5/3’) and 9/7 (‘9/7’) filter banks as

well as the near-symmetric 5/7 (‘near sym a’) and 13/19-tap (‘near sym b’) filters

of [109] are employed at the first decomposition level. Note that we tested for all

possible filter bank combinations, resulting in a total of 20 analyzed filter bank

settings.

The best results for each fusion metric using two to five decomposition levels are

depicted in Table 3.6. We can deduce from the depicted results that the best IR-

visible fusion performance is achieved for the ‘near sym a’ filter bank in combination

with the ‘qshift10-6’ filter bank. For medical and multifocus image fusion the best

scores are obtained by employing the ‘5/3’ filter bank at the first decomposition

level and the ‘qshift10-6’ filter bank at all remaining stages. As in our previous

experiments, four to five decomposition levels result in the best fusion results for

the QAB/F and QP metrics. For the IR-visible and medical fusion scenarios, the

MI metric yields the best results for 2 decomposition levels whereas for multifocus

image fusion the best MI results are achieved using a decomposition depth of five.
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As discussed in Section 3.3.2, this is due to the fact that fewer decomposition levels

are needed to capture the differing information between the source images. In other

words, a high decomposition depth is prone to produce detail images at coarser

scales which are virtually identical.

A Matlab® implementation of the DTCWT can be obtained on inquiry from

the main authors website http://www-sigproc.eng.cam.ac.uk/~ngk.

3.3.6 Nonsubsampled Contourlet Transform

The last decomposition under investigation is the NSCT. It is implemented using a

concatenation of a nonsubsampled pyramid structure with a nonsubsampled direc-

tional filter bank (DFB) and represents the undecimated, shift-invariant counterpart

of the Contourlet Transform. The implementation used in this work is available for

download at http://www.mathworks.com/matlabcentral/fileexchange/10049.

In order to identify the best filter bank setup we tested for 40 different filter

bank combinations. More specifically, we assessed the performance of four differ-

ent pyramid filters, namely, the CDF 9/7 (‘9/7’) filter bank and the three maxi-

mally flat pyramid filters given in [99] (in our simulations referred to as ‘maxflat1’,

‘maxflat2’ and ‘maxflat3’, respectively). As for the fan filters used in the DFB

construction, 10 different prototype filters were used. These are the orthogonal

Haar filter, the CDF 9/7 filter bank, the 3/5-tap linear phase filter (‘vk’) given on

page 143 of [86], the 19-tap 2-D non-separable diamond-shaped filter bank (‘lax’) of

[110], the 9-tap filter (‘sk’) proposed in [111], the 12-tap FIR filter (‘pkv12’) of [107]

and the diamond-shaped maximally flat filters of order 4, 5, 6 and 7 (‘dmaxflat4’,

‘dmaxflat5’, ‘dmaxflat6’ and ‘dmaxflat7’, respectively) described in [99]. Like in the

case of the ConT, we performed tests with 2l, l = 0, 1, 2, 3 directions at the coarsest

frequency scale and derived the directions for the remaining decomposition levels

from the anisotropic scaling law of eq. (3.18). Furthermore, the number of tested

multiscale decompositions ranged from two to five.

Table 3.7 lists the best NSCT fusion scores for each fusion metric and scenario.

Please note that the cardinality of the set of directional decompositions corresponds

to the utilized overall decomposition depth. By looking at the obtained IR-visible

and medical fusion results it can be noted that the ‘maxflat2’ pyramid filter shows

the best performance among all four tested filter banks. A decision for one of the

pyramid filter banks in the multifocus fusion scenario seems to be more difficult

since each fusion metric favors a different filter bank. However, by investigating the

individual results more thoroughly it seems that the ‘9/7’ pyramid filter produces

slightly better results than the other competing filter banks. The ‘9/7’ and the

‘vk’ filter banks appear to be the best choices during the directional decomposition
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Fusion Pyramid DFB
Directions QAB/F MI QPScenario Filter Filter

Infrared-
maxflat2 9/7 {2, 4, 4, 8, 8} 0.5735 0.1258 0.7296

visible
maxflat2 vk {8, 16} 0.5133 0.1425 0.6350
maxflat1 9/7 {4, 8, 8, 16, 16} 0.5698 0.1250 0.7308

Medical
maxflat2 vk {2, 4, 4, 8, 8} 0.7156 0.2860 0.6455
maxflat2 sk {8, 16} 0.5941 0.4493 0.5167
maxflat2 dmaxflat7 {4, 8, 8, 16, 16} 0.7136 0.2862 0.6479

Multi-
9/7 vk {1, 2, 2, 4, 4} 0.6775 0.4787 0.8838

focus
maxflat3 vk {8, 16, 16, 32} 0.6747 0.4887 0.8812
maxflat1 9/7 {8, 16, 16, 32, 32} 0.6742 0.4817 0.8848

Table 3.7: Summary of the best fusion results for the NSCT.

of IR-visible and multifocus images. In case of medical image fusion, the decision

proves again to be difficult. Nevertheless, in general the ‘dmaxflat7’ filter bank

seems to perform better than the other contestants.

Furthermore, from the obtained results we see that two to eight directional de-

compositions at the coarsest scale produce good results for all fusion metrics. Note

that this is substantially more than in case of the ConT, where the best results

are obtained using at most one DFB stage. Regardless of the underlying fusion

scenario, four to five multiscale decomposition levels produce the best performance

for the QAB/F and QP measure. In case of the MI fusion metric, two decomposi-

tion levels yield the best results for IR-visible and medical image fusion whereas a

decomposition depth of four shows the best performance in the multifocus scenario.

3.3.7 Global Comparison

In this section, the fusion results of all investigated multiscale transforms, divided

into their underlying fusion scenarios, are compared and analyzed. For this purpose,

Tables 3.8, 3.9 and 3.10 list the best global results for all IR-visible, medical and

multifocus image pairs, respectively, obtained by applying the DWT, CVT, ConT,

UWT, DTCWT and NSCT.

By analyzing the fusion results of Table 3.8 for the IR-visible fusion scenario,

we observe that the best fusion scores are obtained for the NSCT followed by the

DTCWT and the UWT. We attribute this fact mainly to the redundant, shift-

invariant nature of these transforms. In general, it can be deduced that these features

appear to be desirable properties in multiscale image fusion applications. This was

also recognized in other studies such as [2], [5] and [23]. However, if one has to

resort to shift-variant transforms with limited or no redundancy, e.g. for reasons of

limited storage capacity, the CVT seems to be the best choice among them.
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Transform Filter Bank(s) Levels/Directions QAB/F MI QP

DWT bior2.2 5 0.5268 0.1155 0.7059
CVT {1, 8, 16, 16, 32, 32} 0.5302 0.1158 0.7178
ConT 5/3 9/7 {1, 2, 2, 4, 4} 0.5113 0.1138 0.6914
UWT db1 5 0.5716 0.1230 0.7160
DTCWT near sym a qshift10-6 5 0.5671 0.1234 0.7307
NSCT maxflat2 9/7 {2, 4, 4, 8, 8} 0.5735 0.1258 0.7296

Table 3.8: Global comparison of the best results for the IR-visible image fusion scenario.

(a) (b) (c)

(d) (e) (f)

Figure 3.12: Fusion results for the IR-visible image pair of Fig. 3.9(bottom row). (a)
DWT fused. (b) CVT fused. (c) ConT fused. (d) UWT fused. (e) DTCWT fused. (f)
NSCT fused.

In order to verify the perceptual accuracy of our findings, Fig. 3.12 shows the ob-

tained fusion results for the IR-visible image pair depicted at the bottom of Fig. 3.9.

At first glance no major differences between the depicted images can be found. How-

ever, when carefully comparing the source image pair of Fig. 3.9 with the displayed

results, we see that Figs. 3.12(a) to 3.12(c) introduce a significant number of artifacts

which are not present in any of the source images. These reconstruction errors are

especially visible in the immediate vicinity of the roof top, illustrated at the bottom

half of the fused images. Although some distortions are also visible in Figs. 3.12(d)

to 3.12(f), their appearance is less noticeable, thus indicating the compliance of the

calculated fusion scores with subjective perception.

When examining the results listed in Table 3.9 for the medical image fusion sce-

nario, it can again be observed that shift-invariant transforms such as the UWT,

DTCWT and the NSCT significantly outperform the DWT, CVT and ConT. How-
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Transform Filter Bank(s) Levels/Directions QAB/F MI QP

DWT db1 5 0.6625 0.3461 0.5912
CVT {1, 8, 16, 16, 32} 0.6257 0.2251 0.5808
ConT 5/3 9/7 {2, 4, 4, 8} 0.6196 0.2500 0.5832
UWT db1 5 0.7302 0.2829 0.6559
DTCWT 5/3 qshift10-6 4 0.6611 0.2619 0.6082
NSCT maxflat2 dmaxflat7 {4, 8, 8, 16, 16} 0.7136 0.2862 0.6479

Table 3.9: Global comparison of the best results for the medical image fusion scenario.

(a) (b) (c)

(d) (e) (f)

Figure 3.13: Fusion results for the medical image pair of Fig. 3.10. (a) DWT fused. (b)
CVT fused. (c) ConT fused. (d) UWT fused. (e) DTCWT fused. (f) NSCT fused.

ever, in contrast to the IR-visible fusion scenario, the best performance is achieved

for the UWT in combination with the 2-tap Haar filter bank. This is a particular

interesting result since it suggests that for some cases, the overall support size of

the deployed filter bank appears to have a stronger influence on the overall fusion

performance than the number of directional decompositions. We deal with the im-

plications of this assertion thoroughly in the next chapter of this work. In order to

perceptually confirm the obtained objective fusion scores, Fig. 3.13 shows the fusion

results for the medical source image pair depicted in Fig. 3.10. Indeed, it can be

noticed that in the UWT-based fusion case the main features of the source image

pair appear to be slightly more accentuated than in all remaining cases, suggesting
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Transform Filter Bank(s) Levels/Directions QAB/F MI QP

DWT sym8 5 0.6368 0.4542 0.8663
CVT {1, 8, 16, 16, 32, 32} 0.6649 0.4785 0.8831
ConT 5/3 9/7 {1, 2, 2, 4} 0.6350 0.4467 0.8697
UWT db1 4 0.6786 0.4813 0.8804
DTCWT 5/3 qshift10-6 5 0.6718 0.4867 0.8865
NSCT 9/7 vk {1, 2, 2, 4, 4} 0.6775 0.4787 0.8838

Table 3.10: Global comparison of the best results for the multifocus image fusion scenario.

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Fusion results for the multifocus image pair of Fig. 3.11. (a) DWT fused.
(b) CVT fused. (c) ConT fused. (d) UWT fused. (e) DTCWT fused. (f) NSCT fused.

the perceptual effectiveness of the employed fusion metrics. Another interesting ef-

fect can be observed in Fig. 3.13(a). Here, the number of decomposition levels was

chosen too high, resulting in the introduction of blocking artifacts in the final fused

image. Apart from the decomposition depth, this effect can also be related to the

use of the Haar filter bank which is “notorious” in causing this kind of reconstruc-

tion error. Please note that in this case the obtained fusion scores do not reflect the

subjective quality of the image. This applies in particular to the MI fusion metric,

which seems to confuse the introduced artifacts with important visual information.

The best results for the multifocus fusion example of Fig. 3.11 are listed in

Table 3.10. In this scenario the best fusion scores are achieved for the DTCWT,
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followed by the UWT and the NSCT. As for the shift-variant transforms, the best

fusion performance is achieved using the CVT for all three fusion metrics. Fig. 3.14

shows the corresponding fusion results for all analyzed transforms. Again, at first

sight not much difference between the obtained results can be noticed. However,

by closer inspection of the fusion results depicted in the top row of Fig. 3.14, it can

be observed that some distortions were introduced around the top boarder of the

right clock. These artifacts are especially perceivable in Figs. 3.14(a) and 3.14(c)

corresponding to the results obtained for the DWT and the ConT. Indeed, by looking

at Table 3.10 we note that these two transforms received the worst fusion scores for

all three objective metrics.

3.4 Conclusions

In this chapter we compared the image fusion performance of six multiscale trans-

forms for two IR-visible, and one medical and multifocus image pair, respectively,

using different filter bank settings and decomposition depths. At the time of prepa-

ration of this work, the analyzed transforms represented the state-of-the-art in image

fusion applications. They mainly differ in their underlying sampling scheme (deci-

mated vs. undecimated) as well as in the offered number of directional decomposi-

tions. In all of our simulations the decomposed detail images were fused using the

generic “choose max” fusion rule whereas the composite approximation image was

computed by simple averaging. The obtained results have been analyzed in terms

of the three objective metrics QAB/F , MI and QP . Additionally, in an attempt to

show the perceptual effectiveness of the deployed fusion metrics, the best results for

each transform were subject to an informal visual inspection.

The overall comparison performed in this chapter indicated that the best re-

sults, regardless of the underlying fusion scenario, can be obtained using redundant,

shift-invariant transforms such as the Undecimated Wavelet Transform (UWT), the

Nonsubsampled Contourlet Transform (NSCT) and the Dual-Tree Complex Wavelet

Transform (DTCWT). We believe that the main advantage of these transforms roots

in the offered redundancy, resulting in a higher robustness to rapid changes in coef-

ficient values. This was confirmed by the corresponding fused images which, com-

pared to the set obtained for shift-variant transforms, exhibit a smaller number of

decomposition errors and appear more ‘natural’ to the human eye. This was also

reflected in the fusion scores which constantly rate the UWT, DTCWT and the

NSCT higher than the Discrete Wavelet Transform (DWT), Curvelet Transform

(CVT) and Contourlet Transform (ConT).

Among the shift-invariant transforms, it appears to be difficult to explicitly rec-

ommend a single one of them. In fact, whereas in the IR-visible fusion scenario the
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NSCT performed best, the UWT and the DTCWT produced the best fusion scores

in the medical and multifocus fusion scenarios, respectively. Moreover, a ranking

based on the subjective assessment of the obtained results proved to be cumbersome

due to the vast similarities between the fused images. As for the overall number of

decomposition levels, four to five levels yielded the best results.

Finally, we would like to point out that the results obtained in this chapter are

derived from only four different source image pairs, and thus cannot be considered

generally valid. However, the main insights gathered in this chapter, namely, the

superiority of redundant, shift-invariant transforms as well as the general tendency of

multiscale fusion schemes towards filter banks with smaller support sizes, are indeed

valuable. In fact, they can be considered as the foundation for the development of

a novel image fusion framework, which is the topic of the next chapter.
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Chapter 4

Multiscale image fusion using the

Undecimated Wavelet Transform

with spectral factorization and

non-orthogonal filter banks

Multiscale transforms are among the most popular techniques in the field of pixel-

level image fusion. However, the fusion performance of these methods often de-

teriorates for images derived from different sensor modalities. In this chapter we

demonstrate that for such images, results can be improved using a novel fusion

scheme based on the Undecimated Wavelet Transform (UWT) which splits the im-

age decomposition process into two successive filtering operations using spectral

factorization of the analysis filters. The actual fusion takes place after convolution

with the first filter pair. Its significantly smaller support size leads to the mini-

mization of the unwanted spreading of coefficient values around overlapping image

singularities. This usually complicates the feature selection process and may lead

to the introduction of reconstruction errors in the fused image. Moreover, we show

that the nonsubsampled nature of the UWT allows for the design of non-orthogonal

filter banks which are more robust to artifacts introduced during fusion, addition-

ally improving the obtained results. The combination of these approaches leads to a

fusion framework which provides clear advantages over traditional multiscale fusion

approaches, independent of the underlying fusion rule, and reduces unwanted side

effects such as ringing artifacts in the fused image.

The remainder of this chapter is organized as follows. The next section gives an

overview on the problem at hand and outlines how spectral factorization can be used

to alleviate it. In Section 4.2 the proposed image fusion framework is introduced

in detail, whilst Section 4.3 elaborates on the design of non-orthogonal filter banks.
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The set of fusion rules used to assess the proposed fusion framework is presented

in Section 4.4 of this chapter. Finally, the obtained fusion results are analyzed and

compared with other state-of-the-art fusion frameworks in Section 4.5, before we

state our main conclusions in Section 4.6.

4.1 Motivation

In multiscale pixel-level image fusion, a transform coefficient of an image is associ-

ated with a feature if its value is influenced by a feature’s pixel. In order to simplify

the discussion, we will refer to a given decomposition level j, orientation band p

and position m,n of a coefficient as its localization. A given feature from one of

the source images is only conserved correctly in the fused image if all associated

coefficients are employed to generate the fused multiscale representation. However,

in many situations this is not practical since, given a localization l, the coefficient

yA(l) from image IA may be associated to a feature fA and the coefficient yB(l) from

image IB may be associated to a feature fB. In this case, choosing one coefficient

instead of the other may result in the loss of an important salient feature from one of

the source images. For example, in the case of a camouflaged person hiding behind

a bush the person may appear only in the infrared (IR) image and the bush only

in the visible image. If the bush has high textural content, this may result in large

coefficient values at coincident localizations in both decompositions of an IR-visible

image pair. However, in order to conserve as much as possible of the information

from the scene, most coefficients belonging to the person (IR image) and the bush

(visible image) would have to be transferred to the fused decomposition. If there

are many such coefficients at coincident localizations, a fusion rule that chooses just

one of the coefficients for each localization may introduce discontinuities in the fused

subband signals. These may lead to reconstruction errors such as ringing artifacts

or substantial loss of information in the final fused image.

It is important to note that the above mentioned problem is aggravated with the

increase of the support of the filters used during the decomposition process. This

results in an undesirable spreading of coefficient values over the neighborhood of

salient features, introducing additional areas that exhibit coefficients in the source

images with coincident localizations. In a previous work, Petrović and Xydeas dealt

with this problem by employing image gradients [41]. In this work we propose a

novel UWT-based pixel-level image fusion approach, which attempts to circumvent

the coefficient spreading problem by splitting the image decomposition procedure

into two successive filter operations using spectral factorization of the analysis filters.

A schematic flow-chart of the suggested image fusion framework is given in Fig. 4.1.

The co-registered source images are first transformed to the UWT domain by using
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Figure 4.1: Schematic diagram of the proposed UWT-based fusion framework with spec-
tral factorization.

a very short filter pair, derived from the first spectral factor of the overall analysis

filter bank. After the fusion of the high-pass coefficients, the second filter pair,

consisting of all remaining spectral factors, is applied to the approximation and

fused, detail images. This yields the first decomposition level of the proposed fusion

approach. Next, the process is recursively applied to the approximation images

until the desired decomposition depth is reached. After merging the approximation

images at the coarsest scale the inverse transform is applied to the composite UWT

representation, resulting in the final fused image.

Notice that this methodology is in contrast to conventional multiscale image

fusion approaches, where the detail image fusion is not performed until the input

image signals are fully decomposed using an analysis filter bank without spectral

factorization. In addition, the implemented filter banks were especially designed for

the use with the UWT and exhibit useful properties such as being robust to the

ringing artifact problem. In the course of this chapter, we show that our framework

significantly improves fusion results for a large group of input images.

In fact, one may also use spatial domain techniques as briefly introduced in Sec-

tion 1.3.2 to avoid the problems associated with coincident coefficient localizations.

However, these approaches face other difficulties which may limit their practicability

in certain situations. Generally speaking, the biggest challenge for spatial domain

fusion techniques is the question on how to measure saliency within an image - a

problem which can be solved more easily using transform-based approaches, due to

the frequency and/or orientation selectivity provided by them.

Note that in order to simplify the discussion, we assume, without loss of gener-

ality, that the fused image is generated from two source images IA and IB which are

assumed to be registered, as discussed in Chapter 1. Consequently, no image regis-

tration technique is applied prior to the fusion process. Moreover, in the remainder

of this chapter we resort to the same notation as given in Section 2.1.

69



4.2 The UWT-based fusion scheme with Spectral

Factorization

Plenty of transforms are at our disposal to perform image fusion tasks, among them

the Discrete Wavelet Transform (DWT), the Curvelet Transform (CVT) and the

Contourlet Transform (ConT), as well as the UWT, the Dual-Tree Complex Wavelet

Transform (DTCWT) and the Nonsubsampled Contourlet Transform (NSCT). A

first classification can be made based on the underlying redundancy and shift-

variance of these transforms. Whereas the highly redundant UWT, DTCWT and

NSCT are invariant to shifts occurring in the input images, the DWT, CVT and CT

represent shift-variant transforms with no or limited redundancy. As shown in the

previous section, redundancy and shift-invariance are desirable properties in image

fusion since they allow for a higher robustness to rapid changes in coefficient values,

thus reducing the amount of reconstruction errors in the fused image. This was also

acknowledged in various studies such as [2], [5] and [23], among others. Motivated

by these observations, we opt to discard the DWT, CVT and CT and focus solely

on redundant transforms in our ongoing discussion.

Another crucial point in multiscale pixel-level image fusion frameworks is the

choice of an appropriate filter bank. Most research work do not focus on this issue

but simply state that filters with small support produce better results. Fig. 4.2

attempts to illustrate the impact of the length of the chosen filter bank on the

fusion performance. In this example the high-pass portions of two 1-D step functions

are fused using one stage of the 2-tap Haar and 6-tap Daubechies ‘db3’ filters,

respectively. The applied fusion rule is a very simple “choose max” fusion rule. The

high-pass subbands, obtained by applying the Haar filter, can be seen in Figs. 4.2(b)

and (e), whereas the result using the 6-tap ‘db3’ filter is illustrated in Figs. 4.2(c)

and (f). It can be observed that the ‘db3’ filter needs five coefficients to represent the

step change. Thus, although most energy is concentrated in the central coefficient,

the remaining four coefficients correspond to regions where no change in the signal

value occurred. When attempting to fuse the two ‘db3’ filtered high-pass subbands

we are confronted with a problem, namely, to combine the two signals without losing

information. This can be observed in Fig. 4.2(h), where not all non-zero coefficients

from Figs. 4.2(c) and (f) could be incorporated. On the other hand, the Haar filtered

signal contains only one non-zero coefficient corresponding exactly to the position of

the signal transition. Thus, as illustrated in Fig. 4.2(g), both non-zero coefficients

are transferred to the fused image without any loss of information. Therefore, it

can be concluded that filters with large support size may result in an undesirable

spreading of coefficient values which, in case of salient features located very close to

each other in both input images, may lead to coefficients with coincident localizations
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.2: Coefficient spreading effect. (a) and (d) Input signals. (b) and (e) Haar
filtered input signals. (c) and (f) ‘db3’ filtered input signals. (g) Fusion of the Haar
filtered signals. (h) Fusion of the ‘db3’ filtered signals.

in the transform domain. Since it is difficult to resolve such overlaps, distortions

may be introduced during the fusion process, such as ringing artifacts or even loss

of information.

Although the situation depicted in Fig. 4.2 may seem at first somewhat artificial,

we will see in the remainder of this chapter that multisensor images and, among

them, especially medical image pairs often exhibit similar properties. Hence, for

these images the fusion performance considerably degrades with an increase of the

filter size. We can therefore reduce the problem of choosing a proper redundant

multiscale transform to its ability to incorporate a filter bank with a sufficiently

small support size, thus minimizing the coefficient spreading problem. From this

point of view, the UWT appears to be an attractive choice, since due to the standard

tensor product construction in 2-D, it offers directionality without increasing the

overall length of the implemented filter bank - a property not shared by the NSCT

and DTCWT. As for the NSCT, the increased filter lengths are mainly due to the
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iterated nature of the nonsubsampled directional filter bank involved. In particular,

for every increase in number of directions by a power of two, another filter bank

level needs to be added (see Sections 3.1.3 and 3.1.6 for a more thorough discussion

on the construction of directional filter banks). Thus, the combined support of the

filters within one particular filter bank branch is equivalent to the convolution of

all individual filters within the respective branch. In the case of the DTCWT, as

reported in [96], the increased filter length is due to the half-sample delay condition

of eq. (3.36) imposed on the filter banks involved, which results in longer filters than

in the real wavelet transform case. From the above, we can conclude that, even

though the NSCT and the DTCWT possess useful properties, such as their ability

to incorporate a higher number of orientations, they are, in general, less suited to

implement filter banks with a small support size.

Following the remarks stated so far, we are tempted to arrive at the conclusion

that the best fusion results for source images derived from different sensor modalities

are obtained by simply applying the UWT in combination with the very short 2-tap

Haar filter bank. Indeed, surprisingly good results are achieved using this simple

fusion strategy for IR-visible and medical image fusion, as demonstrated in Chapter

3. However, the Haar filter bank presents some well-known deficiencies, like the

introduction of blocking artifacts when reconstructing an image after manipulation

of its wavelet coefficients, which might deteriorate the fusion performance in certain

situations. This is mainly due to the lack of regularity exhibited by the Haar wavelet

[94]. Roughly speaking, the regularity of a wavelet or scaling function (ψ(t) and

φ(t), respectively) relates to the number of continuous derivatives that a wavelet

has. In case of the Haar wavelet, the low-pass analysis filter, H(z), has only one

zero at z = −1, leading to the well-known, non-smooth Haar scaling function. In

order to construct smoother scaling functions, more zeros have to be introduced

at z = −1, inevitably leading to filters with longer support [81]. Actually, for the

orthogonal case the Daubechies wavelets discussed so far are optimal in this sense

since they have a minimum support size for a given regularity. Fig. 4.3 shows the

scaling and wavelet functions of the Haar and the 8-tap ‘db4’ wavelet, with four

zeros at z = −1. As expected, the ‘db4’ wavelet depicts smooth scaling and wavelet

functions. Please note that, in the case of (bi)orthogonal wavelets, the regularity

of the scaling function is similar to the regularity of the wavelet function. Both

are closely related to their number of vanishing moments. Apart from its impact

on the smoothness of the corresponding wavelet functions, the regularity is also a

measure of the flatness of the scaling and wavelet function around ω = 0 and ω = π

in the frequency domain, respectively. This effect is illustrated in Fig. 4.4, where

the frequency responses of the Haar, ‘db4’ and ‘db10’ wavelets are shown.

Based on these observations we arrive at the following question: How can we
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(a) (b)

(c) (d)

Figure 4.3: (a) Haar scaling function. (b) ‘db4’ scaling function. (c) Haar wavelet
function. (d) ‘db4’ wavelet function.

combine the advantages of filters with small support size with the ones of filter

banks exhibiting a high degree of regularity in the context of image fusion? In

conventional multiscale fusion approaches this dilemma usually results in a trade-off

between short-length filters and filters with higher regularity and better behavior

in the frequency domain, usually with a small bias towards filter banks with short

support sizes. In this paper we propose a novel UWT-based fusion approach that

splits the filtering process into two successive filtering operations and performs the

actual fusion after convolving the input signal with the first filter pair, exhibiting

a significantly smaller support size than the original filter. The proposed method

is based on the fact that the low-pass analysis filter H(z) and the corresponding

high-pass analysis filter G(z) can always be expressed in the form

H(z) = (1 + z−1)P (z)

G(z) = (1− z−1)Q(z)
(4.1)

by spectral factorization in the z-transform domain. This can be inferred from

the regularity and the admissibility condition which state that the filters H(z) and

G(z) within an undecimated, perfect-reconstruction filter bank have to have at least

one zero at z = −1 and z = 1, respectively. The interested reader will find more

information on this topic in e.g. [81], [95] and [112].

In our framework the input images are first decomposed by applying a Haar filter

pair, represented by the first spectral factors (1 + z−1) and (1 − z−1), respectively.

The resulting horizontal, vertical and diagonal detail images can afterwards be fused
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Figure 4.4: Frequency response of the Haar, ‘db4’ and ‘db10’ scaling and wavelet func-
tions.

according to an arbitrary fusion rule. Next, the filter pair represented by the second

spectral factor (P (z) and Q(z) in eq. (4.1)), is applied to the approximation and

fused detail images, yielding the first decomposition level of the proposed fusion

scheme. For each subsequent level, the analysis filters are upsampled according to

the “à trous” algorithm, leading to the following, generalized analysis filter bank

H(z2j−1
) = (1 + z−2j−1

)P (z2j−1
)

G(z2j−1
) = (1− z−2j−1

)Q(z2j−1
)

(4.2)

and the aforementioned procedure is recursively applied to the approximation im-

ages, until the desired number of decomposition levels is reached. After merging

the low-pass approximation images, the final fused image is obtained by applying

the inverse transform, using the corresponding synthesis filter bank without spectral

factorization.

The implementation of the proposed algorithm for two 1-D signals xA and xB

and two decomposition levels is depicted in Fig. 4.5, where F symbolizes the fusion

of the high-pass coefficients. It is important to stress that spectral factorization is

not applied to the low-pass filter H(z) since it is assumed that all salient features

of the input signals are embodied in the high-frequency coefficients. Although this

assumption remains also true for images, when using separable filters the horizontal

and vertical detail bands are obtained by applying both low-pass and high-pass

filters to the columns and rows of the input images. Thus, it is necessary to apply

spectral factorization also to the low-pass channel. Only in case of the low-low

channel (successive application of H(z) to the columns and rows of the input images)

spectral factorization is not employed. The implementation of the first stage of our

image fusion framework is depicted in Fig. 4.6.
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Figure 4.5: Implementation of the UWT-based fusion scheme with spectral factorization
for two decomposition levels in 1-D.
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Figure 4.6: Implementation of the 1st stage of the UWT-based fusion scheme with spectral
factorization.

It is worth mentioning that the upsampling strategy given in eq. (4.2) is not

the only possible choice. Especially, if we note that (1 − z−2j−1
) can be further

decomposed as

(1− z−2j−1

) = (1− z−1) · (1 + z−1) · (1 + z−2) · . . . · (1 + z−2j−2

) (4.3)

the upsampled high-pass filter G(z2j−1
) can be factorized as

G(z2j−1

) = (1− z−1)Rj(z)Q(z2j−1

) = (1− z−1)Qj(z), (4.4)

where Rj(z) consists of all but the first factor of eq. (4.3). Hence, for all scales the

detail bands can be fused after applying the same, non-upsampled Haar filter from

the first stage. However, experiments showed that, in general, the results change
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only marginally, compared to the original filter setup. Thus, we only work with the

upsampling strategy given by eq. (4.2).

The novelty of the proposed fusion framework lies in its ability to combine the

properties of filters with short support size with filters with large support size and

therefore higher regularity. In more detail, due to the compact support of the used

(1±z−2j−1
) factors the undesirable spreading of coefficient values in the neighborhood

of salient features during the convolution process is largely reduced. This allows for

a more reliable feature selection and reduces both the introduction of distortions

and the loss of contrast information during the fusion process, conditions commonly

observed in traditional multiscale fusion frameworks. The subsequent filtering with

the second spectral factor accounts for the freedom of implementing an arbitrary

filter bank (satisfying the perfect reconstruction condition), hence combining the

advantages of a very short filter with the benefits of filters with higher orders. In

other words, we avoid the introduction of blocking artifacts during reconstruction,

as well as the coefficient spreading problem. The proposed fusion framework differs

from conventional multiscale fusion methods, where the actual fusion is only ap-

plied after fully decomposing the input images using an analysis filter pair without

spectral factorization. Furthermore, note that the spectral factorization scheme, as

presented in this subsection, cannot be straightforwardly adapted to the NSCT and

the DTCWT. This is mainly due to the filter design restrictions imposed by these

transforms, preventing the meaningful application of such a factorization scheme.

As we are going to show in Section 4.5, the presented approach is particularly well

suited for the fusion of IR-visible and medical images, which tend to exhibit a high

degree of information at coincident localizations. For these image groups the pre-

sented framework outperforms traditional fusion frameworks based on the DTCWT

and NSCT.

In the next section a new class of filters, which has not been used in the context

of image fusion previously, is introduced. In more detail, we place our emphasis on

non-orthogonal filter banks which do not satisfy the anti-aliasing condition of the

DWT and can therefore only be used in the nonsubsampled case. We will see that

this lack of orthogonality allows for the implementation of filter banks with useful

properties such as being more robust to ringing artifacts.

4.3 Filter bank design

Due to the nonsubsampled nature of the UWT, many ways exist to construct the

fused image from its wavelet coefficients. For a given analysis filter bank (h, g),

any synthesis filter bank (h̃, g̃) satisfying the perfect reconstruction condition of

eq. (3.8) can be used for reconstruction. This is considerably simpler and offers
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more design freedom than in the decimated case, where the anti-aliasing condition

of eq. (3.9) has to be obeyed as well, imposing considerable constraints on the filter

bank design. As a consequence, filter banks can be used such that (h̃, g̃) are positive,

making the reconstruction more robust to ringing artifacts. In the remainder of this

section these filters, which are later used in our experiments, are explained in more

detail. A more thorough discussion on filter bank design for undecimated wavelet

decompositions can be found in [94] and [112]. Again, we would like to point out

that none of these filters obey the anti-aliasing condition and can therefore only be

used in the undecimated case.

We start our discussion with the Isotropic Undecimated Wavelet Transform of

Section 3.1.4, which is frequently used in multispectral image fusion. In this ap-

proach, only one detail image for each scale is obtained and not three as in the

general case. It is implemented using the non-orthogonal, 1-D filter bank

h[n] =
[1, 4, 6, 4, 1]

16

g[n] = δ[n]− h[n] =
[−1,−4, 10,−4,−1]

16
h̃[n] = g̃[n] = [0, 0, 1, 0, 0]

, (4.5)

where h is derived from the B3-spline function. Please note that, by choosing g[n] =

δ[n] − h[n] any low-pass filter h, having at least one zero at z = −1, can be used.

However, B-spline functions have some remarkable properties which make them

very good choices for wavelet analysis. For example, if we recall that H(z) can be

factorized as H(z) = (1 + z−1)L ·P (z), it can be shown that the B-spline function of

degree n = L− 1 is the shortest and most regular scaling function of order L, with

P (z) = 1 [113].

The standard three-directional UWT can be obtained by expanding the filter

bank to 2-D as described in eqs. (3.10) to (3.13), leading to the following represen-

tation of the original image

I[n,m] = xJ [n,m] +
J∑
j=1

3∑
d=1

yj[n,m, d], (4.6)

which is conceptually very close to the reconstruction given in eq. (3.30).

This approach has some interesting characteristics. For example, due to the lack

of convolutions during reconstruction, no additional distortions are introduced when

constructing the fused image. Furthermore, since the fused image is obtained by a

simple co-addition of all detail images and the approximation image, a very fast

reconstruction is possible. On the other hand, distortions introduced during the

fusion process remain unfiltered in the reconstructed image.
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Figure 4.7: Backprojection of a single wavelet coefficient at different scales and directions
for the filter bank given in eq. (4.7). From left to right, the coefficient belongs to the
horizontal, vertical and diagonal bands. From top to bottom, the scale increases from one
to four. Each scale and direction has been normalized such that it occupies the full dynamic
range.

Alternatively, if we choose h and g as before but define the synthesis low-pass

filter h̃ as h, we obtain a filter g̃ given by g̃ = δ + h. This yields filters with the

following coefficients

h[n] = h̃[n] =
[1, 4, 6, 4, 1]

16

g[n] = δ[n]− h[n] =
[−1,−4, 10,−4,−1]

16

g̃[n] = δ[n] + h[n] =
[1, 4, 22, 4, 1]

16

. (4.7)

In this scenario g̃ consists entirely of positive coefficients, being thus no longer re-

lated to a wavelet function. On the other hand, such a lack of oscillations provides

a reconstruction less vulnerable to ringing artifacts. Additionally, distortions intro-

duced during the fusion stage are not transferred unprocessed to the reconstructed

image as in the standard case where only summations are involved during recon-

struction. Fig. 4.7 shows the backprojection of a wavelet coefficient at different

scales and directions for the filter bank given in eq. (4.7). Note that each scale and
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direction has been normalized such that the full dynamic range is occupied. It can

be observed that all images solely exhibit positive values.

A slight variation of the previous example is obtained by defining g = δ − h ∗ h,

resulting in the filter bank

h[n] = h̃[n] =
[1, 2, 1]

4

g[n] = δ[n]− h[n] ∗ h[n] =
[−1,−4, 10,−4,−1]

16
g̃[n] = δ[n] = [0, 0, 1, 0, 0]

, (4.8)

where h is derived from the B1-spline function. Please note that for the same choice

of h the last two approaches are conceptually similar, since (δ[n] − h[n]) ∗ (δ[n] +

h[n]) = δ[n] ∗ δ[n] + h[n]− h[n]− h[n] ∗ h[n] = δ[n]− h[n] ∗ h[n]. Thus, the analysis

high-pass filter of eq. (4.8) can be attained by a convolution of the analysis and

synthesis high-pass filters of eq. (4.7).

Finally, we would like to point out that plenty of other alternatives exist. For

example the filter bank

h[n] =
[1, 1]

2
g[n] =

[−1, 2,−1]

4

h̃[n] =
[1, 3, 3, 1]

8
g̃[n] =

[1, 6, 1]

4

, (4.9)

also leads to a solution where both synthesis filters are positive.

We will see that these filters, in combination with spectral factorization, yield

superior fusion results compared to traditional techniques.

4.4 Fusion rules

As shown in Chapter 2, a wide range of combination schemes can be found in the

literature to fuse an arbitrary input image pair. In general, these rules vary greatly

in terms of their complexity and effectiveness. The spectral factorization method

proposed in this chapter can be employed together with any fusion rule. Therefore,

in order to assess the effectiveness of the proposed method, we applied four different

fusion rules.

The first investigated combination scheme is the simple ‘choose max’ (CM) or

maximum selection fusion rule given in eq. (3.51), where the coefficient yielding the

highest energy is directly transferred to the fused decomposed representation.

However, even though the CM fusion rules have been shown to be effective, they

do not take into account that, by construction, each coefficient within a multiscale
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decomposition is related to a set of coefficients in other orientation bands and decom-

position levels, as schematically demonstrated in Fig. 2.5 for the case of the DWT.

Thus, in order to conserve a given feature from one of the source images, all the

coefficients corresponding to it have to be transferred to the composite multiscale

representation as well. One way to improve the fusion results is therefore the use of

intra-scale grouping (see Section 2.3.4) in combination with the CM fusion scheme

of eq. (3.51) (CM-IS). By this rule, at each location n, the fused, detail images yjF
are defined as

yjF [n, p] =


yjA[n, p] if

Q∑
q=1

∣∣yjA[n, q]
∣∣ > Q∑

q=1

∣∣yjB[n, q]
∣∣

yjB[n, p] otherwise

, (4.10)

where the fusion decision at each decomposition level j is taken jointly for all ori-

entation bands p.

Since the combination schemes of eqs. (3.51) and (4.10) suffer from a relative low

tolerance against noise which may lead to a “salt and pepper” appearance of the

selection maps, robustness can be added to the fusion process using an area-based

selection criteria [4]. For this purpose we expand the CM-IS combination scheme of

eq. (4.10) by defining the following fusion rule (CM-A): Calculate the activity ajk of

each coefficient as the energy within a 3×3 window centered at the current coefficient

position as given in eq. (2.3) and select the coefficient which yields the highest

activity, again, by considering the intra-scale dependencies between coefficients from

different orientation bands

yjF [n, p] =


yjA[n, p] if

Q∑
q=1

ajA[n, q] >

Q∑
q=1

ajB[n, q]

yjB[n, p] otherwise

. (4.11)

The fusion rules discussed so far work well under the assumption that only one

of the source images provides the most useful information. However, this is not

always valid and a fusion rule which uses a weighted combination of the transform

coefficients may give better results. Following this reasoning we implement as the

fourth fusion rule, a modified version of the one given by Burt and Kolczynski in [32]

(CM-AM). As in the original implementation, we start by calculating the activity

ajk as given in eq. (2.3) as well as the match measure mj
AB of eq. (2.4), for a window

of size 3 × 3. The fused coefficients are then obtained by weighted averaging as

demonstrated in eq. (2.5). The fusion weights wjA and wjB are determined by using
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a slightly altered version of eq. (2.6) such that

wjA[n, p] =



1 if mj
AB[n, p] ≤ T and

Q∑
q=1

ajA[n, q] >

Q∑
q=1

ajB[n, q]

0 if mj
AB[n, p] ≤ T and

Q∑
q=1

ajA[n, q] ≤
Q∑
q=1

ajB[n, q]

1
2

+ 1
2

(
1−mjAB [n,p]

1−T

)
if mj

AB[n, p] > T and

Q∑
q=1

ajA[n, q] >

Q∑
q=1

ajB[n, q]

1
2
− 1

2

(
1−mjAB [n,p]

1−T

)
if mj

AB[n, p] > T and

Q∑
q=1

ajA[n, q] ≤
Q∑
q=1

ajB[n, q]

(4.12a)

wjB[n, p] = 1− wjA[n, p] (4.12b)

for some threshold T , where we ensure that the fusion decision is taken jointly for

all directional decompositions.

Additionally, since our proposed fusion framework does not suggest any improve-

ments regarding the fusion of the approximation images, for all previously discussed

combination schemes the composite approximation coefficients are obtained by av-

eraging as stated in eq. (3.52).

4.5 Results

In this section the performance of the proposed fusion framework with spectral fac-

torization is investigated, using three different sets of image pairs. The first set

consists solely of IR-visible image pairs, whereas the second and third group com-

prise medical and multifocus images, respectively. The corresponding thumbnails of

all used source images, divided into their corresponding groups, are illustrated in

Fig. 4.8.

The performance of the proposed UWT fusion scheme with spectral factorization

is compared to the results obtained by applying the NSCT, the DTCWT and the

UWT without spectral factorization. As for the NSCT and the DTCWT, we followed

the recommendations published in [2] regarding the filter choices and (in case of the

NSCT) number of directions. Table 4.1 lists the used settings for the NSCT and

DTCWT for each image group. Please note that the chosen filter names correspond

to the ones used in Chapter 3.

In case of the UWT-based image fusion, we mainly concentrate on the filters

from Section 4.3. Hence, in our experiments the non-orthogonal filter banks from

eqs. (4.5), (4.7), (4.8) and (4.9) are used. Additionally, we also consider some
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(a)

(b)

(c)

Figure 4.8: Thumbnails of all image pairs used for evaluation purposes. (a) IR-visible
images (ten pairs). Top row consists of IR images, whereas the bottom row represents the
corresponding visible images. (b) Medical images (five pairs). (c) Multifocus images (five
pairs).
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Image Class Transform Filters Directions

Infrared-visible
NSCT maxflat3 9/7 {4, 8, 8, 16}
DTCWT 5/3 qshift10-6

Medical
NSCT maxflat3 vk {4, 8, 8, 16}
DTCWT 5/3 qshift10-6

Multifocus
NSCT 9/7 9/7 {4, 8, 8, 16}
DTCWT near sym a qshift10-6

Table 4.1: Transform settings for the NSCT and DTCWT (according to [2]). The NSCT
filter banks to the left (third column) are applied during the nonsubsampled pyramidal de-
composition stage whereas the filter banks on the right side (fourth column) are used within
the nonsubsampled directional decomposition. The number of directional decompositions,
in increasing order from the 1st to the 4th stage, is given in the last column. As for the
DTCWT, the filter banks to the left are employed in the first decomposition stage whereas
the filter banks on the right hand side are applied in all remaining stages.

biorthogonal filters, which are frequently used in image processing applications such

as the CDF 5/3, CDF 9/7 and Rod 6/6 filter bank [114]. In order to avoid referring

to filter banks by their respective equation numbers, we associate the following

names to them. Henceforth, the filter banks presented in eqs. (4.5), (4.7) and (4.8)

are referred to as ‘Spline 1’, ‘Spline 2’ and ‘Spline 3’ filter banks, respectively. The

filter bank given in eq. (4.9) will be called ‘Haar 1’ filter bank, since h is deduced

from the Haar low-pass filter. Please note that, in case of the NSCT and DTCWT,

different filter banks have been used for each of the three classes of input images,

according to Table 4.1. In contrast, for the UWT-based approaches, the same filter

banks are used for all three image classes. For all transforms four decomposition

levels are chosen. As for the objective evaluation of the achieved results we use the

QAB/F , QP and MI fusion metrics as described in Section 3.2.

Tables 4.2, 4.3 and 4.4 list the average results as well as the corresponding

standard deviations (σ) for all infrared-visible, medical and multifocus image pairs,

respectively, obtained by applying the DTCWT, NSCT and UWT with and without

spectral factorization. In all of these simulations the low-pass approximation images

are fused using the averaging operation given in eq. (3.52), whereas the fused detail

images are obtained by applying the “choose max” (CM) fusion rule of eq. (3.51).

It can be noted that the proposed spectral factorization method works well for IR-

visible and medical image pairs, but does not yield any improvements for multifocus

image pairs. In a nutshell, this is due to the fact that multifocus image pairs only

differ in their high frequency content but are identical otherwise. Thus, the source

images tend not to contain salient features at coincident localizations. Therefore,

a situation as depicted in Fig. 4.2, where the effect of the coefficient spreading

problem for two 1-D step functions is shown, is unlikely to occur. Consequently,
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Transform QAB/F MI QP

Mean σ Mean σ Mean σ

DTCWT 0.5664 0.0709 0.1538 0.0510 0.7707 0.0465
NSCT 0.5786 0.0737 0.1563 0.0525 0.7719 0.0489

(a)

Filter Bank QAB/F MI QP

Mean σ Mean σ Mean σ

Haar 1 0.5783 0.0763 0.1554 0.0488 0.7760 0.0455
Spline 1 0.5618 0.0749 0.1546 0.0491 0.7483 0.0590
Spline 2 0.5799 0.0783 0.1546 0.0475 0.7745 0.0467
Spline 3 0.5857 0.0754 0.1568 0.0499 0.7767 0.0466
LeGall 5/3 0.5769 0.0726 0.1569 0.0458 0.7743 0.0458
CDF 9/7 0.5707 0.0723 0.1546 0.0521 0.7709 0.0468
Rod 6/6 0.5775 0.0728 0.1570 0.0530 0.7741 0.0463

(b)

Filter Bank QAB/F MI QP

Mean σ Mean σ Mean σ

Haar 1 0.5949 0.0739 0.1574 0.0512 0.7751 0.0468
Spline 1 0.5818 0.0739 0.1555 0.0502 0.7611 0.0530
Spline 2 0.5934 0.0765 0.1566 0.0491 0.7727 0.0474
Spline 3 0.5953 0.0736 0.1572 0.0509 0.7739 0.0476
LeGall 5/3 0.5880 0.0694 0.1564 0.0528 0.7737 0.0465
CDF 9/7 0.5788 0.0688 0.1533 0.0513 0.7672 0.0490
Rod 6/6 0.5848 0.0701 0.1563 0.0525 0.7711 0.0478

(c)

Table 4.2: Fusion results for IR-visible image pairs. (a) DTCWT and NSCT. (b) UWT
without spectral factorization. (c) UWT with spectral factorization.

for multifocus images, the application of filters with small support size yields no

benefits, and, as can be seen in Table 4.4, best results are achieved using the NSCT

and the DTCWT.

For IR-visible and medical image pairs the situation is substantially different.

Since these image types come from different sensors, they exhibit a high degree

of dissimilarity between different spectral bands. Hence, the application of filters

with small support prior to the fusion process considerably improves the fusion

result. We start our discussion by looking at Table 4.2, which lists the results for

IR-visible image fusion. By looking at the second column, exhibiting the average

results for the QAB/F fusion metric, it can be noted that the proposed method yields
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Transform QAB/F MI QP

Mean σ Mean σ Mean σ

DTCWT 0.6314 0.0423 0.3853 0.0633 0.6618 0.0463
NSCT 0.6624 0.0415 0.4035 0.0556 0.6667 0.0397

(a)

Filter Bank QAB/F MI QP

Mean σ Mean σ Mean σ

Haar 1 0.6776 0.0464 0.4209 0.0452 0.6845 0.0309
Spline 1 0.6507 0.0465 0.4191 0.0505 0.6594 0.0329
Spline 2 0.6807 0.0469 0.4237 0.0509 0.6884 0.0286
Spline 3 0.6834 0.0430 0.4248 0.0461 0.6852 0.0295
LeGall 5/3 0.6614 0.0411 0.4035 0.0571 0.6631 0.0358
CDF 9/7 0.6456 0.0422 0.3943 0.0618 0.6598 0.0392
Rod 6/6 0.6641 0.0413 0.4069 0.0547 0.6630 0.0367

(b)

Filter Bank QAB/F MI QP

Mean σ Mean σ Mean σ

Haar 1 0.7100 0.0441 0.4289 0.0568 0.6687 0.0311
Spline 1 0.6937 0.0431 0.4245 0.0583 0.6695 0.0382
Spline 2 0.7094 0.0442 0.4313 0.0656 0.6719 0.0294
Spline 3 0.7092 0.0432 0.4289 0.0571 0.6719 0.0328
LeGall 5/3 0.6922 0.0420 0.4090 0.0583 0.6639 0.0375
CDF 9/7 0.6827 0.0432 0.4000 0.0626 0.6631 0.0432
Rod 6/6 0.6944 0.0444 0.4112 0.0577 0.6657 0.0397

(c)

Table 4.3: Fusion results for medical image pairs. (a) DTCWT and NSCT. (b) UWT
without spectral factorization. (c) UWT with spectral factorization.

significantly better results for all filter banks under test, compared to the results

for the DTCWT, NSCT and UWT without spectral factorization, suggesting that

edges are better preserved using the UWT with spectral factorization. This is a

particularly important result since the preservation of salient information is one of

the main motivations of this work. In the case of the MI fusion metric, improvements

are achieved for all non-orthogonal filter banks. On the other hand, for the QP

fusion metric the proposed methods yields no gains. Furthermore, it can be seen

that the best scores are obtained for the non-orthogonal filter banks introduced in

Section 4.3. Thus, this indicates that the increased filter design freedom of the

UWT leads to filter banks which perform well in the context of IR-visible image

85



Transform QAB/F MI QP

Mean σ Mean σ Mean σ

DTCWT 0.7327 0.0552 0.5104 0.0722 0.9070 0.0175
NSCT 0.7360 0.0552 0.5091 0.0722 0.9075 0.0179

(a)

Transform QAB/F MI QP

Mean σ Mean σ Mean σ

Haar 1 0.7219 0.0563 0.4846 0.0686 0.9039 0.0201
Spline 1 0.7169 0.0624 0.5058 0.0733 0.8969 0.0248
Spline 2 0.7209 0.0561 0.4901 0.0703 0.9041 0.0205
Spline 3 0.7278 0.0571 0.5035 0.0725 0.9058 0.0205
LeGall 5/3 0.7296 0.0567 0.5020 0.0741 0.9065 0.0201
CDF 9/7 0.7307 0.0571 0.5054 0.0784 0.9065 0.0198
Rod 6/6 0.7322 0.0555 0.5044 0.0747 0.9072 0.0191

(b)

Transform QAB/F MI QP

Mean σ Mean σ Mean σ

Haar 1 0.7315 0.0527 0.4869 0.0642 0.9037 0.0184
Spline 1 0.7214 0.0563 0.4934 0.0715 0.8988 0.0231
Spline 2 0.7294 0.0521 0.4854 0.0712 0.9041 0.0198
Spline 3 0.7307 0.0531 0.4914 0.0697 0.9039 0.0200
LeGall 5/3 0.7323 0.0527 0.4963 0.0711 0.9034 0.0198
CDF 9/7 0.7262 0.0557 0.4963 0.0691 0.9000 0.0211
Rod 6/6 0.7297 0.0542 0.4970 0.0694 0.9016 0.0208

(c)

Table 4.4: Fusion results for multifocus image pairs. (a) DTCWT and NSCT. (b) UWT
without spectral factorization. (c) UWT with spectral factorization.

fusion. Finally, we would like to point out that the proposed spectral factorization

framework significantly outperforms the fusion results obtained by state-of-the-art

transforms such as the DTCWT and NSCT for all three fusion metrics.

The results of the fusion of an IR-visible image pair using the DTCWT, NSCT

and UWT with and without spectral factorization are shown in Fig. 4.9. The ‘Haar -

1’ filter bank was employed in the UWT approaches. Examining the results on the

zoomed images, illustrated in Figs. 4.9(e)-(h), the contours of the UWT-based fusion

approaches seem to be slightly more accentuated. This is particularly visible when

observing the persons’ lower body part, displayed in the center of the image.

When examining the results shown in Table 4.3, the same conclusions can be
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Fusion results for an IR-visible image pair. (a) DTCWT fused. (b) NSCT
fused. (c) UWT fused without spectral factorization. (d) UWT fused with spectral factor-
ization. (e)-(h) Zoomed versions of (a)-(d).
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drawn for the set of medical images. However, since medical image pairs present, in

general, an elevated number of regions, exhibiting information at coincident local-

izations, our approach yields even better results for these images than for the set of

IR-visible images. This gain in fusion performance is most apparent when looking

at the QAB/F fusion score of the two image groups. Whereas for both image classes

a considerable improvement is achieved for all filter banks, the gain is more than

twice as high for medical image pairs. A similar tendency can be observed for the MI

fusion metric, where the UWT fusion with spectral factorization produces a higher

score for all tested filter banks, again suggesting the superiority of the proposed

approach. In contrast, a moderate drop in fusion performance occurs for the QP

metric. However, it should be pointed out that this does not agree with subjective

perception, as shown in the medical fusion example (Fig. 4.10). As before, best

results are obtained when using the non-orthogonal filter banks of Section 4.3. Fur-

thermore, the proposed method yields superior results for all three objective metrics

when compared to conventional methods based on the NSCT and the DTCWT.

Fig. 4.10 shows the results for the fusion of a medical image pair, obtained

by applying the DTCWT- and NSCT-based fusion scheme, as well as the UWT-

based fusion scheme with and without spectral factorization in combination with

the ‘Haar 1’ filter bank. Looking at the results obtained for the DTCWT and the

NSCT, it can be observed that both schemes suffer from a significant loss of edge

information, particularly noticeable at the outermost borders of the zoomed images

(Figs. 4.10(e)-(h)). There, information belonging to the skull bone (white stripe

enclosed within the gray, tube-like structure) partially disappeared. This is due to

the superposition of the skull bones, originating from the medical source image pair,

resulting in coefficient overlaps in the DTCWT and NSCT transform domain, which

cannot be resolved by the fusion algorithm. As for the fusion results obtained with

the UWT, this effect is reduced to a minimum and the edge information is preserved

to a much higher degree. Moreover, in case of the UWT with spectral factorization,

the edges appear to be more accentuated than in the fusion scenario without spectral

factorization, thus indicating the perceptual superiority of the proposed spectral

factorization approach.

To demonstrate the independence of the achieved results with respect to the un-

derlying fusion rule, Figs. 4.11 and 4.12 show the average results for all IR-visible and

medical image pairs, respectively, employing several different combination schemes.

In more detail, we utilized the four fusion schemes discussed in Section 4.4 in com-

bination with the DTCWT and NSCT, as well as with the UWT with and without

our proposed spectral factorization approach (in Figs. 4.11 and 4.12 referred to as

UWT and UWT-SF, respectively) and grouped the results in accordance with the

used fusion metric. Table 4.5 gives an overview on the used fusion rules for all
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10: Fusion results for a medical image pair. (a) DTCWT fused. (b) NSCT
fused. (c) UWT fused without spectral factorization. (d) UWT fused with spectral factor-
ization. (e)-(h) Zoomed versions of (a)-(d).
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Figure 4.11: Comparison of different fusion rules for IR-visible image pairs using the
(a) QAB/F , (b) MI and (c) QP fusion metrics.
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Figure 4.12: Comparison of different fusion rules for medical image pairs using the (a)
QAB/F , (b) MI and (c) QP fusion metrics.

Abbreviation Description Equation(s)

CM ‘Choose Max’ fusion rule (3.51)
CM-IS CM with intra-scale grouping (4.10)
CM-A CM-IS with window-based activity measure (2.3), (4.11)
CM-AM Fusion rule by Burt and Kolczynski [32] (2.3)−(2.5), (4.12)

Table 4.5: Overview on the used fusion rules.

detail images. The approximation images were fused using the averaging operation

of eq. (3.52). As for the UWT-based approaches, the ‘Haar 1’ filter bank was em-

ployed for all IR-visible image pairs whereas the ‘Spline 2’ filter bank was used for

the set of medical image pairs. By observing the results it can be noted that for all

investigated fusion schemes the best results are achieved using the proposed spectral

factorization method. In fact for IR-visible image pairs it only ranks second for the

QP fusion metric together with the CM fusion rule, whereas for medical image pairs
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it gains first place for the QAB/F and MI fusion metric and only ranks second for

the QP score. Note that this is in accordance with the results presented in Tables

4.2 and 4.3. Two important conclusions can be drawn from this observation: a) The

introduced fusion framework with spectral factorization indeed tends to generate

the best multiscale fusion results independent of the employed fusion rule and b)

no tested combination scheme was able to resolve the problems originating from

the superposition of coefficient values within the same spectral band. Consequently,

since the probability of coefficients with coincident localizations can be directly as-

sociated with the support length of the applied filter bank, our proposed framework

with spectral factorization can in fact be considered as a good alternative to alleviate

the original problem.

4.6 Conclusions

A novel UWT-based pixel-level image fusion approach is presented in this chapter. It

successfully improves fusion results for images exhibiting features at nearby located

and coincident pixel locations. Our method spectrally divides the analysis filter pair

into two factors which are then separately applied to the input image pair, splitting

the image decomposition procedure into two successive filter operations. The actual

fusion step takes place after convolution with the first filter pair. It is equivalent, as

far as the coefficient spread is concerned, to a filter with significantly smaller support

size than the original filter pair. Thus, the effect of the coefficient spreading problem,

which tends to considerably complicate the feature selection process, is successfully

reduced. This leads to a better conservation of features which are located close to

each other in the input images. In addition, this solution leaves room for further

improvements by taking advantage of the nonsubsampled nature of the UWT, which

permits the design of non-orthogonal filter banks where both synthesis filters exhibit

only positive coefficients. Such filters provide a reconstructed, fused image less

vulnerable to ringing artifacts.

The obtained experimental results have been analyzed in terms of the three ob-

jective metrics QAB/F , MI and QP . They showed that for multisensor images, such

as IR-visible and medical image pairs, the proposed spectral factorization frame-

work significantly outperforms fusion schemes based on state-of-the-art transforms

such as the DTCWT and the NSCT, independent of the underlying fusion rule.

Additionally, the perceptual superiority of the proposed framework was suggested

by informal visual inspection of a fused IR-visible as well as a fused medical image

pair.
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Chapter 5

Infrared-visible image fusion using

the Undecimated Wavelet

Transform with spectral

factorization and target extraction

In this chapter we propose an extension to the fusion framework of Chapter 4 by in-

cluding information about the presence of targets within the infrared (IR) image to

the fusion process. For this purpose we introduce a novel IR segmentation method

which is able to detect targets in low-contrast environments without introducing spu-

rious results. Steered by the segmentation process we ensure that the most relevant

information from the IR image is included in the fused image, leading to a more ac-

curate representation of the captured scene. Since the target extraction is performed

on the decomposed images obtained after application of the first spectral factor, it

can be embedded directly within the existing fusion framework. Additionally, a new

hybrid fusion scheme is proposed in this chapter which utilizes both pixel-level and

region-level information to fuse the source images, turning the fusion process more

robust against possible segmentation errors which may corrupt the final composite

image. The combination of these techniques leads to a novel fusion framework which

is able to improve the fusion results of its pure pixel-level counterpart without target

extraction. Furthermore, traditional pixel-level fusion approaches, based on state-

of-the-art transforms such as the Nonsubsampled Contourlet Transform (NSCT)

and the Dual-Tree Complex Wavelet Transform (DTCWT), are significantly out-

performed by the use of the proposed set of methods.

The structure of this chapter is as follows: Section 5.1 introduces the target

extraction algorithm based on a marker-controlled watershed transformation. Its

inclusion into the existing fusion framework of Chapter 4 is the topic of Section 5.2
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whereas Section 5.3 discusses the obtained simulation results and compares them

with other state-of-the-art fusion schemes. Finally, our conclusions are given in

Section 5.4. We make use of the same notation, where suitable, as given in Section

2.1.

5.1 Target extraction algorithm

A number of segmentation techniques have been proposed for the purpose of image

fusion, e.g. [7], [8], [10] and [47]. Most of these methods first employ a multiscale

transform to the source images and extract the regions from the transform coeffi-

cients.

In general, the fusion performance of region-based image fusion methods highly

depends on the quality of the segmentation process. For example, objects-of-interest

which are concealed within other regions may not be incorporated in the fused image.

On the other hand, features which are split into more than one region may cause

unwanted side effects such as ringing effects in the fused image [47]. Unfortunately,

in case of IR-visible image fusion, a proper segmentation map for all input images

is difficult to achieve due to the different nature of the imaging sensors.

The approach taken in this chapter varies substantially from conventional region-

based fusion approaches. The main difference is that we do not segment both IR

and visible images with the help of a single segmentation algorithm. Instead we use

a priori knowledge of the properties of IR images to successfully extract all objects-

of-interest. An IR image is the result of the acquisition of thermal radiation of a

scene, producing a 2-D map representing the temperature, emissivity and reflexivity

variation of the respective scene [115]. Thus, we can define an object-of-interest (or

target) as an enclosed region with either a larger or smaller temperature than the

environment which is situated beyond transient regions such as edges.

In this chapter we propose the use of a marker-controlled watershed transforma-

tion to extract possible targets from the IR image. The marker image is computed

using the gradient modulus maxima of the Undecimated Wavelet Transform (UWT)

in combination with a novel edge tracking approach. The block diagram of our pro-

posed target extraction method is given in Fig. 5.1. It can be considered as consisting

of three main parts: marker extraction, image simplification and watershed trans-

formation. In the remainder of this section, these steps are explained in detail. Note

that all employed thresholds were determined empirically from the set of available

IR images (see Fig. 5.11).
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Figure 5.1: Block diagram of the proposed target extraction approach.

5.1.1 Marker extraction

The direct application of the watershed transformation usually leads to a consider-

able over-segmentation of the input image. One way to improve the results is the use

of the watershed transformation in combination with a marker image, limiting the

segmentation process to some “marked” areas [116]. Since targets in IR images are

usually bounded by transient regions such as edges, it seems natural to use some sort

of edge detector for this task. In this work we propose the use of the UWT-based

multiscale edge detector of [117], which was modified so that it can be seamlessly

integrated in the pre-existing fusion framework of Chapter 4.

In our approach, the input image is first decomposed in a set of approximation

images xj at different scales j by separate convolution of the rows and columns

with an upsampled low-pass filter h(j) as described in eq. (3.26). Next, we calculate

the horizontal and vertical detail images yj+1
1 and yj+1

2 for each scale by employing

the upsampled first spectral factors (1 + z−2j−1
) and (1 − z−2j−1

) of eq. (4.2) to

the approximation images xj. Note that this corresponds to the filtering with an

upsampled Haar filter pair in the spatial domain. Due to the nature of the Haar

filter, the resulting detail images can be considered as the directional derivatives of

the approximation images. Thus, we can define the gradient vector ~∇xj at each

position m,n and scale j as consisting of the set of horizontal and vertical detail
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images such that(
yj+1

1 [m,n]

yj+1
2 [m,n]

)
= ~∇

(
x0 ∗ h(j)

)
[m,n] = ~∇xj[m,n], (5.1)

where x0 represents the input IR image.

Based on the gradient vector, three images are calculated at each scale which

will subsequently be used in the tracking step (see Fig. 5.1). These are the modulus

of the gradient vector ~∇xj given by∣∣∣~∇xj[m,n]
∣∣∣ =

√
yj+1

1 [m,n]2 + yj+1
2 [m,n]2, (5.2)

the angle of the steepest ascent of the gradient vector

]~∇xj[m,n] = arctan

(
yj+1

2 [m,n]

yj+1
1 [m,n]

)
, (5.3)

and a binary image containing the positions of the local modulus maxima of the

gradient vector, corresponding to the zero-crossings of the second-order directional

derivatives of xj. Figs. 5.2(b)-(d) show the three resulting images at the 3rd decom-

position level for the sample IR image of Fig. 5.2(a).

As a next step, the binary gradient modulus maxima images are multiplied with

the corresponding gradient modulus images and a first threshold is applied. This

results in a binary image containing only those gradient modulus maxima above the

chosen threshold. After combining the thresholded images of the 1st and 2nd decom-

position level using a logical AND operation, we obtain a first coarse segmentation

as depicted in Fig. 5.2(e). From this preliminary segmentation, the seed/starting

points for the subsequent edge tracking operation are computed by extracting the

endpoints of the segmented stubs.

The proposed tracking algorithm starts by taking a seed point from the seed point

list and follows the target border in the direction perpendicular to the gradient angle,

marking each encountered pixel on its way as belonging to a target edge. Thus, in

order to track a target it is sufficient that a single seed point is located on the

target edge. This permits the selection of a high initial threshold, minimizing the

introduction of false targets in the segmentation process. At each new point, the

tracking algorithm multiplies the 8-connected neighborhood of the tracked pixel

with a directional mask, discarding those pixels which do not agree with the mask’s

angle. Note that in order to turn the tracking direction more robust against possible

angular outliers, the utilized angle is computed by averaging the gradient angles of

all but the first decomposition level. The directional masks with their corresponding
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2: Results of the marker extraction. (a) Original IR image. (b) Gradient
modulus image (3rd decomposition level). (c) Gradient angle image (3rd decomposition
level). (d) Gradient modulus maxima image (3rd decomposition level). (e) Preliminary
segmentation map used for seed point extraction. (f) Tracked image. (g) Post-processed,
tracked image. (h) Binary marker image.
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Figure 5.3: Directional masks of the tracking operation.

directions are given in Fig. 5.3.

From all candidate pixels (gray pixels depicted in the directional masks on the

right-hand side of Fig. 5.3), the tracking algorithm chooses the one with the highest

average gradient modulus and labels it as tracked. Additionally, the 4-connected

neighbors, as well as all remaining candidate pixels arising from the previously

tracked pixel, are marked as “discarded”, avoiding the use of these pixels as candi-

date pixels again. Note that this step is of prime importance since it circumvents

the ambiguity problem of the gradient angle (there always exist two tracking paths

pointing in opposite directions). The tracking stops if: 1) the new, tracked point is

8-connected to a previously tracked point or 2) the averaged gradient modulus is be-

low a empirically determined threshold. Fig. 5.2(f) shows the result of the tracking

operation.

Following our definition of a valid target (see definition above) an object-of-

interest always forms a bounded region. Thus, we apply a post-processing step

which cleans the tracked image by removing all edge-segments which do not form

a closed region. Furthermore, in order to make the result more robust against

spurious targets, we remove all objects smaller than 40 pixels from the tracked

image. The post-processed, tracked image is illustrated in Fig. 5.2(g). It can be

observed that all objects-of-interest, originating from the IR image of Fig. 5.2(a), are

successfully conserved. Note that the tracked image of Fig. 5.2(g) also exhibits some

spurious targets. However, since these wrongly tracked regions do not correspond

to any bounded object in the source image, they form regions of very small size

after application of the watershed transformation and can thus be removed easily
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(a) (b)

Figure 5.4: Result of the image simplification process. (a) Original IR image. (b) Sim-
plified IR image after application of the morphological gradient followed by quantization.

thereafter.

In order to ensure that the entire target is included in the marker image, the

target area is filled and dilated using a 6 × 6 square structure element. Moreover,

the watershed process demands that each marked region exhibits, at least, one pixel

at the marker center which does not belong to the marked target area (black pixels

enclosed by the white, marked regions in Figs. 5.2(h) and 5.7(b)). This is achieved

by performing a skeletonization of the filled, dilated image followed by combining

its outcome with the filled and dilated image using a logical XOR operation. The

final binary marker image is given in Fig. 5.2(h).

5.1.2 Image simplification

Before performing the marker-controlled watershed transformation it is advanta-

geous to simplify the original IR image [116]. The approach adopted in this work

is similar to the one proposed in [115]. More specifically, we simplify the source IR

image by computing the morphological gradient, defined as the arithmetic difference

between a dilation and an erosion, using a 6 × 6 structuring element, followed by

a quantization of the resulting gradient image to 100 gray levels. The result of the

simplification process, employed to the source IR image in Fig. 5.4(a), is illustrated

in Fig. 5.4(b).

5.1.3 Watershed Transformation

The use of the morphological watershed transformation has been proven to be a

powerful technique for segmenting images in many situations. It was first mentioned

in a work by Beucher and Lantuejoul [118] who used the concept of watersheds (or

98



watershed/dam

minima

Figure 5.5: Schematic illustration of the Watershed Transformation, according to the
flooding scheme.

dams) for bubble detection in radiographic plates and facet detection in fractures

in steel. In what follows we briefly introduce the main idea behind the watershed

transformation, based on the so-called flooding scheme as presented in [116], before

describing its integration in the proposed target extraction framework. Please note

that henceforth we consider a gray-level image as a topographic surface, where a

light gray tone of a pixel corresponds to a high altitude on the topographic surface.

In order to perform the watershed transformation one usually starts by calcu-

lating the modulus of the gradient of the input image which may be obtained by

assigning to each pixel m,n the difference between the highest and the lowest pixels

within a given neighborhood of m,n. In the corresponding topographic surface of

the gradient modulus image, the highest values belong to regions with high contrast

in the original image. Furthermore, each local minimum/maximum in the original

image becomes a local minimum (valley) in the gradient modulus image surrounded

by a closed chain of mountains, like a basin. The concept of the watershed transfor-

mation is now as follows: Imagine we bore a hole in each minimum of the topographic

surface of the gradient modulus image and immerse it in a lake. The water entering

through these holes fills up the various catchment basins. Now, in order to avoid

the confluence of the floods coming from different minima, we build dams along

the lines where the floods would merge. After complete immersion only the dams

emerge and separate the various catchment basins, representing the outcome of the

segmentation process. Fig. 5.5 schematically illustrates this process.

As already elaborated on previously, the direct application of the watershed

transformation tends to yield a severe over-segmentation. This is mainly due to

the high sensitivity of the gradient image to noise, leading to many negligible re-
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(a) (b)

Figure 5.6: Over-segmentation caused by the Watershed Transformation. (a) Original
IR image. (b) Result of the watershed tranformation when applied directly to (a).

(a) (b) (c)

Figure 5.7: Construction of the input image for the watershed transformation. (a)
Simplified IR image. (b) Binary marker image. (c) Input image of the watershed trans-
formation (pixel-wise minimum of (a) and (b)).

gional minima as illustrated in Fig. 5.6. In the proposed methodology, this over-

segmentation is avoided by a) the use of a marker image which restricts the seg-

mentation process to some highlighted regions-of-interest and b) a simplification of

the input IR image, reducing the number of insignificant regional minima. More

specifically, the watershed transformation is employed to the image obtained by cal-

culating the pixel-wise minimum between the binary marker image of Section 5.1.1

and the simplified IR image of Section 5.1.2. Fig. 5.7 visualizes this process for

the IR source image of Fig. 5.6(a). Note that after application of the watershed

transformation all objects which do not exceed an overall size of 40 pixels are again

removed from the segmented image. The final result of the target extraction stage

for the three IR images depicted in Figs. 5.2(a), 5.4(a) and 5.6(a) can be seen in

Fig. 5.8.

In the next section we demonstrate how the extracted target information is

utilized during the fusion process.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Results of the target extraction. (a), (c), (e) Binary segmentation maps. (b),
(d), (f) Binary segmentation maps superimposed on the corresponding IR source images
of Figs. 5.2(a), 5.4(a) and 5.6(a).
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Figure 5.9: Implementation of the 1st stage of the proposed hybrid fusion framework.

5.2 Overall fusion framework

In most region-level fusion methods, the actual fusion process is solely concerned

with the proper combination of the segmented regions. This is usually done by

weighted averaging of associated regions within the source images. Even though

this technique has been shown to be effective, its performance highly depends on

the quality of the computed region map. In other words, segmentation errors such

as under- or over-segmentation may lead to the absence or degradation of certain

features in the fused image, respectively.

In this work, the use of a hybrid fusion scheme is proposed. Here, all extracted

targets are fused using a region-level fusion rule whereas the remaining image por-

tions are fused by employing the pixel-level fusion rules, given in eqs. (4.10) and

(3.52). This turns the fusion process more robust against the introduction of

segmentation-induced fusion errors since we can still rely on the pixel-level algo-

rithm to correctly incorporate an object-of-interest in the fused image, in case it

was “missed” by the segmentation process. Fig. 5.9 shows the implementation of

the proposed, overall fusion framework, combining the UWT-based fusion approach

with spectral factorization of Chapter 4 with the target extraction algorithm of Sec-

tion 5.1, for the 1st decomposition level. In this chapter we are solely concerned

with the fusion of a single, registered IR-visible image pair. However, the presented

fusion scheme can easily be extended to the case of multiple input images.

After decomposing the input images using the first spectral factors (1 + z−2j−1
)

and (1− z−2j−1
), respectively, we apply the target extraction algorithm to the hori-

zontal and vertical detail images of the IR image. Subsequently, the extracted target

information is used to guide the fusion process. In this context we differentiate be-

tween two fusion scenarios which are introduced next.
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5.2.1 Fusion of non-target regions

The first scenario is concerned with the fusion of transform coefficients not belong-

ing to any extracted target. In this case the following fusion rules are used: The

detail coefficients yjI [m,n, p] and yjV [m,n, p] of the IR and visible image, respectively,

are fused using the pixel-level “choose max” fusion rule with intra-scale grouping as

stated in eq. (4.10). Thereby, we ensure that the fusion decision at each decomposi-

tion level j and spatial location m,n is taken jointly for all three orientation bands p.

The approximation coefficients xJI [m,n] and xJV [m,n] at the coarsest decomposition

level J are combined using the simple averaging operation given in eq. (3.52).

5.2.2 Fusion of target regions

A different approach is adopted for all transform coefficients belonging to an ex-

tracted target region. First, a measure of the matching degree between the trans-

form coefficients (belonging to a single target region) of the IR and visible image is

calculated. Consequently, each extracted target is classified as being present only

in the IR image or in both source images. Based on this classification the following

semantic region-level fusion rule is derived: If the extracted target is not evident in

the visible image (unambiguous target), all detail and approximation coefficients of

the corresponding region are directly transferred from the IR decomposition to the

fused decomposition. Otherwise, the fusion will be handled by the pixel-based fusion

scheme as discussed in Section 5.2.1. Please note that we expand the extracted tar-

get region in each decomposition step by (2j−1−1) pixels in all directions. Thereby,

we compensate for the coefficient spread occurring at each decomposition level due

to the filtering involved.

In order to calculate the match metric between the same target regions within

the IR and visible image, two metrics are considered.

Match metric by Piella

The first match metric measures the normalized correlation between the transform

coefficients averaged over the target region Rk for each decomposition level j and

direction p as given in [119]

M j
1 (Rk, p) =

2
∑

(m,n)∈Rk

yjI [m,n, p]y
j
V [m,n, p]

∑
(m,n)∈Rk

∣∣yjI [m,n, p]∣∣2 +
∣∣yjV [m,n, p]

∣∣2 . (5.4)

The final match measure is obtained after taking the absolute value of the averaged

metrics, thus, bounding the final result to the interval [0, 1] with a value close to
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Figure 5.10: Probability density functions of the SαS distribution corresponding to four
different values of the characteristic exponent α. The remaining parameters γ and δ are
fixed to 2 and 0, respectively.

one suggesting a high similarity between the compared regions.

Match metric based on alpha-stable modeling of wavelet coefficients

Alternatively, a second match metric is implemented which first models the wavelet

coefficients of each target region as symmetric alpha-stable (SαS) random processes.

This choice is motivated by the fact that statistical distributions with heavy alge-

braic tails, such as the SαS family, are considered to be accurate modeling tools

for the wavelet coefficients of images [120]. Due to the lack of a compact analytical

expression for the probability density function, SαS distributions are best defined

by their characteristic function [47]

ϕ(ω) = exp (jδω − γ|ω|α) , (5.5)

where α is the characteristic exponent, δ is the location parameter, and γ is the

dispersion of the distribution. Fig. 5.10 shows the SαS density functions for four

different values of the characteristic exponent α. It can be noticed that the smaller

the characteristic exponent is, the heavier the tails of the SαS probability density

function. This implies that random variables following SαS distributions with small

characteristic exponents are highly impulsive [47].

By assuming that the location parameter δ is zero in the wavelet domain, we

can estimate the two parameters α and γ by calculating the first two logarithmic

absolute moments of the wavelet coefficients, as described in [121]. More specifically,

let us define X as being a SαS random variable, consisting of the set of wavelet

coefficients at decomposition level j and direction p corresponding to an arbitrary
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target region Rk and Y as being the corresponding log |SαS| random variable such

that Y = log |X|. Now it can be shown [121] that the mean and variance of Y are

related to the parameters α and γ by

E(Y ) = Ce

(
1

α
− 1

)
+

1

α
log γ (5.6)

and

Var(Y ) = E([Y − E(Y )]2) =
π2

12

α2 + 2

α2
, (5.7)

where Ce = 0.57721566 . . . is the Euler constant [122]. Thus, the estimation process

involves solving eq. (5.7) for α and substituting back in eq. (5.6) to find the value

of the dispersion parameter γ.

Next, the similarity between two corresponding target regions is calculated by

means of the Kullback-Leibler distance (KLD). In information theory, the KLD or

relative entropy is a measure of the distance between two distributions and is defined

as [123]

D(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
, (5.8)

where p(x) and q(x) are two probability density functions (PDF). The KLD is always

nonnegative and is zero if and only if p = q. However, it is not a true distance

between distributions since it is not symmetric and does not satisfy the triangle

inequality. Furthermore, following the convention that 0 log 0
q

= 0 and p log p
0

=∞,

there may exist a symbol x ∈ X such that p(x) > 0 and q(x) = 0. This would yield

that D(p‖q) = ∞, indicating that there may not always exist an upper bound for

the KLD of two PDFs [123].

There exists no closed-form expression for the KLD between two general SαS

distributions. However, the KLD can be applied on the normalized versions of the

corresponding characteristic functions [120]. In more detail, if we denote by α1, γ1

and α2, γ2 the extracted model parameters of target region Rk at decomposition

level j and direction p, derived from the IR and visible image, respectively, the KLD

can be defined as [47]

M j
2 (Rk, p) = ln

(
c2

c1

)
− 1

α1

+
2γ2Γ

(
α2+1
α1

)
c1α1γ

α2+1
α1

1

(5.9)

with

ci =
2Γ
(

1
αi

)
αiγ

1/αi
i

i = 1, 2 , (5.10)

where Γ(·) represents the Gamma function. Note that in this case a value close to

105



Figure 5.11: Thumbnails of all IR-visible image pairs used for evaluation purposes. Top
row consists of IR images, whereas the bottom row represents the corresponding visible
images.

zero indicates a high resemblance between the two target regions. �

The final classification is obtained after applying a threshold to the computed

similarity scores, where in case of Piellas’ match metric M j
1 all targets below it, and

in case of the SαS model-based match metric M j
2 all targets above it, are transferred

directly to the fused decomposition. After the fusion step is complete, the filter pair

represented by the 2nd spectral factor (P (z) and Q(z) in eq. (4.1)) is applied to

the approximation images and the fused detail images. Once the desired number

of decompositions is reached, the approximation images are merged and the fused

image is computed by applying the inverse UWT, using the corresponding synthesis

filter bank without spectral factorization.

5.3 Results

The performance of the proposed image fusion scheme with target extraction was

compared to the pixel-level fusion results obtained by applying the DTCWT, the

NSCT and the UWT with spectral factorization (UWT-SF) of Chapter 4. As for the

DTCWT and the NSCT we followed the same transform settings as listed in Table

4.1. In case of the UWT-based fusion schemes, we chose the non-orthogonal ‘Haar -

1’ filter bank of eq. (4.9). Please note that in this approach both synthesis filters

h̃ and g̃ are positive and do not oscillate, hence providing a fused reconstruction

less vulnerable to ringing artifacts. Four decomposition levels were chosen for all

transforms.

We performed simulations for 5 IR-visible image pairs depicting a varying number

of target regions within the IR image. The thumbnails of all used source images are

illustrated in Fig. 5.11. We utilized the combination scheme given in eqs. (4.10)

and (3.52) for the DTCWT, the NSCT and the UWT-SF. As for the proposed

fusion scheme with target extraction these rules got extended with the region-level
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Fusion metric DTCWT NSCT UWT-SF Proposed

QAB/F 0.5705 0.5757 0.6008 0.6021
QP 0.7841 0.7899 0.7981 0.7995

Table 5.1: Performance comparison of the achieved fusion metrics.

(a) (b)

(c) (d)

Figure 5.12: Fusion results of a sample image from the “UN Camp” sequence (frame 8).
(a) UWT-SF fused. (b) UWT-SF with target extraction. (c) and (d) Zoomed versions of
(a) and (b).

fusion rules of Section 5.2. The objective evaluation of the obtained fusion results

was accomplished by employing the QAB/F and QP fusion metrics as described in

Section 3.2.

Table 5.1 lists the obtained fusion scores, averaged over all five tested IR-visible

image pairs, for all tested fusion schemes using Piellas’ match metric of eq. (5.4). It

can be noticed that the UWT-SF as well as the proposed extension of the UWT-SF

significantly outperform the fusion results obtained by state-of-the-art transforms

such as the DTCWT and the NSCT for both fusion metrics. Note that this con-

firms once again the superiority of the proposed UWT-based fusion framework with

spectral factorization of Chapter 4. Furthermore it can be seen that, by including

target information into the fusion process, the fusion results of the UWT-SF can

be further improved. This is most evident when looking at the fusion results of
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(a) (b)

(c) (d)

Figure 5.13: Fusion results of a sample image from the “Octec” sequence (frame 21).
(a) UWT-SF fused. (b) UWT-SF with target extraction and target enhancement. (c) and
(d) Zoomed versions of (a) and (b).

Fig. 5.12. It can be seen that the proposed extension produces fused images which

show improved contrast and fewer ringing artifacts around target regions. This is

particularly visible when observing the person depicted in the center of the zoomed

images (Figs. 5.12(c) and (d)) which was correctly identified as an unambiguous

target (not present in the visible image) by our target extraction algorithm.

Additionally, the proposed fusion method can be used to artificially “en-

hance” the extracted targets within the fused image. This is accomplished by mul-

tiplying all high-pass coefficients of the UWT belonging to a target region by a

constant larger than one. The corresponding effect is shown in Fig. 5.13, where

a multiplicative factor of 2 is used. Please note that this approach may lead to

the introduction of additional artifacts in the fused image. However, due to the

non-oscillating nature of the synthesis filter of eq. (4.9), these artifacts are not very

disturbing.

Both tested match metrics were able to successfully distinguish between tar-

gets solely visible in the IR image and targets contained in both source images.

However, for very small targets (e.g. second target from right in Fig. 5.8(a)) the

SαS model-based match metric exhibits unreasonable high differences between the

target regions. We believe that this is due to the fact that their small number of

pixels makes it difficult to extract meaningful model parameters from these regions,

subsequently leading to unstable KLD values.
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5.4 Conclusions

In this chapter an extension of the UWT-based pixel-level image fusion framework

with spectral factorization of Chapter 4 is introduced that includes information

about the presence of targets within the IR images into the fusion process. For

this purpose a novel IR segmentation method was developed which is able to detect

targets in low-contrast environments without introducing spurious results. Since

the target extraction is performed on the decomposed images obtained after appli-

cation of the first spectral factor, it can be embedded directly within the existing

fusion framework. Additionally, a novel fusion scheme is proposed. It merges all

extracted target regions assisted by a region-level fusion rule whereas the remaining

image portions are fused using a pixel-level combination scheme. The usage of this

hybrid approach turned the fusion process more robust against the introduction of

segmentation-induced fusion errors, solving a classical problem of pure region-level

fusion schemes.

We showed that our solution is able to improve the objective fusion results of

the UWT-SF without target extraction, leading to a fused image with increased

contrast and less reconstruction errors around target regions as verified by visual

inspection. Furthermore, our proposed extension can be used to artificially enhance

the visibility of the extracted targets within the fused image, supporting possible

subsequent tasks such as target detection, localization and identification.
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Chapter 6

A Novel Spatiotemporal

IR/visible-light Video Registration

Technique with Application to

Image Fusion

Low production costs, increased resolution and high robustness of modern imaging

sensors have made the use of multiple cameras common in many computer vision

applications. Such multi-camera setups are particularly effective in environments

where a single camera is incapable of capturing the entire information available

within the monitored scene.

In this context, two different multiple camera setups can be identified. In the first

one, cameras equipped with identical imaging sensors (e.g. visible-light sensors) are

deliberately located at different viewpoints in order to increase the field-of-view of

the overall imaging system. Applications for such multi-camera installations range

from classical surveillance scenarios where one wishes to keep track of moving three

dimensional (3D) objects as they move around a monitored area, to image stitching

algorithms which are commonly used by the photogrammetry community to create

high-resolution photo-mosaics [72].

The second setup starts from a different premise. Instead of observing a scene

from different locations and combining the resulting views, the goal here is to pro-

duce a single image or video sequence containing information from various cameras

positioned close to each other. Such imaging systems are of special interest since

they allow one to exceed the physical bounds of a single sensor. In particular, they

are utilized in spatial and temporal super-resolution frameworks (in order to im-

prove the temporal and spatial resolution) as well as in image fusion applications

for the purpose of increasing the overall depth of focus, the overall dynamic range
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and the overall spectral response of the imaging system [124].

Independent of the underlying application, it is of vital importance that the uti-

lized images are represented in a common reference coordinate frame. This can be

achieved by jointly calibrating the employed cameras, that is, computing the optical

properties (intrinsic parameters) as well as the relative positions of the individual

cameras with respect to each other (extrinsic parameters). Based on these calibra-

tion parameters the images can subsequently be undistorted and rectified such that

the pixel coordinates in one image sequence are in direct correspondence to pixel

coordinates in the other image sequence. Please note that in the course of this work

we will refer to this process as image registration.

Camera calibration methods can roughly be classified into traditional and self-

calibration methods. Traditional calibration methods [125–133] usually require the

cameras to simultaneously take several images of a calibration device. The actual

calibration procedure then tries to localize a set of points within the calibration

pattern of each view and computes the camera parameters based on these extracted

calibration points. Typical choices of calibration points include the corners of a

square pattern (checkerboard), the centers of circles, or the centers of a ring pattern

[128]. Self-calibration methods on the other hand do not resort to the use of a

calibration board. Instead they rely on the detection of a sufficient number of feature

points within the source images (feature-point methods [124, 134–143]) or exploit

common scene characteristics within the input images (direct methods [124, 144–

147]) such as common illumination changes, appearance/disappearance of an object

present in all image sequences, etc., to perform the calibration task.

In general, both traditional and self-calibration methods are well-suited for reg-

istering image sequences originating from cameras operating in the same spectral

band. However, they tend to face problems for sequences obtained by sensors of dif-

ferent modalities (such as IR and visible-light sensors). For self-calibration methods

this is mainly due to the possible lack of mutual feature-points or common scene

characteristics within corresponding input images. The problems are less severe

for traditional calibration methods. Nevertheless, the construction of a calibration

board whose interest points appear likewise in the IR and visible-light spectrum and

allow for the exact calibration of the employed cameras is not a trivial task.

As a consequence, only a few approaches to IR/visible-light stereo camera cal-

ibration can be found in the literature. Ukrainitz and Irani [145] introduce a self-

calibration method for IR/visible-light video sequences based on maximizing local

space-time correlations. In their work, affine transformations between corresponding

image pairs are assumed. Other self-calibration methods for misaligned multi-sensor

video sequences are presented in [136] and [124]. In [136], the authors assume a pair

of IR/visible-light cameras to be jointly moved in space whereas in [124] a suffi-
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Temporal
Alignment Rectification Registration

Figure 6.1: Schematic diagram of the proposed IR/visible-light video registration frame-
work. As for the superimposed pseudo-color images on the right, the visible-light and IR
images occupy the green and red channels, respectively.

cient number of mutual feature points needs to be tracked along the frames of an

IR/visible-light video sequence pair. Traditional calibration methods for IR/visible-

light stereo calibration include the ones in [130–133, 148]. However, these methods

face problems extracting the precise calibration point positions from the images.

Consequently, the mean reprojection error (MRE) - defined as the average error

when mapping the calibration point positions from the world coordinate system to

the image plane - of these methods is usually in the order of 10−1 [130, 131, 133]

whereas state-of-the-art visible-light camera calibration approaches obtain a MRE

of approximately 10−2 [128, 129].

In this work a novel IR/visible-light stereo camera calibration framework is in-

troduced. The proposed approach uses a planar calibration board equipped with

miniature light-bulbs to register a temporally and spatially misaligned IR/visible-

light video sequence pair. Fig. 6.1 shows the schematic work flow of the proposed

IR/visible-light video registration framework. In the course of this work we will

show that the proposed system:

• is able to estimate the temporal offset between the IR and visible-light se-

quences in a very robust manner using solely the calibration point positions

along both sequences, and

• leads to calibration results which exhibit significantly smaller MREs when

compared to the state-of-the-art.

Finally, we will demonstrate the effectiveness of the proposed framework for image

fusion, where co-registered images at sub-pixel accuracy are required. Please note

that all registered IR/visible-light video sequence pairs are available for download

at http://www.smt.ufrj.br/~fusion/ and can be accessed freely by the research

community. By doing so, we hope to alleviate the problem of most research in

multimodal image fusion which suffers from an eminent lack of registered video

sequences for evaluation purposes.

This chapter is structured as follows: Before introducing the proposed calibration

point localization scheme in Section 6.2, the necessary background on the theory of
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camera calibration is presented in Section 6.1. Based on the extracted calibration

point positions, Section 6.3 introduces the overall temporal alignment approach

whereas the proposed IR/visible-light camera calibration scheme is described in

detail in Section 6.4. In Section 6.5 the experimental results obtained by applying the

proposed framework to a number of temporally and spatially misaligned IR/visible-

light video sequence pairs are presented. Finally, our conclusions are given in Section

6.6.

6.1 Background

In this section the main mathematical concepts involving camera calibration will

be examined. For this purpose, we will first explain how 3D scene points can be

accurately mapped onto a 2D image plane and derive the corresponding camera

model. We will see that this projection can be represented by a 3×4 matrix together

with a non-linear term which is used to correct the effects of lens distortion. Finally,

based on the single camera model we will describe the epipolar geometry of two

views and address the question how the knowledge of the position of an image point

in one view constrains the position of the corresponding point in the other view.

In the course of this section the following notation will be used: Homogeneous

3D coordinates X = [X Y Z 1]T will be represented by bold, capital letters whereas

homogeneous 2D coordinates x = [x y 1]T are given by bold, lowercase letters.

Their inhomogeneous counterparts are denoted by X̃ = [X Y Z]T and x̃ = [x y]T ,

respectively. As for stereo camera calibration, we will use the superscript ′ to indicate

entities associated with the second view.

6.1.1 Single Camera Calibration

Lets start our discussion with the basic pinhole camera model which is used in

most computer vision applications to transform 3D world coordinates to 2D image

coordinates. Let an image point in 2D be represented by the homogeneous vector x

and its counterpart in the 3D world coordinate system by the homogeneous vector

X. As illustrated in Fig. 6.2, the general mapping given by the pinhole camera can

be expressed by [1]

µx = K [R t] X , with K =

αx s x0

0 αy y0

0 0 1

 , (6.1)

where µ is an arbitrary scale factor, R and t are the extrinsic camera parameters

and K is called the intrinsic camera matrix [127] or camera calibration matrix [1].
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Figure 6.2: Pinhole camera model. The mapping of a point X from the 3D world coor-
dinate system to the point x in the 2D image coordinate system is given by x = K [R t]X
where R and t define the Euclidean transformation between the world and camera coor-
dinate system and K is the camera calibration matrix. The line from the camera center
C perpendicular to the image plane is called the principal axis, and the point where the
principal axis meets the image plane is called the principal point p.

The parameters of the 3 × 3 rotation matrix R and the 3 × 1 translation vector t

represent the placement of the world coordinate system with respect to the camera

coordinate system whereas K contains the internal camera parameters in terms of

pixel dimensions. These are the focal length (αx, αy) and the principal point (x0, y0)

of the camera in the x and y direction, respectively, as well as the parameter s which

describes the skewness of the two image axes.

Two particularly important classes of camera matrices can be derived from the

camera model of eq. (6.1): finite cameras, and cameras with their center at infinity

(such as the affine camera which represents parallel projection) [1]. In this work we

will mainly focus on finite cameras corresponding to the set of homogeneous 3 × 4

matrices P = K[R t] for which the left hand 3× 3 submatrix KR is non-singular.

As it is rather difficult to make a good 3D calibration device, one often uses

multiple views of a planar calibration pattern for calibration purposes. When using

such a calibration device we can assume without loss of generality that the calibra-

tion pattern is located on the plane Z = 0 in the world coordinate system. Thus,

we can rewrite eq. (6.1) such that

µ

xy
1

 = K [r1 r2 r3 t]


X

Y

0

1

 = K [r1 r2 t]

XY
1

 = HX̄ , (6.2)

where R is given by [r1 r2 r3], H = K [r1 r2 t] is called a homography matrix and

X̄ = [X Y 1]T .
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As shown in [127], by knowing the homographies H between the calibration

pattern and its image for two or more views, a first estimate of the intrinsic and

extrinsic parameters can be obtained by applying a closed-form algorithm such as

the Direct Linear Transformation (DLT) algorithm. However, this first estimate

of the calibration parameters is not optimal since a) it is obtained by applying

the singular value decomposition which minimizes an algebraic distance measure

that is not physically meaningful, and b) does not consider radial and tangential

distortion arising from the optical lens employed in the camera. Lens distortion can

be incorporated using the following expression [125, 126]

F(x̃c,K,P) =

[
xc (k1r

2 + k2r
4 + . . .) + (2p1xcyc + p2(r2 + 2x2

c))

yc (k1r
2 + k2r

4 + . . .) + (p1(r2 + 2y2
c ) + 2p2xcyc)

]
, (6.3)

where x̃c = [xc yc]
T are the (non-observable) distortion-free, normalized points in

the camera coordinate system before applying the camera calibration matrix K,

K = {k1, k2, . . .} and P = {p1, p2} are the coefficients of the radial and tangential

distortion, respectively, and r =
√
x2
c + y2

c . The (observable) distorted, normalized

points x̃d are then approximated by

x̃d = x̃c + F(x̃c,K,P) (6.4)

and the final image points are given by x = Kxd. Note that in this work a 2nd order

radial distortion model with tangential distortion is used such that K = {k1} and

P = {p1, p2}.
With all this in mind, a final global optimization step is incorporated which

estimates the complete set of parameters using the previously obtained calibration

parameters as an initial guess. This optimization is done iteratively by minimizing

the following functional [127]∑
i

∑
j

∥∥xij − x̆
(
K,K,P ,Ri, ti, X̄j

) ∥∥2
, (6.5)

where xij is the sub-pixel position of the jth calibration point in the ith calibration

image, and x̆
(
K,K,P ,Ri, ti, X̄j

)
is the projection of the corresponding calibration

point X̄j from the 3D world coordinate system.

Given the calibration point positions in the real world and camera coordinate

system, various off-the-shelf solutions for camera calibration exist. Among them,

the OpenCV Camera Calibration Toolbox [149] as well as the Camera Calibration

Toolbox for Matlab [150] are predominately used.
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Figure 6.3: An image point x in the left view back-projects to a ray in the 3D world
coordinate system. This ray is imaged as a line in the right view. All points located on
the ray are imaged at x in the left view whereas they generate distinct image points in
the right view. The epipoles e and e′ are the points of intersection of the line joining the
camera centers C and C′ (camera baseline) with the image planes. Corresponding points
x↔ x′ satisfy the constraint x′TFx = 0, where F is called the fundamental matrix of the
camera pair.

6.1.2 Stereo Camera Calibration

In this subsection we formally define the epipolar geometry between a pair of images.

As before, we will start with the basic pinhole camera model which does not assume

lens distortion. Suppose a 3D scene point X is imaged at the point x in the first

view and at x′ in the second view. Then corresponding points x ↔ x′ satisfy the

following epipolar constraint [1]

x′TFx = 0, (6.6)

where F is called the fundamental matrix of the camera pair. An important property

of the fundamental matrix is that it is of rank 2. As a consequence F does not provide

point-to-point correspondences. Instead it specifies a map x 7→ l′ from a point in

one image to its corresponding epipolar line in the other image, as illustrated in

Fig. 6.3.

If we assume that both cameras, represented by the matrices P and P′, have

been calibrated according to the pinhole camera model such that

P = K [I | 0] P′ = K′ [R | t] , (6.7)

where, without loss of generality, we choose the world origin to coincide with the
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first camera P, then the fundamental matrix can be expressed by [1]

F = [K′t]×K′RK−1, (6.8)

where we use the notation that the 3-vector [K′t]× defines a 3× 3 skew-symmetric

matrix such that the vector product a×b = [a]×b, and R and t describe the relative

rotation and displacement of the two cameras, respectively.

Due to the linearity of eq. (6.8), the fundamental matrix provides a simple and

computationally friendly solution to compute point-to-line correspondences within

a stereo camera setup. However, for real cameras employing optical lenses such a

linear mapping is no longer valid. To this end, the mapping of image points from the

first view to the second view in the presence of lens distortion can be summarized as

follows: First, apply the inverse camera calibration matrix to the 2D image points

in the first view xd = K−1x. Next, in order to obtain the distortion-free, normalized

points xc, the inverse distortion model of eq. (6.3) needs to be employed to xd.

However, this is not straightforward since no analytic solution for the inverse exists.

One way to bypass this problem is to approximate the inverse distortion model

recursively [125, 126]

x̃c ≈ x̃d −F(x̃d,K,P) ≈ x̃d −F(x̃d −F(x̃d,K,P),K,P)

≈ x̃d −F(x̃d −F(x̃d −F(x̃d,K,P),K,P),K,P) ≈ . . . .
(6.9)

By doing so, the error introduced when substituting xd with xc on the right-hand

side gets smaller for each iteration. As shown in [125, 126] three to four iterations are

sufficient to compensate for strong lens distortions. As a next step, the undistorted

points xc are mapped from the first camera coordinate system through the plane at

infinity [1] to the camera coordinate system of the second camera [1] (x′c = Rxc)

and lens distortion is added using the forward lens distortion model of eq. (6.3)

such that x̃′d = x̃′c + F(x̃′c,K′,P ′). Finally, by applying the camera calibration

matrix (x′ = K′x′d), a potential match of x in the second view is found. Please

note that, as a consequence of lens distortion, the previously established point-to-

line correspondences does not hold anymore. Instead, if points x and x′ correspond,

then x′ lies on a curved epipolar line controlled by the polynomial distortion function

of eq. (6.3).

Apart from the chosen camera model, the overall accuracy of camera calibration

depends to a great extent on the ability to localize the set of calibration points within

the provided calibration footage. Thus, in the next section we will introduce a novel

calibration point localization scheme which is able to find the set the calibration

points with very high accuracy.
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6.2 Calibration Point Detection

Due to the different spectral sensitivity of IR and visible-light cameras, the construc-

tion of a calibration board whose interest points appear both in the visible-light and

IR spectra is not a trivial task. For example, existing camera calibration approaches

based on black/white calibration patterns cannot be employed straightforwardly

since such calibration devices do not appear in the IR image in most cases.

As a consequence, only a few calibration devices have been proposed in the

literature for IR/visible-light camera calibration. Prakash et al. [148] advocate a

heated chessboard as an appropriate calibration device. The authors argue that due

to the different IR emissivity of black and white regions, it is possible to extract

the corner points of the chessboard pattern in the visible-light and IR modality,

respectively, and use these points for calibration purposes. However, as reported

in [133], such a calibration board fails to exhibit crisp corners in the IR spectrum,

consequently preventing the precise localization of these corner points in the IR

image. Thus they suggest a different calibration pattern which consists of a grid

of regularly sized squares, cut out of a material that is opaque in the IR modality.

The authors demonstrate that when held in front of a backdrop with a different

temperature than the ambiance, such a pattern can be identified in the IR domain

and allows for a more reliable extraction of the corner points. Another interesting

strategy is chosen in [131], where a planar black/white checkerboard pattern is

augmented by a set of resistors mounted in the centroid of each square. In this

approach, the corners of the black/white squares are utilized for the calibration

of a visible-light camera, whereas the energized resistors are used for IR camera

calibration.

The calibration board chosen in this work uses miniature light bulbs, equidis-

tantly mounted on a planar calibration board [130, 132]. This configuration is of

special interest since, when energized, heat and light are simultaneously emitted by

the light bulbs causing the calibration pattern to appear in both the visible-light

and IR modalities. This is demonstrated in Fig. 6.4, where the employed calibration

board consisting of 81 light bulbs, arranged in a 9×9 matrix is shown in the visible-

light and IR spectrum, respectively. Please note that the depicted images were taken

from an IR/visible-light video sequence after successful temporal alignment.

The main advantages of the chosen calibration board include its versatility

(e.g. the calibration board can be used for daytime and nighttime recordings), its fast

operational readiness (“plug & play”) and its easy portability. Moreover, since the

same physical entities (light bulbs) are used as calibration points in the IR/visible-

light images, eventual imperfections of the calibration board (e.g. loose contact of

one of the light bulbs) can be compensated more easily.
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(a) (b)

Figure 6.4: Employed calibration board consisting of 81 light bulbs, arranged in a 9 × 9
matrix, in the (a) visible-light and (b) IR spectrum. The depicted images were taken from
an IR/visible-light image sequence after temporal alignment.

Nevertheless, when observing Fig. 6.4 some challenges associated with the chosen

calibration board can be identified. For one thing, due to the use of cheap, off-the-

shelf light bulbs, the emitted radiation patterns tend to differ from light bulb to light

bulb - a problem which is further aggravated when tilting the calibration board. In

extreme cases, this may even lead to the fading of some light bulbs. For another

thing, the visibility of the light bulbs in the visible-light image depends to a high

extend on the surrounding lightning conditions. For example, for outdoor sequences

recorded at bright day light, the calibration points are less noticeable than for indoor

scenes where the lightning conditions can be controlled.

In order to cope with these challenges, a series of steps are proposed to robustly

extract the sub-pixel positions of the miniature light bulbs along all video frames

exhibiting the calibration board of Fig. 6.4. An overview of the proposed algorithm

is given in Algorithm 1. In the remainder of this section the individual steps will

now be detailed.

6.2.1 Calibration Board Detection

For visible-light calibration footage, the localization of the light bulb regions often

poses difficulties. Especially in day light scenes recorded at bright lightning condi-

tions the used miniature light bulbs tend to be poorly visible due to their limited

illumination capacities. As a consequence, the localization of the light bulb regions

without pre-processing of the calibration images may result in a high number of

false positives and in the worst case even to detection failures. A possible way to

alleviate this problem is to restrict the search region to the area constrained by the

edges of the calibration board. As can be observed in Fig. 6.4(a), this approach

seems promising since the borders of the calibration board are clearly noticeable in

the visible-light calibration images.

In order to locate the pattern, we first segment the input images into a set of
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Objective

Find the sub-pixel positions of the calibration points in each image exhibiting the
calibration device of Fig. 6.4.

Algorithm

1) Detect the calibration board (only visible-light images):

(a) Apply marker-controlled Watershed Transformation to the calibration
images.

(b) Use available ground truth about the calibration board to remove
wrongly-extracted regions:

• Overall size of the region is less than a threshold.
• Region is not square-shaped.
• In case of more than one region satisfying the above conditions,

choose the one which contains the most sub-regions within its
borders.

(c) Utilize the Hough transform to obtain the final borders of the cali-
bration board.

2) Find the positions of the calibration points:

(a) Define an initial threshold value λ.

(b) Perform gray-scale thresholding to separate the light bulb regions from
the background.

(c) Fit an ellipse to each extracted region and compute its centroid.

(d) Based on the eccentricity of the fitted ellipses, remove regions which
are not circular.

(e) If the number of regions is smaller than the number of light bulbs:

• Increase the value of λ and go to step (b).

If the number of regions is higher than the number of light bulbs:

• For each region Ri, calculate the average distance di to its two
closest neighbors.

• Compute the median d̃ over the whole set of distance measures di,
where i = 1, . . . , N

• Remove those regions Ri whose corresponding distance measure di
differs most from the median distance d̃. The number of regions
eliminated this way is chosen such that the combinatorial com-
plexity for the step below is reduced to an applicable degree.

• Randomly choose a set of candidate regions (corresponding to the
number of light bulbs) and compute the MRE of eq. (6.10). Repeat
this for all possible combinations and choose the set for which the
MRE is a minimum.

(f) Use the DLT algorithm in conjunction with the computed centroids to
determine a first estimate of the homography matrix H and compute
the resulting MRE.

(g) If the MRE is greater than some constant ε, increase the value of λ and
try again from step (b).

(h) Refine the computed homography by minimizing eq. (6.11).

(i) Compute the final calibration point positions by applying the refined
homography to the calibration point positions in the world coordinate
system.

Algorithm 1: Proposed calibration point localization scheme.
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(a) (b)

Figure 6.5: Results of the calibration board detection for the visible-light calibration image
of Fig. 6.4(a). (a) Segmentation result of the marker-controlled watershed transformation.
(b) Detected calibration board after application of the Hough transform.

candidate regions encompassing the sought calibration pattern. Since the calibration

board forms a bounded region within the calibration images, a convenient way to

do so is to use the watershed transformation which, when applied to the gradient

image, partitions the original gray-scale image into regions of homogeneous gray-

scale values. However, as pointed out in Chapter 5, the direct application of the

watershed transformation leads to a considerable over-segmentation of the input

image due to noise or eventual local gray-scale oscillations of the gradient image.

One way to improve the result is the use of the watershed transformation together

with a marker image, limiting the segmentation process to some areas of interest.

In this work, the marker image is obtained by applying the Canny edge detector

[151] to the calibration images and by following the processing chain given in Section

5.1.1.

Before performing the marker-controlled watershed transformation it is advan-

tageous to simplify the calibration images. As outlined in Section 5.1.2, this is

accomplished by computing the morphological gradient of the calibration images

and by quantizing the result to 100 gray levels. Once the simplified image is ob-

tained, it is combined with the marker image and the watershed transformation

is computed. Fig. 6.5(a) illustrates the result of this process for the visible-light

calibration image of Fig. 6.4(a).

However, as can be seen in Fig. 6.5(a), the segmented image still contains a sig-

nificant amount of over-segmentation. These wrongly-extracted regions are removed

using the available ground-truth about the calibration board. More specifically, we

discard regions a) whose overall size is less than a certain threshold or b) which are

not square-shaped, assessed by calculating the ratio between the regions’ perimeter

and its area. If there should be more than one candidate region satisfying both

conditions, the number of contained sub-regions is utilized as a tie-breaker.

Finally, in order to turn the extracted calibration board region into a true rect-
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angle with well-defined vertices, we apply the Hough transform [152] and extract the

four most prominent features in Hough space. Fig. 6.5(b) shows the detected calibra-

tion board within the visible-light calibration image of Fig. 6.4(a) after application

of the Hough transform.

It is worth repeating that henceforth all operations applied to visible-light cali-

bration images with known calibration board location will be confined to the cali-

bration board region.

6.2.2 Calibration point localization

In order to compute the exact sub-pixel positions of the miniature light bulbs along

all IR/visible-light video frames exhibiting the calibration board of Fig. 6.4, we first

have to separate the light bulb regions from the background. Ideally, this would be

accomplished by applying a static threshold to the calibration images, labeling all

pixels above the threshold as belonging to a potential light bulb region. However,

due to the varying appearance of the light bulbs, no global threshold is capable of

reliably producing a binary image that contains all light bulbs whilst suppressing

the number of falsely extracted background regions.

Thus, the approach taken in this work does not rely on a single global threshold

but tries to extract the exact light bulb positions by iteratively determining the opti-

mal threshold for each calibration image. For this purpose, we first choose an initial

threshold (either manually or by means of some adaptive thresholding scheme as

the one in [129]) which is subsequently used to binarize the calibration image. After

the thresholding operation, the extracted light bulb regions are expected to exhibit

ellipse-like patterns in the binarized image. Based on this assumption, we post-

process the binary image by removing all regions which appear with arbitrary shape

and do not resemble the expected ellipsoidal radiation pattern. This is accomplished

by fitting an ellipse to the boundary pixels of each region and discarding those for

which the committed error (defined as the sum of squares of the distances between

the boundary pixels of the region and the fitted ellipse) is above some threshold.

Furthermore, we also remove those regions corresponding to ellipses with high ec-

centricity (measure of how much the ellipse deviates from being circular) since it

is assumed that the ellipses corresponding to light bulb regions closely resemble a

circle. Note that in our implementation the ellipse fitting is performed by employing

the algorithm of [153].

A first estimate of the calibration point positions is obtained by substituting the

original light bulb regions with the area of the computed ellipses and by calculating

its centroids within the original calibration images. If the number of computed

calibration points is below the overall number of light bulbs we repeat the above
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procedure using the next higher threshold. If on the other hand the number of

extracted calibration points is higher than the number of light bulbs, a potential

solution is to randomly choose a subset of calibration points from the complete

set and to compute the corresponding homography using the DLT algorithm. If the

correct set was chosen, mapping the calibration points from the 3D world coordinate

system to the calibration image will be quite precise and will consequently result in

a small MRE, defined as

MRE =
1

N

∑
i

wwxi −HX̄i

ww . (6.10)

Here, N is the total number of light bulbs, xi is the estimated position of the ith

calibration point within the calibration image and X̄i represents the position of the

corresponding calibration point in the world coordinate system. On the contrary, if

the MRE is high we have strong evidence that the chosen subset does not correspond

to the true light bulb positions and another subset needs to be chosen.

Even though this procedure was found to be very robust, it is computationally

expensive when the number of extracted regions is much larger than the actual

number of light bulb regions. In fact, in a scenario with k light bulbs and n extracted

regions with n > k the combinatorial complexity of this approach can be expressed

by the binomial coefficient

(
n

k

)
resulting in

n!

k!(n− k)!
different combinations. It is

easy to verify that the number of possible combinations grows exponentially with

the number of extracted regions. For instance, for the case of 81 light bulbs and 82,

83 and 84 extracted regions, respectively, the overall number of combinations is 82,

3403 and 95284.

Thus, in situations where the ratio of extracted calibration points to light bulbs

renders the above mentioned method impracticable, a preliminary step for outlier

removal is needed. This is done by exploiting the available information about the

light bulb distribution on the calibration board. In more detail, assuming that the

distances between pairs of adjacent light bulbs are approximately constant within

the calibration images, we iteratively eliminate the calibration points whose mean

distance to its closest neighbors differ most from the median distance, calculated over

the whole set of extracted regions. This procedure is repeated until the combinatorial

complexity for the aforementioned method is reduced to an acceptable degree such

that it can be used to remove all remaining falsely extracted calibration points

without causing a high computational overhead.

If the number of extracted calibration points matches the number of light bulbs,

and the corresponding MRE is below a pre-defined threshold, then the final calibra-

tion point positions can be computed. Since our goal is to obtain calibration points
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(a) (b)

Figure 6.6: Results of the calibration point detection for the (a) visible-light and (b) IR
calibration images of Fig. 6.4 (zoomed version).

for which the MRE is a minimum we refine the corresponding homography H by

minimizing the functional

min
H

∑
i

wwxi −HX̄i

ww . (6.11)

The final calibration point positions are computed by applying the refined homog-

raphy to the calibration point positions in the world coordinate system. Fig. 6.6

shows the resulting calibration point positions for the visible-light and IR calibration

image of Fig. 6.4(a) and Fig. 6.4(b), respectively.

It will be shown in the next section that by means of the extracted calibra-

tion point positions, the time-shift between two unsynchronized IR and visible-light

sequences can be determined successfully.

6.3 Temporal Alignment

Let SV and SI be two video sequences NV and NI frames long, recorded at the same

frame rate by a visible-light and an IR camera, respectively, exhibiting different poses

of the calibration board of Fig. 6.4. Finding the temporal offset ∆t̂ between the two

video sequences SV and SI is equivalent to maximizing a similarity measure s(·)
over a set of potential temporal offset candidates ∆t such that

∆t̂ = arg max
∆t

s
(
SV ,SI ,∆t

)
. (6.12)

Please note that, in what follows, we start from the premise that the two video

cameras are mounted side by side on an horizontal rail. Therefore, we assume that

their positions only differ horizontally and are identical otherwise.

The proposed temporal alignment approach starts off by performing transla-
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Figure 6.7: Example of the vertical component of the speed of a single calibration point
along a visible-light (dashed line) and an IR (solid line) video sequence.
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Figure 6.8: Global movement of all 81 calibration points along a (a) visible-light and
(b) IR video sequence. Each line represents the vertical movement of a single calibration
point. Bright pixel values indicate an upward movement whereas dark pixel values represent
a downward movement of the calibration board.

tional movements of the calibration board in the downward and upward direction,

respectively. This is followed by the extraction of the calibration point positions

in each frame of the IR and visible-light video sequence as elaborated in Section

6.2. Based on the extracted calibration point positions, we determine the vertical

component of the speed of each calibration point along the video sequences. This is

accomplished by subtracting the y-coordinates of the calibration point positions be-

tween two successive video frames. Fig. 6.7 shows an example of the vertical speed

of a single feature point along an IR/visible-light video sequence pair. From the

depicted curves the downward and upward swing of the calibration board, given by

the negative and positive portions of the curves, respectively, can be seen.

Another way to look at the problem at hand is presented in Fig. 6.8. Here, the

global movement of all calibration points is represented as an image with each line

representing the overall vertical movement of a single calibration point. In both

images, brighter pixel values indicate the displacement of the calibration board in

the upward direction whereas darker pixel values suggest a downward movement

of the calibration pattern. Based on Fig. 6.8, the temporal offset between the two
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Figure 6.9: Result of the temporal alignment for the two IR and visible-light video se-
quences corresponding to Fig. 6.8. The highest similarity (according to eq. (6.13)) between
the two video sequences is obtained for a temporal offset ∆t of 99 frames.

video sequences can be described straightforwardly. It simply corresponds to the

horizontal displacement between the two images for which their horizontal cross-

correlation is maximized.

Let us put this observation now in a mathematical context. Given a temporal

offset candidate ∆t, the similarity between the visible-light sequence SV and the IR

sequence SI is given by

s(SV ,SI ,∆t) =

M∑
m=1

∑
n∈N

MV (m,n−∆t)MI(m,n)√√√√ M∑
m=1

∑
n∈N

(
MV (m,n−∆t)

)2
K∑
k=1

∑
l∈N

(
MI(k, l)

)2

, (6.13)

where the matrices MV (m,n) and MI(m,n) express the movement of the mth cali-

bration point between two consecutive visible-light and IR frames at time instant n,

respectively, and N = {n | 1 ≤ (n−∆t) ≤ NV ∧ 1 ≤ n ≤ NI}. Please note that the

similarity measure of eq. (6.13) is bounded to the interval [−1, 1]. The two video

sequences are considered identical if the similarity measure is 1 and complementary

to each other if the result is −1. A result of 0 implies that no similarities between

the two sequences could be found. Finally, as expressed in eq. (6.12), the true tem-

poral offset ∆t̂ between the IR and visible-light video sequence is the one for which

eq. (6.13) is maximized.

Please note that due to the discrete sampling over time, the offset mostly falls

in between two frames. As such it would be necessary to temporally resample

each single frame within one video sequence, creating a considerable computational

overhead. In the presented work this is avoided by approximating the time-shift by

its closest integer value, resulting in a trade-off between synchronization precision
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(a) (b)

Figure 6.10: Undistorted views of the calibration boards of Fig. 6.4 in the fronto-parallel
plane. (a) Visible-light image. (b) IR image.

and computational complexity.

Fig. 6.9 shows the result of the temporal alignment for the two IR/visible-light

video sequences corresponding to Fig. 6.8. It can be observed that the highest sim-

ilarity (according to eq. (6.13)) is obtained for a temporal offset of 99 frames. This

result corresponds well with Fig. 6.8 which, when evaluated subjectively, suggests a

time-shift of approximately 100 frames between the two sequences.

6.4 Camera Calibration

Once the IR/visible-light video sequence pair is synchronized, the individual and

joint camera parameters of the IR/visible-light camera pair can be estimated. This is

accomplished by choosing N temporally aligned calibration images and by following

the calibration procedure outlined in Section 6.1.1. Please note that in the current

implementation the calibration images where chosen manually such that a high

variety of different poses of the calibration board is incorporated in the calibration

process. However, in a future version this process may be automated by extracting

the pose information directly from the homography matrices [154, 155].

A major limitation of the chosen calibration approach is that the calibration

point localization as described in Section 6.2 is performed using non-fronto-parallel

calibration images which suffer from nonlinear distortions due to the camera optics.

In order to improve calibration results, it is therefore beneficial to first map the cal-

ibration images onto an undistorted fronto-parallel view (see Fig. 6.10) and deter-

mine the exact calibration point positions within these canonical images. However,

in order to do so, full knowledge of the calibration parameters would be necessary -

information that is usually not available at this point. One possible solution to this

problem is presented in [128] where the authors advocate an iterative refinement

approach, using alternating mappings of the calibration images onto a canonical

fronto-parallel view and back.
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Figure 6.11: Result of stereo calibration when mapping the IR calibration points of
Fig. 6.6(b) to the visible-light calibration image of Fig. 6.6(a). Note that due to lens
distortion this mapping is no longer linear, resulting in curved epipolar lines.

In this work we follow a similar approach. After calculating a first preliminary

version of the calibration parameters we remove the radial and tangential distortion

from the calibration images and map them onto a canonical fronto-parallel plane

in the world coordinate system. Within this fronto-parallel view we then localize

the calibration points using the processing chain of Section 6.2. Finally, these new

calibration points are remapped onto the original image plane and the camera pa-

rameters are recomputed using the updated calibration point positions. This process

is repeated until convergence, where in each new loop the mapping onto the fronto-

parallel plane is performed using the camera parameters from the previous iteration.

Fig. 6.10 shows the undistorted equivalents of Fig. 6.4 in the fronto-parallel view. As

will be shown in Section 6.5, the calibration parameters obtained by means of this

iterative calibration point refinement result in a reprojection accuracy exceeding the

one of traditional IR/visible-light camera calibration approaches.

After completing the individual calibration procedures for the IR and visible-

light camera we jointly calibrate them as described in Section 6.1.2. By doing so,

we gain knowledge of the relative displacement of the two cameras, consequently

enabling us to map points from one view to the other one. As previously pointed

out, due to lens distortion this mapping is not linear in the sense that a point

in one view does not induce a line in the other view. Instead a curved line is

generated on which the corresponding point in the second view resides. This is

demonstrated in Fig. 6.11 where the epipolar curves resulting from mapping the IR

calibration points of Fig. 6.6(b) to the visible-light calibration image of Fig. 6.6(a)

are highlighted. It can be observed that the distances between the epipolar curves

and the corresponding calibration points are very small, suggesting a high accuracy

of the stereo calibration results.
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Figure 6.12: Result of image rectification for a sample IR/visible-light image pair. For
visualization purposes, the two images where overlaid on top of each other and occupy the
red (visible-light) and green (IR) channel within the depicted RGB pseudo-color image.

Next, based on the obtained epipolar geometry we rectify the IR/visible-light

image pairs [1, 156], resulting in image correspondences where the epipolar curves

are linearized and run parallel to the x-axis. By doing so, disparities between the

IR/visible-light image pairs will occur in the x-direction only. As a consequence,

rectification may be used to recover 3D structure information by providing the depth

discrepancies between the rectified image pairs. In this work rectification is achieved

by undistorting both image sequences using eq. (6.9) and applying two rectifying ho-

mographies HR and H′R to the undistorted IR and visible-light images, respectively,

such that, after rectification, point correspondences are given by [156]

(
x′TH′TR

)
F
(
HRx

)
= 0 where F =

0 0 0

0 0 −1

0 1 0

 (6.14)

and x and x′ represent two corresponding image points taken from an undistorted

IR/visible-light image pair. As a consequence the epipoles e and e′, corresponding

to the right and left null space of F, are mapped to the point p = [1 0 0]T at

infinity. Since all epipolar lines must pass through their corresponding epipoles

it is easy to verify that all epipolar lines run parallel to the x-axis and, in effect,

all corresponding image points have identical y-coordinates. Fig. 6.12 shows the

result of rectification for an arbitrary IR/visible-light image pair. Notice that due

to the different field-of-views of the employed IR/visible-light camera pair, after

rectification, the visible-light image is completely contained within the corresponding

IR image. Moreover, Fig. 6.12 also illustrates the effect of distortion removal. This

is particularly apparent when observing the boundaries of the IR image which, after
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distortion removal, appear curved.

Upon completion of the rectification process, we manually displace the rectified

images horizontally until the principal scene planes in the two views appear spa-

tially aligned, crop the overlapping areas and resample the resulting image portions

such that the final image resolution matches the native spatial resolution of the

IR/visible-light video pair. The registration results of four IR/visible-light image

pairs, recorded at different locations and with varying scene content, are depicted

in Figs. 6.13 to 6.16.

Note that, in order for this displacement process to be automatic, a region of

interest in the images, as well as corresponding points within it, would have to

be identified. Such a region of interest would correspond to a given scene depth.

Alternatively, given a set of corresponding salient points in the two images, the

depths could be computed and a depth-based image rendering [157] could be used

in one of the images to perform registration in all depths. However, such a method

would not solve the problem of occluded areas between the two cameras.

6.5 Results

In order to show the effectiveness of the proposed IR/visible-light video registration

framework, we performed experiments with 30 different video sequences, manually

recorded at 6 distinct locations. Table 6.1 gives an overview of the main properties

of the recorded video sequences, including a rough summary of the scene contents

as well as the prevailing environmental conditions. Apart from the actual scene con-

tent, each IR/visible-light video pair starts off by exhibiting different poses of the

calibration board of Fig. 6.4. These poses include translational and rotational move-

ments of the calibration board and were chosen in such a way that both temporal

and spatial alignment can be performed simultaneously using the same calibration

footage.

The employed test setup, illustrated in Fig. 6.17, consisted of a portable tri-

pod on which a pair of IR/visible-light cameras was rigidly mounted side-by-side.

Moreover, the viewing angle and the zoom of the employed cameras were manually

adjusted in such a way that the overlap between the field-of-view of both cameras

was maximized.

The IR video sequences were obtained by recording the analogue NTSC video

output of a FLIR Prism DS camera, operating at a spectral range of 3.6 to 5µm. In

order to convert the analogue video stream to digital video, a Pinnacle Dazzle Digital

Video Creator 150 video capturing device was utilized. In accordance with the NTSC

standard, the resultant video exhibits a resolution of 720× 480 pixels (which differs

from the native resolution of the employed IR camera of 320×244 pixels). As for the
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(a)

(b) (c)

Figure 6.13: Final registration results for an arbitrary IR/visible-light image pair from
the “IPqM Baia 6” image sequence. (a) Registered visible-light image. (b) Registered IR
image. (c) RGB pseudo-color image where the registered visible-light and IR images of (a)
and (b) occupy the red and green color channels, respectively.

(a)

(b) (c)

Figure 6.14: Final registration results for an arbitrary IR/visible-light image pair from
the “IPqM Campo 2” image sequence. (a) Registered visible-light image. (b) Registered
IR image. (c) RGB pseudo-color image where the registered visible-light and IR images of
(a) and (b) occupy the red and green color channels, respectively.
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(a)

(b) (c)

Figure 6.15: Final registration results for an arbitrary IR/visible-light image pair from
the “IME Laboratório de Maquinas 1” image sequence. (a) Registered visible-light image.
(b) Registered IR image. (c) RGB pseudo-color image where the registered visible-light and
IR images of (a) and (b) occupy the red and green color channels, respectively.

(a)

(b) (c)

Figure 6.16: Final registration results for an arbitrary IR/visible-light image pair from
the “Forte São João 4” image sequence. (a) Registered visible-light image. (b) Registered
IR image. (c) RGB pseudo-color image where the registered visible-light and IR images of
(a) and (b) occupy the red and green color channels, respectively.
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Name Sequences Scene Content
Environmental

Conditions

Forte São João 7 Outdoor Scenes Bright sun light

People hiding behind vegetation and/or 30° Celcius

smoke screen

2 dominant scene planes at distances of

approx. 10m and 300m, respectively

IME - 6 Indoor Scenes Artificial light

Laboratório People walking around, hiding arms-like source

de Maquinas items within bags and behind newspapers 23° Celcius

Distance to scene plane approx. 10m

IME - Lago 2 Outdoor Scenes Twilight

Several people passing by a corridor; One 28° Celcius

person hiding behind vegetation

Varying distance to scene plane (15m - 20m)

IPqM - Campo 4 Outdoor Scenes Bright sun light

2 people cross a lawn and hide behind 33° Celcius

trees; Crossing Car

Distance to scene plane approx. 50m

IPqM - Galpão 5 Indoor Scenes Artificial light

Several people crossing a dimly lit source; Darkness

corridor 23° Celcius

Distance to scene plane approx. 15m

IPqM - Báıa 6 Outdoor Scenes Nighttime

View of the Guanabara Bay and the bridge 25° Celcius

Rio de Janeiro - Niterói

Distance to scene plane approx. 500m

Table 6.1: Overview of the recorded video sequences.

visible-light video sequences a Panasonic HDC-TM700 camera was employed. The

corresponding videos were recorded at a resolution of 1920× 1080 and subsequently

downsampled and cropped to match the IR video resolution of 720 × 480 pixels.

Both IR and visible-light video sequences were recorded at a rate of 30 frames per

second.

For the sake of brevity, we will only discuss the registration results for 6 different

IR/visible-light video pairs, each recorded at a distinct location (see Table 6.1 for

more details). However, since the calibration results are the same for all video pairs

originating from the same location, the presented results can be considered valid for

all recorded video sequences. Note that the same does not hold for the temporal

alignment results which tend to differ from sequence to sequence. Representative

scene thumbnails of the utilized IR/visible-light video sequences (before registration)

are illustrated in Fig. 6.18.
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Figure 6.17: Utilized test setup consisting of an IR (left) and visible-light camera (right)
mounted side-by-side.

Figure 6.18: Selected IR/visible-light scene thumbnails from all video sequences used
for evaluation purposes. Top row consists of visible-light images, whereas the bottom row
represents the corresponding IR images.

6.5.1 Temporal Alignment Results

The estimated temporal offsets ∆t̂ for the 6 selected video sequences (see Fig. 6.18)

together with the corresponding similarity measures of eq. (6.13) are given in Table

6.2. Note that the attained similarity is very close to one for all six assessed video

sequences. This implies that after temporal alignment the movements of the cali-

bration board are almost identical between the IR and visible-light video sequences.

However, it is worth noting that the overall similarity measure depends, to a cer-

tain extent, on the performed movements with the calibration board. Thus, a lower

similarity does not necessarily suggest a poor estimation of the temporal offset.

Furthermore, Fig. 6.19 shows the obtained similarity measures over the whole set of

temporal offset candidates for each assessed video pair. It can be observed that the

curves always exhibit a single distinct peak at the position of the correct temporal

offset, indicating the high robustness of the proposed framework.

Finally, in order to qualititavely demonstrate the effectiveness of the proposed

temporal alignment scheme, Fig. 6.20 shows five calibration frames from the second

IR/visible-light video sequence pair of Table 6.2 before and after temporal align-

ment. It can be noted that the unsynchronized video frames (Fig. 6.20(a)) display
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1st pair 2nd pair 3rd pair 4th pair 5th pair 6th pair

Temporal Offset 69 54 20 16 96 79

Similarity 0.9956 0.9951 0.9970 0.9989 0.9985 0.9974

Table 6.2: Results of the temporal offset estimation for the six different IR/visible-light
video sequence pairs corresponding to the scenes depicted in Fig. 6.18.
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Figure 6.19: Similarity measures over the whole set of possible temporal offset candidates
corresponding to Table 6.2. (a) 1st pair. (b) 2nd pair. (c) 3rd pair. (d) 4th pair. (e) 5th

pair. (f) 6th pair.

a significant misalignment in time. This is particularly evident when observing

the four IR video frames to the right which appear to lag considerably behind the

visible-light frames. As for the synchronized video frames (Fig. 6.20(b)), both IR

and visible-light frames exhibit similar poses of the alignment board, thus, indicating

the correct temporal alignment of the IR/visible-light video sequence pair.

6.5.2 Calibration Results

After temporal alignment, the proposed calibration scheme was applied to 20 syn-

chronized image pairs from each video sequence. The image pairs were chosen
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(a)

(b)

Figure 6.20: Five calibration frames of an arbitrary IR/visible-light video pair (a) before
and (b) after temporal alignment.

manually such that each frame exhibits a different pose of the calibration board

of Fig. 6.4. As mentioned previously, the lens distortion of the employed cameras

was assumed to comply with a 2nd order radial distortion model with tangential

distortion.

The obtained individual and stereo calibration results for the IR/visible-light

camera pair corresponding to the “Forte São João” scenes are given in Table 6.3.

Note that, for the sake of convenience, the rotation matrix R is given in the Ro-

drigues vector form vrot [3]. Two things can be observed in Table 6.3. First of all,

the focal length of the IR camera, measured in terms of pixels, considerably differs

in the x and y direction. This suggests that the pixels are not square, consequently

resulting in unequal scale factors along the x and y direction. Indeed, Fig. 6.21

indicates that the IR image appears to be stretched in the x-direction when com-

pared to the visible-light image1. Note that the depicted images correspond to a

synchronized IR/visible-light image pair before spatial registration.

Secondly, the principal point (x0, y0) of the visible-light camera, which is expected

to agree to a high degree with the center of the image, is noticeably off center. This

is not an isolated case and was also observed in the calibration results of other video

1In fact, the focal length mismatch depicted in Table 6.3 suggests that the IR images do not
get stretched along the x-axes but instead get contracted in the y-direction. We believe that this
is most likely due to the aspect ratio change caused by the conversion to NTSC.

136



Parameters
Visible-light Camera IR Camera

Estimated Values σ Estimated Values σ

αx 1701.81 1.34 1785.54 1.72

αy 1702.56 1.30 1595.44 1.49

x0 320.68 1.05 331.56 1.32

y0 182.96 1.12 259.04 1.26

s 0.00 0.00 0.00 0.00

k1 0.02 0.00 -0.45 0.00

p1 -0.01 0.00 0.00 0.00

p2 -0.02 0.00 0.01 0.00

(a)

Parameters Estimated Values σ

vrot [−0.03 0.00 0.00]T [0.00 0.00 0.00]T

t [844.04 25.28 473.64]T [10.96 10.15 3.95]T

(b)

Table 6.3: (a) Individual and (b) Stereo camera calibration parameters corresponding to
the IR/visible-light camera pair of the “Forte São João”video sequence. For the sake of
convenience, the rotation matrix R is given in the Rodrigues vector form vrot [3].

sequences. We believe that this issue is closely related to the used calibration footage.

In more detail, during recording we focused on capturing the calibration board in

various rotational poses which, for the most part, are located in the center of the

image. If instead we had moved the calibration board around the entire field-of-view

of the camera, it could have been possible to turn the estimation of the principal

point more robust. Nevertheless it is important to note that this assumption still

awaits experimental validation.

In order to evaluate the accuracy of our calibration framework, we calculated

the resulting mean reprojection error (MRE) when mapping the calibration point

positions from the world coordinate system to the image plane, using the obtained set

of calibration parameters. This was accomplished by computing the average MRE

of eq. (6.10) over all 20 calibration images. Table 6.4 shows the resulting MREs for

each video sequence together with the mean MRE obtained by averaging the MREs

of the individual video sequences. At first glance it can be noted that the visible-light

camera calibration results are consistently better than the calibration results for the

IR camera. The reason for that is twofold. For starters, the point spread of the

light bulbs in the visible-light calibration images is less accentuated than in the IR
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Figure 6.21: Stretching effect caused by the focal length mismatch between the IR and
visible-light camera. The visible-light and IR images occupy the red and green channels,
respectively, within the depicted RGB pseudo-color image.

Sequence Name
MRE

Visible-light Camera IR Camera

Forte São João 0.0288 0.0369

IME - Laboratório de Maquinas 0.0302 0.0349

IME - Lago 0.0235 0.0388

IPqM - Campo 0.0295 0.0381

IPqM - Galpão 0.0367 0.0442

IPqM - Báıa 0.0233 0.0303

Average 0.0287 0.0372

Table 6.4: MREs of the proposed IR/visible-light camera calibration method.

calibration images (see Fig. 6.4). This allows for a more consistent calibration point

detection along all 20 calibration images, consequently leading to better calibration

results. Secondly, almost no lens distortion effects are present in the visible-light

calibration images, further improving the overall calibration accuracy.

In order to assess the achieved results against the ones of the state-of-the-art,

Table 6.5 lists the MREs for some selected IR/visible-light calibration schemes from

the literature. Please note that these values were adapted via normalization, to

match to the image resolution of each calibration image used in this work. This

normalization was deemed necessary since, as reported in Table 6.5, different camera

models with differing image resolutions were employed in the quoted references.

It can be noticed that our method appears to improve the calibration results

almost by a factor of 2 for visible-light camera calibration and by a factor of 10 for

IR camera calibration when compared to the state-of-the-art. However, it should

be noted that due to possible differences in the simulation setup, a fair compari-
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Method Camera Resolution MRE

Proposed Panasonic HDC-TM700 720× 480 0.0287

Gschwandtner et al. [131] Bumblebee XB3 1280× 960 0.0475

Vidas et al. [133] Videre Apparen 640× 480 0.5151

(a)

Method Camera Resolution MRE

Proposed FLIR Prism DS 720× 480 0.0372

Yang et al. [130] GUIDE IR112 320× 240 1.2214

Gschwandtner et al. [131] Pathfind IR 1280× 960 0.4918

Vidas et al. [133] Miricle 307K 640× 480 0.3031

(b)

Table 6.5: MREs of the proposed IR/visible-light camera calibration method and selected
calibration schemes from the literature. (a) Visible-light camera calibration. (b) IR camera
calibration. The MREs of the quoted references were adapted, via normalization, to match
the image resolution of the calibration images used in this work.

son cannot be conducted straightforwardly. Nevertheless, based on the vast differ-

ences between the MREs of the proposed scheme and the MREs of all remaining

approaches, strong evidence exists that the proposed technique is indeed able to

improve the accuracy of IR/visible-light camera calibration distinctly.

6.5.3 Image Fusion Example

As already pointed out in the introductory section of this chapter, the main motiva-

tion of this work was the creation of an image and video database suitable for image

fusion purposes. Since such a collection would ideally include imagery of as many

possible scenes as possible, recorded under a wide range of environmental conditions,

we spent in total 3 months shooting 30 different videos at 6 different locations. The

fusion scenarios were chosen in such a way that both visible-light and IR sequences

convey complementary information about the scene such that, through fusion, a

more complete picture of the scene can be achieved. Examples include the use of a

smoke generator which, when turned on, generates a smoke screen that cannot be

penetrated by the visible-light camera as well as the use of arms-like objects which

appear solely in the IR images. Furthermore, we also recorded several nighttime

scenes where IR imagery is essential to augment the overall scene information.

To this end, Fig. 6.22 shows the result of fusion for three selected IR/visible-

light image pairs. As for the utilized fusion framework, we applied the proposed

UWT fusion scheme with spectral factorization of Chapter 4 in conjunction with the

‘Spline 3’ filter bank of eq. (4.8) and four decomposition levels. The approximation
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(a)

(b)

(c)

Figure 6.22: Fusion results for selected IR/visible-light image pairs from the (a) “Forte
São João 4”, (b) “IME Laboratório de Maquinas 2” and (c) “IPqM Campo 2” video
sequence. The fused images are depicted in the right column whereas the visible-light (top)
and IR images (bottom) are located in the left column.
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images were fused using a simple averaging operation given in eq. (3.52) whereas

the “choose max” fusion rule of eq. (3.51) was applied to the detail images.

By examining the obtained results it can indeed be noted that the fused images

exhibit a more complete view of the overall scene. However, there also exists plenty

of room for improvement. For example, the fused images appear to suffer from

a considerable loss of contrast when compared to the source images. The reason

for this is rooted in the use of the averaging fusion rule which tends to result in

a destructive superposition when opposing approximation coefficients are added.

This is particularly noticeable in image regions which are photographic negatives

of each other, such as, for example, the sky in Fig. 6.22(a). Another interesting

effect can be observed by looking at the transitional zone of forest and sky in the

fused image of Fig. 6.22(a). Here, artificial flair was introduced into the fused image

which is not present in any of the source images. The reason behind that is simple.

Since the source images exhibit two principal scene planes with a large distance

between each other, accurate pixel correspondences could only be accomplished for

one of the planes. Thus, since registration was performed for the foreground plane,

a noticeable pixel mismatch was introduced for the background plane which, during

fusion, resulted in the creation of the depicted artifacts.

6.6 Conclusions

In this chapter a novel approach to IR/visible-light video registration has been

introduced. Our method relies on a planar calibration board equipped with minia-

ture light bulbs to increase the number of corresponding feature points within the

frames of a temporally and spatially misaligned IR/visible-light video sequence pair.

Thereby, the registration process is turned more robust against the chronic lack of

mutual scene characteristics, which represent a common source of problems when

registering video sequences originating from different spectral modalities.

The proposed processing chain first determines the exact light bulb positions in

the individual frames of an IR/visible-light video sequence and utilizes this infor-

mation to estimate the temporal offset. This is followed by the camera calibration

process which is used to undistort and rectify the images such that the pixel coor-

dinates in one image sequence are related to pixel coordinates in the other image

sequence.

We showed in the course of this chapter that the proposed system is able to

estimate the temporal offset with a very high confidence level. Furthermore, the

introduced calibration scheme leads to calibration results which exhibit significantly

smaller MREs when compared to the state-of-the-art. Finally, we demonstrated

the effectiveness of the proposed framework for multimodal image fusion, where
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co-registered images at sub-pixel accuracy are required.

In total 30 registered IR/visible-light video sequences, recorded at 6 different

locations where generated in this work. They are available for download at http:

//www.smt.ufrj.br/~fusion/.
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Chapter 7

Conclusions

This chapter concludes our investigations on multiscale image fusion. In what follows

we will briefly summarize the main findings of the theoretic and practical work

performed in the course of this project. The message conveyed in these conclusions

represents more than four years of experience in the field of multiscale image fusion

and completes the first part of our research efforts towards new and more powerful

fusion algorithms.

Due to the vast popularity of multiscale fusion schemes, Chapter 2 started by giv-

ing a broad overview on the developments in this field of research. Special attention

was drawn towards the question how multiscale decompositions can be meaning-

fully combined by the use of a varying set of fusion rules. Moreover, we presented

a generic multiscale pixel-level framework which is able to encompass most of the

existing multiscale fusion approaches found in the literature.

A large portion of the success of multiscale image fusion schemes depends on

the choice of an appropriate transform. For this purpose a performance comparison

of different multiscale transforms in the context of image fusion was conducted

in Chapter 3. Based on the calculated objective fusion scores and the informal

subjective assessment of the obtained fusion results, we concluded that the best

fusion performance can be attained for redundant, shift-invariant transforms such

as the Undecimated Wavelet Transform (UWT), the Dual-Tree Complex Wavelet

Transform and the Nonsubsampled Contourlet Transform. Moreover, we observed

that the overall behavior of multiscale fusion schemes considerably depends on the

support size of the deployed filter bank - with a general tendency towards smaller

filters.

The main contribution of this work was presented in Chapter 4. Based on the

conclusions drawn in Chapter 3, we introduced a novel UWT-based pixel-level image

fusion framework which splits the image decomposition process into two successive

filtering operations using spectral factorization of the analysis filter pair. The actual

fusion step takes place after convolution with the first filter pair, exhibiting a very
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short support size. The underlying idea behind this approach is to minimize the

undesirable spreading of coefficient values in the neighborhood of salient features

whilst conserving the advantages of filters with higher orders. We showed that by

following this strategy we are able to improve on the fusion results of other state-

of-the-art fusion frameworks for a large group of input images, independent of the

employed fusion rule. Another important feature of the presented approach was

the use of non-orthogonal filter banks which are more robust to artifacts introduced

during fusion compared to traditional (bi)orthogonal filter bank solutions.

A region-level extension of the fusion framework of Chapter 4 was proposed in

Chapter 5. The basic idea here was to enhance the fusion results by including infor-

mation about the presence of targets within the infrared image to the fusion process.

For this purpose, we introduced a novel infrared-segmentation method which is able

to detect targets in low-contrast environments whilst avoiding the introduction of

spurious results. Additionally, we proposed a novel hybrid fusion scheme that uti-

lizes both pixel- and region-level information to fuse infrared-visible source image

pairs. The experimental results suggested that this methodology produces fused

images with increased contrast and less artifacts around target regions. Finally, we

demonstrated how target extraction can be used to artificially enhance the visibility

of the extracted target regions.

Motivated by the lack of registered source images, Chapter 6 described the indi-

vidual steps involved in the creation of an image data base for image fusion. For this

purpose, a novel stereo camera calibration framework was introduced which is able to

register a set of temporally and spatially misaligned IR/visible-light video sequences

with very high precision. The proposed method utilized a planar calibration device

equipped with miniature light bulbs to create a sufficient number of feature point cor-

respondences between the input image pairs. Subsequently, these points were used

to correct for the temporal offset and to spatially align the IR and visible-light video

sequences. We showed that the proposed system is able to estimate the temporal

offset with a very high confidence level and leads to calibration results exhibiting a

significantly smaller mean reprojection error when compared to the state-of-the-art.

Finally, we demonstrated the effectiveness of the proposed framework for multimodal

image fusion. In the course of this work 30 registered IR/visible-light sequences were

generated. They are available for download at http://www.smt.ufrj.br/~fusion

and can be accessed freely by the research community to test and assess new image

fusion schemes.
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Chapter 8

Future work

Even though important insights could be gathered in the course of this work, the

presented findings are still not exhaustive. Thus, in this chapter some natural ex-

tensions will be addressed.

Artificial enhancement of the fusion results

As mentioned in various parts of this work, it is of vital importance that the fused

image appears ‘natural’ and ‘sharp’ to a human interpreter. It seems therefore

natural to attempt to improve the outcome of the fusion process by employing

some sort of post-processing to the fused image. This should lead to a perceptually

superior fused image when compared to the original result. For example, Bertalmı́o

et al. [158] proposed a perceptual color correction technique which takes into account

a set of human vision characteristics. Based on the fact that the human visual system

is primarily sensitive to local contrast changes, the proposed scheme attempts to

increase the contrast while respecting the visual content of the image (i.e., without

introducing over-saturation or contouring effects).

Envisaged future work in this line of research will start with a thorough literature

study on different image enhancement methods followed by an investigation of the

possible implications of these techniques in the context of image fusion.

Extension of the proposed fusion techniques to videos

The fusion frameworks of Chapter 4 and 5 utilize fusion rules which reach fusion

decisions solely by considering information originating from a single source image

pair. However, due to the availability of the image fusion data base of Chapter

6 containing a number of registered image sequences, a natural extension in this

context would be to extend these frameworks to videos. In more detail, by intro-

ducing novel fusion rules incorporating information from adjacent frames into the
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decision process it may be possible to consistently track objects-of-interest along the

sequences and guarantee their inclusion into the fused frames.

Another area of future research lies within the question on how to guarantee the

temporal stability/consistency of the fused sequences. Here, fusion rules need to

be developed which take previous fusion decisions into account such that the fused

sequence is free of abrupt contrast changes, among others, and appears natural to

a human observer.

Fusion guided image registration

As discussed in Chapter 6, upon completion of the rectification process, the recti-

fied IR/visible-light image pairs need to be displaced manually until the principal

scene planes in the two views appear aligned. However, this procedure is somehow

unsatisfactory since it requires a certain degree of human interaction. One way to

circumvent this problem is to identify a number of corresponding feature points

within the scene plane and to dislocate the images until some similarity measure

is maximized. However, as previously pointed out, such mutual feature points may

not exist in the input images, consequently turning this approach impractical.

Another possible solution is to plug the outcome of image fusion into the image

registration process. In more detail, for rectified IR/visible-light image pairs ex-

hibiting a single scene plane, we may define the correct horizontal displacement as

the one for which the objective fusion metrics of Section 3.2 reach their maximum,

thus solving the correspondence problem.

For IR/visible-light image pairs exhibiting more than one principal scene plane,

this process is considerably more challenging. A possible solution might be rooted

in the use of the Qp fusion metric of eq. (3.48) which, as a preliminary step, provides

us with two maps expressing the pixel-wise similarity between the first source image

and the fused image as well as between the second source image and the fused

image. When analyzing these maps for different horizontal offset candidates, it

might be possible to identify local maxima, confined to some region within the map,

for which the different scene planes are correctly aligned. However, for this process

to be successful, knowledge of the exact number of scene planes must be available

a-priori. Furthermore, such a method would still not be able to solve the problem

of occluded areas between the two cameras.
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