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Ricardo Halfeld Rosadas de Andrade

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos
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OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA
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Autônomo de VANT. 3. Resultados Experimentais com

Drone. I. Jacoud Peixoto, Alessandro. II. Universidade

Federal do Rio de Janeiro, COPPE, Programa de

Engenharia Elétrica. III. T́ıtulo.

iii



Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

POUSO DE MULTIRROTOR EM PLATAFORMA NÃO-INERCIAL

Ricardo Halfeld Rosadas de Andrade

Junho/2022

Orientador: Alessandro Jacoud Peixoto

Programa: Engenharia Elétrica

Neste trabalho, é abordado o problema de pouso autônomo de VANTs em uma

plataforma verticalmente oscilante. Um esquema robusto de controle adaptativo de

altitude é proposto para lidar com o efeito aerodinâmico chamado Efeito Solo e a

variação de massa durante uma tarefa de pick/place. A parte robusta do controlador

é baseada no controle de modo deslizante que apresenta um sinal de controle suave,

livre de chattering, previamente projetado para plantas lineares. Nesse sentido,

este trabalho apresenta a primeira generalização deste controlador para a classe de

plantas não lineares representando a dinâmica vertical do véıculo. A análise de

estabilidade assumindo a velocidade vertical é fornecida. O desempenho do método

proposto é ilustrado por meio de simulações numéricas e resultados experimentais

são obtidos com dois VANTs.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

MULTIRROTOR LANDING ON NON-INERTIAL PLATFORM

Ricardo Halfeld Rosadas de Andrade

June/2022

Advisor: Alessandro Jacoud Peixoto

Department: Electrical Engineering

In this work, the problem of autonomous landing of UAVs on a vertically oscil-

lating platform is addressed. A robust adaptive altitude control scheme is proposed

to deal with the aerodynamic effect so called Ground Effect and the mass varia-

tion during a pick/place task. The robust part of the controller is based on sliding

mode control that features a smooth control signal, free of chattering, previously de-

signed for linear plants. In this sense, this work presents the first generalization of

this controller for the class of nonlinear plants representing vertical dynamics of the

vehicle. The stability analysis assuming the vertical velocity is provided. The per-

formance of the proposed method is illustrated by means of numerical simulations

and experimental results are obtained with two UAVs.
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Chapter 1

Introduction

Over a decade has passed since multi-rotors, commonly referred to as ”drones”, have

have claimed the professional and recreational markets, ranging from toys to indus-

trial machines. They have proven to be extremely useful tools in cinematography, in-

spections, agriculture, public safety, logistics, among other fields. Applications have

been limited to remotely-operated due airspace control, safety and mission cycle

operational difficulties, which are all technical reasons, ultimately. While airspace

control and safety are partially political challenges, the technical aspect can and

must be worked on for when autonomous operations are finally adapted into our

society.

In fact, multi-rotors have been of research interest for longer than that [1], and

have continued to evolve throughout these years, with a wide range of control strate-

gies being tested for general flight. Real-time schemes for multi-rotor control are

employed in [2]. In [3], a quaternion-based control scheme for the attitude control

problem is proposed, where both the multi-rotor’s attitude model and a non-linear

proportional squared (P2) control algorithm have been implemented without any

transformations and calculations in the Euler’s angle space or Direction Cosine Ma-

trix (DCM). In [4], by explicitly taking into account the constraint of non-zero total

thrust in the proposed control design, an almost global asymptotic stability of the

tracking controller is guaranteed.

Off-the-shelf products have matured into reliable flight machines with miniatur-

ized gimbaled cameras showcasing disproportional image resolution, multi-spectral

capability, ultra-precise localization technology such as RTK (Real-time Kinematics)

with centimeter accuracy, AI (Artificial Intelligence) for subject tracking, etc.

Less effort has been allocated into some of the supporting stages of a multi-rotor’s

mission. While taking-off and flying - and taking pictures and such - are optional,

landing is mandatory.

To illustrate the level of difficulty in such maneuvers, even approaches for

a tether-guided landing of an autonomous helicopter using an autopilot for au-
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tonomous landing of a helicopter on a rocking ship, due to rough sea were considered

in [5].

Autonomous landings on a moving platform using image-based visual servoing

is described in [6], where a vision-based algorithm to control a multi-rotor while

tracking and landing on a moving platform was developed. Vision is taking an

important role in this context, as unknown movements of the landing surface, and

external disturbances make it difficult to generate a relative pose estimate with

sufficient accuracy for landing LING et al. [7]. LEE et al. [6] takes on the challenge

of doing so without estimating the vertical distance.

Inserting the ground effect modelling, in [8] the ground effect is considered, which

increases the difficulty for multi-rotors to land precisely.

Even now, one cannot count on a high-end system to consistently land itself

outside of comfortably open and static environments. However remotely located

an application environment is, such as agricultural and offshore fields, an operator

is still required to operate multi-rotors. There is a wide space of applications just

waiting for such a limitation to be lifted.

In the last few years, interest in autonomous multi-rotors has risen for logistical

and environmental applications for which the combination of multi-rotors with other

mobile systems is required. Autonomy in the landing maneuver is not only required

for fully autonomous missions, but also as a support system in remotely-operated

applications where the operator is not capable of dealing with the proximity to

obstacles or the dynamic nature of the pad.

We seem to stand at the edge of a rapid expansion in the use of unmanned

aerial systems working closely with society. Although envisioned at a few occasions

in the last decade, they were mostly false starts as the technology only appeared

to have matured tremendously, but the expansion in capacity was mainly on the

core activity of the flight - usually related to visual capture - and not on making

the flight cycle robust to hardships, and that is changing. On the last couple of

years, a comprehensive demonstration of a robust autonomous flight cycle came to

existence. While that demonstration aims at a remote application still, it boosts

the imagination of what it will enable inside cities.

Conveniently, these new applications are a great fit for the robust controllers, and

vice-versa. The former benefits from the research of better performing trajectory

tracking controllers and the latter benefits from the dissemination of such controller

syntheses [9] [10] [6] in the academy and technological markets.
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Figure 1.1: M600 popping off the pad, gaining over 3m in under 2 seconds.

1.1 The landing maneuver

When taking-off, the multi-rotor starts in a state of contact with its pad. As the

collective thrust increases, the contact force becomes less and less until the thrust

exceeds the weight. From that point on, the acceleration is only as great as the

collective thrust. The accelerations are limited and therefore designing a structure

for this load case is straightforward.

Since the thrust-to-weight ratio of multi-rotor is usually plenty, popping off the

pad is typically not an issue. Surely care must be taken in windy and turbulent

conditions, and even more when doing so near obstacles. Rapidly leaving the pad:

• Prevents skidding and re-contacting issues leading to tipping over and unin-

tentionally yawing.

• Minimizes disturbances such as ground-effect or pad induced turbulence.

• Increases distance to most obstacles quickly.

Landing, however, is a much greater challenge. In this maneuver, the multi-rotor

transitions from a flight state to a contact state. Unlike the opposite transition, the

acceleration, jerk, snap, etc. levels are determined by the approach trajectory, which

must attain a minimal quality to ensure structural integrity and an upright stance

until the multi-rotor is fastened to the pad. Coming in slowly can be just as bad

coming in quickly.

In a perfect landing maneuver, the landing gear meets the pad at the intended

touch-down (TD) time tTD, at the intended position, with zero relative linear and

angular velocity. All the planning must be done prior to tTD and updated during the

maneuver to accommodate any prediction errors or disturbances. Doing so allows

the prediction of the time required to land, which translates to mission battery

overhead reduction.

The maneuver starts at a holding position, where the multi-rotor is as close

as possible to its touch-down position while staying clear from the pad’s motions.

The closer the holding position is to the touchdown position the higher the risk of
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an unintended contact with the pad, although the required prediction horizon is

reduced. On the other hand, keeping these two main stations further apart is safer

while waiting for the right touch-down conditions, but this comes with the price of

a farther prediction horizon.

The system must then log the non-inertial pad motion and begin searching for

a pattern. Assuming there is a pattern to be found and also assuming the existence

of a recognition technique, the ideal landing system can proceed with the required

processing. At this stage, the prediction belief as a function of time is useful.

The next stage is the first planning iteration. Trajectory generation in the con-

text of hovering machines has been thoroughly discussed in [11]. In essence, multi-

rotors enjoy minimum snap trajectories. To define such a trajectory, one must simply

know initial and final positions and velocities as well as bounding surfaces (typically

cylinders). Extremum-seeking algorithms for real-time generation of optimal tra-

jectories through a sequence of 3-D positions and yaw angles, while ensuring safe

passage through specified corridors and satisfying constraints on velocities, acceler-

ations and inputs are employed, followed by the use of tuned trajectory following

controllers.

Another computationally efficient motion primitive for multi-rotor trajectory

generation can be found in [12], while aggressive multi-rotor flight through cluttered

environments using mixed integer programming is presented in [13].

In typical non-inertial landing pads, the multi-rotor would need a small touch-

down stretch roughly in the vertical direction, bounded by a cylinder with the allow-

able landing offset radius, and another linear stretch connecting its current position

to the top of the aforementioned touch-down stretch. The boundary for this stretch

is defined by the distance to obstacles, which in turn determine how tall the touch-

down stretch must be.

While the multi-rotor follows its planned trajectory, invisible, virtually immea-

surable atmospheric features interact with its structure, disturbing the system. The

impracticality of anticipating such disturbances imposes unto the controller the pur-

suit of robustness, all the while reminding the designer of the creeping certainty that,

some day, it will not be enough. Hope for the best, but plan for the worst, as the

saying goes.

Until a system which alleviates the requirement for good landings is devised, it

will be imperative to introduce good abortion characteristics to the landing strategy.

1.2 Notation and Terminology

The following notation and basic concepts are employed:

(1) ISS means Input-to-State-Stable and classes K, K∞ functions are defined as

4



in [14].

(2) The Euclidean norm of a vector x and the corresponding induced norm of a

matrix A are denoted by |x| and |A|, respectively.

(3) The symbol “s” represents either the Laplace variable or the differential

operator “d/dt”, according to the context.

(4) As in [15, 16] the output y of a linear time invariant (LTI) system with

transfer function H(s) and input u is given by y = H(s)u. Convolution operations

h(t) ∗ u(t), with h(t) being the impulse response from H(s), will be eventually

written, for simplicity, as H(s) ∗ u.

(5) As usual in SMC, Filippov’s definition for solution of discontinuous differen-

tial equations is adopted [17].

(6) We denote by π(t) any exponentially decreasing signal, i.e., a signal satisfying

|π(t)| ≤ Π(t), where Π(t) := Re−λt, ∀t, for some scalars R, λ > 0.
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Chapter 2

Modeling and General Control

Architecture

2.1 Multi-rotor Description

During the research the following multi-rotor models were used:

• Custom built quad-rotor

• Bitcraze’s Crazyflie 2.0, with Flow Deck 2.0 and Multi-ranger Deck

• DJI’s Matrice 600 Pro

The first is quad-rotor with parallel motor axes. It is assembled on an F450

frame, with large propellers, uses an Atmega micro-controller for Low- and High-

Level control.

The Crazyflie 2.0 is an open-source nano quadrotor designed by Bitcraze, in

Sweden. Weighing only 27g, with net collective thrust up to roughly 60gf, this

quadrotor is highly capable and robust. Its ability to survive crashes allows for short

experimental cycles. The diversity of accessories and the well structured community

of developers makes it a convenient platform for research and development in mobile

robotics.

It is equipped with several sensors. Aside from the common equipment, such

as IMU, radio, etc., the quadrotors used in the experiments are equipped with the

Flow Deck and the LPS Deck, two modular PCBs that can be stacked with the

main PCB extending its sensory capacity. The Flow Deck adds a flow sensor to

measure horizontal velocity and a ranger in the vertical direction, both pointing

downwards, which allows it to measure the distance to the ground. The LPS Deck

uses an UWB (Ultra-Wide Band) antenna to measure the distance to anchors fixed

in the environment at known locations. It serves as an absolute frame of reference

for the quadrotor.
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DJI’s Matrice 600 Pro (M600P) is, at the time of this work, the largest aerial

platform in the industrial class offered by the Chinese company. With 6 propellers,

payload of 6kg, retractable landing gear, easy access to components for modifications

and flight times exceeding 40 minutes, there’s hardly any limitation for research and

development. Its versatility is enhanced by an open C++ SDK with complete ROS

wrapper.

The use of a large spectrum of multi-rotor scales provides not only a great amount

of academic opportunities, but also instils generalized intuition of the dynamics of

such systems.

2.2 Reference Frames

The following descriptions can become very confusing without establishing a con-

vention. The following reference frames must be defined so that other definitions

can be built upon them, see Figure 2.1.

Figure 2.1: Local ENU (East, North, Up)

• Inertial

Geodesic

Cartesian

ENU (East, North, Up)

• Multi-rotor

FLU (Front, Left, Up)

Body

• Sensor

Accelerometer

Gyroscope

GPS
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Magnetometer

Barometer

Camera

• Landing Pad

Visual Markers

Figure 2.2 presents the main reference frames attached at the drone, while Figure 2.3

illustrates the additional frames including the landing pad and the inertial reference

frames.

CGM1

M2

M3

M4

M5

M6

CG

Figure 2.2: Multi-rotor Reference Frames.

Figure 2.3: Positions and rotations between inertial, multi-rotor and pad frames.
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2.3 Mathematical Model

There are several approaches to modelling this system and a few have been referenced

in the bibliographic review chapter. The strategy used in this work is based on

Newton-Euler method due to its inherent intuitiveness quality.

The less intuitive (at least on a first glance) use of Unit Quaternions aims to

further illustrate the benefits of its use, solidify its importance in aggressive, i.e.,

more capable, maneuvers and hopefully clarify the properties that make the use of

Unit Quaternions an ideal tool for attitude control.

The use of Unit Quaternions provides a singularity-free space, meaning there is

no degradation of this representation in any possible attitude.

The following equations form the mathematical model for a multi-rotor [3]:

ẍ = RF{b} + F{0} = q∗ ⊗

[
0

F{b}

]
⊗ q + F{0} ,

q̇ =
1

2

[
0

ω

]
⊗ q , (2.1)

ω = I−1
cm · τ − I−1

cm [ω × (Icm · ω)] ,

where x denotes the position vector of the multi-rotor mass’ center, represented in

the inertial frame {0}, R is the rotation matrix form the body reference frame {b}
to {0}, q is the Unit Quaternion, ω is the multi-rotor angular velocity, represented

in {0}, Icm is the moment of inertia, τ is the total momentum applied around the

center of mass and RF{b} + F{0} is the total force applied at the center of mass.

By inspection, one can perceive a clear distinction of translation and rotational

dynamics. One may also notice a one-way causality of the rotational dynamics in

the translation dynamics, i.e., there is no intrinsic influence on the vehicle’s rotation

by its position in the environment, however, its orientation is determinant for the

translation.

To illustrate, consider a perfectly balanced multi-rotor hovering in horizontal

orientation with null velocity and neglect all aerodynamic effects except for propeller

thrust and torque. It remains still in this stance regardless of its initial position in

space.

Now starting this very same vehicle in the same state (i.e., rotor angular veloc-

ities, landing gear position, etc.), except for a slight difference in pitch or roll, will

start moving it in the direction it leans into, highlighting the effect of orientation in

translation.

In the opposite causality direction, its translation does not affect its orientation

in such a simplified system. The vehicle will not alter its orientation regardless
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where in space it lies unless its rotors apply a moment on it.

In fact, aerodynamic effects of the vehicle’s airspeed, as well as observer design

do indeed influence the rotational dynamics. If the model is extended to consider

surrounding air flow, then both translation and rotational dynamics become mu-

tually coupled. These effects can be added as force and moment plugins in the

mathematical model, although for most applications of multi-rotors that would be

overkill.

2.4 Control Allocation

In the presented mathematical model, the inputs are the net forces and moments

applied to the vehicle’s body, but in reality these fold out into at least as many

forces and moments as there are actuators, which can be propulsive systems, servos,

aerodynamic surfaces (both active and passive), etc. In order to apply the intended

net force and moment, the system needs a map between them and their actuators’

states.

In the case of a pure multi-rotor (without any other relevant aerodynamic actu-

ators and suppressing the use of actuators that are not intended for flight control,

such as landing gear servos), the net force and moment can be obtained by com-

puting the thrust T and reaction torque Q of each propeller. Therefore, one must

consider a mathematical model for the propellers. A typical approach is a polyno-

mial function (or just an exponential) of the angular velocity when the propeller is

at steady state and in a fixed position.

T =
1

2
CTω

r ,

Q =
1

2
CQω

s ,

where CT is the thrust coefficient, CQ is the reaction coefficient and ωs and ωr are

the propeller angular velocities at steady state and in a fixed position, with exponent

s and r, respectively.

Please bear in mind that all the vectors presented in the following equations are

presented in the body frame exclusively.

An individual propeller of index i with thrust coefficient CT and exponent r

pointed in the direction of the unit vector d̂i at the angular velocity ωi contributes

with the thrust vector FT i, given by:

FT i = Tid̂i =

(
1

2
CTω

r
i

)
d̂i .

If the i-th propeller’s thrust vector is offset by a position vector li, it may induce
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a moment component MT i, given by:

MT i = li × Tid̂i = li ×
(

1

2
CTω

r
i

)
d̂i .

Spinning the propeller’s blades through the air generates a reaction torque due

to their drag, which yields a moment component MQi in the direction of di, with

magnitude function of the coefficient CQ and exponent s, given by:

MQi = Qid̂i =

(
1

2
CQω

s
i

)
d̂i .

On the other hand, while the net thrust vector is the sum of the individual thrust

vectors, the net moment is the sum of the sum of reaction torque vector compounded

with the sum of levered thrust vectors, such that one can write:

Fnet =
n∑
i=1

FT i ,

Mnet =
n∑
i=1

MT i +
n∑
i=1

MQi .

Despite being the same final type, they arise from different mechanisms. Figure 2.4

illustrates all the vector’s definitions.

Figure 2.4: Vector Definitions.
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2.4.1 Net Thrust and Net Moment

First note that, one can further write:[
Fnet

Mnet

]
=

n∑
i=1

[
Fi

Mi

]
=

n∑
i=1

[
Tid̂i

li × Tid̂i +Qid̂i

]
. (2.2)

Since Ti and Qi are scalars, they are free to move out of the cross product and

vectors. Hence, one has that:[
Fnet

Mnet

]
=

n∑
i=1

([
Tid̂i

li × Tid̂i

]
+

[
0

Qid̂i

])
=

n∑
i=1

([
d̂i

li × d̂i

]
Ti +

[
0

d̂i

]
Qi

)
. (2.3)

With summation in matrix form and expanding Ti and Qi, one can obtain:[
Fnet

Mnet

]
=

1

2
CT

[
d̂1 d̂2 · · · d̂n

l1 × d̂1 l2 × d̂2 · · · ln × d̂n

]
ωr1

ωr2
...

ωrn

+
1

2
CQ

[
0 0 · · · 0

d̂1 d̂2 · · · d̂n

]
ωs1

ωs2
...

ωsn

 (2.4)

In addition, by allowing r = s, one can find a much more familiar form:

[
Fnet

Mnet

]
=

1

2

[
CT d̂1 · · · CT d̂n

CT

(
l1 × d̂1

)
+ CQd̂1 · · · CT

(
ln × d̂n

)
+ CQd̂n

]
ωr1

ωr2
...

ωrn

 . (2.5)

While doing so simplifies the system, it can also be perceived as a constraint in the

force and moment modelling of the propeller, which may introduce undesired input

error in the system. In order to reach the familiar y = Ax form without imposing

r = s, one may concatenate
[
ωr1 · · · ωrn

]T
and

[
ωs1 · · · ωsn

]T
, reaching:

[
Fnet

Mnet

]
=

1

2

[
CT d̂1 · · · CT d̂n 0 · · · 0

CT

(
l1 × d̂1

)
· · · CT

(
ln × d̂n

)
CQd̂1 · · · CQd̂n

]


ωr1
...

ωrn

ωs1
...

ωsn


, (2.6)
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which in turn comes at the expense of doubling the domain’s dimension and turning

A into a n× 2n rectangular matrix.

This algebraic problem isn’t truly of dimension 2n. It is parameterized by ωi

with i ∈ Z | (1 ≤ i ≤ n), thus constraining the effective input space to n - same as

the output.

As for the range of the allocation matrix, most multi-rotors are under-actuated,

rendering a non-trivial null-space. Even when the amount of actuators is greater

than or equal to 6, which is the number of degrees of freedom of the vehicle’s core,

they are usually arranged in a way that provides redundancy, not in a way that

increases the allocation matrix‘ range - that is, they all point roughly in the same

direction. Therefore, even in the particular case of 6 rotors, one likely needs to

synthesize a controller that nests attitude control in translation control to overcome

its narrow allocation range.

It is important to note two other major sources of detachment between the

propulsive model and reality: Propulsion changes with the advance through air and;

the propulsive jet causes significant changes in aerodynamic forces over the surface.

The aforementioned characteristics favor a design with converging thrust direc-

tion vectors (d̂i). This arrangement drives both translation and rotation dynamics in

harmony. Accelerating the vehicle in a given direction outside its allocation range

involves leaning into that same direction, and a converging arrangement induces

change in the right sense for both translation and rotation dynamics as soon as

commanded. However, this may not be the most aerodynamically efficient arrange-

ment, so this decision is strongly related to the nature of the multi-rotor‘s mission.

From a geometric perspective, it is preferable to first get the multi-rotor in an

orientation that has at least some force contribution in the desired acceleration di-

rection, and only then increase thrust. Thrust varies only to cancel out gravity

throughout the attitude change. Once oriented such that the net force vector coin-

cides in direction with the desired acceleration vector, full thrust should be applied.

This ensures minimal radial deviation.

Whether to start applying thrust from the moment the net thrust vector‘s pro-

jection into the desired acceleration vector is positive or only when it is pointing

exactly parallel to it is determined by the spatial constraints of the maneuver. It

serves no purpose to wait until the attitude is just right to apply full thrust when

this means the multi-rotor will collide with a plane normal to the desired accelera-

tion vector, nor does applying full thrust just as it passes the quadrature orientation

if the induced deviation in that direction will cause it to collide with a cylindrical

object also defined by that direction.
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2.5 Measurements and Estimations

The content of this section aims to provide insight and illustrate a possible ob-

server design. It does not necessarily describe the observer implementation of the

aforementioned multi-rotors, which likely changes case to case.

Despite the explosive advances in inertial measurement technology boosted by

cellphone R&D, sensors by themselves are still not enough for attitude determina-

tion, let alone positional. However, the lower cost per measurement device allows

designers to group complementary sensors onboard, which condition the application

of estimation filters.

As discussed in the mathematical modelling section, position, orientation and

their derivatives are the system’s main states. Measurements are challenging, each in

its own way. Positional measurements suffer from low update rates as well as a large

amount of sources of error, velocities lack useful and self contained devices, angular

velocities are haunted by bias and direct orientation devices are cross-disturbed with

other states. Together, however, they provide a trustworthy estimation platform.

A simple example of such complementary action is an attitude estimator con-

veniently referred to as Complementary Filter. In its implementation, a gyroscopic

measurement device is used in conjunction with an accelerometer. The former mea-

sures angular velocity with virtually no delay, but suffers from electrically and ther-

mally induced bias. The latter gives an inaccurate and noisy measurement of the

vertical direction. Designing an estimator based on both works surprisingly well for

attitude measurement in small acceleration systems, such as cellphones.

Depending on the expected usage, this may very well be enough for a multi-rotor,

although limiting to small accelerations is clearly leaving too much on the table. The

main issue with a Complementary Filter for attitude estimation of multi-rotors is the

interference of the linear acceleration in the vertical update. Bad attitude estimation

during aggressive maneuvers is a bad setup.

To solve this, one needs to employ a better system model (such as the non-linear

quaternion model) and ideally more and/or better update sources, such as RTK

(Real-Time Kinematics), horizon identification, visual markers, etc.

2.6 General Control Architecture

In this section, the general control schemes considered in this work are briefly in-

troduced to provide a wide idea of the control architecture (see Figure 2.6) for the

mission control illustrated in Figure 2.5.
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Figure 2.5: Mission Control Overview.

Figure 2.6: Multi-rotor Controller Diagram.

2.6.1 Attitude Control Architecture

At the heart of the control system is the attitude controller. All relevant states of the

multi-rotor can be controlled by changing its orientation and net thrust in coordi-

nated fashion, thus having a robust and well-tuned attitude controller is paramount

to its performance. The desired attitude qd is referenced by the same frame as q, i.e.,

qd represents the desired orientation of the body frame with respect to the inertial

frame.

Quaternions can be Kronecker multiplied to compound sequential rotations. If

the unit quaternions p and q represent two possible rotations of a body with respect

to the same given frame, the resulting quaternion qres represents a single rotation

in that same frame that will bring the body to the orientation after first applying

the rotation of q, then applying the rotation of p, and can be expressed as:

qres = p⊗ q . (2.7)

Notice quaternion multiplication is non-commutative, just like rotations are non-

commutative.

For completeness, the Kronecker Product can be computed in the following form

using Skew Symmetric Matrices:

p⊗ q =


p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0



q0

q1

q2

q3

 =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0



p0

p1

p2

p3

 . (2.8)

Now consider the resulting quaternion qres represents the desired orientation and
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q represents the current orientation. This means p represents a single rotation that

would bring the body from its current orientation to the desired orientation.

The difference between the desired attitude qd and the current attitude q can be

expressed as:

qe = q ⊗ q∗d , (2.9)

where q∗d is the conjugate quaternion and the vector part of qe gives the driving

direction for the controller, acting as a proportional controller.

One must simply represent it in the body frame. However, proportional action

alone does not address the second order effects of a rotating body. Energy dissipation

is required, otherwise the body might oscillate indefinitely.

In translation dynamics, such behavior is driven by the derivative of the position.

Likewise, one may apply a moment proportional to the angular velocity, but opposite

in direction, to dampen the rotation. The angular velocity is typically measured in

the body frame and is also an observer state in multi-rotors.

2.6.2 Acceleration Control Architecture

The relationship between multi-rotor acceleration a, gravity g and net thrust Fnet

obeys:

a =
Fnet
m

+ g . (2.10)

Figure 2.7 illustrates the acceleration vectors and velocity vectors along a general

flight. Therefore, the required net force vector Fnetreq in the inertial frame can be

computed as:

Fnetreq = m (ades − g) , (2.11)

where ades is the desired acceleration profile.

Since acceleration is measured on-board, the error between actual acceleration

a and the internal estimate â (or ā if signal-to-noise ratio is good enough) can be

used to adjust the required net force within reason. By introducing the acceleration

feedback, the controller is able to handle small mass errors as well as aerodynamic

day-to-day differences, see Figure 2.8.

2.6.3 Velocity Control Architecture

Arguably the most useful control method for a multi-rotor is velocity control. It

only makes sense that this is the default remote control interface for most, if not all,

multi-rotors in the market. Lower control levels, such as attitude control or even

angular rate control, have too fast dynamics for most people, but from velocity and

up, the dynamics are far more palatable.
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Figure 2.7: DJI M600 Pro Accelerating in level flight. In (a) and (b): Red arrow
represents gravity, green arrow represents net aerodynamic acceleration, blue arrow
represents net acceleration. In (c)–(e): Purple arrows represent velocity vectors at
each instant.

Required Net Force
Computation

Acceleration
Correction Dynamics

 or 

Figure 2.8: Acceleration Control Scheme.
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Even though radial velocity can be measured through Doppler effect and tangen-

tial through optical flow , such sensors are rarely found in aerial robotics. Usually

velocity is estimated though the use of some implementation of a Kalman Filter fed

with inertial and positional measurements, e.g., GPS.

2.6.4 Horizontal Position Control Architecture

Plant
 

Proportional

Integral

Derivative

 

Figure 2.9: Proportional, Integral and Derivative (PID) general block diagram.

In case of multi-dimensional control, it is important to apply any saturation to

the error vector, i.e., the direction must be preserved while the magnitude can be

clipped. The general PID structure (with anti-windup) is applied for the horizontal

position regulation control, see Figure 2.9.

2.6.5 Vertical Position Control Architecture

For the vertical position the Smooth Sliding Control (SSC), detailed in Section 4,

has been implemented. The SSC is a model reference sliding mode controller, see

Figure 2.10 for a general idea of the closed loop system.

Please notice that the variables y(t) and Y (s) do not necessarily refer to the

position component y defined in the reference frames. In the theoretical scope of

the SSC characterization, they represent the output signal of a plant and its Laplace

transform, i.e., Y (s) = L{y(t)}, with Y (s) = H(s)U(s).

As traditionally defined in Model Reference Adaptive Control (MRAC), the

tracking error is given by:

e(t) = y(t)− yr(t) , (2.12)

where yr is the desired output signal to be tracked. When the relative degree is

unitary, sigma is the so-called ideal sliding variable. In case of higher relative
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Figure 2.10: General Smooth Sliding Control (SSC) block diagram.

degree, a compensation filter is required. A non-causal filter would be the ideal

choice, however one cannot implement a real-time non-causal filter. Instead, poles

are added such that the frequency response is similar to the ideal non-causal filter.

In the case of relative degree 2, the following filter is sufficient:

L(s) =
s+ l0
τfs+ 1

≈ s+ l0 . (2.13)

2.6.6 Trajectory Tracking Control Architecture

Trajectory tracking is, in essence, defining the error dynamics in such way that the

tracking error is driven to zero and stays null. As a second order control design

example, the idea is to design α and β such that the following e-dynamics be stable:

ë(t) + αė(t) + βe(t) = 0 , (2.14)

where the tracking error is defined here, for example, as the difference between a

reference r and an general output x, as:

e(t) = r(t)− x(t) . (2.15)

In this case, the time-derivative of the error is expressed as

ė(t) = ṙ(t)− ẋ(t) , (2.16)

while, the second time-derivative, satisfies

ë(t) = r̈(t)− ẍ(t) . (2.17)

Given that the M600 Pro can be fed a desired velocity signal and shows significantly

faster attitude dynamics than translation dynamics, assume the dynamics to reach
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Figure 2.11: Trajectory Tracking Control for Velocity Input on M600 Pro.

the desired velocity is a 1st-order system with transfer function:

P (s) =
kP

s+ aP
, (2.18)

such that

V (s) = P (s)U(s) =
kP

s+ aP
U(s) . (2.19)

Recalling that v = ẋ, one can write that

X(s) =
1

s
P (s)U(s) =

kP
s2 + aP s

U(s) , (2.20)

or, equivalently, by multiplying by the right-side denominator (s2 + aP s):(
s2 + aP s

)
X(s) = s2X(s) + aP sX(s) = kPU(s) . (2.21)

In time-domain, the following relationships hold:

ẍ(t) + aP ẋ(t) = kPu(t) , (2.22)

and

ẍ(t) = −aP ẋ(t) + kPu(t) . (2.23)

Moreover, from (2.15)–(2.17) and (2.14), one can obtain the control law which

assures the desired e-dynamics:

u(t) = k−1
P (r̈(t) + αṙ(t) + βr(t)− (α− aP ) ẋ(t)− βx(t)) . (2.24)

From this point on, it is a matter of identifying a useful transfer function for

the desired velocities to actual velocities dynamics. These can be obtained through

experimental maneuvers such as step input, periodic input (sines, saw-tooth, etc.)
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or any other meaningful motion.

Once these transfer functions are identified, the coefficients α and β can be

arbitrarily chosen to suit the needs of the mission, which fully defines the control

law in (2.24).

The additional cost of having a trajectory tracking controller is needing to plan

the trajectory in such a way that provides accurate derivatives then having to sample

not only the reference, but the derivatives themselves.

2.6.7 Velocity Control Field Shaping Architecture

At the core of the challenge of landing a multi-rotor on a non-inertial pad is dealing

with external perturbations. Perfect knowledge of the system could allow for some

precise maneuvers in absolutely controlled environments, but it is unpractical, as

of now, to have accurate information of the incoming turbulence. This must be

considered in order to push the envelope of such a system.

As an exercise to test how such considerations come to practice, a method for

landing the multi-rotor has been synthesized based on strictly feedback control. The

idea is to plan a descent and ascent pattern as a function of how well the vehicle

manages to keep its horizontal position. If the vehicle is within a reasonable region,

it descents. If by any means it drifts outside this region, it ascends.

This also helps to keep the visual markers in sight. By going up, the pad remains

within the field of view. If the multi-rotor is well centered, approaching the pad does

not cause a loss of visual localization.

The ascent/descent rate is modulated by the horizontal position, as well as other

factors that will be introduced later. The inherent transport delay in the vehicle’s

control system filters out high frequencies in the input, which is a beneficial effect.

Consider a well-tuned horizontal position control system. In this context, a PID

performs reasonably well, damping motion while regulating and even adjusting for

low-frequency wind variation. The proportional part pulls the multi-rotor towards

its intended horizontal position, the integral term compensates for the bias caused

by the wind and the derivative action dampens the motion. With such a horizontal

controller in place, the following control law for vertical velocity can be implemented

the following combination of multiple behaviors (terms):

vzd = vrational + vconical + vaversive , (2.25)

where the terms vrational, vconical and vaversive are explained in what follows.

The first term is a rational function, see Figure 2.12. As such, its output is

very close to zero for the most part, with a spike at zero input. These are useful

features for a quick descent (thus the negative sign) when the vehicle is regulating

21



Figure 2.12: Rational (Quotient) vertical control effort term.

its horizontal position well. It allows the control to transition smoothly from not

descending at all when the horizontal regulation is poor to descending as fast as

allowed when exactly above the target. The following control law assures this kind

of behaviour:

vrational = −kr
1

‖dh‖+ δh
, (2.26)

where ‖dh‖ is the horizontal distance between a reference point in the vehicle (center

of mass, for instance) and the center of the landing pad, δh > 0 is a design small

positive constant used to avoid division by zero and kr > 0 is a control design gain.

Since pitch and rolling the frame of reference would introduce a disturbance in this

measurement, it is important to calculate it in a horizontal frame. The ideal frame

of reference is the FLU frame. Its Z axis is vertical and its X axis points forward.

Consequently the Y axis points left, as per right hand convention.

In order to keep a compact set of frames, this FLU frame is attached to the

aircraft. Other similar reference frames may be proposed, such as a FLU frame

attached to the landing pad. The former is adequate for a moving target approach,

whereas the latter is adequate for pad related applications. Either way, the observer

performance is key to having a clean input. Luckily, multi-rotors are one of the best

contexts for attitude observers.

The second term is a vertically offset conical surface, see Figure 2.13. The offset

provides a negative region. This is a convenient way to introduce some positive

vertical control if the aircraft drifts away from the center of the pad while low.

Staying low increases the odds of colliding against an obstacle or tripping in the

landing pad itself. Climbing, up to a certain height, also helps to keep the landing

pad within the cameras’ field of view. This part determines how wide the approach

corridor is, so it is also possible to correlate to the vertical distance to pad in order

to narrow this corridor down as needed while keeping it comfortably wide further
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Figure 2.13: Conical vertical control effort term.

away. The following expression is proposed:

vconical = kc‖dh‖ − uzbias , (2.27)

where kc > 0 is a control design gain.

The aforementioned terms would be enough for a horizontal pad with heaving

motion only. The case of a pad with rolling and pitch motions as well, however, can

benefit from an extra term to induce and aversive action against extreme angular

motion. An asymmetric touch-down forces the multi-rotor to tumble towards the

low side and seems to be the easiest way to tip over during a landing.

The following expression is proposed for the aversive term:

vaversive =
ka

‖z‖+ δa
‖(dh)PAD‖ , (2.28)

where ka > 0 is a control design gain, δa > 0 is a design small positive constant used

to avoid division by zero and (dh)PAD is the vector representing the distance from

the pad to the drone, represented at the landing pad reference frame.
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Chapter 3

Problem Formulation: Thrust

Command

For the position and attitude control of a UAV a hierarchic nested control loop

scheme is employed. The inner loop controls attitude while the outer loop controls

position, regulating the UAV over the landing pad. State feedback control with

feedforward action is employed for this goal.

This work emphasis relies on the altitude control for landing. The landing pad

is assumed to be planar and sufficiently larger than the UAV. The landing problem

will be interpreted as tracking problem regarding the desired trajectory zd. For

simplicity, without affecting the essence of the problem, the landing pad motion is

described as a pure sine:

zd(t) =
A

2
sin(ωt) +

A

2
, (3.1)

with zd as pad height in the inertial reference frame ({A}), A the oscillation ampli-

tude [m] and ω the oscillation frequency [rad/s].

Symmetrical Ground Effect

The Ground Effect will be the same in all actuators (Symmetrical Ground Effect),

depending solely on the center of gravity (C.G.) altitude w.r.t. to the landing pad.

Such effect will be modelled by a same gain kg(z, t) applied to the thrust produced

by each actuator, where the second argument in t is due to the landing pad vertical

position zd(t) which is considered as an exogenous function of time.

To address the presence of the Symmetrical Ground Effect, consider the following

hypothesis:

(H1.a) The gain kg(z, t) due to Ground Effect on each actuator are equal and

depend only on the C.G.’s altitude z and landing pad vertical position zd(t).
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(H1.b) The gain kg(z, t) is a smooth and continuous function in t and is such that

|kg(z, t)| → ∞ as z → zd.

(H1.c) The gain kg is unknown, subject to kgmin 6 kg(z(t), t) 6 kgmax , ∀t > 0, being

kgmin , kgmax known positive constants.

The Ground Effect gain applied to the generated thrust of each actuator is a

function of its relative height to the ground and its dimensions. For small scale

UAVs (compared to the landing pad) and planar landing pads, the relative actuator

altitude can be considered equal for small attitude changes, i.e., small roll and pitch

angles. Therefore, under the assumption of small roll and pitch angles for attitude

control during the landing, (H1.a) does not over constrain the problem.

For the simulations presented here, the following model for kg is assumed [18]:

kg(z, t) =
1

1− ρ
(

R
4(z−zd(t))

)2 , (3.2)

with R as propeller radius and ρ as a constant characterized by geometric dimen-

sions. Note that, with this choice for kg, (H1.b) holds and (H1.c) is reasonable

since kgmin ≈ 1 when the UAV is sufficiently far from the pad (|z − zd| � 2R), and

kgmax is enforced by the landing gear, and can be obtained by a static experiment.

Pick-and-Place of Payload

The UAV’s total mass changes during pick-up and release operations of a payload.

With such operations under regard, consider the following additional hypothesis:

(H2.a) The UAV’s C.G. velocity in the inertial frame of reference is small through-

out the pick-up/release operation and the mass transfer represents a smooth

variation, i.e., ṁ(t) is a smooth function norm bounded by a sufficiently small

positive constant ∆ṁmax .

(H2.b) The mass variation is unknown, norm bounded by a positive constant

∆mmax , and punctual in such way that the UAVs inertia moment is unaffected.

Hypothesis (H2.a) ensures the mass time variation can be disregarded by the

translational dynamics. This is a reasonable assumption as the landing trajectory

can be set to be slow and the position controller can be tuned to regulate it on

the desired landing point. It is valid even when disturbances are present because a

robust control scheme can be employed for position. Prior knowledge of the payload

to be picked-up/released, suitable landing gear and small movements allow (H2.b)

to be satisfied, clearly.
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3.1 Dynamics of the UAV

From the well-known Newton-Euler method, both translational and rotational dy-

namics including the Ground Effect are obtained as :

φ̈ = θ̇ψ̇

(
Iy − Iz
Ix

)
+ kg

Mx

Ix
,

θ̈ = φ̇ψ̇

(
Iz − Ix
Iy

)
+ kg

My

Iy
,

ψ̈ = θ̇φ̇

(
Ix − Iy
Iz

)
+ kg

Mz

Iz
,

m(t)ẍ = (cosψ sin θ + cos θ sinφ sinψ)kgFz ,

m(t)ÿ = (sinψ sin θ − cosψ cos θ sinφ)kgFz ,

m(t)z̈ = −m(t)g + (cosψ cos θ)kgFz , (3.3)

where Ix, Iy and Iz are the moments of inertia of the UAV, Mz,My and Mz are

the control torques for attitude dynamics, g is the acceleration due to gravity, φ,

θ and ψ are the Euler angles (roll, pitch and yaw), x, y and z are the multi-rotor

position, m is the total UAV mass and Fz is the z component of the resulting thrust

F b
z =

[
0 0 Fz

]T
in the Body reference frame ({B}). The terms ṁ(t)ẋ, ṁ(t)ẏ

and ṁ(t)ż were disregarded due to (H2.a), since ẋ, ẏ and ż can be considered small

as well as ṁ(t).

3.2 Altitude Dynamics

The altitude dynamics can be expressed as [19]:

z̈ =
1

Θ∗(t)
u(t) + d(t) , Θ∗(t) :=

m(t)

kh(t)kg(z(t), t)
, (3.4)

with kh(t) := cos(φ(t)) cos(θ(t)), control variable u(t) := Fz(t) and d(t) = −g
interpreted as an input disturbance. Notice that φ(t) and θ(t) are exogenous signals.

Under the assumption of small roll and pitch angles due to the attitude controller

during landing, we obtain Θ∗(t) > 0, ∀t. Clearly, if φ(t) and θ(t) are measured

signals the effect of kh(t) in the z dynamics (3.4) can be compensated.

It must be highlighted that the input disturbance d(t) could incorporate the term

ṁ(t)ż without affecting the following analysis and design. However, for simplicity

and since it is reasonable to assume that ∆ṁmax in (H2.a) is small as well as ż, as

mentioned before, only the acceleration g was incorporated in the input disturbance

d.
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3.3 Control Objective

We consider that state feedback controllers are previously employed for position

(x, y) and attitude regulation, so that the focus is the vertical movement and the

goal is to design a control law u that ensures asymptotic convergence of the output

error (or tracking error) to zero or close to zero, defined as

e(t) := z(t)− zr(t) , (3.5)

keeping all closed-loop system signals uniformly bounded, regardless of uncertainties.

The reference trajectory for the vehicle is given by:

zr(t) := zd(t) + zrbias + zrinite
−t/τzr , (3.6)

with zrinit > 4R the initial approach altitude such that the Ground Effect is neg-

ligible, τzr > 0 is a constant such that the approach to the ground is considerable

smooth. From a practical standpoint, zrbias is a compensation for the landing gear

height.
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Chapter 4

Smooth Sliding Control

The Smooth Sliding Control scheme was proposed in [9] as a solution to avoid

chattering, by designing a smooth control effort, in the Variable Structure Model

Reference Control (VS-MRAC), a VSC strategy based on the framework of the

conventional Model Reference Adaptive Control (MRAC).

The challenge of this technique is to overcome the implementation difficulties

regarding VSC.

Variable structure controllers have a well-known undesirable phenomenon named

chattering induced by non-idealities like small delays or unmodeled plant dynamics.

The SSC is a version of the Variable Structure Model Reference Control (VS-

MRAC) based on the framework of the conventional Model Reference Adaptive

Control (MRAC).

The SSC in [20] was generalized for linear plants with arbitrary relative degree in

[21] [22]. However, to the best our knowledge, this is the first work which considers

the applicability of the SSC to the class of non-linear plants considered here.

The controller topology is presented in Figure 4.1, where the output error asso-

ciated with a prediction error loop (σ̄), plays an essential role in avoiding chattering

since it allows an ideal sliding mode (ISM) to be realized, even in the presence of

the smooth filter used to filter out the switching component since the sliding mode

loop is established in the inner prediction error loop (σ̃ ≡ 0).

If the relative degree of the sliding variable (σ̃) is unitary1, a ideal sliding loop is

formed around the switching function and, consequently, the sliding variable tends

exponentially or in finite time to zero.

Moreover, the SSC can be tuned to avoid high-gain loops and therefore can lead

to chattering in the presence of unmodelled dynamics [23], in contrast with the high

gain control schemes in which chattering may arise immediately for any small delay

added by the unmodelled dynamics.

1It means that the relative degree is one around the relay, i.e., from the sliding variable (relay
input) to the relay output.
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Filter 

Figure 4.1: Smooth Sliding Control block diagram. The predictor block is given in
(4.5), while smooth filter in (4.7). The relative degree one variable σ is defined in
(4.2) or by the non-causal operator L(s) = s+ l0.

Despite that the SSC can be applied for a broader class of plants with arbitrary

relative degree [24] and [25], omitted here for sake of clarity, we focus on the relative

degree one and relative degree two cases.

Recalling the output tracking error defined in (3.5):

e(t) := z(t)− zr(t) , (4.1)

where zr is the reference signal, which is a uniformly bounded signal by con-

struction.

Let n∗ be the relative degree from the SSC signal u (Fz) to the output tracking

error e. When n∗ = 1, the output tracking error can be directly used to define the

sliding variable. However, when n∗ > 1, we consider a linear (non-causal) operator

L(s) = sn
∗−1 + l1s

n∗−2 + . . .+ ln∗−1 (Hurwitz polynomial), such that the ideal output

variable defined as:

σ(t) := L(s)e(t) , (4.2)

has relative degree one from us. However, it is clear that the signal σ is not

measured and cannot be directly applied to design the sliding variable. One possible

approximation is given by

σ̂(t) = Lf (s)e(t) :=
L(s)

F (τfs)
e(t) , (4.3)

where the approximation filter F−1(τfs) is a low pass filter with F (τfs) being a
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Hurwitz polynomial in τfs with order n∗ − 1 and unit DC gain given by F (τfs) :=

(τfs+ 1)n
∗−1.

Therefore the sliding variable σ̃ is defined as,

σ̃ := σ̂ − σ̄ , (4.4)

where σ̄ is the output of the prediction error loop and satisfies:

˙̄σ = −amσ̄ + κm(u0 − uav0 ) , (4.5)

with am, κm > 0 being design constants.

The control law is given by:

u = unom − uav0 , (4.6)

τavu̇
av
0 = −uav0 + u0 , (4.7)

u0 = %(t)sgn(σ̃) , (4.8)

where unom is the nominal control law, initially designed with the knowledge of

the nominal parameters of the plant, % is the modulation function, σ̃ is the sliding

variable and uav0 is the filtered signal of the switching control u0.

It is worth to mention that, for a sufficient small time constant τav, u
av
0 is an

approximation of the extended equivalent control (u0)eq, when an ideal sliding mode

occurs [26].

The only restriction imposed for unom is given by the following assumption:

(H3) A set of constants cnom1, cnom2, cnom3 ≥ 0 exists such that:

‖unom‖ ≤ cnom1‖σ‖+ cnom2‖σ̃‖+ cnom3 ,

modulo vanishing terms.

Assumption (H3) is not restrictive in the sense that it allows uniformly bounded

nominal controllers and dynamic nominal controllers ISS w.r.t. σ and σ̃.

The following lemmas can be stated.

Lemma 1 (ISpS property from uav0 to σ̄) Consider the σ̄-dynamics (4.5) with

averaging control uav0 in (4.7). Then, (4.5) is ISpS with respect to uav0 and gain

equal to 2κmτav. Moreover, the following inequality holds

|σ̄| ≤ ωa + κmτav|uav0 |, (4.9)
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where

ω̇a = −amωa + amκmτav|uav0 | ,

with ωa(0) = |σ̄(0)− κmτavuav0 (0)|.

Proof: See Appendix A. From (4.7), one has that u0 − uav0 = τavu̇
av
0 , then the

prediction error dynamics can be rewritten as ˙̄σ = −amσ̄+κmτavu̇
av
0 . By defining the

auxiliary signal σa := −κmτavuav0 + σ̄, one also has that σ̇a = −amσa + amκmτavu
av
0 .

Then, by applying Lemma 11 to the σa-dynamics, one has that |σa| ≤ ωa, where

ω̇a = −amωa + amκmτav|uav0 | , ωa(0) = |σa(0)| .

Moreover, recalling that σ̄ = σa+κmτavu
av
0 , one has that |σ̄| ≤ |σa|+κmτav|uav0 | and

the following upper bound holds

|σ̄| ≤ ωa + κmτav|uav0 | .

Since, the ωa-dynamics is linear with am > 0, it is ISS w.r.t. uav with an ISS gain

κmτav and the following inequality holds

|ωa(t)| ≤ πωa + κmτav‖uav0 ‖ , (4.10)

where πωa := |σa(0)|e−amt is an exponentially vanishing function and σa(0) = σ̄(0)−
κmτavu

av
0 (0). In addition, one can also conclude that

|σ̄(t)| ≤ πωa + κmτav‖uav0 ‖+ κmτav|uav0 | . (4.11)

Note that, the more conservative estimate can also be obtained

|σ̄(t)| ≤ πωa + 2κmτav‖uav0 ‖ . (4.12)

leading to the conclusion that the σ̄-dynamics is ISS-like w.r.t. uav, with gain

2κmτav. More precisely, when uav(0) = 0, one can conclude that ωa(0) = |σ̄(0)|
and πωa = |σ̄(0)|e−amt, consequently, the σ̄-dynamics is ISS-like w.r.t. uav. When

uav(0) 6= 0, we can write that |σa(0)| ≤ |σ̄(0)|+κmτav|uav0 (0)| and thus πωa ≤ πσ̄+dσ̄,

where κmτav|uav0 (0)|e−amt ≤ dσ̄ = κmτav|uav0 (0)| and πσ̄ := |σ̄(0)|e−amt, leading to the

conclusion that the σ̄-dynamics is ISpS w.r.t. uav with gain 2κmτav satisfying

|σ̄(t)| ≤ πσ̄ + 2κmτav‖uav0 ‖+ dσ̄ . (4.13)
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4.1 SSC Applied to the Altitude Dynamics

Consider the second order altitude dynamics of the UAV in (3.4), which has relative

degree two (n∗ = 2) from the control input u to the altitude z and can be rewritten2

as

z̈ = kp(t)u(t)− g , (4.14)

where kp(t) := 1
Θ∗(t)

= kh(t)kg(z(t),t)

m
satisfies

kp :=
kgminkhmin

m
≤ |kp(t)| ≤

kgmaxkhmax
m

:= k̄p , (4.15)

according to (H1.c) and (H2). The tracking error dynamics is given by

ë = kp[u(t)− g/kp − z̈r/kp] . (4.16)

The ideal output variable σ = ė+ l0e satisfies

σ̇ = kp[−uav0 + Ud] , (4.17)

where

Ud := unom +
1

kp
[−g − z̈r + l0σ − l20e] ,

or, equivalently,

Ud := unom +
1

kp
[−g − z̈r + l0ė] .

The following realization for (4.3), with n∗ = 2, can be considered:

τf ẋf = −xf + e , τf σ̂ = −(1− τf l0)xf + e , (4.18)

or, equivalently,

τf ˙̂σ = −σ̂ + σ .

The ideal sliding variable estimation error σ̃ := σ − σ̂ satisfies

σ̃ = τf ˙̂σ

and one can also write

τf ˙̃σ = −σ̃ + τf σ̇ .

2However, it can be applied for a broader class of nonlinear plants with arbitrary relative degree,
omitted here for sake of clarity.
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From (4.4), (4.5) and (4.17), the σ̃-dynamics is given by:

˙̃σ = kp[−uav0 + Ud]− κm[u0 − uav0 ] + amσ̄ . (4.19)

For the relative degree one case one has that: τf = 0 in (4.3) such that σ̂(t) =

σ = L(s)e(t) and σ̃ = σ − σ̄.

For the relative degree two case one has that: τf 6= 0 in (4.3) such that σ̂(t) =
L(s)
F (τf s)

e(t) 6= σ = L(s)e(t) and σ̃ = σ̂ − σ̄.

The σ̂-dynamics can be expressed as:

˙̂σ =


kp[−uav0 + Ud] , n∗ = 1 ,

σ̃
τf
, n∗ = 2 ,

while the σ̃-dynamics can be written as

˙̃σ + amσ̃ =


kp[−uav0 + Ud]− κm[u0 − uav0 ] + amσ , n∗ = 1 ,

−κm[u0 − uav0 ] + amσ +
(

1
τf
− am

)
σ̃ , n∗ = 2 .

4.2 The Relative Degree One Case

For sake of simplicity, we focus here on the relative degree one case, i.e., when ż is

measured. It is a very usual case considering UAV control applications. The case

when ż is not available can be covered by SSC scheme for arbitrary relative degree

n∗, in particular for n∗ = 2 when the UAV altitude dynamics is considered.

When the ideal output variable is available for feedback we can set τf = 0 in

(4.3) so that σ̂(t) = σ = L(s)e(t) and the sliding variable σ̃ becomes,

σ̃ := σ − σ̄ . (4.20)

From (4.20), (4.17) and (4.5) the σ̃-dynamics is given by:

˙̃σ = kp[−uav0 + Ud]− κm[u0 − uav0 ] + amσ̄ , (4.21)

or, equivalently,

˙̃σ + amσ̃ = kp[−uav0 + Ud]− κm[u0 − uav0 ] + amσ . (4.22)

Equivalent Control and Reduced Dynamics

The realization of the ideal sliding modes are important to ensure robustness
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and chattering alleviated smooth control signal. In SSC, an ideal sliding surface is

given by σ̃(t) ≡ 0.

If ideal sliding occurs σ̃(t) ≡ 0 the equivalent control ueq is given by

ueq = uav0 +
kp
κm

[−uav0 + Ud] +
am
κm

σ , (4.23)

resulting in the following reduced dynamics:

τavu̇
av
0 = − kp

κm
uav0 +

kp
κm

Ud +
am
κm

σ . (4.24)

Remark 2 (Similarity with the Integral Sliding Mode Control) It must be

highlighted that the plant nonlinearities affects the system via the time varying high

frequency gain kp(t). Moreover, despite of a filtered version of the VSC law be in

fact applied to the plant input, we guarantee that no VSC robustness is lost, simi-

larly to the Integral Sliding Mode control scheme proposed by [26]. The robustness

is regarded w.r.t. the sliding mode which occurs in the sliding surface σ̃ ≡ 0, corre-

sponding to an internal control loop (the prediction error loop).

Remark 3 (Control Action During Sliding Mode) One can verify that the

SSC control law approaches a PI control.

4.2.1 Boundedness and Convergence of σ̃

Putting together the σ̃-dynamics (4.22) and the averaging filter dynamics the fol-

lowing 2-th order system results:

τavu̇
av
0 = −uav0 + u0 , (4.25)

˙̃σ + amσ̃ = kp[−uav0 + Ud]− κm[u0 − uav0 ] + amσ . (4.26)

Inspired by the reduced dynamics during sliding mode (4.24), define the following

auxiliary dynamics:

τavη̇1 =
kp
κm

[−η1 + Ud] +
am
κm

σ . (4.27)

Now, by using the change of coordinates

x̃1 := uav0 − η1 ,
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it is possible to obtain the following closed-loop dynamics:

τav ˙̃x1 = −x̃1 + [u0 + deq2] , (4.28)

˙̃σ = −amσ̃ + (κm − kp)x̃1 − κm[u0 + deq2] , (4.29)

where the equivalent input disturbance deq2 is defined as

deq2 := −η1 +
kp
κm

η1 −
kp
κm

Ud −
am
κm

σ . (4.30)

Letting

x̃ :=
[
x̃1 σ̃

]T
, (4.31)

from (4.28) and (4.29), one can write:

˙̃x = Ae(t)x̃+Be[u0 + deq2] , σ̃ = Cex̃ , (4.32)

where

Ae(t) :=

[
−1/τav 0

κm − kp(t) −am

]
,

Be :=
[

1/τav −κm
]T

and Ce :=
[

0 1
]
. Moreover, by adding and subtracting

Bek0σ̃ = BeCek0x̃, one can write

˙̃x = Āe(t)x̃+Be[u0 + deq2 − k0σ̃] , σ̃ = Cex̃ , (4.33)

where

Āe(t) := Ae(t) +BeCek0 =

[
−1/τav k0/τav

κm − kp(t) −am − k0κm

]
.

The following lemma can now be demonstrated.

Lemma 4 Consider the dynamic (4.33), with control u0 given in (4.8) and equiva-

lent input disturbance deq2(t) in (4.30). If the modulation function in (4.8) satisfies

% = %̄+ k0|σ̃| with

%̄(t) ≥ |deq2(t)|+ δ , ∀t ∈ [0, tM) , (4.34)

modulo vanishing terms, δ ≥ 0 been an arbitrary constant and k0 > 0 a design

constant, then the inequality

|σ̃(t)| , |x̃| ≤ πσ̃ , ∀t ∈ [0, tM) , (4.35)

holds, where πσ̃ := kσ̃|x̃(0)|e−λσ̃t, kσ̃ > 0 and 0 < λσ̃ are appropriate constants.

Proof: See Appendix A.
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When kp(t) is a constant, the system (Ae, Be, Ce) is ASPR (Almost Strictly

Positive Real). Indeed, since CeBe = −κm 6= 0, then (Ae, Be, Ce) has relative degree

one. Moreover, by using the Rosenbrock system matrix, the triple (Ae, Be, Ce) is

minimum phase, since there exists a zero at −kp/(κmτav). Thus, for a large enough

k0 > 0, (Āe, Be, Ce) is SPR. Then, the proof follows the steps in [27].

For a time varying kp(t), one can also obtain a similar conclusion but the proof

is more involved. First, choose the Lyapunov function Ṽ := x̃TPx̃ with P = P T =[
τavκm 1

1 τav+1
τavκm

]
> 0. Then, one can verify that ĀTe (t)P + PĀe(t) := −Q(t) < 0,

∀t ∈ [0, tM), for a sufficiently large k0.

It is clear that there exists λ > 0 such that

−x̃TQx̃ ≤ −λ[x̃2
1 + x̃2

2] = −λ|x̃|2 ,

where one obvious choice is λ = λm(Q). However, an alternative choice is given

later on. The time derivative of Ṽ along the solutions of (4.33) is given by

˙̃V = −x̃TQx̃+ 2x̃TPBe[u0 + deq2 − k0σ̃] ,

or,
˙̃V = −x̃TQx̃− 2σ̃[u0 + deq2 − k0σ̃] ,

since one can verify that PBe = −CT
e . Therefore,

˙̃V ≤ −λ|x̃|2 + 2|σ̃|[−%̄+ |deq2|] ,

where the relationship

% = %̄+ k0|σ̃| ,

was used. Now, if %̄(t) ≥ |deq2(t)|+ δ, then

˙̃V ≤ −λ|x̃|2 − 2|σ̃|δ < −λ|x̃|2 ≤ − λ

λm(P )
Ṽ .

By the using the Comparison Lemma with discontinuous right-side, Theorem 8 in

[17], one has that

|σ̃| ≤ |x̃| ≤

√
λM(P )

λm(P )
e
− λ

2λM (P )
t|x̃(0)| .

One possible choice for λ is given in what follows. First, one can verify that

q22 = 2am
τav + 1

κmτav
+ 2k0 > 0 ,
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q12 = q21 =
−κmτav + kp(t) + τavkp(t) + amκmτav

κmτav
,

and

q11 = 2kp(t) > 0 ,

where qij are the elements of the matrix Q and −x̃TQx̃ = −q11x̃
2
1−q22x̃

2
2−2q12x̃1x̃2,

where q11, q22 > 0.

By noting that |x̃1||x̃2| ≤ 1
4a2
x̃2

1 +a2x̃2
2, for any real a > 0, then one can conclude

that −x̃TQx̃ ≤ −q22x̃
2
1 − q11x̃

2
2 + 2|q12| 1

4a2
x̃2

1 + 2|q12|a2x̃2
2. Hence,

−x̃TQx̃ ≤ −
[
q22 − 2|q12|

1

4a2

]
x̃2

1 −
[
q11 − 2|q12|a2

]
x̃2

2 .

Now, if we choose a2 < (q11 − λ)/(2|q12|) and q22 > λ+ 2|q12| 1
4a2

then one has

−x̃TQx̃ ≤ −λ[x̃2
1 + x̃2

2] = −λ|x̃|2 ,

for any λ such that q11 > λ > 0.

4.2.2 Modulation Function Implementation

For the modulation function implementation, considering the relative degree one

case, all the signals z̈r, ė, e, σ and unom are available. Moreover, the constant g

is known (but just an upper bound is really needed). Thus, recalling that the

disturbance Ud is given by

Ud := unom +
1

kp
[−g − z̈r + l0ė] ,

then the following norm bounds hold

|Ud| ≤ |unom|+
1

kp
ω1 := ω2 .

|kpUd| ≤ k̄p|unom|+ ω1 := ω3 .

where ω1 := | − g − z̈r + l0ė|, ω2 and ω3 are available signals. Hence, the term

− kp
κm
Ud − am

κm
σ appearing in both disturbances deq1 and deq2 satisfies∣∣∣∣− kpκmUd − am

κm
σ

∣∣∣∣ ≤ 1

κm
ω3 +

am
κm
|σ| := ω4 ,

where ω4 is an available signal.

A norm observer for η1-dynamics (4.27), repeated in what follows for convenience,
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is needed:

τavη̇1 = − kp
κm

η1 +
kp
κm

Ud +
am
κm

σ . (4.36)

By applying Lemma 11 to (4.36) one has that the dynamics

τavω̇5 = −
kp
κm

ω5 + ω4 ,

with ω5(0) = W1(0) = |η1(0)| = |uav0 (0)| is a norm observer for (4.36), since∣∣∣∣ kpκmUd +
am
κm

σ

∣∣∣∣ ≤ ω4 .

Moreover, the following inequality holds

|η1| ≤ ω5 .

The equivalent input disturbance

deq2 := −η1 +
kp
κm

η1 −
kp
κm

Ud −
am
κm

σ , (4.37)

can now be norm bounded by

|deq2| ≤ (1 +
k̄p
κm

)ω5 + ω4 , (4.38)

so that the modulation function can be designed as

ρ̄ := (1 +
k̄p
κm

)ω5 + ω4 + δ . (4.39)

In this case, the modulation function is given by the output of the following dynamics

system

τavω̇5 = −
kp
κm

ω5 + ω4 , (4.40)

% = (1 +
k̄p
κm

)ω5 + ω4 + δ + k0|σ̃| , (4.41)

with ω5(0) = uav0 (0) and ω4 (available) being given by

ω4 =
1

κm
(k̄p|unom|+ ω1) +

am
κm
|σ| , (4.42)

ω1 = | − g − z̈r − l20e+ l0σ| . (4.43)
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Note that, (4.40) is an open-loop strictly stable system with output (4.41) and

ω4 and σ̃ being treated as exogenous available signals. Thus, from (4.40)–(4.43),

the modulation function is uniformly bounded as long as unom, z̈r, e, σ and σ̃ are

uniformly norm bounded.

4.2.3 Closed-Loop Convergence Analysis

The tracking error convergence property is stated in the following theorem.

Theorem 5 Assume that the velocity ż is available and (H1)–(H3) hold. Consider

the plant (3.4) with output tracking error (4.1), SSC control law (4.6), (4.7), (4.8)

with sliding variable σ̃ in (4.20), prediction error (4.5) and modulation function

% = %̄+k0|σ̃|, with %̄ in (4.39) satisfying (4.34) and k0 being an appropriate constant.

The desired trajectory to be followed is described in (3.6). Then, for sufficiently small

time constant of the smooth filter (τav) in (4.7), the tracking error converges to a

small residual set of order O(τav) and the following inequality holds

|e(t)| ≤ O(τav) + πe , (4.44)

where πe is a vanishing term depending on the initial conditions and this residual set

does not depend on the initial conditions. In addition, all closed-loop signals remain

uniformly bounded.

Proof: See Appendix A. Since unom satisfies (H3) and z̈r are assumed norm

bounded and recalling that

ė = −l0e+ σ ,

one can conclude from (4.40)–(4.43) and Lemma 11 that the ω5-dynamics (4.40) is

ISpS w.r.t. σ and σ̃, with ISpS gain independent of τav. Consequently, from (4.41)

the modulation function satisfies

‖%‖ ≤ kρ‖σ‖+ kσ̃|σ̃|+ πρ ,

where kρ, kσ̃ > 0 is an appropriate constant (independent of the initial conditions

and τav) and πρ is an exponentially decaying term depending on the initial conditions

|uav0 (0)| and |e(0)|.
In addition, recalling that σ = σ̄ + σ̃ and using Lemmas 1 and 8, one has that

‖σ‖ ≤ kστav‖uav0 ‖+ πσ .

where kσ > 0 is an appropriate constant (independent of the initial conditions and

τav) and πσ is an exponentially decaying term depending on the initial conditions
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|uav0 (0)|, |σ̄(0)| and |e(0)| and |ė(0)|. Therefore, one can write

‖%‖ ≤ kρkστav‖uav0 ‖+ π% ,

where π% is an exponentially decaying term depending on the initial conditions

|uav0 (0)|, |σ̄(0)| and |e(0)| and |ė(0)|, which satisfies kρπσ + k0|σ̃| + πρ < π%. Now,

applying the Small Gain Theorem to

τavu̇
av
0 = −uav0 + %(t)sgn(σ̃) ,

one can conclude, for sufficiently small τav, that uav0 is uniformly norm bounded by

a constant independent of the initial conditions and τav.

Moreover, one can subsequently conclude that, %, σ̄ (Lemma 1), σ = σ̄+σ̃, e (the

e-dynamics ė = −l0e + σ is ISS w.r.t. σ) and ė = −l0e + σ are all uniformly norm

bounded (tM → +∞). In addition, the signals σ̄, σ and e converge to a residual set

of order O(τav) and, in particular, the following inequality holds

|e(t)| ≤ O(τav) + πe ,

where πe is a vanishing term depending on the initial conditions and this residual

set does not depend on the initial conditions.

4.2.4 Existence of Ideal Sliding Mode

As mentioned before, the realization of the ideal sliding modes are important to

ensure that chattering is avoided. In the SSC, an ideal sliding surface is given by

σ̃(t) ≡ 0.

From (4.29), the σ̃-dynamics satisfies

˙̃σ = −amσ̃ + (κm − kp)x̃1 − κm[u0 + deq2] , (4.45)

or,

˙̃σ = −amσ̃ − κm
[
u0 + deq2 −

(κm − kp)
κm

x̃1

]
. (4.46)

Hence, one has that

˙̃σσ̃ = −amσ̃2 − κm
[
σ̃u0 + σ̃deq2 − σ̃

(κm − kp)
κm

x̃1

]
,
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and, since σ̃u0 = (%̄+ k0|σ̃|)σ̃sgn(σ̃) = %̄|σ̃|+ k0σ̃
2. Therefore, one has

˙̃σσ̃ = −amσ̃2 − κmk0σ̃
2 + κm

[
−%̄|σ̃| − σ̃deq2 + σ̃

(κm − kp)
κm

x̃1

]
,

and leading to the following upper bound

˙̃σσ̃ ≤ κm

[
−%̄+ |deq2|+

∣∣∣∣(κm − kp)κm

∣∣∣∣ |x̃1|
]
|σ̃| .

Finally, from Lemma 8, x̃1 satisfying

|x̃1| ≤ |x̃| ≤ πσ̃ , ∀t ∈ [0,+∞) , (4.47)

assures that there exists ts > 0 such that
∣∣∣ (κm−kp)

κm

∣∣∣ |x̃1(t)| ≤ δ1, ∀t ≥ ts and for any

δ1 > 0. Hence, since the modulation function is designed for satisfying %̄ > |deq2|+δ,
with δ > δ1, one can conclude that

˙̃σσ̃ ≤ −κm [δ − δ1] |σ̃| ,

leading to the conclusion that there exists a finite time te ≥ 0 such that σ̃(t) becomes

identically zero ∀t ≥ te.

4.2.5 Extra Case

Boundedness and Convergence of σ̃: Extra Case

From (4.22) the σ̃-dynamics can be rewritten as:

˙̃σ = −amσ̃ − κm[u0 + deq1] , (4.48)

where the equivalent input disturbance deq1 is defined as

deq1 := −uav0 +
kp
κm

uav0 −
kp
κm

Ud −
am
κm

σ . (4.49)

The following lemma can now be demonstrated.

Lemma 6 Consider the dynamic (4.48), with control u0 given in (4.8) and equiva-

lent input disturbance deq1(t) in (4.49). If the modulation function in (4.8) satisfies

%(t) ≥ |deq1(t)|+ δ , ∀t ∈ [0, tM) , (4.50)

modulo vanishing terms, δ ≥ 0 been an arbitrary constant and k0 > 0 a design
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constant, then the inequality

|σ̃(t)| ≤ πσ̃ , ∀t ∈ [0, tM) , (4.51)

holds, where πσ̃ := kσ̃|x̃(0)|e−λσ̃t, kσ̃ > 0 and 0 < λσ̃ are appropriate constants.

Proof: See Appendix A.

Modulation Function: Extra Case

A norm bound for the disturbance

deq1 := −uav0 +
kp
κm

uav0 −
kp
κm

Ud −
am
κm

σ , (4.52)

can be directly obtained as

deq1 ≤ |uav0 |+
k̄p
κm
|uav0 |+ ω4 , (4.53)

so that the modulation function can be designed as

% := |uav0 |+
k̄p
κm
|uav0 |+ ω4 + δ . (4.54)

In this case, the modulation function is thus given by the output of the following

dynamics system

τavu̇
av
0 = −uav0 + %(t)sgn(σ̃) , (4.55)

% = |uav0 |+
k̄p
κm
|uav0 |+ ω4 + δ . (4.56)

with ω4 = 1
κm

(k̄p|unom|+ | − g− z̈r + l0ė|) + am
κm
|σ|. Note that, (4.55) and (4.56) is a

closed loop system with ω4 and σ̃ being exogenous available signals. Thus, stability

must be assessed.

Closed-Loop Convergence Analysis and Existence of Ideal Sliding Mode:

Extra Case

Both was left for future work.

4.3 The Relative Degree Two Case

When ż is not available for feedback, the ideal output variable is not available for

feedback and we have to use the surrogate (4.3) instead.
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For the relative degree two case one has that: τf 6= 0 in (4.3) so that σ̂(t) =
L(s)
F (τf s)

e(t) 6= σ = L(s)e(t) and σ̃ = σ̂ − σ̄.

The σ̂-dynamics can be expressed as:

˙̂σ =
σ̃

τf
, (4.57)

while the σ̃-dynamics can be written as

˙̃σ + amσ̃ = −κm[u0 − uav0 ] + amσ̂ + σ̃/τf . (4.58)

Equivalent Control and Reduced Dynamics

If ideal sliding occurs σ̃(t) ≡ 0 the equivalent control ueq is given by

ueq = uav0 +
1

τfκm
σ̃ +

am
κm

σ̂ , (4.59)

resulting in the following reduced dynamics:

τavu̇
av
0 =

1

τfκm
σ̃ +

am
κm

σ̂ , (4.60)

τf ˙̃σ = −τfkpuav0 + (l0τf − 1)σ̃ + τf l0σ̂ + τfkpD , (4.61)

τf ˙̂σ = σ̃ , (4.62)

where

D := Ud −
l0
kp

(σ̂ + σ̃) = unom +
1

kp
[−g − z̈r − l20e] .

Remark 7 (Control Action During Sliding Mode) One can verify that the

SSC control law approaches a PI control.

4.3.1 Boundedness and Convergence of σ̃

Putting together the σ̃-dynamics (4.58), the σ̃-dynamics and the averaging filter

dynamics and the σ̂-dynamics, the following 4-th order system results:

τavu̇
av
0 = −uav0 + u0 , (4.63)

τf ˙̃σ = −τfkpuav0 + (l0τf − 1)σ̃ + τf l0σ̂ + τfkpD , (4.64)

τf ˙̂σ = σ̃ , (4.65)

˙̃σ + amσ̃ = −κm[u0 − uav0 ] + amσ̂ + σ̃/τf , (4.66)
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Inspired by the reduced dynamics during sliding mode (4.60)–(4.62), define the

following auxiliary dynamics:

τavη̇1 =
1

κm
η2 +

am
κm

η3 , (4.67)

τf η̇2 = −kpη1 + (l0τf − 1)η2 + l0η3 + kpD , (4.68)

η̇3 = η2 , (4.69)

Now, by using the change of coordinates

x̃1 := uav0 − η1 , x̃2 := σ̃ − τfη2 , x̃3 := σ̂ − η3

it is possible to obtain the following closed-loop dynamics:

τav ˙̃x1 = −x̃1 + [u0 + deq3] , (4.70)

τf ˙̃x2 = −τfkpx̃1 + (l0τf − 1)x̃2 + τf l0x̃3 , (4.71)

τf ˙̃x3 = x̃2 , (4.72)

˙̃σ + amσ̃ = κmx̃1 +
1

τf
x̃2 + amx̃3 − κm[u0 + deq3] , (4.73)

where the equivalent input disturbance deq3 is defined as

deq3 := η1 +
1

κm
η2 +

am
κm

η3 . (4.74)

Letting

x̃ :=
[
x̃1 x̃2 x̃2 σ̃

]T
, , (4.75)

one can write:

˙̃x = Ae(t)x̃+Be[−u0 + deq3] , σ̃ = Cex̃ , (4.76)

where

Ae(t) :=


−1/τav 0 0 0

−kp (l0τf − 1)/τf l0 0

0 1
τf

0 0

κm
1
τf

am −am

 ,

Be :=
[
−1/τav 0 0 κm

]T
and Ce :=

[
0 0 0 1

]
.

The following lemma can now be demonstrated.

Lemma 8 Consider the dynamic (4.79), with control u0 given in (4.8) and equiva-

lent input disturbance deq3(t) in (4.74). If the modulation function in (4.8) satisfies

% = %̄+ k0|σ̃| with

%̄(t) ≥ |deq3(t)|+ δ , ∀t ∈ [0, tM) , (4.77)
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modulo vanishing terms, δ ≥ 0 being an arbitrary constant and k0 > 0 a design

constant, then the inequality

|σ̃(t)| , |x̃| ≤ πσ̃ , ∀t ∈ [0, tM) , (4.78)

holds, where πσ̃ := kσ̃|x̃(0)|e−λσ̃t, kσ̃ > 0 and 0 < λσ̃ are appropriate constants.

Proof: See Appendix A.

When kp(t) = knomp is a constant, Ae(t) = Ae is a constant matrix and the

system (Ae, Be, Ce) is ASPR (Almost Strictly Positive Real) for τav and τf small

enough. Indeed, since CeBe = κm 6= 0, then (Ae, Be, Ce) has relative degree one.

Moreover, by using the Rosenbrock system matrix and the Routh-Hurwitz stability

criterion, the triple (Ae, Be, Ce) is minimum phase, when τf l0 < 1, τavκml0 < knomp

and

τavκml0(1− τf l0) + τfk
nom
p (am + l0) < knomp .

Those conditions are satisfied if we choose τav, τf small enough so that Nτavκml0 <

knomp and Nτf (am + l0
N−1
N

) < N − 1, for any N > 1.

Let z1, z2, z3 be the transmission zeros of (Ae, Be, Ce) and λi = R(zi) < 0 be

the real part of zi (i = 1, 2, 3), which is negative since (Ae, Be, Ce) is minimum

phase for τav, τf small enough, as explained above. Moreover, by letting 0 < λz <

−max{λ1, λ2, λ3}, the system ([Ae + λzI], Be, Ce) has also stable transmission zeros

as system (Ae, Be, Ce).

Indeed, by using the Rosenbrock system matrix one has the transmission zeros

of the system ([Ae + λzI], Be, Ce) are the values of z such that

rank

{[
(z − λz)I − Ae Be

−Ce 0

]}
< 4 ,

while a transmission zero of the system (Ae, Be, Ce) is a number zi such that

rank

{[
ziI − Ae Be

−Ce 0

]}
< 4 .

Hence, all zeros of ([Ae + λzI], Be, Ce) present negative real parts when 0 < λz <

−max{λ1, λ2, λ3} and thus ([Ae + λzI], Be, Ce) is also ASPR.

In fact, we can go further and obtain a matrix P = P T > 0 and a feedback gain

k0, such that (Āe, Be, Ce) is SPR, with Āe := Ae + λzI −BeCek0.

The following choice for P assures that (Āe, Be, Ce) is SPR:

P = CT
e (BT

e C
T
e )−1Ce +B⊥XB

T
⊥ ,
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where B⊥ = N (BT
e ) is the orthogonal null space of Be and satisfies BT

⊥Be = 0,

[Be B⊥] is invertible and BT
⊥B⊥ = I, and X is the solution of the following LMI:

CT
⊥

(
B⊥XB

T
⊥Āe + (B⊥XB

T
⊥Āe)

T
)

2
C⊥ < 0 ,

with C⊥ = N (Ce) being the orthogonal null space of CT
e which satisfies CT

⊥C
T
e = 0,

[CT
e C⊥] be invertible and CT

⊥C⊥ = I. Moreover, the feedback gain k0 is given by

k0 = C†H(I − C⊥(CT
⊥HC⊥)−1CT

⊥H)C†T + k1 ,

where

H := (PĀe + (PĀe)
T )/2 ,

and k1 > 0 is an arbitrary constant. In addition, one can verify that P must have

the topology

P =


τavκmα1 τavκmα2 τavκmα3 α1

τavκmα2 α5 α4 α2

τavκmα3 α4 α6 α3

α1 α2 α3
τav+α1

τavκm


to satisfy the SPR condition PBe = CT

e . Then, since (Āe, Be, Ce) is SPR, one has

that ĀTe P + PĀe < 0, or equivalently,

(Ae −BeCek0)TP + P (Ae −BeCek0) < −2λzP < 0 ,

and PBe = CT
e . Thus, the system ([Ae − BeCek0], Be, Ce) is also SPR. For a time

varying kp(t) = knomp + δkp(t), one can write

Ae(t) = Ae + Ae1δkp(t) ,

where Ae := Ae(t)|kp=knomp
and Ae1 :=


0 0 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

. Moreover, by adding and

subtracting Bek0σ̃ = BeCek0x̃ in (4.76), one can write

˙̃x = (Ae(t)−BeCek0)x̃+Be[−u0 + deq3 + k0σ̃] , (4.79)

or, equivalently,

˙̃x = (Ae −BeCek0)x̃+ Ae1δkp(t)x̃+Be[−u0 + deq3 + k0σ̃] , (4.80)
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where

Ae −BeCek0 :=


− 1
τav

0 0 k0
τav

−knomp
(l0τf−1)

τf
τf l0 0

0 1
τf

0 0

κm
1
τf

am −am − κmk0

 .

Now, choosing the Lyapunov function Ṽ := x̃TPx̃ one can obtain

˙̃V = −x̃TQx̃+ 2x̃TPBe[−u0 + deq3 + k0σ̃] + x̃T (ATe1P + PAe1)x̃δkp ,

where

−Q := (Ae −BeCek0)TP + P (Ae −BeCek0) < −2λzP < 0 ,

Then, one can verify that

˙̃V ≤ −2λzṼ + 2σ̃[−u0 + deq3 + k0σ̃] + x̃T (ATe1P + PAe1)x̃δkp .

In addition, noting that

|x̃T (ATe1P + PAe1)x̃δkp | ≤ 2c1‖x̃‖2|δkp | ≤ 2
c1

λm(P )
Ṽ |δkp| ,

with c1 := ‖ATe1P + PAe1‖/2, one can further write

˙̃V ≤ −
(

2λz −
2c1

λm(P )
|δkp |

)
Ṽ + 2σ̃[−u0 + deq3 + k0σ̃] .

Moreover, since u0 = %sgn(σ̃) with

% = %̄+ k0|σ̃| ,

one has that

˙̃V ≤ −
(

2λz −
2c1

λm(P )
|δkp |

)
Ṽ + 2|σ̃|[−%̄+ |deq3|] .

Now, if %̄(t) ≥ |deq3(t)|+ δ, then

˙̃V ≤ −
(

2λz −
2c1

λm(P )
|δkp |

)
Ṽ − 2|σ̃|δ < −2λṼ ,

for

2λz −
2c1

λm(P )
|δkp | > 2λ > 0 ,

or,

|δkp | < (λz − λ)λm(P )/c1 .
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By the using the Comparison Lemma with discontinuous right-side, Theorem 8 in

[17], one has that

|σ̃| ≤ |x̃| ≤

√
λM(P )

λm(P )
e
− λ

2λM (P )
t|x̃(0)| .

It should be highlighted that the decay rate of λ is limited to the slowest zero of

Ae. So, the quadratic stability margin is limited by the amount of uncertainty in

δkp and the slowest zero.

Remark 9 (A Tuning Procedure for am, κm, τf , τav, l0)

For a fixed knomp , the following optimization problem can be solved to tune the

SSC: min [λz + α‖ATe1P + PAe1‖1/2], subject to

τf l0 < 1, τavκml0 < knomp and

τavκml0(1− τf l0) + τfk
nom
p (am + l0) < knomp ,

where α > 0 is a design constant.

4.3.2 Modulation Function Implementation

For the modulation function implementation, considering the relative degree two

case, only the signals z̈r, e and unom are available. Signals ė and σ are not available.

Moreover, the constant g is known (but just an upper bound is really needed). Thus,

recalling that the disturbance D is given by

D := unom +
1

kp
[−g − z̈r − l20e] .

then the following norm bound holds

|D| ≤ |unom|+
1

kp
ω1 ,

where ω1 := | − g − z̈r − l20e| is an available signal. In addition,

|kpD| ≤ k̄p|unom|+ ω1 .

Since the equivalent input disturbance deq3 can be rewritten as

deq3 := η1 +
1

κm
η2 +

am
κm

η3 , (4.81)

a norm observer for the η1-dynamics, η2-dynamics and for the η3-dynamics is needed.
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Define the η-dynamics by:

τ̄ η̇ = Aηη +BηkpD ,

where τ̄ := τavτfκm,

Aη :=

 0 τf amτf

−κmτavkp κmτav(l0τf − 1) κmτavl0

0 κmτavτf 0

 ,

and Bη :=

 0

κmτav

0

.

4.3.3 Closed-Loop Convergence Analysis

In fact, the following theorem holds.

Theorem 10 Assume that the velocity ż is NOT available and (H1) and (H2) hold.

Consider the plant (3.4) with output tracking error (4.1), SSC control law (4.6),

(4.7), (4.8) with sliding variable σ̃ in (4.4), prediction error (4.5) and modulation

function % = %̄+k0|σ̃|, with %̄ in (4.39) satisfying (4.77) and k0 being an appropriate

constant. The desired trajectory to be followed is described in (3.6). Then, for

sufficiently small time constants of the linear lead filter (τf) in (4.3) and the smooth

filter (τav) in (4.7), the tracking error e converges to a small residual set of order

O(τav + τf ) and the following inequality holds

|e(t)| ≤ O(τav + τf ) + πe , (4.82)

where πe is a vanishing term depending on the initial conditions and this residual set

does not depend on the initial conditions. In addition, all closed-loop signals remain

uniformly bounded.

Proof: See Appendix A.

4.4 Numerical Simulations

By substituting SSC’s unom with an adaptive law, the SSC can be interpreted as a

Robust Adaptive Controller [18]. Indeed, from (3.4), the error tracking dynamics

(3.5) can be rewritten as ë = 1
Θ∗(t)

u− g − z̈r.
Notice Θ∗ varies with time, unlike the usual parameterization found in Model

Reference Control literature (MRC). Recalling that σ = ė + K1e, we can write:
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σ̇ = ë+K1ė = 1
Θ∗u− g − z̈r +K1ė, or yet,

Θ∗σ̇ = u− u∗ , (4.83)

where u∗ := Θ∗ϕ and ϕ := (g + z̈r −K1ė) . For the case when ż is measured,

the signals ė, σ and ϕ are available. The nominal part of the SSC is defined as:

unom = Θϕ, with the parameter Θ given by the gradient law Θ̇ = −γσϕ, with

adaptation gain γ > 0. In this sense, this paper contains a second contribution to

the SSC scheme. As in Robust Adaptive Control topology [18], that is, the topology

formed by an adaptive part and a robust part, the former also aims to reduce the

magnitude of control action (modulation function).

In the following simulations, the Ground Effect gain is considered unknown for

the controller design and given by (3.2) with R = 0.16m and ρ = 1.184. To simulate

the payload release we consider the UAV mass varying while constant by parts, in

accordance with m(t) = 1
0.01s+1

µ(t) and

µ(t) =

{
4.0, para 0 < t < 30,

3.5, para t > 30 .
(4.84)

It’s worth noting that, according to [19], one can make m(t) = µ(t), without

altering the closed-loop differential equation solution in the sense of Lebesgue. The

plant is described in [19], with g = 9.81, Ix = 0.082, Iy = 0.082 and Iz = 0.149.

The UAV’s position (p = [x y]T ), attitude (q = [φ θ]T ) and heading (ψ) are

regulated to zero using conventional PD controllers (tuned by trial and error) with

the gains: Kq
P = [ 1 0

0 4 ], Kq
D = [ 1 0

0 4 ], Kp
P = [ 1 0

0 4 ], Kp
D = [ 1 0

0 4 ], Kψ
P = 5 and Kψ

D = 2.

The altitude dynamics are given by (3.4), the landing pad oscillates in accordance

with (3.1)), with A = 0.18 and ω = 2π/10, the trajectory to track is described in

(3.6) with τzr = 0.1, zrinit = 1 e zrbias = 0.18. The SSC controller is implemented

with τav = 0.1, K1 = 2, a = 5 and k = 1 and the modulation function is implemented

as a constant (% = 50) for simplicity.

For the adaptive SSC controller γ = 5. Figure 4.2(a) shows the performance of

the SSC without adaptation in closed-loop. Note that both schemes ensure trajec-

tory tracking, but the adaptive SSC shows more transient oscillation. Additionally,

the robustness of the SSC regarding the payload release at t = 30 is made evident

on the control signal in Figure 4.2(b).

It is also noteworthy that both control schemes (with and without adaptation)

give similar control signals after t = 10s, since the landing pad acceleration z̈d in z̈r

is small. In case of higher accelerations, the adaptive action reduces the disturbance.

This can be observed in Figure 4.3(b), where, after the transitory part, the term∣∣− 1
Θ∗u

∗ + 1
Θ∗u

nom
∣∣ is practically constant when there is no adaptation (blue line)
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Figure 4.2: Simulation results. Tracking: (a) altitude zd of landing pad (green),
desired trajectory (red), UAV altitude using SSC controller with (magenta) and
without (blue) adaptation; (b) control signal using SSC controller with (red) and
without (blue) adaptation.

and considerably reduced with adaptation (red line). The reduction happens exactly

when Θ approaches Θ∗, see Figure 4.3(b). The adaptive SSC tracks the reference

perfectly, with similar results (Figures not shown due to size limitations) to the

Adaptive Robust controller [18].

4.5 Experimental Results: Crazyfile UAV and

UAV Prototype

For the first experiment a prototype UAV was designed for this work. All hardware

details can be found in [19]. In this section, two experiments are highlighted: one for

regulation and another for heading tracking. A pilot manually controls x, y and z by

means of a joystick with Fz, φr and θr as control signals. The attitude of the UAV

is controlled by a PD with gains Kq
P = 2I and Kq

D = 0.5I with I being the identity

matrix. The heading is controlled by a PD with gains Kψ
P = 1 and Kψ

D = 0.3 with
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Figure 4.3: Simulation results. Adaptation: (a) time series of ideal signal
Θ∗(t) (blue) and the corresponding adapted signal θ(t) (green); (b) the term(
− 1

Θ∗u
∗ + 1

Θ∗u
nom
)

= (Θ−Θ∗)
Θ∗ ϕ with (red) and without (blue) adaptation.
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Figure 4.4: Experimental results with manually controlled position (x, y and z) and
PD controller for heading: (a) heading (ψ) tracking; (b) regulated heading, altitude
z (blue) and ground level (red); (c) time series for khu = Fzkh.

a sinusoidal reference signal ψr = 10 sin(2π0.15t).

Figure 4.4(a) shows the proper tracking of the heading ψ with sinusoidal reference

signal, albeit the presence of disturbances from the change in attitude and altitude.

On another flight, the heading was regulated to zero to observe the presence of

Ground Effect. Figure 4.4(b) shows the altitude z (in blue) and the ground (red line),

with an offset due to ultrasonic sensor position. Figure 4.4(c) presents the control

signal Fz through the product Fzkh as defined in (3.4), making the presence of

Ground Effect evident. This product corresponds to a more accurate approximation

of the vertical force acting on the UAV since it takes the attitude into account.

The red asterisks in z and Fz in Figure 4.4 indicate instants where the vertical

velocity was nearly zero. There is no mass variation during this experiment.

In order to show the robustness capability of the proposed control scheme second

experiment with a considerable smaller UAV was considered. We use the Crazyflie

2.0 which is an open-source nano UAV designed by Bitcraze, in Sweden. The pres-

ence of Ground Effect is also evident, as illustrated by the Figure 4.5(c), where the

average control signal reduces after t = 30s, as the UAV approaches the ground level.

Figure 4.6 illustrates the tracking of the desired reference zr before approaching the
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Figure 4.5: Experimental results with the Crazyflie UAV to illustrate the Ground
Effect. PD controller regulating position (x, y and z) and attitude: (a) the desired
altitude; (b) the control effort; (c) the tracking error. All vertical positions in cm.

landing pad. Then, in sequel, in Figure 4.7 one can observe the UAV approaching

the moving landing pad.
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Figure 4.6: Experimental results with the Crazyflie UAV to illustrate the tracking
performance. PD controller regulating position (x, y and z) and attitude: (a) the
desired altitude zr (red) and the actual UAV altitude z (blue); (b) the control effort.
All vertical positions in cm.

Figure 4.7: Experimental results with the Crazyflie UAV to illustrate a landing on
an oscillatory platform. PD controller regulating position (x, y and z) and attitude:
(a) the desired altitude zr (red), the landing pad displacement zd (green) and the
actual UAV altitude z (blue); (b) the control effort. All vertical positions in cm.
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Chapter 5

Implementation for Simulations

and Experiments

In order to run experiments and test the theory, methods were implemented and

systems were built to assist the entire process. For an insightful and repeatable

experimental campaign, the following qualities must be pursued:

• Weather independence.

• Failure acceptance while isolated from financial consequence.

If financial consequence is unavoidable, at least it must not impact the

schedule significantly.

• Real world correlation.

A complete simulation environment provides the security needed to employ a

bold experimental strategy, while state-of-the-art laboratory hardware provides a

reliable connection with reality.

5.1 Simulation

5.1.1 Multi-rotor Dynamic Simulation

Gazebo is a dynamic multi-body simulation environment widely used for robotic

development, see Figure 5.1. It allows the creation of case-oriented ”worlds”, models,

sensors, actuators, etc. With sufficiently powerful hardware, real-time simulations

are possible. Arguably the main reason for its popularity is the integration with

ROS, which allows the same computer used to control the real robot to be used in a

simulated robot seamlessly, although it is also a conveniently simple physics engine

on its own. In the case of a multi-rotor, one can assemble an arm model that will
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Figure 5.1: Gazebo simulation of a Multi-rotor landing on a moving boat. On the
left, several terminals running ROS nodes.

be reused for each arm of the multi-rotor. Since most multi-rotor configurations

use clockwise and counter-clockwise propellers, two separate models are required.

If there are graphical differences, such as a different color mount, the number of

models doubles. In the case of the M600, 4 models were coded - two with mirrored

propeller and two with color change. In fact, the M600 model could have been a

written as a single model, but including separate models of the arm makes them a

useful model for other multi-rotors and other non-orthodox robots, specially since

the arm for the M600 Pro is commercially available as a product named DJI E2000

Pro.

These models can all made available online. 1

Models can be extended through plug-ins. External programs can interface with

Gazebo this way. One such plugin allows external ROS nodes to apply forces and

moments on any given part of the model structure. It has been used to act on the

motors.

The framework also allows the creation of sensors. GPS, IMU, cameras, etc.

are readily available for configuration and use. Even noise can be introduced as an

option.

If properly setup with namespaces, several entities of the robot can be used in

the simulation and controlled independently, just as if there were different instances

of the actual robot. Aside from the significant reduction in budget requirement for

multi-agent experiments, doing so in a simulated environment protects the involved

1Please contact ricardo@andrade.com to request access.
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personnel and third parties from the much higher risk of aerial accidents.

Additionally, a ROS node was implemented to emulate the behavior of the A3

Pro controller and its ROS wrapper. This provides an compatibility layer ensuring a

transparent transition between the simulated model and the real multi-rotor. Some

of the implemented capabilities are:

• Control using the generic setpoint topic.

Velocity, attitude, thrust, etc. control modes.

FLU and ENU reference frames.

• Arm and disarm services.

• Ground truth topics.

• Sensor topics.

5.1.2 Computational Fluid Dynamics

Unfortunately there is very little cross-talk between different engineering fields and

often some of them are limited by problems which are already solved in others. Com-

putational Fluid Dynamics is one of the techniques that rarely permeates robotics.

Through the use of several specialized solvers, one can obtain velocity and pres-

sure fields around the multi-rotor, over which aerodynamic forces can be calculated.

This technique enables the extraction of propeller characteristics under conditions

which are not trivial to experimentally obtain. This information can then feeds a

momentum-based approach for the simulation of the entire vehicle under various

relative winds. The result is a complete picture of the aerodynamic forces under all

relevant attitudes and velocities, which in turn is used to generate an aerodynamic

mapping to be used in the estimation of wind.

The limitation of the method lies in the computational power required to run ac-

curate simulations. Domain size, mesh resolution , time-step, etc. can be optimized

to some extent, but there is a minimum required for the simulation to make sense.

There is also the need to understand the different ways pressure and velocity fields

generate aerodynamic forces. It is up to the operator to find the optimum resources

and avoid incoherent results. The angular velocity of the propellers and the level of

turbulence generated by the multi-rotor are formidable challenges for this task.

5.2 Experimental Setup

The laboratory named LEAD at the Federal University of Rio de Janeiro is privileged

to be situated directly in front of the COPPE’s Sport Guild’s (Grêmio) soccer field,
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having access to an open area to perform low altitude aerial experiments virtually

any time the weather allows.

A landing pad with several visual markers of type ArUco in different sizes is

available. This enables the visual localization of either a static or moving target for

multi-rotor operations. Aside from occasional issues with sun reflection at just the

wrong angle, it has proved to be a very useful tool for landing experiments. When

static, it can also be used as an input for Kalman Filter correction step.

Another key component of the experimental campaign is the dedicated computer

network built for it, see Figure 5.2. Equipment from the brand Ubiquiti was selected

to provide a reliable and adaptable setup such that the network does not bottleneck

the tests. Even so, care must be taken not to use network resources unnecessarily.

Streaming video during tests may introduce delays in some of the other messages,

and recording ROS Bags locally, i.e, at the Onboard Computer, performs much

better as well.
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Figure 5.2: The entire network of systems available.
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Chapter 6

Conclusion

In this Dissertation, the context of multi-rotor application was introduced and the

challenges highlighted. Justification for the emphasis on landing was provided in

light of the envisioned near future use-cases.

The presentation of a general mathematical model using quaternion was for-

malized to consolidate its use in bolder and more aggressive maneuvers required

to extend the envelope of multi-rotor applications. A simplified model for vertical

approach in landing scenarios was also introduced and used to indicate the compat-

ibility of such a maneuver with the trajectory tracking controller SSC.

In this sense, this work provided a perspective for the problem of landing an UAV

in a vertically oscillatory pad under the aerodynamic influence of Ground Effect. It

also provides considerations for disturbances arising from payload pick-up/release.

For the landing maneuver, a landing pad approximation trajectory is employed for

the tracking controller. Aiming to generate a smooth and robust control law, a

Smooth Sliding Control (SSC), previously designed for linear plants, was considered

and the first generalization of the SSC for this class of nonlinear plants was obtained.

One can observe that the adaptive part introduced in the SSC scheme promotes a

reduction in the robust control action. Generally speaking, robustness with respect

to mass variation and Ground Effect in closed-loop trajectory tracking can be ob-

served. Numerical simulations show the performance of the SSC and experiments

with two different UAV illustrate the presence of Ground Effect.

An open-source simulation environment model and control system based on the

available DJI Matrice 600 Pro was implemented to reduce operational risk due to

untested algorithms prior to testing in the real multi-rotor. The control architec-

ture was thoroughly discussed and the entire operational cycle tested with it before

experimenting on the field. An additional node was implemented to make the simu-

lator compatible with higher-level control systems designed for the real multi-rotor

and vice-versa. Improvements for modelling were suggested, such as including the

advance effect on propeller thrust and torque, usage of the dissociated thrust and
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torque polynomial exponents as well as allowing for real numbers.

Clearly there is a very healthy environment for subsequent research and develop-

ment of multi-rotor related techniques, strategies, operational concepts, controllers

and more. In the following bullet points, follow-up research and development topics

are:

• Design and implement a trajectory generator and tracker specifically for ideal

contact with the pad.

• Perform the closed-Loop convergence analysis and the proof of existence of

ideal sliding mode for the extra case.

• Perform a rigours modelling and stability analysis for the control landing

scheme based on the 3 control components: rational, canonical and aversive.

• Improve simulator control system to behave more like the actual Matrice 600

Pro.

Implement advance effect for propeller thrust and torque.

Implement an aerodynamic node.

Implement a dissociated real exponent allocation system.
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Appendix A

Main Proofs

A.1 Proof of Lemma 1

From (4.7), one has that u0 − uav0 = τavu̇
av
0 , then the prediction error dynamics

can be rewritten as ˙̄σ = −amσ̄ + κmτavu̇
av
0 . By defining the auxiliary signal σa :=

−κmτavuav0 + σ̄, one also has that σ̇a = −amσa + amκmτavu
av
0 . Consequently, the

σa-dynamics is ISS w.r.t. uav, with a small gain κmτav, and (4.9) holds.

A.2 Proof of Lemma 12

From (4.5), one has that [u0 − uav0 ] = [ ˙̄σ + amσ̄]/κm and, consequently, one can

further write

ε̇+ amε = kp[−u0 + Ud]−
(κm − kp)

κm
[ ˙̄σ + amσ̄] . (A.1)

Now, considering the auxiliary variable σb := ε+ (κm−kp)

κm
σ̄ one has

σ̇b + amσb = kp[−u0 + Ud]−
k̇p
κm

σ̄ . (A.2)

Hence, the time derivative of V := σ2
b/2 along the solutions of (A.2) is given by:

V̇ + 2amV = −kpσbu0 + kpσbUd − σb

[
k̇p
κm

]
σ̄ .

For |ε| >
∣∣∣ (κm−kp)

κm

∣∣∣ |σ̄| is clear that sgn(ε) = sgn(σb) so that u0 = %(t)sgn(ε) =

%(t)sgn(σb). Therefore, V̇ satisfies

V̇ + 2amV = −kp%|σb|+ kpσbUd − σb

[
k̇p
κm

]
σ̄ .
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and

V̇ ≤ −2amV + kp|σb|

{
−%+ |Ud|+

∣∣∣∣∣ k̇p
kpκm

∣∣∣∣∣ |σ̄|
}
.

Finally, if the modulation function % is designed so that

% ≥ |Ud|+

∣∣∣∣∣ k̇p
kpκm

∣∣∣∣∣ |σ̄|+ δ ,

where δ > 0 is an arbitrary positive constant, it is assured that V̇ < −2amV and

V, σa < Π, where Π is a vanishing term. Hence,

|ε| −
∣∣∣∣(κm − kp)κm

σ̄

∣∣∣∣ ≤ |σb| < Π ,

and

|ε| ≤
∣∣∣∣(κm − kp)κm

σ̄

∣∣∣∣+ Π ,

from which one can conclude that the ε-dynamics is ISS w.r.t. τav|uav0 | by using

Lemma 1 and the upper bound for kp(t) obtained from (H1.c) and (H2.b).

A.3 Proof of Lemma 8

Let

x̃ :=
[
ε σc

]T
. (A.3)

Thus, one can write:

˙̃x = Ae(t)x̃+Be[u0 + deq] , ε = Cex̃, (A.4)

where Ae(t) :=

[
−am κm − kp(t)

0 −1/τav

]
, Be :=

[
−κm 1/τav

]T
and Ce :=

[
1 0

]
.

By adding and subtracting Bek0ε = BeCek0x̃, one can write

˙̃x = Āe(t)x̃+Be[u0 + deq − k0ε] , ε = Cex̃, (A.5)

where

Āe(t) := Ae(t) +BeCek0 =

[
−am − k0κm κm − kp(t)

k0/τav −1/τav

]
.

When kp(t) is a constant, the system (Ae, Be, Ce) is Almost Strictly Positive Real

(ASPR). Indeed, since CeBe = −κm 6= 0, then (Ae, Be, Ce) has relative degree

one. Moreover, by using the Rosenbrock system matrix, the triple (Ae, Be, Ce) is

minimum phase. The existence of a large enough k0 such that (Āe, Be, Ce) is SPR
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is assured.

For a time varying kp(t), a similar conclusion can be obtained by choosing the

Lyapunov function Ṽ := x̃TPx̃ with P = P T =

[
τav+1
τavκm

1

1 τavκm

]
> 0. In fact, one

can verify that ĀTe (t)P +PĀe(t) < 0 (∀t), for a sufficiently large k0. Then, the proof

follows the steps in [27].

A.4 Proof of Theorem 5

From Lemmas 1 and 12, the prediction error dynamics and the sliding variable

dynamics are ISS w.r.t. uav0 with ISS gain of order O(τav). In addition, since

σ = ε+ σ̄, the σ-dynamics and the e-dynamics σ = ė+ e are also ISS w.r.t. uav0 with

ISS gain of order O(τav).

Note that the modulation function % designed to satisfy both inequalities appear-

ing in Lemma 8 and Lemma 12 requires norm bounds for the signals Ud, σ̄, σd, kp

and k̇p. Hence, the modulation function can be designed to satisfy both inequalities

appearing in Lemma 8 and Lemma 12 and, in addition, the following inequality

|%(t)| ≤ k%1τav|uav0 (t)|+ k%2 + π% , (A.6)

where π% := β%(|ε(0)|+ |σ̄(0)|+ |σd(0)|)e−λ%t, β% ∈ K∞, 0 < λ% < am and k%1, k%2 > 0

are appropriate constants. Therefore, by considering the smooth filter dynamics

τavu̇
av
0 + uav0 = u0 = %sgn(ε), one can conclude that uav0 is uniformly norm bounded

and, consequently, all Closed-Loop signal are also uniformly norm bounded and the

tracking error converges to a residual set of order O(τav).

A.5 Proof of Theorem 10

The proof is carried out by following similar steps of the relative degree one case.

The proof is omitted to save space.

A.6 Extra Lemmas

A.6.1 Auxiliary Lemma 11

The following auxiliary lemma can be stated.

Lemma 11 Consider a first order strictly stable dynamics

τ ẋ(t) = −λx(t) + u(x, t) , x(0) = x0 , (A.7)
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defined almost everywhere, where τ, λ > 0 and u is L.I. input function which is

allowed to be discontinuous, satisfying

|u| ≤ U(t) ,

for some well defined (smooth) function U(t). The solutions of (A.7) are ab-

solutely continuous (by definition) and are understood in the sense of Filippov [17]

when, eventually, sliding mode takes place at x ≡ 0. Let [0, tM) the maximum inter-

val for the definition of solutions. Then, the first order system

τ ω̇(t) = −λω(t) + U(t) , ω(0) = |x(0)| ,

is a norm observer for the x-dynamics (A.7) and one can write

|x(t)| ≤ ω(t) , ∀t ≥ 0 ,

almost everywhere. Moreover, the ω-dynamics is ISS w.r.t. U with ISS gain inde-

pendent of τ .

Proof:

Proof when u(t) is well defined:

The solution of the x-dynamics (A.7) is given by

x(t) =
1

τ

∫ t

0

e−
λ
τ

(t−ν)u(x(ν), ν)dν + e−
λ
τ
tx(0) , ∀t ≥ 0 ,

when u(x(t), t) is well defined, ∀t ≥ 0. Thus, subsequently, one can write

|x(t)| ≤ 1

τ

∣∣∣∣∫ t

0

e−
λ
τ

(t−ν)u(x(ν), ν)dν

∣∣∣∣+ e−
λ
τ
t|x(0)| , ∀t ≥ 0 ,

|x| ≤ 1

τ

∫ t

0

e−
λ
τ

(t−ν)|u(x(ν), ν)|dν + e−
λ
τ
t|x(0)| , ∀t ≥ 0 ,

and

|x| ≤ 1

τ

∫ t

0

e−
λ
τ

(t−ν)|U(ν)|dν + e−
λ
τ
t|x(0)| := ω , ∀t ≥ 0 ,

where the relationship |u| ≤ U was used to obtain the last inequality and ω is the

solution of the first order system

τ ω̇ = −λω + U , ω(0) = |x(0)| .
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Proof for u discontinuous - with “division by zero” (1/|x|):

First, consider the time sequence 0 < t1 < t2 < . . ., where |x(t)| cross zero or

reaches/leave sliding mode at the surface x(t) = 0. Note that x(t1) = x(t2) = . . . =

0. The x-dynamics (A.7) given by

τ ẋ = −λx+ u , (A.8)

is defined almost everywhere, with any solution x(t) in the sense of Filippov being

absolutely continuous. Thus, one can obtain the solution x(t) for t ∈ (tk, tk+1) and

for k = 1, 2, . . ., by taking the time instant tk as the initial time with zero initial

condition (x(tk) = 0).

Letting V := x2, from (A.8), one has that

τ V̇ = 2xτẋ = −2λV + 2xu ,

holds almost everywhere. Moreover, defining W 2 := V one can also write that

2ẆW = V̇ and τWẆ = −λW 2 + xu. Since W = |x|, one also has that the

inequality

τWẆ ≤ −λW 2 +WU ,

holds almost everywhere. In addition, taking any time interval (tk, tk+1) where x(t)

is not in sliding motion ∀t ∈ (tk, tk+1), one has W (t) 6= 0 and, consequently:

τẆ (t) ≤ −λW (t) + U(t) , t ∈ (tk, tk+1) , W (tk) = 0 .

Thus, by using the Comparison Lemma with discontinuous right-hand side, Theo-

rem 8 in [17], one has that

W (t) ≤ ω(t) , t ∈ [tk, tk+1] ,

almost everywhere, where ω(t) is the solution of

τ ω̇(t) = −λω(t) + U(t) , ω(tk) = 0 .

One can further write that:

W (t) ≤ ω(t) =
1

τ

∫ t

tk

e−
λ
τ

(t−ν)U(ν)dν ≤ 1

τ

∫ t

0

e−
λ
τ

(t−ν)U(ν)dν ,

∀t ∈ [tk, tk+1], since U(t) ≥ 0, ∀t. Hence, since this norm bound holds for all tk

such that x(t) is not in sliding motion ∀t ∈ (tk, tk+1) one has it holds ∀t ∈ [t1, tM ],

including the interval where x(t) = 0 (W (t) = |x(t)| = 0) is in sliding motion.
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Hence, one can write

W (t) ≤ 1

τ

∫ t

0

e−
λ
τ

(t−ν)U(ν)dν , ∀t ∈ [t1, tM ] . (A.9)

Now, lets verify the interval [0, t1). First, note that if x(0) = 0 then t1 = 0.

Otherwise, one has that W (t) 6= 0, ∀t ∈ [0, t1), and thus

τẆ (t) ≤ −λW (t) + U(t) , t ∈ (0, t1) ,

and W (0) = |x0| > 0. Thus, by using again the Comparison Lemma with discon-

tinuous right-hand side, Theorem 8 in [17], one has that

W (t) ≤ ω(t) , t ∈ [0, t1] ,

almost everywhere in [0, t1], where ω(t) is now the solution of

τ ω̇(t) = −λω(t) + U(t) , ω(0) = |x0| .

One can further write that:

W (t) ≤ ω(t) =
1

τ

∫ t

0

e−
λ
τ

(t−ν)U(ν)dν + e−
λ
τ
t|x0| ,

∀t ∈ [0, t1]. Finally, considering the upper bound given in (A.9), one has that the

following upper bound holds ∀t ∈ [0, tM):

|x| = W (t) ≤ ω(t) =
1

τ

∫ t

0

e−
λ
τ

(t−ν)U(ν)dν + e−
λ
τ
t|x0| .

ISS Property:

Since the ω-dynamics is strictly stable it is clear that is is ISS w.r.t. U . In

addition, one has that

ω(t) =
1

τ

∫ t

0

e−
λ
τ

(t−ν)U(ν)dν + e−
λ
τ
t|x0| ,

satisfies

|ω(t)| ≤ 1

λ
‖U‖+ e−

λ
τ
t|x0| ,

where the ISS gain 1
λ

= limt→∞
1
τ

∫ t
0
e−

λ
τ

(t−ν)dν is independent of τ .
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A.6.2 Ideal Output Variable and ISpS Property: n∗ = 1

The following lemma can be stated.

Lemma 12 (ISpS property from uav0 to σ) Consider the σ-dynamics (4.17),

with control uav0 given in (4.7) and modulation function in (4.8) satisfying

% ≥ |Ud|+

∣∣∣∣∣ k̇p
kpκm

∣∣∣∣∣ |σ̄|+ δ , (A.10)

modulo vanishing terms, with δ > 0 been an arbitrary constant and σ̄ in (4.5), then

the σ-dynamics (4.17) is ISpS with respect to uav0 and with gain 2k̄pτav.

Proof: See Appendix A. From (4.5), one has that [u0 − uav0 ] = [ ˙̄σ + amσ̄]/κm

and, consequently, one can further write

ε̇+ amε = kp[−u0 + Ud]−
(κm − kp)

κm
[ ˙̄σ + amσ̄] . (A.11)

Now, considering the auxiliary variable σb := ε+ (κm−kp)

κm
σ̄ one has

σ̇b + amσb = kp[−u0 + Ud]−
k̇p
κm

σ̄ . (A.12)

Hence, the time derivative of V := σ2
b/2 along the solutions of (A.2) is given by:

V̇ + 2amV = −kpσbu0 + kpσbUd − σb

[
k̇p
κm

]
σ̄ .

For |ε| >
∣∣∣ (κm−kp)

κm

∣∣∣ |σ̄| is is clear that sgn(ε) = sgn(σb) so that u0 = %(t)sgn(ε) =

%(t)sgn(σb). Therefore, V̇ satisfies

V̇ + 2amV = −kp%|σb|+ kpσbUd − σb

[
k̇p
κm

]
σ̄ .

and

V̇ ≤ −2amV + kp|σb|

{
−%+ |Ud|+

∣∣∣∣∣ k̇p
kpκm

∣∣∣∣∣ |σ̄|
}
.

If the modulation function % is designed so that

% ≥ |Ud|+

∣∣∣∣∣ k̇p
kpκm

∣∣∣∣∣ |σ̄|+ δ ,

where δ > 0 is a arbitrary positive constant, it is assured that V̇ < −2amV .
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Thus, one can conclude via the Comparison Lemma that |σb| ≤ πσb :=

|σb(0)|e−amt.
Now, by noting that σb := ε + (κm−kp)

κm
σ̄ = σ − σ̄ + (κm−kp)

κm
σ̄ = σ − kp

κm
σ̄ one can

subsequentelly write

|σ − kp
κm

σ̄| ≤ |σ(0)− kp(0)

κm
σ̄(0)|e−amt ,

and

|σ| − | kp
κm

σ̄| ≤ πσ +
k̄p
κm

πσ̄ ,

and

|σ| ≤ k̄p
κm
|σ̄|+ πσ +

k̄p
κm

πσ̄ ,

where πσ := |σ(0)|e−amt and the upper bound given in (4.15) were used.

From Lemma 1, one has that σ̄-dynamics is ISS w.r.t. uav0 . So, the σ-dynamics

ISpS w.r.t. uav with gain 2k̄pτav, provided that |ε| >
∣∣∣ (κm−kp)

κm

∣∣∣ |σ̄|.
For the case |ε| ≤

∣∣∣ (κm−kp)

κm

∣∣∣ |σ̄|, one has that

|σ| − |σ̄| ≤ |σ − σ̄| = |ε| ≤
∣∣∣∣(κm − kp)κm

∣∣∣∣ |σ̄| ,
and, thus, one can obtain the norm bound

|σ| ≤ |σ̄|+
∣∣∣∣(κm − kp)κm

∣∣∣∣ |σ̄| ,
which leads to the conclusion that the σ-dynamics ISpS w.r.t. uav with gain pro-

portional to τav, by considering Lemma 1.
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