
EMBEDDING GENERATION FOR TEXT CLASSIFICATION OF USER
REVIEWS IN BRAZILIAN PORTUGUESE: FROM BAG-OF-WORDS TO

TRANSFORMERS

Frederico Dias Souza

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Mestre em
Engenharia Elétrica.

Orientador: João Baptista de Oliveira e Souza
Filho

Rio de Janeiro
Dezembro de 2022

EMBEDDING GENERATION FOR TEXT CLASSIFICATION OF USER
REVIEWS IN BRAZILIAN PORTUGUESE: FROM BAG-OF-WORDS TO

TRANSFORMERS

Frederico Dias Souza

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO
PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU
DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: João Baptista de Oliveira e Souza Filho

Aprovada por: Prof. João Baptista de Oliveira e Souza Filho, D.Sc.
Prof. José Gabriel Rodriguez Carneiro Gomes, Ph.D.
Prof. Thiago Alexandre Salgueiro Pardo, D.Sc.

RIO DE JANEIRO, RJ – BRASIL
DEZEMBRO DE 2022

Dias Souza, Frederico
Embedding generation for Text Classification of User

Reviews in Brazilian Portuguese: From Bag-of-Words to
Transformers/Frederico Dias Souza. – Rio de Janeiro:
UFRJ/COPPE, 2022.

XV, 87 p.: il.; 29, 7cm.
Orientador: João Baptista de Oliveira e Souza Filho
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2022.
Referências Bibliográficas: p. 75 – 87.
1. Machine Learning. 2. Deep Learning. 3.

Natural Language Processing. 4. Sentiment Analysis.
5. Text Classification. I. de Oliveira e Souza Filho,
João Baptista. II. Universidade Federal do Rio de Janeiro,
COPPE, Programa de Engenharia Elétrica. III. Título.

iii

"Não há saber mais ou saber
menos: há saberes diferentes."

Paulo Freire

iv

Agradecimentos

Agradeço aos meus pais, irmã e namorada pelo irrestrito apoio, tornando a trajetória
consideravelmente mais fácil.

Agradeço ao meu professor orientador João Baptista pela agradável parceria e
absoluta dedicação ao longo dessa trajetória. Graças a ele, obtive enorme desen-
volvimento técnico e profissional e consegui publicar em importantes conferências
da área.

Agradeço aos demais professores, funcionários e colegas da COPPE por viabi-
lizarem esse sonho.

Agradeço a todos que tornam possível a universidade pública, gratuita e de
qualidade.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

EMBEDDING GENERATION FOR TEXT CLASSIFICATION OF USER
REVIEWS IN BRAZILIAN PORTUGUESE: FROM BAG-OF-WORDS TO

TRANSFORMERS

Frederico Dias Souza

December/2022

Advisor: João Baptista de Oliveira e Souza Filho

Department: Electrical Engineering

Text Classification is one of the most classical and studied Natural Language Pro-
cessing (NLP) tasks. To classify documents accurately, a common approach is to
provide a robust numerical representation, a process known as embedding. Embed-
ding is a key NLP field that faced a significant advance in the last decade, especially
after the popularization of Deep Learning models for solving NLP tasks, including
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformer-based Language Models (TLMs). Despite achievements, the literature
regarding generating embeddings for Brazilian Portuguese texts still needs further
investigation compared to the English language. Therefore, this work provides an
experimental study of embedding techniques targeting a binary sentiment classi-
fication of user reviews in Brazilian Portuguese. This analysis includes classical
(Bag-of-Words) to state-of-the-art (Transformer-based) NLP models. We evaluate
the models over five open-source datasets containing pre-defined partitions to en-
courage reproducibility. The Fine-tuned TLMs attain the best results for all cases,
followed by the Feature-based TLM, LSTM, and CNN, with alternate ranks depend-
ing on the database under analysis.

vi

Contents

List of Figures ix

List of Tables xi

List of Abbreviations xiv

1 Introduction 1
1.1 Natural Language Processing and Machine Learning 1
1.2 Research Hypotheses . 3
1.3 Objectives and Contributions . 3
1.4 Thesis Outline . 4

2 Bibliographic Review 6
2.1 Text Classification and Sentiment Analysis 6
2.2 Automatic Text Classification with ML 8

2.2.1 Bag-of-Words . 8
2.2.2 TF-IDF . 8
2.2.3 Word Vectors . 9
2.2.4 Document Embeddings composed by Word Vectors 11
2.2.5 Recurrent Neural Networks 12
2.2.6 Convolutional Neural Networks 15
2.2.7 Recurrent and Convolutional Neural Networks 17
2.2.8 Graph Neural Networks . 17
2.2.9 Attention . 18

2.3 Transformers . 20
2.3.1 Vanilla Transformers . 20
2.3.2 Transformer-based Large Language Models 22
2.3.3 Brazilian Portuguese TLMs 25

3 Datasets 27
3.1 Dataset Collection . 27

3.1.1 Olist . 27

vii

3.1.2 B2W . 27
3.1.3 Buscapé . 29
3.1.4 UTLC-Apps and UTLC-Movies 29

3.2 Preprocessing and Analysis . 29

4 Text Classification Pipeline 33
4.1 Text pre-processing and tokenization 35
4.2 Vocabulary Formation . 35
4.3 Pre-trained Resources . 36
4.4 Embeddings generation . 36

4.4.1 Bag-of-Words . 36
4.4.2 Classical Deep Learning . 37
4.4.3 Transformer-based Large Language Models 39
4.4.4 Classifiers . 41
4.4.5 Training Procedure . 41
4.4.6 Hyperparameter tuning . 42
4.4.7 Computational resources . 42

5 Results and Discussion 43
5.1 Accessing models’ performance . 43
5.2 Bag-of-Words . 44
5.3 Classical Deep Learning . 47

5.3.1 Convolutional Neural Network 47
5.3.2 Recurrent Neural Networks 48

5.4 Feature-Based Large Language Models 51
5.5 Fine-tuned Large Language Models 56
5.6 Statistical Models’ Comparison . 58
5.7 Qualitative Analysis . 61

5.7.1 Olist . 61
5.7.2 UTLC-Movies . 62
5.7.3 Overall Comments . 64

6 Conclusions and Next Steps 65
6.1 Conclusions . 65
6.2 Next Steps . 66

A Academic Publications 68

B Statistical Models’ Comparison 71

References 75

viii

List of Figures

2.1 Sentiment Analysis techniques . 7
2.2 CBOW and Skip-Gram architectures. 10
2.3 A Recurrent Neural Network. Three time-steps are shown. 12
2.4 LSTM cells and gates in more details 14
2.5 1D convolution for texts . 15
2.6 The base CNN architecture adopted in Zhang and Wallace (2017) . . 16
2.7 Sequence-to-sequence with attention (only the last step of the decod-

ing phase is shown). 19
2.8 Attention-based LSTM architecture 19
2.9 Transformer architecture overview . 21
2.10 Trend of sizes of state-of-the-art NLP models over time 23
2.11 BERT feature extraction scheme. In this example, we have a BERT

Base (whose embedding dimension is equal to 768), a corpus with
2000 documents, and sentences padded to 66 tokens. Each document
is represented by the embedding associated with the CLS token, that
is, the first token fed to the model. Only the last layer of BERT is
considered. 24

2.12 Diagram of the T5 framework . 25

4.1 General scheme of text classification on user reviews. 33
4.2 General LSTM architecture for the CDL experiments (see text). . . . 38
4.3 General CNN architecture for the CDL experiments 38
4.4 Example of BERT Base output . 40

5.1 ROC-AUC (%) as a function of the dictionary size and BoW model
adopted (see text). 45

5.2 Influence of each change in the architecture of the CNN networks for
the Buscapé and UTLC-Movies datasets (see text). 48

5.3 Influence of each architectural change in the LSTM networks for the
Buscapé dataset. 50

ix

5.4 Values of the ROC-AUC (%) per Large Language Model, Embedding
Type, and Dataset (see text). 54

x

List of Tables

3.1 Some examples of users’ review (in Portuguese) for each database,
with the corresponding polarity.
. 28

3.2 Number of samples of the Brazilian Portuguese datasets after prepro-
cessing and some English datasets widely used for text classification. . 30

3.3 Document length (number of tokens) and vocabulary size of Brazilian
Portuguese and English datasets. 31

3.4 Percentage of words in common between datasets. 31
3.5 Word vectors coverage of NILC embeddings per dataset. 32
3.6 Labels distribution for each dataset (%). 32

4.1 Summary of the evaluated model variations. 34
4.2 Summary of some characteristics of the Transformer-based Language

Models evaluated in this work.
. 37

5.1 ROC-AUC (%) for the avgBoWV models, where "FastText 300"
refers to 300-dimensional FastText word vectors. The best result of
each dataset is underlined.
. 44

5.2 ROC-AUC (%) according to Embedding Size, Weighting scheme and
Principal Component (PC) Removal using FastText Word Vectors.
. 46

5.3 Values of ROC-AUC (%) observed for the CNN models. The delta
row summarizes the gap between the best and the worst ROC-AUC
performances observed in each dataset. The highest performances per
database are signalized by bold, while the lowest ones are underlined.
. 47

xi

5.4 Values of ROC-AUC (%) observed for the LSTM models. The delta
row summarizes the gap between the best and the worst ROC-AUC
performances observed in each dataset. The highest performances per
database are signalized by bold, while the lowest ones are underlined.
. 49

5.5 LLMs and Aggregation Modalities’ (AM) average rankings. 52
5.6 Average ranks for the Transformer-based Language Models, and the

average time, the reserved vRAM (GB), the allocated vRAM (GB)
required to process a batch with size equal to 128.
. 53

5.7 Values of the ROC-AUC (%) for the Fine-tuned BERT models, com-
pared to the Feature-based BERT with the aggregation modality
"first+mean+std".
. 56

5.8 Cross-comparison of the ROC-AUC (%) values obtained with the
BERTimbau pre-trained and fine-tuned models, considering different
datasets. The highest performances per database are signalized by
bold, while the lowest ones are underlined.
. 57

5.9 Hyperparameters for the best model setups for each database, in
terms of the Vocabulary Size (VS), Learning Rate (LR), Dropout
Rate (DR), Hidden Size (HS), and Agg Type (Aggregation Type), as
other factors.
. 59

5.10 Mean and standard deviation of the ROC-AUC (%), Accuracy (%),
and F1-Score (%) values obtained with each model and database. The
highest average values are signalized in bold. 60

B.1 ROC-AUC (%) values obtained with each model, database and par-
tition (from fold 1 to 10).
. 72

B.2 Friedman Test statistics and p-values obtained with each dataset.
. 72

B.3 Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset Olist and each pairs of models. . . 73

B.4 Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset Buscapé and each pairs of models. 73

B.5 Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset B2W and each pairs of models. . 73

xii

B.6 Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset UTLC-Apps and each pairs of
models. 74

B.7 Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset UTLC-Movies and each pairs of
models.
. 74

xiii

List of Abbreviations

BERT Bidirectional Encoder Representations from Transformers, p.
22

BoW Bag-of-Words, p. 8

CNN Convolutional Neural Network, p. 2

DL Deep Learning, p. 2

GCN Graph Convolutional Network, p. 17

GNN Graph Neural Network, p. 17

GRU Gated Recurrent Unit, p. 13

LR Logistic Regression, p. 8

LSA Latent Semantic Analysis, p. 9

LSTM Long Short-Term Memory, p. 13

MLM Masked Language Model, p. 23

ML Machine Learning, p. 2

NER Named Entity Recognition, p. 23

NLP Natural Language Processing, p. 1

NMT Neural Machine Translation, p. 18

NSP Next Sentence Prediction, p. 23

QRNN Quasi-Recurrent Neural Networks, p. 17

RNN Recurrent Neural Network, p. 2

SIF Smooth Inverse Frequency, p. 11

T5 Text-to-Text Transfer Transformer, p. 24

xiv

TF-IDF Term Frequency-Inverse Document Frequency, p. 8

TLM Transformer-based Language Model, p. 2

xv

Chapter 1

Introduction

The opinion has a significant influence over the human behavior. Nowadays, every
company, brand, and even political group struggles to know individual and collec-
tive opinions, aiming to leverage their business [1]. For instance, streaming services
are often interested in discovering user’s opinions about a movie to feed their rec-
ommendation systems. In turn, e-commerce platforms always desire to be aware of
customers impressions and satisfaction about products and services to improve user
experience.

With the growing volume of data automatically generated due to users’ interac-
tion with a myriad of digital platforms, such opinions can be automatically mined
by analysing their reviews, not requiring the conception of specific surveys or inter-
views. For this reason, sentiment analysis over user reviews is of particular relevance
to companies’ decision-making, leading to the current urgent need of algorithms able
to perform this task in a large scale.

In fact, making computers to “understand” the content of a text is highly chal-
lenging. To accomplish this task, the first step commonly involves transforming
texts into numbers [2]. The process of providing a vector representation to a word
or document is known as embedding. It figures out as one of the key parts of
automatically inferring sentiments from texts, representing the core study of this
work.

1.1 Natural Language Processing and Machine

Learning

Natural Language Processing (NLP) refers to a set of techniques involving applying
statistical methods, with or without linguistics insights, taking unstructured natural
language data as input, and making the human language accessible to computers
[3, 4]. This understanding of the text by machines consists of transforming texts into

1

useable computational representations and using discrete or continuous structures,
such as vectors or tensors, graphs, and trees [2].

According to Eisenstein [3], NLP is a broad research field with many related
areas. One of them is Computational Linguistics, which focuses on studying the
language itself and computational methods for a clearer understanding of its func-
tioning. On the other hand, NLP is focused on developing and analyzing algorithms
targeting the numerical representation of the human language. Of course, under-
standing linguistic concepts may contribute to the success of this tasks but what
really matters is how well the computational model solves some specific problem.
Another area closely related to NLP is Machine Learning (ML), representing the
basis of most modern NLP applications, which allows building systems from past
data and examples. Most of the current NLP research can be considered applied
ML. In this work, the focus is not on the study of the Portuguese language itself; it
is only used as a proxy for evaluating different ML techniques.

The best ML methods for dealing with language data include supervised algo-
rithms [4]. Supervised learning refers to a data modelling case which the ground
truth (or target) is available for all dataset instances. For example, in document
classification, the target is a categorical label, and it represents how this document
must be classified regarding a predefined set of labels [2]. This example illustrates
an NLP task referred to as Text Classification (TC), which involves assigning labels
to textual units, and it represents this dissertation’s main object of study.

TC represents one of the most fundamental NLP tasks and may include senti-
ment analysis, topic analysis, question answering, and natural language inference
as primary objectives. Particularly, sentiment analysis, also called opinion mining,
targets to infer people’s opinions expressed in textual data, predicting if they are
positive or negative [5–7].

NLP solutions exploiting ML models have been existing for a long time. How-
ever, in the last decade, a brand of algorithms popularly known as Deep Learning
(DL) achieved impressive results, a process started with the Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) [2]. More recently, the
Transformers architecture revolutionized the NLP area by proposing Transformer-
based Language Models (TLMs), responsible for redefining the state-of-the-art in
many tasks. TLMs have the distinguishing characteristic of processing large por-
tions of texts in parallel on a much deeper semantic level than previous NLP models,
one of the primary reasons for their performance. Moreover, such models also have
the benefit of addressing a range of NLP problems through transfer learning.

Regarding Brazilian Portuguese, several datasets, pre-trained resources, and
models have been developed in the recent years for sentiment analysis in Brazil-
ian Portuguese texts, as can be seen in Pereira’s work [8] and Opinando project

2

[9], proposed by the University of São Paulo (USP). However, to our best knowl-
edge, despite such valuable resources, studies comparing embeddings generated by
the current state-of-the-art models (Transformed-based) with more consolidated ap-
proaches, such as Bag-of-Words and classical Deep Learning models, still require
further exploration compared to the English language.

1.2 Research Hypotheses

Regarding the predictive performance of the analyzed methods, we expect the follow-
ing ordering for all datasets: Bag-of-Words < Classical Deep Learning < Feature-
based Transformer-based Language Model < Fine-tuned Transformer-based Lan-
guage Model. Within Bag-of-Words models, we expect TF-IDF models to perform
better than Bag-of-Word Vectors. As for Classical Deep Learning, Convolutional
Neural Networks should perform less than or equal to Recurrent Neural Networks
since the texts are generally short and should benefit less from the second’s greater
learning capacity.

As for the Feature-based Transformer-based Language Model, the different em-
bedding extraction techniques analyzed should significantly influence the predictive
power and vary according to the pre-trained model adopted. Finally, the Fine-tuned
Transformer-based Language Model might overcome all previous approaches. How-
ever, it may reach results close to the feature-based model when we adopt a more
elaborate feature extraction process.

Finally, as for datasets, those with longer sentences should benefit more from
more complex models. In addition, the domain must also have some influence. That
is, the models may struggle in datasets that involve reviews with greater subjectivity,
such as movie analysis.

1.3 Objectives and Contributions

Due to the growing importance of inferring users’ opinions in large amounts of
data and motivated by the necessity of experimental studies including the more
recent NLP models with Brazilian Portuguese, this work aims at conducting a com-
prehensive experimental study of embedding alternatives targeting the sentiment
classification task for Brazilian Portuguese texts. We contemplated from traditional
solutions to the state-of-the-art models in five open-source databases to ensure the
generality and reproducibility of the findings.

Although some works [10, 11] emphasize the importance of including a class
representing neutrality in the sentiment analysis task, we decided here to focus only
on the positive and negative reviews, disregarding those neutral, thus assuming a

3

binary sentiment analysis task. These classes represent a more direct user feedback
about e-commerce transactions that often requires a more effective response from
customer satisfaction services, a central aspect in future applications aimed by us,
in opposition to the still relevant but fuzzy neutral category.

In the following, we provide a brief overview of the central objectives and con-
tributions of this thesis:

1. It collects five public annotated datasets of user reviews in Brazilian Por-
tuguese targeting sentiment classification. We propose pre-defined partitions
for each target (polarity and 1-5 rating), hoping to encourage other interested
researchers to evaluate the performance of alternative models in the same
partitions, making easier a further analysis and direct comparisons with the
results reported here. These partitions are stored in a public repository 1.

2. It provides a comprehensive study of feature generation techniques for text
classification in Brazilian Portuguese, covering from strategies based on corpus
statistics to transfer learning approaches, including word embedding strategies
and Transformer-based Language Models. This study also addresses intrinsic
embeddings generated by an end-to-end optimization of models like CNNs,
RNNs, and Fine-tuned TLMs.

3. It evaluates the predictive performance of Transformer-based Language Mod-
els available for Brazilian Portuguese. Despite the recent advances in the
NLP area, open-source models in this language have emerged only recently.
Therefore, more systematic studies are lacking, especially regarding the text
classification task. Thus, this study includes three multilingual and seven
Portuguese TLMs.

4. It aims to contribute to practitioners when choosing a feature extraction model
for text classification, providing some insights into experimental trade-offs be-
tween the predictive performance and the computational resources required by
some state-of-the-art models.

5. This master’s dissertation generated two works published in international con-
ferences and one journal article, as described in Appendix A.

1.4 Thesis Outline

In the second chapter, "Bibliographic Review", we briefly describe previous studies
on some NLP topics and works of interest for this dissertation. After contextualizing

1https://www.kaggle.com/datasets/fredericods/ptbr-sentiment-analysis-datasets

4

https://www.kaggle.com/datasets/fredericods/ptbr-sentiment-analysis-datasets

the text classification methods, we visit some crucial references with different ML
models to address the sentiment classification task. Many of the models evaluated
in this work are based on the references cited in this chapter.

In the third chapter, "Datasets", we describe the process of collecting and pre-
processing the annotated corpus considered in this work. Besides representing a
fundamental step of this study, its simple compilation already represents a small
advance for the NLP community.

In the fourth chapter, entitled "Text Classification Pipeline", we explain all steps
from the text classification pipeline exploited in this work, detail all experiments,
and clarify how the models were trained and evaluated.

In the fifth chapter, named "Results and Discussion", we conduct a systematical
evaluation of the predictive performance of different models and discuss the results
in terms of the potentials and drawbacks of each method.

Finally, in the "Conclusion" chapter, we summarize the main findings of this
work and point out future research directions.

5

Chapter 2

Bibliographic Review

This chapter provides a brief overview over the references that guided this work.
The first section focuses on proposals for addressing text classification and sentiment
analysis tasks. In the second section, we report the main works on automatic text
classification with machine learning. Finally, the third section concentrates on the
Transformer architecture and its main developments, which have revolutionized the
NLP field.

2.1 Text Classification and Sentiment Analysis

Text Classification is the most essential NLP task. It assigns labels to textual units
such as sentences, paragraphs, or documents. We can stratify text classification into
different subtasks (sentiment analysis, topic analysis, question answering, natural
language inference) better described below [5] [6] [7].

• Sentiment Analysis: this research field aims to develop methods capable
of automatically analyzing people’s opinions expressed in texts [1]. A com-
mon branch of this area is to infer the people’s opinions expressed in textual
data by defining an equivalent binary or multi-class classification problem. Bi-
nary sentiment analysis classifies texts into positive and negative classes, while
multi-class sentiment analysis into classes of grading sentiment intensity;

• Topic Analysis: it aims to identify the central theme or topics in a text,
such as whether the product review is about "customer support" or "ease of
use";

• Question Answering. There are two types of QA tasks: extractive and
generative. The first is essentially a text classification task: the system must
identify the most adequate answer for a given question from a set of possible

6

answers. Generative QA corresponds to a text generation task, as it requires
the generation of the whole responses;

• Natural Language Inference: it aims at predicting if the meaning of one
text can be inferred from another. An NLI system assigns to a pair of text
units labels, such as implication, contradiction, and neutral.

We can perform text categorization through manual annotation or automatic
labeling. The second way is becoming increasingly crucial as the volume of textual
data grows. According to Medhat et al. [12], there are two types of automatic
sentiment classification techniques: machine learning and lexicon-based approaches
(Figure 2.1).

Figure 2.1: Sentiment Analysis techniques. Adapted from Medhat et al. [12]

The Lexicon-based approach relies on a sentiment lexicon, a collection of pre-
compiled sentiment terms, and can be further split into dictionary and corpus-based
approaches. The dictionary-based approach manually collects a set of opinion words
with known orientations. Its primary disadvantage is that the opinion words do not
vary with the context since they are predefined in the dictionary. The Corpus-
based approach solves this problem by finding opinion words with context-specific
orientations [12].

Machine learning-based text categorization automatically learns how to produce
classifications solely based on past observations rather than relying on manually
crafted rules. ML systems infer intrinsic relationships between texts and labels
using pre-labeled cases as training data [5].

This thesis focuses on ML-based embedding techniques, aiming to obtain mean-
ingful features for the binary sentiment classification task. The following sections
briefly describe the prior machine learning and deep learning works related to NLP,
from the most basic and traditional to the current state-of-the-art, which have in-
spired the choices for the techniques adopted in this dissertation.

7

2.2 Automatic Text Classification with ML

2.2.1 Bag-of-Words

Bag-of-Words (BoW) is the most basic feature-based approach for automatic text
classification, producing a simple vector representation for each word or the entire
document that ignores the surrounding context, word order, and semantic relations
[5]. Usually, it exploits statistics extracted from the corpus, such as the word fre-
quency or the term frequency-inverse document frequency (TF-IDF), or may con-
sider aggregated pre-trained word vectors as features, as discussed further in the
following.

Commonly, the BoW embedding is followed by a classical ML classifier, such
as Logistic Regression (LR), Support Vector Machines, Gradient Boosting Decision
trees, or Random Forests, when applied to sentiment classification tasks. Since
most of these models are fast and straightforward to implement and train, they may
constitute a handy baseline. Regardless of their simplicity, such methods can achieve
high performance for simple texts, comparable to or even better than more complex
alternatives. A drawback of BoW models is not efficiently accomplishing new tasks,
in contrast with modern transfer learning approaches (Transformer-based Language
Models). Also, they do not benefit from the large amounts of training data available
nowadays due to their limited model capacity. [5].

Since the shift in the ML paradigm motivated by the AlexNet [13], the state-of-
the-art models in NLP and Computer Vision mostly include DL architectures [5].
Despite often involving a more challenging and slower training phase, such archi-
tectures can easily learn complex patterns and scale to large datasets. Compared
to the classical models, the DL counterparts do not require a hand-crafted feature
extraction since features are automatically learned during model training [6].

2.2.2 TF-IDF

The TF-IDF is a document embedding approach based on the frequency of occur-
rence of each word into a collection of N documents (corpus) [14]. The dimension-
ality of a document vector produced by the TF-IDF is equal to the vocabulary size,
wherein the i-component of the vector related to the jth document vector is given
by

wij = tfij idfi, (2.1)

8

where tfij is the frequency of occurrence of the ith word into the jth document,
while idfi, as defined by Eq. (2.2), denotes the inverse of the ratio between the
number of documents containing the ith word, denoted as dfi, and the total number
of documents N .

idfi = log(
N

dfi
). (2.2)

This embedding often results in very sparse vectors, favouring frequent words of
the same document and penalizing those present in many documents [15]. The vo-
cabulary may also include sequences of words with an arbitrary length n, referred to
as n-grams, in addition to single document words. To constrain the vocabulary size,
one may consider just taking the most frequent n-grams or exploiting Chi-squared
and ANOVA F-value tests [16] to select the best subset of words from the corpus to
integrate the dictionary. Singular Value Decomposition (SVD) may also be explored
for deriving low-dimensional representations over TF-IDF embeddings. This com-
bined approach is often known as Latent Semantic Analysis (LSA) [17]. As Zhang
et al. [18] shows, the models using TF-IDF can achieve better predictive results than
more complex approaches, such as CNNs and RNNs in some applications.

2.2.3 Word Vectors

Instead of compiling textual statistics from the corpus to obtain meaningful word
vectors, it is possible to train a language model that learns from the corpora the
probability of occurence of a word given the words belonging to its context. In
this case, the model must represent the words as dense vectors that maximize the
correct prediction of their context words. Roughly, this approach turns the language
generation process into a classification task and allows the prediction error calculated
at each iteration to be used for updating model parameters using a gradient-based
rule that penalizes proportionally to the compiled error. This is the basic concept of
backpropagation, widely used to train neural models [19]. These word embeddings
are the most classic pre-trained resources used in different NLP tasks by various
architectures.

This idea was initially developed by Collobert et al. [20] and improved by Mikolov
et al. [21], author of the Word2vec model, that proposed two different algorithms:
CBOW and Skip-Gram, depicted in Figure 2.2. CBOW aims to predict a center
word from the surrounding context words based on their embeddings. Skip-gram
does the opposite, predicting the probability of context words based on a center
word.

In addition, this work also proposed two strategies to reduce the computational

9

Figure 2.2: CBOW and Skip-Gram architectures [21].

burden from training these models: negative sampling and hierarchical softmax.
In the naive implementation of both Word2Vec variants, at each model iteration,
it is necessary to compute the softmax probabilities for all words integrating the
vocabulary, which can be huge. Negative sampling replaces this costly procedure by
randomly selecting words as counter-examples and thus using them to optimize the
objective function. When training the network, the label is a one-hot vector, where
the vector position corresponding to the target word is 1, and all the other countless
words are 0. The negative sampling randomly selects just a tiny number of negative
words to update the weights. Conversely, hierarchical softmax uses a binary tree in
the vocabulary evaluation process, reducing the time complexity to O(log(|V |) [19].

GloVe [22] is another widely used word vector algorithm. It combines the ad-
vantages of the two prominent families of models dedicated to learning embeddings
in the literature: the global matrix factorization approaches, such as LSA (Latent
Semantic Analysis), and the local context window methods, like Word2vec. The first
efficiently accounts for general text statistical information, but it does poorly on the
word analogy task. The second one does better on the analogy task, but it makes in-
efficient use of the statistics of the corpus. The authors proposed a specific weighted
least squares model that trains over global word-word co-occurrence counts, which
considers the context windows, and thus efficiently uses corpus statistics [23].

Finally, FastText [24] is a word embeddings model that aims to balance the
predictive performance with the number of model parameters. The model is based
on the skip-gram algorithm, where each word is represented as a bag of character n-
grams. A vector representation is associated with each character n-gram and words

10

are represented by the sum of these atomic representations.

2.2.4 Document Embeddings composed by Word Vectors

The most basic approach to generate document embeddings exploring pre-trained
word vectors is averaging the embeddings of all the words present in the document,
thus giving an equal importance to all of them [25]. Nonetheless, some words do
not carry high semantic value, being meaningless for text classification. In this
sense, Singh et al. [26] analyzed different graded schemes to account for the relative
relevance of the words in a given corpus. They reported promising results for a
weighted average of word vectors with IDF factors. Arora et al. [27] go further in this
idea with SIF (smooth inverse frequency) embeddings. They computed a weighted
average of the word vectors in the document using a weighting scheme similar to
TF-IDF. Subsequently, they removed the projections of the resulting vectors on their
first singular vector, which can be viewed as a form of denoising.

There are other ways to produce document embeddings through word vectors
without requiring further neural training. Gupta et al. [28] developed the Graded
Weighted Bag of Words Vector, which first represents the document in a lower-
dimensional space related to semantic clusters inferred by a k-means clustering pro-
cedure. Then it concatenates those representations with inverse cluster frequency
weighting factors. Mekala et al. [29] proposed the Sparse Composite Document
Vectors, a feature vector formation technique that uses soft-clustering to build a
distributional representation that captures multiple semantic contexts. This work
exploits Gaussian Mixture Models for soft-clustering the words in topics, consider-
ing the probabilities of a given word of being part of each cluster for composing the
vectorial document representation.. Since these document representations may show
many values close to zero, the components below a certain threshold are set to zero.
Gupta et al. [30] proposed something analogous to the latter model with P-SIF, a
variant of SIF [27], which adopts the concept of partition word average to represent
the different topics in the sentences accurately. One of the critical differences to
SCDV is that, instead of adopting GMM to represent the cluster/partitions, it uses
the concept of sparse coding.

Instead of just aggregating word vectors, it is also possible to learn document
embeddings similarly to how the word vectors are learned. Classical approaches
are the Distributed Memory Model Paragraph Vectors and the Distributed BoWs
paragraph vectors, proposed by Le and Mitolov [31]. The first one is based on
predicting the next context word using vectors of words and paragraphs. The second
one, a more straightforward and lighter version since it ignores the context words,
learns how to predict words randomly sampled from the paragraph in the output. A

11

text window and a random word are sampled at each iteration to form a classification
task. This idea is similar to the Skip-Gram approach from the Word2Vec algorithm.
Following a similar idea, the Neural Tensor Skip-Gram model [32] can learn multiple
embeddings per word and aggregate them to form the document embedding through
a tensor layer.

2.2.5 Recurrent Neural Networks

Typically, RNNs can better exploit more complex data patterns than feedforward
neural networks or bag-of-words approaches, accessing more effectively their mutual
dependencies, thus better capturing the sentence context [5]. An RNN aims to learn
a sequence representation by keeping a hidden state vector that stores the current
state of the sequence and is updated considering both the current input vector and
the previously hidden state vector [2].

Figure 2.3 shows the basic 1-layer Elman RNN architecture [33], also called
Vanilla RNN, where each vertical rectangular box represents the hidden state vector
at a time step t. For an easy understanding, it is common to unroll the "RNN"
neuron feedforward and backward signal propagation, interpreting this structure
as a multilayer architecture. In this case, each layer may have several neurons
(dimensions), which conduct linear matrix operations on their inputs followed by a
non-linear operation σ. There are also two inputs to the hidden layer at each time
step: the output of the previous layer ht−1, and the input at that time-step xt,
that, in the case of NLP applications, may correspond to word vectors. As shown in
Eq. (2.3), these two inputs are multiplied by a weight matrix W (hh) and a weight
matrix W (hx), respectively, to produce the new hidden layer value ht [34].

Figure 2.3: A Recurrent Neural Network. Three time-steps are shown [34].

ht = σ(W (hh)ht−1 +W (hx)xt) (2.3)

12

Although the Vanilla RNNs can theoretically detect long-term dependencies,
two issues often preclude them from doing so: the inability to retain long-term
information and the gradient stability. Concerning the first one, as the Vanilla
RNNs update the hidden state vector, there is no direct control over which values are
retained or discarded in each hidden state update. The unstable gradients are related
to the episodes wherein the gradients spiral out of control to zero or infinity values,
named vanishing and exploding gradients, respectively. As long as we add time steps
to the RNN, the network eventually becomes untrainable due to the multiplicative
nature of the backpropagation, which successively multiplies an incresing number of
smaller or larger gradients with the addition of more layers [35] [2].

The Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers
came up to overcome this problem. Both models involve the concept of gating. To
intuitively understand the gating process, suppose we add two quantities: a and b,
but we want to control how much b gets into this sum. In this case, it is possible
to rewrite the sum a + b as a + λb, where λ is a value between 0 and 1. In the
latter, the variable λ acts as a gate that controls the amount of b getting into the
sum. Naturally, this is more complicated in LSTM and GRU models since the gating
functions are parameterized and learnable [2]. Here, we are going to focus on the
LSTM model.

The most popular variant of the RNNs is the Long Short-Term Memory, firstly
proposed by Hochreiter and Schmidhuber [36], aiming to mitigate the gradient van-
ishing and exploding problems related to the RNNs [5]. The Figure 2.4 illustrates
this architecture in more details.

The new memory cell, described by Eq. (2.7), uses the word vector xt and the
past hidden state ht−1 to generate a new memory c̃t thats accounts for aspects of
the input vector. The input gate output, given by Eq. (2.4), considers the current
input vector and the past hidden state to determine how much of the new memory
cell computation must be considered when finally updating the memory cell content.
In turn, the forget gate output, computed according to Eq. (2.5), is similar to the
input gate. However, it evaluates how much of the current memory cell content must
be kept when updating the memory cell. The final memory cell update is given by
Eq. (2.8), mixing information from the past and new memory content, modulated
by the forget and input gates, respectively. The output/exposure gate output,
computed by Eq. (2.6), addresses how the final memory cell content output must
compose the new hidden state. Finally, the LSTM cell output is given by Eq. (2.9).
Note that in the former equations W and U represent the weight matrices related
to each cell and gate [34].

it = σ(W (i)xt +U (i)ht−1) (2.4)

13

Figure 2.4: LSTM cells and gates in more details [34].

ft = σ(W (f)xt +U (f)ht−1) (2.5)

ot = σ(W (o)xt +U (o)ht−1) (2.6)

c̃t = tanh(W (c)xt +U (c)ht−1) (2.7)

ct = ft · ct−1 + it · c̃t (2.8)

ht = ot · tanh(ct) (2.9)

Later, many variants and applications of this model were studied in the context
of text classification. Liu et al. [37] innovated by training an LSTM-based architec-
ture in a multi-task learning framework instead of just training it on a single-task
supervised objective. This model was trained jointly on four different text classi-
fication tasks. Nowak et al. [38] and Wang et al. [39] applied LSTM to short text
sentiment classification using pre-trained word embeddings.

14

2.2.6 Convolutional Neural Networks

While RNNs are popular in NLP applications motivated by their requisites of sequen-
tial processing, CNNs work better when detecting local position-invariant patterns.
These patterns could represent key phrases that express a particular sentiment like
"I like" or a topic like "endangered species". This fact makes CNNs suitable for
TC [5] [40].

A typical CNN architecture integrates convolutional layers, pooling operations,
and fully connected layers [2]. Regarding the convolution operation, Figure 2.5
depicts an example of a 1D convolution applied to a sentence. In the example,
each word is represented by a 4-dimensional word embedding submitted to a 3-
dimensional filter/kernel. The filter is stored as a matrix that must be slide over
the input matrix. Typically, convolutions have up to three dimensions. For textual
applications, the most common CNN application involves one-dimensional convolu-
tion since this operation runs only on the direction of text reading. In contrast, it is
more common in Computer Vision applications to operate in two dimensions, i.e.,
in the vertical and horizontal image directions.

Figure 2.5: 1D convolution for texts. Adapted from [41].

This way, the 1D convolutional operation resembles extracting textual features
based on moving n-gram windows. For example, a 2-dimensional kernel extracts
features from bi-grams, while a 3-dimensional kernel processes tri-grams, and so
on. For this reason, when one considers filters of different dimensions in the CNN
architecture, it allows extracting information of different context windows from the
text, automatically learning weights to properly address each one of these cases.

There are several relevant and classical studies applying CNNs to text classi-
fication. Kim [42] reports a series of experiments with single-layer CNNs using
pre-trained word vectors. He analyzed the use of word vectors with fine-tuning and
without fine-tuning, and both approaches concatenated, which brought significant
improvements. Zhang and Wallace [43] published a follow-up work conducting a
sensitivity analysis of one-layer CNNs, analyzing the effects of architectural issues
on model performance. The authors considered the influence of the input word

15

vectors (Word2vec and GloVe), region size, number of feature maps for each filter
region size, activation function, pooling strategy, and regularization. The base CNN
architecture adopted in this study is illustrated in Figure 2.6. The model adopted
three filter sizes (2, 3, 4), with two filters each. These filters are convolved with
the sentence matrix and produce feature maps that pass through 1D-max pooling
operations, generating feature vectors based on all six maps. The six resulting fea-
tures are then concatenated and fed to the softmax layer that finally classifies the
sentence.

Figure 2.6: The base CNN architecture adopted in [43].

While the more classic approaches treat the corpus at the word level, Zhang et
al. [18] proposed a character-level convolutional neural network for text classifica-
tion, achieving competitive results at the time without the use of any pre-trained
resources. Conneau et al. [44] dramatically increased the scale of CNNs models
for text classification by proposing the Very Deep Convolutional Networks for Text
Classification (VDCNN), inspired in the large CNN-based architectures explored in
Computer Vision. The VDCNN operates on the character level, and the authors
evaluated different configurations, especially regarding the number of convolutional
layers (raised up to 49), showing significant performance improvements up to 29
layers.

16

2.2.7 Recurrent and Convolutional Neural Networks

As convolutional and recurrent networks can learn different patterns and have dif-
ferent computational complexities, combining them can be a good alternative to
benefit from both strengths and mitigate the negative points of each approach.

Zhou et al. [45] introduced the C-LSTM, which uses a CNN to extract a se-
quence of higher-level representations that is fed into an LSTM model to obtain
the sentence embeddings. C-LSTM can capture both the local features of phrases
and the global (and temporal) sentence semantics. Lee and Dernoncourt [46] also
combined these two models but considered a short text classification task involved
in a dialog prediction task. The model consists of two steps: the first generates a
vector representation for each short text using either the RNN or CNN architecture.
The second one is responsible for classifying the current short text based on the
vectorial representation of the current and of a few preceding short texts.

Bradbury et al. [47] proposed the quasi-recurrent neural networks (QRNNs), an
approach to neural sequence modeling that alternates convolutional layers, which are
applied in parallel across the timesteps, and a minimalist recurrent pooling function
applied in parallel across the channels. The model addresses the drawbacks of both
CNNs and RNNs. Like CNNs, QRNNs allow a parallel computation across the
timestep and minibatch dimensions. Similarly to RNNs, QRNNs’ outputs depend
on the overall order of the words in the sequence. The authors reported a better
predictive and computational performance than traditional LSTM models.

2.2.8 Graph Neural Networks

Another interesting approach that has been gaining more attention in NLP appli-
cations is the Graph Neural Networks (GNN). Graphs are commonly used to rep-
resent interactions between problem instances, and the natural language contains
internal graph structures, such as syntactic and semantic parse trees, responsible
for establishing syntactic and semantic relations among the words that integrate a
sentence [48].

Firstly introduced by Gori et al. [49] and refined by Scarselli et al. [50], GNNs
may be considered as extensions of the more traditional Deep Learning models, like
CNNs, RNNs, and autoencoders to handle graph data. The graph convolution is
typically performed by taking the weighted average of the neighborhood informa-
tion of each node (the message passing paradigm [48]). The Graph Convolutional
Networks (GCNs) are the most popular GNNs due to their effectiveness in different
applications [48] [5].

Text classification is a typical application of GCNs in NLP. Peng et al. [51]
proposed a graph-CNN-based deep learning model that first converts a text into a

17

graph of words and then uses graph operations to convolve the graph. The represen-
tation of texts in graphs of words has the advantage of capturing non-consecutive
and long-distance semantics. In a same fashion, Yao et al. [52] proposed a GCN for
text classification that first builds a single text graph for a corpus based on word
co-occurrence and document relations, then trains a Text Graph Convolutional Net-
work.

2.2.9 Attention

Neural Machine Translation (NMT) models used to explore the sequence-to-sequence
architecture following an encoder-decoder scheme, according to which the decoder
has its hidden state initialized with a fixed-length context vector (represented by
the hidden state vector of the encoder) [53]. This practice represents a bottleneck in
this architecture, since it limits the amount of information available to the decoder
and, consequently, the network performance.

In this sense, Bahdanau et al. [54] proposed to allow the model automatically
search for parts of the source sentence that are most relevant in the prediction of
some target word. Hence, this resource reduces the need for the encoder structure
to squash all the source sentence’s information into a fixed-length vector.

This feature is called Attention. It is generally defined as a technique to express
a given query vector in terms of a set of value vectors (typically by a weighted
sum) [53] [55].

In detail, Figure 2.7 shows the Sequence-to-Sequence with Attention architecture
proposed by Bahdanau et al. [54]. In the decoding phase, first, the attention scores
are calculated, following the Eq. (2.10), where st is the decoder hidden state at the
step t, and hi are the encoder hidden states (1 ≤ i ≤ N). After that, these scores
are normalized to result in the attention distribution, described by Eq. (2.11), and
used to calculate the context vector or attention output, according to Eq. (2.12),
considering a weighted sum of the encoder hidden states. Finally, the attention
output is concatenated with the decoder hidden state [53, 56].

et = [sTt h1, · · · , sTt hi, · · · , sTt hN] (2.10)

αt = softmax(et) (2.11)

at =
N∑
i=1

αt
ihi . (2.12)

Despite initially developed in the Computer Vision area and originally applied

18

Figure 2.7: Sequence-to-sequence with attention (we showed only the last step of
the decoding phase). Extracted from [56].

for NMT, Attention is a Deep Learning technique that can be applied to other NLP
tasks and even tabular data [55, 57]. Thus, several deep learning models that explore
Attention for text classification have been proposed recently [5].

Wang et al. [58] proposed an attention-based LSTM architecture, shown in Fig-
ure 2.8, focusing on the aspect-level sentiment classification task, a fine-grained task
in sentiment analysis that focuses on identifyng the polarity of different text seg-
ments. The attention mechanism enables the model to concentrates on different
parts of the sentence when different polarities are concerned.

Figure 2.8: Attention-based LSTM architecture [58]

19

Liu and Guo [59] also adopted an LSTM-based architecture with Attention
called Attention-based Bidirectional Long Short-Term Memory with Convolution
layer (AC-BiLSTM), a mixture of RNN, CNN, and Attention. The convolutional
layer extracts higher-level phrase representations from the word vectors, and the
BiLSTM is used to access the preceding and succeeding context representations.
The Attention mechanism provides a different focus to the information outputted
from the hidden layers of the BiLSTM model.

Another useful attention-based model for document classification was the hier-
archical attention network presented by Yang et al. [60]. This model contains a
hierarchical structure that mimics the structure observed in the documents and has
two levels of attention mechanisms applied at word and sentence levels. The At-
tention layer enables the model to respond differently, according to the relevance of
each text segment in the vectorial document representation.

2.3 Transformers

2.3.1 Vanilla Transformers

Recurrent neural networks used to be the basic building block of successful NLP
solutions when modelling textual dependencies and semantic contexts. However,
the sequential processing inherent to the RNNs is computationally inefficient, as it
is only possible to compute a specific hidden state after the previous one has been
determined, which makes any algorithm parallelization difficult [61]. As mentioned
in the former section, there have been some efforts trying to overcome this issue,
such as QRRNs, but with a moderate success.

Vaswani et al. [62] revolutionized the NLP field by proposing the Transform-
ers Deep Learning architecture, which only relies on the attention mechanism and
feed-forward networks, thus not requiring any recurrence or convolution. Until the
paper’s publication, this mechanism has been extensively used in sequence modeling,
but mostly in conjunction with RNNs [61].

The Transformers replace the recurrence with a multi-head self-attention mech-
anism, allowing an extensive model parallelization and, consequently, the model
training to explore a massive amount of data [62]. As a result, the complexity of
NLP models could vastly scale, and big datasets can be addressed. The possibilities
opened by the massive parallel processing available nowadays allowed the Trans-
formers to be applied to the development of large pre-trained models, thus enabling
a broad adoption of the transfer learning strategy in many NLP applications, as
observed years before in the Computer Vision area [63].

Figure 2.9 presents the general structure of the Vanilla Transformer proposed

20

by Vaswani et al. [62], following an encoder-decoder structure. The encoder is
formed by stacked blocks, each composed of self-attention modules and feed-forward
layers. The decoder has a similar structure to encoder but with an encoder-decoder-
attention layer between these two. For simplification, the image reduced the number
of blocks to two, despite the smaller configuration proposed in the original paper
explore six for the encoder and decoder each.

The positional encoding refers to vectors added to each input token embedding
to signalize the position of each one in the sequence. Instead of simply adopting
integer index values, which may create problems for variable length sequences, the
Transformers use a clever positional encoding scheme based on trigonometric func-
tions [64].

Figure 2.9: Transformer architecture overview. Extracted from [65].

The self-attention mechanism is described by the set of Eqs. (2.13-2.16). The
matrices Q, K, and V correspond to the query, key, and value matrices, respectively.
They are obtained by multiplying the matrix of word representations X by their
respective weight matrices W . The softmax part explored to compute Z describes
how much each line of V must be accounted for when expressing the corresponding
line of X. The parameter dk is the dimension of the key vectors (equal to 64 in the
case of the Vanilla Transformer), and it was introduced to improve gradient stability
during models’ training. Finally, the self-attention output is determined by the sum
of the value vectors weighted by their respective softmax scores.

Q = X WQ (2.13)

21

K = X WK (2.14)

V = X W V (2.15)

Z = softmax(
Q KT

√
dk

) V (2.16)

The Transformer architecture introduced the concept of multi-head self-
attention, which exploits eight concatenated self-attention heads. After this con-
catenation, the output is multiplied by a weight matrix W o to reduce the dimen-
sionality and to define the final matrix Z that captures information from all the
attention heads. This multi-head mechanism enlarges the model’s ability to focus
on different embedding positions and gives the attention layer multiple representa-
tion subspaces [65].

Transfer learning became a prominent approach in NLP a few years before the
proposition of the Transformers architecture. Initial transfer learning solutions con-
sidered smaller models with pre-trained word vectors and, later on, more complex
models, such as ELMo [66] and ULMFiT [66]. These two models rely on LSTMs
to predict the term around a particular central word/token. However, it was only
with the Transformers that NLP models could considerably scale up. It is note-
worthy that, despite having been initially conceived for text modeling, nowadays,
the Transformers also have achieved the state-of-the-art in many Computer Vision
tasks [67].

2.3.2 Transformer-based Large Language Models

Large pre-trained Transformer-based language models represent the state-of-the-art
in many NLP tasks. Several variations have gained notoriety in recent years, such as
GPT [68], GPT2 [69], GPT3 [70], BERT [71], BART [72], RoBERTa [73], T5 [74],
among others, with a considerable increase in the number of parameters over the
years, as shown in Figure 2.10. Until now, Megatron-Turing NLG [75] is the world’s
largest language model, with 530 billion parameters.

Devlin et al. [71] proposed the BERT (Bidirectional Encoder Representations
from Transformers), one of the most popular Transformer-based architectures and
object of analysis in this work. BERT features an encoder structure similar to
Vanilla Transformers without the decoder, with the number of layers and hidden
size equal to 12 layers and 768, in the case of BERT Base, or 24 and 1024, for
BERT Large. It has innovated by using bidirectional self-attention, which allowed
this model to learn the context of tokens situated on the left and on the right of

22

Figure 2.10: Trend of sizes of state-of-the-art NLP models over time [75]

each token, unlike GPT, where the unidirectional self-attention only allows a token
to make use of the context from tokens situated before it.

BERT pre-trained parameters may be obtained by exploring two unsupervised
approaches: masked language model (MLM) and next sentence prediction (NSP).
The first is a strategy to circunvent the unidirectionality of the next token prediction
task, allowing the bidirectional context processing characteristic of BERT.

In MLM, tokens can be masked (i.e., replaced by the special token [MASK]) or
replaced with a random token, and the model must predict which token is correct for
that position. In turn, the NSP aims to predict if a particular sentence succeeds the
previous one, thus allowing the model to learn the semantic relationships between
the sentences integrating a document. For this objective, the authors introduced the
special token [CLS] at the beginning of each sentence. This token carries information
from the entire sentence, a reason behind its relevance for the text classification task,
as we will see throughout this work.

Transfer-learning with BERT may consider two design options: pre-trained and
fine-tuning. The pre-trained approach assumes BERT as a fixed-model for producing
"unsupervised" features; therefore, only the model stacked over it is trained for a
target application. Conversely, the fine-tuning strategy focus on updating BERT
weights using labelled data for a specific task. Surprisingly, the authors presented
competitive results for the Named Entity Recognition (NER) task compared to the
state-of-the-art by just exploiting the pre-trained approach. Figure 2.11 presents an

23

example of feature extraction using BERT targeting a text classification task.

Figure 2.11: BERT feature extraction scheme. In the example, BERT Base (em-
bedding size equal to 768) was chosen, a corpus with 2000 documents and sentences
padded to 66 tokens. Each document is represented by the embedding correspond-
ing to the CLS token, that is, the first token of the document. Only the last layer
of the BERT model is considered. Adapted from [65].

Some recently developed language models follow a multilingual approach to ad-
dress languages other than English, which has been the focus of a considerable
research effort nowadays. The BERT authors have also open-sourced a variant with
a multilingual purpose (m-BERT), trained in more than 100 languages, including
Portuguese. Another notable multilingual model is the XLM-RoBERTa [76], a mul-
tilingual version of the RoBERTa, trained on contents of 100 languages. One of
the main differences between BERT and RoBERTa is the masking phase. BERT
is based on static masking, i.e., the masking process is performed during data pre-
processing, resulting in a single static mask. RoBERTa adopts dynamic masking,
generating the masking pattern every time a sequence is fed into the model. This
difference helps to scale the training and input data size [73].

In addition, the Text-to-Text Transfer Transformer (T5) [74] is a framework that
renders different language tasks in a text-to-text format. As shown in Figure 2.12,
T5 brings together different NLP tasks, which involve texts as input, such as trans-
lation, question answering, classification, regression, and summarization, and must
result in the generation of some target text. This makes the same model usable for
different applications. T5 has three learning objectives: language modeling (predict-
ing the next word), masked language modelling (masking tokens from the input text
randomly and predicting the original text, as in BERT), and deshuffling (randomly
reordering the input tokens and predicting which order is the correct). The authors
provided five versions of different scales: small, base, large (similar to BERT), as
well as models with 3 and 11 billion parameters.

Finally, it is essential to emphasize that, despite the notable advances, Bender et
al. [77] call the TLMs "stochastic parrots", since they are very good at reproducing
patterns in the training data but do not necessarily produce coherent texts and can

24

Figure 2.12: Diagram of the T5 framework. Extracted from [74].

propagate unwanted biases.

2.3.3 Brazilian Portuguese TLMs

Souza et al. [78] open-sourced the models BERTimbau Base and Large, trained
exclusively on Brazilian Portuguese corpora. As pretraining data, they used the
brWaC [79] corpus, the most extensive open Portuguese corpus to date, composed of
documents with a high domain diversity and content quality. The authors evaluated
the BERTimbau on three NLP tasks (semantic textual similarity, textual entailment
recognition, and named entity recognition), reporting advances in the state-of-the-
art for all of these tasks.

Despite being a recent model, the BERTimbau has already been applied to other
tasks. Lopes et al. [80] fine-tuned the m-BERT and BERTimbau models to an aspect
extraction task, whereas Leite at al [81] to toxic sentence classification, outperform-
ing other bag-of-words solutions. Jiang et al. [82] and Neto et al. [83] evaluated
fine-tuning the BERTimbau to an irony detection task. Carriço and Quaresma et
al. [84] exploited different ways of extracting features from the BERT output layer
(CLS token, vector maximum, and vector average), considering a semantic similarity
task.

The BertPT and AlbertPT, developed by Feijó and Moreira [85], are other
remarkable large language models focused on the Brazilian Portuguese language.
The models were trained using corpora from different domains and styles, such as
Wikipedia, news articles, movie subtitles, research abstracts, and European Parlia-
ment sessions. The models outperformed the baselines on some natural language
understanding tasks.

Additionally, Paulo et al. [86] developed the BERTaú, a BERT Base variant
trained with data from Itaú (the largest Latin American bank) virtual assistant, and
reported better results than the BERTimbau and m-BERT for the NER task. Carmo

25

et al. [87] open-sourced the PTT5 model, a T5 model trained on the brWaC corpus,
the same used to train the BERTimbau, achieving similar results in a semantic
similarity task.

26

Chapter 3

Datasets

Despite the recent advances in NLP and the release of several studies with corpora
in Brazilian Portuguese using more advanced techniques, our language still needs
datasets focusing on text classification with predefined partitions. Thus, a cru-
cial part of this work involved collecting, preprocessing, and publishing in a public
repository different open-source annotated datasets for this task in Brazilian Por-
tuguese1. Furthermore, we have explored these datasets to evaluate the different
machine learning models presented in this work.

3.1 Dataset Collection

This work considered five user reviews annotated datasets: Olist [88], B2W [89],
Buscapé [90], UTLC-Apps, and UTLC-Movies [91]. Table 3.1 shows two samples of
each dataset, one with positive and the other with negative polarity.

3.1.1 Olist

In 2018, Olist, the largest department store in Brazilian marketplaces, launched the
"Brazilian E-Commerce Public Dataset by Olist" [88] on Kaggle, a database with
approximately 100,000 orders from 2016 to 2018 provisioned by several marketplaces
in Brazil. Among the different datasets available, this work adopts the olist order
reviews dataset, which disposes of the user comments plus a label with a satisfaction
rate ranging from 1 to 5.

3.1.2 B2W

In 2019, B2W Digital, one of the most prominent Latin American e-commerce,
released the B2W Reviews01 [89], an open corpus of product reviews with more

1https://www.kaggle.com/datasets/fredericods/ptbr-sentiment-analysis-datasets

27

https://www.kaggle.com/datasets/fredericods/ptbr-sentiment-analysis-datasets

Table 3.1: Some examples of users’ review (in Portuguese) for each database, with
the corresponding polarity.

Database User review Polarity

Olist

“O produto chegou no prazo combinado.
Recomendo a loja” 1

“Solicitei devolução! No site marcava
um tamanho e veio menor” 0

Buscapé

“otimo pra quem quer uma foto
com qualidade boa sem embaçados” 1

“tv com imagem escura, e
veio sem os itens da fabrica” 0

B2W

“Excelente produto, recomendo a família,
e amigos. E a entrega foi rápida.” 1

“Ainda não recebi o produto,
portanto não posso avaliá-lo!” 0

UTLC-Apps

“muito bom gostei de mais
estão de parabéns” 1

“horrível não consigo entrar no app e
ninguém me responde no e-mail” 0

UTLC-Movies

“Obrigado Miyazaki por esse filme
tão sutil, tão profundo e tão lindo...” 1

‘Um dos piores desfechos de
filme que já vi na vida.” 0

28

than 130,000 user reviews. This dataset has two target features: the binary label
"recommend to a friend" and a user rate from 1 to 5 stars. This work only considered
the user rate.

3.1.3 Buscapé

As described by Hartmann et al. [90], the Corpus Buscapé is a large corpus of prod-
uct reviews in Portuguese, crawled in 2013, integrating more than 80,000 samples
from the Buscapé, a product and price search website. Unlike the datasets previ-
ously described, the Opinando labels’ range is from 0 to 5, leading us to remove the
comments rated as zero2.

3.1.4 UTLC-Apps and UTLC-Movies

The UTLCorpus [91] is the most extensive set considered here, having more than
2 million reviews. It includes movie reviews collected from the Filmow, a famous
movie Social network, and mobile apps comments collected from the Google Play
Store. Here, the UTLCorpus was split into two different datasets: the UTLC-Movies
and the UTLC-Apps. Similar to the Buscapé database, reviews with a rating equal
to 0 were excluded.

3.2 Preprocessing and Analysis

For all datasets, the target values were defined by the polarity of the review, com-
puted using the corresponding rating values as follows: we assumed a given review as
positive when associated with 4 and 5 stars; negative for 1 and 2 stars, and excluded
3 stars occurrences.

The consolidated dataset includes two additional columns, one for each partition
modality, to indicate the fold index associated with each instance. Such partitions
were defined to maintain the original label stratification per each fold, aiming to
make easier the adoption of the k-fold cross-validation or the training-validation-
testing hold-out scheme by the practitioner. In this work, the first eight folds were
assumed to define the training set, the ninth fold as the validation set, and the tenth
as the testing set.

Besides, we included a column with the user review tokenized to facilitate any-
one wishing to skip this preprocessing step. In this process, we lower-cased all the
strings and converted their corresponding letters to the English alphabet, removing

2We removed zero-rating reviews to be on a similar scale to others. However, it would be
interesting to include these reviews for future works since the score 0 of Buscapé can be as negative
as the reviews with a score of 1 of the other datasets since they are the worst score.

29

the accents and converting all the occurrences of "ç" by "c". After that, we ob-
tained tokens with 2 to 30 alphanumeric characters, disregarding special characters
and removing the stop words. Samples with no comments or null labels were also
excluded.

Table 3.2 summarizes the number of classes, samples, and tokens for each dataset.
For the sake of comparison, we also included similar numbers for the classic English
benchmarks AG’s News, DBPedia, Yelp Review (Full and Polarity), and Amazon
Reviews (Full and Polarity). One may quickly note that the datasets in English do
not include a validation set and are generally more significant than the Brazilian
counterparts.

Table 3.2: Number of samples of the Brazilian Portuguese datasets after preprocess-
ing and some English datasets widely used for text classification.

Dataset Classes Train
samples

Validation
samples

Test
samples

Olist (Polarity) 2 30 k 4 k 4 k
Olist (Rating) 5 33 k 4 k 4 k
B2W (Polarity) 2 93 k 12 k 12 k
B2W (Rating) 5 106 k 13 k 13 k

Buscapé (Polarity) 2 59 k 7 k 7 k
Buscapé (Rating) 5 68 k 8 k 8 k

UTLC-Apps (Polarity) 2 775 k 97 k 97 k
UTLC-Apps (Rating) 5 832 k 104 k 104 k

UTLC-Movies (Polarity) 2 952 k 119 k 119 k
UTLC-Movies (Rating) 5 1190 k 149 k 149 k
All combined (Polarity) 2 1909 k 239 k 239 k
All combined (Rating) 5 2229 k 279 k 279 k

AG’s News 4 120 k - 7.6 k
DBPedia 14 560 k - 70 k

Yelp (Polarity) 2 560 k - 38 k
Yelp (Rating) 5 650 k - 50 k

Yahoo! Answers 10 1400 k - 60 k
Amazon (Polarity) 2 3600 k - 400 k
Amazon (Rating) 5 3000 k - 650 k

Table 3.3 compares the document and vocabulary sizes for each one of the
datasets, accounting only for the tokens/grams occurrences that appeared more
than five times in the corpus. As expected, increasing the dataset size leads to
a more extensive vocabulary, except for the Buscapé, which is smaller than B2W
but has longer sentences. These English datasets have richer content than the Por-
tuguese counterparts with considerably longer sentences. This indicates that such
Portuguese datasets may benefit less from more complex models than English ones.

In addition, to evaluate the similarity between different datasets, Table 3.4 shows

30

Table 3.3: Document length (number of tokens) and vocabulary size of Brazilian
Portuguese and English datasets.

Dataset Mean
length

Median
length

Vocabulary size
(1 gram)

Vocabulary size
(1 and 2 grams)

Olist 7 6 3.272 8.491
Buscapé 25 17 13.470 52.769

B2W 14 10 12.758 47.929
UTLC-Apps 7 5 28.283 179.227

UTLC-Movies 21 10 69.711 635.869
All combined 15 7 86.234 884.398

AG’s News 21 20 24.713 96.070
DBPedia 30 30 110.755 521.403

Yelp Reviews 68 50 70.494 1.303.148
Yahoo! Answers 11 3 65.534 464.409
Amazon Reviews 38 33 176.464 3.475.911

the percentage of words/tokens shared between them. For example, 89.5% of the
Olist vocabulary also integrates the Buscapé vocabulary, and 21.7% of the Buscapé
vocabulary is in the Olist vocabulary. The reported rows and columns averages
(avg) exclude the diagonal entries. Most of the words included in the Olist, the
smallest and with the shortest sentences, are present in other datasets, on average
93.5%. In turn, the much larger UTLC-Apps and UTLC-Movies detain the highest
percentage of words (an average of 69.6% and 84.4%, respectively) common to all
other datasets.

Table 3.4: Percentage of words in common between datasets.

Dataset Olist Buscapé B2W UTLC
Apps

UTLC
Movies Avg

Olist 100.0 21.7 25.3 10.6 4.4 15.5
Buscapé 89.5 100.0 73.5 37.1 16.3 54.1

B2W 98.5 69.6 100.0 35.6 15.8 54.9
UTLC-Apps 91.8 77.8 79.0 100.0 29.6 69.6

UTLC-Movies 94.1 84.4 86.1 72.9 100.0 84.4
Average 93.5 63.4 66.0 39.1 16.5 -

Table 3.5 demonstrates that most of the vocabulary contained in the texts in-
tegrating the datasets considered here are covered by the pre-trained word vectors
from the NILC Word Embeddings Repository [92], with an adherence superior to
90%, except to UTLC-Apps.

Table 3.6 analyzes the experimental distribution of the target features: polarity
and rating for these datasets. We present the original 5-point scale rate for the target
value in the upper part. In the lower, we have the generated binary polarity target

31

Table 3.5: Word vectors coverage of NILC embeddings per dataset.
Dataset Word vectors coverage

Olist 96.5%
Buscapé 92.9%

B2W 94.4%
UTLC-Apps 85.0%

UTLC-Movies 91.1%

feature, where 0 represents the negative cases (1 and 2 points) and 1 corresponds to
the positive reviews (4 and 5 points). Despite the higher frequency of the positive
label, the distribution varies significantly, which may hinder the performance of a
single model to cope with all datasets.

Table 3.6: Labels distribution for each dataset (%).

Label Olist Buscapé B2W UTLC
Apps

UTLC
Movies All

1 22.0 3.7 20.7 16.4 2.4 8.9
2 5.3 4.3 6.3 4.5 6.8 5.8
3 8.8 13.4 12.3 6.8 20.0 14.4
4 14.5 39.5 24.4 11.4 36.7 26.4
5 49.4 39.1 36.2 60.8 34.0 44.5

0 (1-2) 30.0 9.2 30.8 22.5 11.6 17.2
1 (3-4) 70.0 90.8 69.2 77.5 88.4 82.8

Finally, it is worth mentioning that the dataset domains significantly influence
how the models understand and represent the texts [1]. In our case, four datasets
(Olist, Buscapé, B2W, and UTLC-Apps) have product reviews, and the dataset
UTLC-Movies contains movie reviews. The latter tends to present more nuances,
and the models may face more difficulties in the sentiment classification task.

The rationale behind releasing this consolidated dataset on the Internet is to
provide a useful resource for those interested in sentiment analysis of commercial
textual data in Portuguese.

32

Chapter 4

Text Classification Pipeline

This chapter describes the experimental procedure performed to evaluate the em-
bedding generation methods. To obtain sentiment predictions from textual excerpts,
a set of sequential steps (pipeline) is required, ranging from textual preparation to
the Machine Learning modeling.

The general pipeline adopted for deploying the different embeddings alternatives
for text classification is depicted in Figure 4.1. The first step includes collecting
annotated user reviews and cleaning them, a fundamental step when dealing with
free insertion texts. After, the document content is split into textual sub-units
named tokens. Then, the tokens with lower semantic (e.g. low frequency words or
stop words) relevance may be removed, depending on the approach under analysis.
After, a single feature vector is generated to feed the classification model. The
following subsections describe these steps in detail.

Figure 4.1: General scheme of text classification on user reviews.

Table 4.1 provides an overview of all experiments performed in this work. For
didactic reasons, we divided the analyzed models into three families - Bag-of-Words,
Classical Deep Learning, and Transformer-based Large Language Models - and pre-
sented the techniques in order of increasing complexity in the text. In addition,
Table 4.1 also shows the variations performed in each model. The hyperparameters
and configurations of the architectures that remained constant in all experiments
are described throughout Subsection 4.4.

33

Table 4.1: Summary of the evaluated model variations.

Model Family Model Variations

Bag-of-Words
(BoW)

TF-IDF
Feature selection

methods:
frequency, chi2, fvalue

TF-IDF+SVD
(LSA) -

Bag of Word
Vectors Averaged

(avgBoWV)

Word vector model:
Word2vec, GloVe, FastText
Word vector dimension:

50, 100, 300

IDF Weighted
Bag of Word

Vectors (idfBoWV)

Word vector dimension:
50, 100, 300

Bag of Word Vectors
with first principal
component removal

(BoWV-PC)

Weighting scheme:
unweighted, idf-weighted

Word vector dimension:
50, 100, 300

Classical
Deep

Learning
(CDL)

Convolutional
neural networks

(CNN)

Filter sizes:
[2], [2,3], [2,3,4], [2,3,4,5]

Feature map size:
50, 100, 200, 400

Long short
term memory

neural networks
(LSTM)

Layers: 1, 2
Hidden size: 64, 128, 256

Pooling layer: average pooling,
max pooling, avg and max concatenated

Trasformer-based
Large Language

Model
(TLM)

Feature-based
TLM

(FB TLM)

Models: see Table 4.2
Aggregation types: see Section 4.4.3

Finetuned TLM
(FT TLM) -

34

4.1 Text pre-processing and tokenization

Except in the case of TLMs, the documents were lower-cased and had URLs and
special characters removed. For the TF-IDF and LSA approaches, words were con-
verted to the English alphabet, i.e., had the accents removed, and the occurrences of
“ç” were replaced by “c”. The models based on word vectors (Bag of Word Vectors,
CNN, and LSTM) only underwent this process when a word was not found in the
corresponding embedding vocabulary. This word vector match procedure is better
explained in Section 4.3.

Regarding tokenization, Bag-of-words and Classical Deep Learning models con-
sidered tokens with 2 up to 30 strings of letters separated by white spaces.
Transformer-based Language Models considered raw input texts after being pro-
cessed by the HuggingFace’s AutoTokenizer1. The behavior of this AutoTokenizer
class varies according to the model adopted, but roughly it retains accents and cap-
ital letters, adding specific tokens whenever required by the corresponding Trans-
former model. No further sentence processing (e.g., normalization, spell correction,
named entity recognition) is conducted in this phase.

CDL models and TLMs required sentence padding to make all sentences with
the same length, truncating the texts greater than the maximum defined length
and filling with zeros or padding tokens the documents shorter than the maximum
length. The first ones have the sentences padded to the 90% percentile of the number
of tokens of each review per database. Conversely, TLMs have the sentences padded
to 60 tokens.

4.2 Vocabulary Formation

The TF-IDF experiments considered from 1 to 3-grams and different strategies to
define the subset of n-grams from the corpus that should integrate the vocabulary.
We did not consider n-grams for values of n larger than 3 since some preliminary tests
pointed out a considerable increase in the computational time, especially for larger
databases, such as the UTLC-Movies, which was not followed by any significant gain
in the classification accuracy.

All remaining methods considered only one gram. Words appearing less than five
times in the corpus and the stop-words were removed from the BoW experiments.
In the case of CDL models, all words to which pre-trained word vectors could not
be found were ignored.

1https://huggingface.co/docs/transformers/v4.17.0/en/model_doc/auto

35

https://huggingface.co/docs/transformers/v4.17.0/en/model_doc/auto

4.3 Pre-trained Resources

For the avgBoWV model, we evaluated the pre-trained word vectors models
Word2Vec [21], GloVe [22], and FastText [24], with dimensions 50, 100, and 300,
available at NILC Word Embeddings Repository [92]. All of these word vectors were
trained entirely with a Brazilian Portuguese corpus. For the other Bag of Word vec-
tors and classical Deep Learning models, we tested only the FastText, since it was the
word vector model with the best predictive performance in our initial experiments.

The process of identifying the corresponding embedding from a word was the
following: the word is searched in the vocabulary list after being lower-cased and
having special characters and URLs removed. If not found, it is converted to the
English alphabet and searched again. If again not found, it is ignored. Table 3.5
depicts the percentage of words in each database covered by the FastText word
vectors, signalizing a good embedding coverage in most cases (above 85%).

The Transformer-based Language Models considered three multilingual and
seven language-specific models. We evaluated only open-source TLMs for Por-
tuguese released by the Hugging Face [93] initiative, an open-source NLP community.
Brazilian Portuguese variants of the GPT (Generative Pre-trained Transformer) on
this platform do not have papers attached but were included in the experiments of
this work, such as the GPT-Neo Small Portuguese2 and GPorTuguese-23, represent-
ing fine-tuned versions of the GPT-Neo 125M4 and GPT-2 Small [69], respectively.
Table 4.2 summarizes the dimensionality of the related embeddings and the number
of model parameters, aiming to provide some guiding information over the practical
trade-offs between complexity and performance observed with these models in our
experiments.

4.4 Embeddings generation

In the following, we summarize some practical aspects of the experiments reported
in Table 4.1.

4.4.1 Bag-of-Words

The TF-IDF experiments with restricted-size vocabularies considered three alterna-
tives for word selection: frequency, chi-square test statistics (“chi2”), and ANOVA
F-value (“fvalue”), all available in the Scikit-Learn [94] framework. BoW models
exploited word embeddings with 50, 100, and 300 dimensions, downloaded from the

2www.huggingface.co/HeyLucasLeao/gpt-neo-small-portuguese
3www.huggingface.co/pierreguillou/gpt2-small-portuguese
4www.huggingface.co/EleutherAI/gpt-neo-125M

36

www.huggingface.co/HeyLucasLeao/gpt-neo-small-portuguese
www.huggingface.co/pierreguillou/gpt2-small-portuguese
www.huggingface.co/EleutherAI/gpt-neo-125M

Table 4.2: Summary of some characteristics of the Transformer-based Language
Models evaluated in this work.

Model Multilingual Embedding
length

Parameters
(×106)

PTT5 Small No 512 60
m-BERT Yes 768 110

BERTimbau Base No 768 110
GPT2 Small No 768 117

XLM-Roberta Base Yes 768 125
GPTNeo Small No 768 125

PTT5 Base No 768 220
BERTimbau Large No 1024 345

XLM-Roberta Large Yes 1024 355
PTT5 Large No 1024 770

NILC Word Embeddings Repository [92], and trained over a Brazilian Portuguese
corpus. We considered the arithmetic (avgBoWV) and weighted (idfBoWV) average
strategies for generating document vector embeddings.

4.4.2 Classical Deep Learning

CDL models were fed with Fast Text word embeddings having a dimensionality
equal to 300 and trained considering a Logistic Regression layer stacked over the
top, targeting polarity prediction. After that, we adopted these models to generate
vectorial representations for the documents. The experiments with the LSTM and
CNN architectures are detailed in the following.

1. LSTM: the evaluated architecture is exhibited in Figure 4.2. It comprises one
or two biLSTM layers, followed by a pooling layer, a dense layer with ReLU
activation function (the output size is equal to the LSTM hidden size), and a
linear dropout.

2. CNN: this architecture was based on [43] and is depicted in Figure 4.3.
Roughly, it explores convolutional filters with different kernel sizes operat-
ing over the embeddings of the document’s words. The resulting feature maps
undergo a max-pooling operation, and the resulting scalars are concatenated
to feed a Logistic Regression layer with dropout.

37

Figure 4.2: General LSTM architecture for the CDL experiments (see text).

Figure 4.3: General CNN architecture for the CDL experiments (see text). Adapted
from [43].

38

4.4.3 Transformer-based Large Language Models

The experiments involving the Transformer-based Large Language Models included
two design strategies: pre-trained (or feature-based) and fine-tuned. The pre-trained
solution considered just using the TLM for producing document embeddings, which
were subsequently fed to a Logistic Regression classifier. Conversely, for the fine-
tuned model, the TLM weights were fine-tuned to the sentiment analysis task. The
experiments solely exploring pre-trained models for generating document embed-
dings will be referred to here as Feature-based TLM (FB TLM). In turn, those
involving fine-tuning are named here as Fine-tuned TLM (FT TLM).

Feature-based Large Language Model

Previous works [71] reported that creative combinations of the token representations
provided by the BERT outputs might lead to a significant performance improvement
in the NER task, even without any fine-tuning of model parameters. Such findings
strongly motivated the following experiments. As shown in Figure 4.4, TLMs out-
put a 3D tensor whose number of rows is equal to the batch size, the number of
columns corresponds to the number of tokens, and the embedding size defines the
depth. In this way, each column of this tensor represents a sequence of embed-
dings corresponding to some position-specific token of the documents integrating
this batch. The evaluated TLMs models assumed documents constituted by one to
sixty tokens. To each token, these models produced a representation having from
512 to 1024 dimensions, as shown in Table 4.2, referred to as token embedding. In
the following, we describe the approaches evaluated in this work to combine these
embeddings. In parenthesis, we exhibited the number of vector concatenations of
each case. Thus, the size of the vectors used for document representations has from
512 (512×1) up to 3072 (1024×3) dimensions. Due to a high computational bur-
den, for the TLMs T5 Large, XLM-RoBERTa Base, and XLM-RoBERTa Large, we
limited the aggregation types to "first", "last", "mean all", "first + mean + std",
and "mean + min + max".

1. first (1): this embedding corresponds to the first token. For BERT models, it
is equivalent to the [CLS] special token, created with the purpose of sentence
classification, and considering as the default BERT document embedding;

2. second (1): embedding corresponding to the 2nd token;

3. last (1): embedding corresponding to the last token;

4. sum all (1): sum of all token embeddings;

5. mean all (1): average of all token embeddings;

39

Figure 4.4: Example of BERT Base output. Adapted from [95].

6. sum all except first (1): sum of all token embeddings, ignoring the first one;

7. mean all except first (1): average of all token embeddings, ignoring the first
one;

8. sum + first (2): concatenation of the sum of all token embeddings and the
first token embedding;

9. mean + first (2): concatenation of the average of all token embeddings and
the first token embedding;

10. first + mean + std (3): concatenation of the embeddings of the first token,
the average, and the standard deviation of the remaining tokens;

11. first + mean + max (3): concatenation of the embeddings of the first token,
the average, and maximum of all token embeddings;

12. mean + min + max (3): concatenation of the average, minimum, and
maximum of all token embeddings;

13. quantiles 25, 50, 75 (3): concatenation of the quantiles 25%, 50%, and 75%
of all token embeddings.

One of the major differences between BERT and alternative TLMs is its capa-
bility to accomplish the Next Sentence Prediction (NSP) task. Besides, BERT has
a token dedicated to sentence classification (CLS). It is possible to include this to-
ken when fine-tuning the other models, which would make them more suitable for
text classification. However, this work restricts analyzing them in a feature-based
approach.

40

Unlike BoW, which is based on static word embeddings, the document embed-
dings generated by TLMs are contextual, resulting in significant gains in the pre-
dictive performance of the models, as will be shown later.

Fine-tuned Large Language Model

The fine-tuning experiments were restricted to the BERT models (m-BERT,
BERTimbau Base, and BERTimbau Large) since it would be too computationally
demanding to fine-tune all TLMs. In addition, with these three BERT variants,
we could verify the influence of fine-tuning on multi-lingual vs. language-specific
models and on Based vs. Large size models.

Design choices, such as the training algorithm and the model hyperparameters,
were based on Sun et al. [96]. A Logistic Regression network was added on the top
of the layer associated with the [CLS] token, targeting to predict one of the two
sentiment classification classes, i.e., assuming as target-values 0 or 1. The network
training adopted the Adam optimizer with weight decay, slanted triangular learning
rates with a warm-up proportion of 0.1, and a maximum number of epochs equal to
4.

4.4.4 Classifiers

All document embeddings were evaluated using Logistic Regression. In the case of
BoW models and Feature-based TLMs, we adopted the scikit-learn implementation
with default parameters (the regularization factor seemed not to affect most of our
experiments significantly). Alternatively, Classical Deep Learning and Fine-tuned
TLMs models have considered a neural implementation of this classifier.

The exception was the Bag-of-Words experiments, including the LightGBM from
the homonymous library [97]. LightGBM is a non-linear tree-based classifier able to
capture more complex patterns at a higher computational cost. In these cases, the
results reported were restricted to the best-performing model.

4.4.5 Training Procedure

For the models not requiring hyperparameters’ tuning, the training was conducted
over fused training and validation sets, and the performance metrics were inferred
over the test set. The hyperparameters of the remaining models were based on the
validation set performance. After that, they were retrained with the training and
validation sets concatenated.

41

4.4.6 Hyperparameter tuning

The hyperparameter tuning process was restricted to Classical Deep Learning and
Fine-tuned TLM, focusing on design aspects with more impact on the model per-
formance, like the learning rate and the number of training epochs.

For the Classical Deep Learning models, we performed a hyperparameter search
concerning the dropout (0, 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%) and
learning rates (5e-4, 1e-3, 5e-3, 1e-2).

For the Fine-tuned TLM experiments, we varied the dropout (0 and 10%) and
learning (2.5e-5 and 5e-5) rates. Experiments for hyperparameters’ tuning were
restricted only to the Olist, Buscapé, and B2W datasets, due to the expressive
computational efforts that would be required for conducting this analysis in the
remaining datasets. The best combination of the learning rate, dropout rate, and
the number of epochs were 2.5e-5, 10%, and 1, for the BERTimbau models, whereas
2.5e-5, no dropout, and 2, for the m-BERT. As expected, the m-BERT required one
more training step to learn Portuguese language patterns.

4.4.7 Computational resources

We implemented all models using the Google Colab Pro+ platform, a premium
version of the Google Colab. Bag-of-Words models adopted a CPU with 16 GB of
RAM, while CDLs and TLMs exploited a P100 GPU with a vRAM of 16GB. For
Feature-based TLMs, as we vectorized the entire corpus of each database before
going through the classifier, we used the Google Colab’s high RAM environment
option to store this large matrix, increasing the available RAM from 16GB to 51GB.

42

Chapter 5

Results and Discussion

This chapter is dedicated to analyzing the results of all experiments. First, Sec-
tion 5.1 describes the performance assessment process conducted in this work. Then,
we split the models’ results in the Sections 5.2-5.5, stratifying them according to
an increasing level of complexity/innovation regarding the models used. Then, Sec-
tion 5.6 makes an overall comparison of the best configurations identified for each
model family. Finally, Section 5.7 conducts a qualitative analysis of the predic-
tion errors made by the best-evaluated model as a way to try to reason with these
mistakes.

5.1 Accessing models’ performance

The figure of merit to select the best model for each embedding modality was the
ROC-AUC. The rationale is that it is threshold invariant, summarizing the per-
formance of a classifier for different operational settings, which may be established
according to the risk associated with a wrong prediction. Due to our focus on e-
commerce, such risks often vary according to the application domain, making the
ROC-AUC an attractive performance metric.

After identifying the models that have shown the best performance for each gen-
eral embedding approach, we conducted a k-fold cross-validation experiment with
k = 10 reported in Section 5.6, but restricted to these cases due to computational
reasons. Besides, we computed the average and standard deviation values of some
performance metrics computed over the ten (predefined) test folds. Finally, we sub-
mitted these results to statistical testing for a more rigorous analysis of the models’
performance. In this overall comparison, we have also considered the Accuracy and
F1-Score.

43

5.2 Bag-of-Words

First, we analyzed the models based on the average document embedding strat-
egy (avgBoWV). Among all experiments involving different techniques, sizes, and
datasets, the best ROC-AUC for the testing sets was achieved by the LightGBM,
which is more powerful than LR. Table 5.1 summarizes the values obtained. Overall,
there is a significant increase in the predictive performance with the growth of the
embedding size. Also, FastText outperforms GloVe, which supersedes Word2Vec.
The 300-dimensional FastText embedding performs better for all datasets. Thus,
the embedding technique and the dimensionality of the embedding vector have a
profound impact on the model performance.

Table 5.1: ROC-AUC (%) for the avgBoWV models, where "FastText 300" refers
to 300-dimensional FastText word vectors. The best result of each dataset is
underlined.

Model Olist Buscape B2W UTLC-Apps UTLC-Movies All

FastText 50 93.9 86.2 94.3 91.5 79.3 86.5
FastText 100 94.9 87.4 95.2 92.3 81.7 87.8
FastText 300 95.5 88.5 96.1 93.2 83.9 89.0

GloVe 50 93.2 85.2 93.0 90.8 78.0 85.6
GloVe 100 93.8 86.5 94.4 91.8 80.3 86.9
GloVe 300 95.1 87.7 95.6 92.6 83.1 88.2

Word2Vec 50 92.8 83.9 92.4 89.7 75.4 83.9
Word2Vec 100 94.0 85.6 93.6 91.1 78.3 85.7
Word2Vec 300 94.8 87.8 95.1 92.4 82.0 87.6

Figure 5.1 summarizes all Bag-of-Words results, including the Bag-of-Word Vec-
tors with FastText and TF-IDF models. For all simulations, increasing the document
embedding size has led to some performance improvement. Relatively to TF-IDF
models, selecting words for the dictionary construction based on the frequency (stan-
dard approach) is better than using the “chi-2” and “f-value” alternatives, except for
the UTLC-Movies database. In this case, the latter approach allowed a gain of
0.8% and 2.4% percentage points for 300 and 1000 dictionary words, respectively,
compared to the standard approach.

Interestingly, the model exploiting the SVD decomposition of the TF-IDF feature
matrix has shown the best results for vocabulary sizes of 50, 100, and 300, performing
even better than the unweighted average of FastText vectors. Thus, among the BoW
models evaluated in this work, the TF-IDF with a vocabulary selection based on
word frequency is the best approach, reaching a performance plateau of around
10,000 words. Also, if it is necessary, for reasons of computational limitation, to
limit the number of input features, the SVD can be a useful resource.

44

Figure 5.1: ROC-AUC (%) as a function of the dictionary size and BoW model
adopted (see text).

45

Finally, for the best-performing word vector algorithm in our simulations (Fast-
Text), Table 5.2 shows a performance comparison between models with and without
removing the first principal component. In most cases, we can quickly note that
this strategy is ineffective since the observed difference is lower than 0.1%. The
exception is for the weighted average in Buscapé, where such removal brings an
absolute increment of 0.5%, 0.4%, and 0.3% for embeddings with 50, 100, and 300
dimensions, respectively.

Table 5.2: ROC-AUC (%) according to Embedding Size, Weighting scheme and
Principal Component (PC) Removal using FastText Word Vectors.

Vector
Size

Weighting
Scheme

PC
Removal Olist Buscapé B2W UTLC

Apps
UTLC
Movies

50

Unweighted
No 93.9 86.2 94.3 91.5 79.3
Yes 93.8 86.3 94.2 91.5 79.3

Delta -0.1 0.1 -0.1 0.0 0.0

IDF-weighted
No 93.0 84.3 92.6 90.0 78.4
Yes 93.0 84.8 92.7 90.0 78.4

Delta 0.0 0.5 0.1 0.0 0.0

100

Unweighted
No 94.9 87.4 95.2 92.3 81.7
Yes 94.9 87.5 95.2 92.3 81.7

Delta 0.0 0.1 0.0 0.0 0.0

IDF-weighted
No 94.3 85.9 93.8 91.0 80.8
Yes 94.3 86.3 93.8 91.0 80.8

Delta 0.0 0.4 0.0 0.0 0.0

300

Unweighted
No 95.5 88.5 96.1 93.2 83.9
Yes 95.6 88.5 96.1 93.2 84.0

Delta 0.1 0.0 0.0 0.0 0.1

IDF-weighted
No 95.1 87.7 95.1 92.1 83.2
Yes 95.1 88.0 95.0 92.1 83.2

Delta 0.0 0.3 -0.1 0.0 0.0

46

5.3 Classical Deep Learning

5.3.1 Convolutional Neural Network

CNN results are presented in Table 5.3. All architectures performed similarly for
the datasets with short sentences, like Olist, B2W, and UTLC-Movies. However,
an increase of at least one percentage point was observed for the Buscapé and
UTLC-Movies when using tuned hyperparameters. We must stress that Buscapé
and UTLC-Movies detain the longest sentences in this comparison.

Table 5.3: Values of ROC-AUC (%) observed for the CNN models. The delta
row summarizes the gap between the best and the worst ROC-AUC performances
observed in each dataset. The highest performances per database are signalized by
bold, while the lowest ones are underlined.

Filter sizes Feature map size Olist Buscapé B2W UTLC-Apps UTLC-Movies

50 97.6 92.3 98.6 96.7 92.5
2 100 97.7 92.2 98.6 96.8 93.0

200 97.7 92.7 98.7 96.8 93.3
400 97.8 92.8 98.8 96.8 93.5

50 97.6 92.1 98.7 96.8 92.7
2, 100 97.8 92.6 98.6 96.8 93.3
3 200 97.8 92.7 98.7 96.8 93.5

400 97.8 92.9 98.8 96.8 93.8

50 97.7 92.6 98.6 96.8 93.1
2,3, 100 97.7 92.8 98.7 96.8 93.4
4 200 97.7 93.0 98.7 96.8 93.5

400 97.8 93.0 98.8 96.7 93.6

50 97.5 92.8 98.6 96.8 93.3
2,3, 100 97.6 92.9 98.7 96.8 93.5
4,5 200 97.7 93.0 98.7 96.8 93.7

400 97.7 93.1 98.7 96.7 93.8

Delta 0.3 1.0 0.2 0.1 1.3

Only Buscapé and ULTC-Movies have shown a more significant impact of ar-
chitectural issues on the ROC-AUC values. Figure 5.2 shows the influence of each
architectural change for both datasets separately. For example, in the first boxplot
of the upper left plot, we verified the distribution of the ROC-AUC values for all
experiments that presented the feature map equal to 50.

Note that the increase in the feature map consistently raised the first, second,
and third quartiles, while the increase in the size of the filters has showed a less
prominent rise in the predictive power. As we can see in Table 5.3, a simple increase
in the feature map may lead to a performance equivalent to adopting architectures

47

Figure 5.2: Influence of each change in the architecture of the CNN networks for
the Buscapé and UTLC-Movies datasets (see text).

with more filters. This result aligns with the idea that most of the review are short
and have a straightforward content, thus not benefiting from filters larger than 3-
grams.

5.3.2 Recurrent Neural Networks

Table 5.4 depicts the results related to the LSTM models. Only the Buscapé dataset
shows a higher impact of model hyperparameters over the performance (1.3%). All
the others, including the UTLC-Movies, presented minor performance differences,
around 0.2% and 0.3%.

For Buscapé, the only dataset to which the variations in the architecture have
significantly impacted the ROC-AUC, we present in Figure 5.3 the influence of
each of these changes, in a similar fashion than Figure 5.2. We can note that
the increase in the number of layers has led to a small positive impact on the
predictive performance. Similarly, regarding the hidden size of the LSTM model,
the median values remained reasonably stable, but there was a relevant increase
in the interquartile range when increasing the cell size. The architectural factor
that has most influenced the model performance was the LSTM head, which can be
associated with an increase in the median and a decrease in the interquartile range

48

Table 5.4: Values of ROC-AUC (%) observed for the LSTM models. The delta
row summarizes the gap between the best and the worst ROC-AUC performances
observed in each dataset. The highest performances per database are signalized by
bold, while the lowest ones are underlined.

Number of layers Hidden Size Pooling Olist Buscapé B2W UTLC-Apps UTLC-Movies

Avg 98.0 93.0 98.8 97.2 94.3
1 64 Max 97.9 92.9 98.7 97.2 94.4

Avg∥Max 97.8 92.8 98.7 97.2 94.4

Avg 97.7 92.2 98.8 97.2 94.3
1 128 Max 97.8 92.6 98.8 97.2 94.5

Avg∥Max 98.0 93.3 98.8 97.3 94.5

Avg 97.7 92.7 98.8 97.1 94.5
1 256 Max 97.9 93.0 98.6 97.2 94.5

Avg∥Max 97.7 93.5 98.7 97.1 94.5

Avg 98.0 93.0 98.8 97.2 94.3
2 64 Max 97.9 92.9 98.7 97.2 94.4

Avg∥Max 97.8 92.8 98.7 97.2 94.4

Avg 97.8 93.3 98.7 97.1 94.3
2 128 Max 97.9 93.4 98.8 97.2 94.5

Avg∥Max 97.8 93.1 98.8 97.3 94.5

Avg 97.7 92.7 98.8 97.1 94.5
2 256 Max 97.9 93.0 98.6 97.2 94.5

Avg∥Max 97.7 93.5 98.7 97.1 94.5

Delta 0.3 1.3 0.2 0.2 0.2

49

observed in the plot. Notably, average pooling concatenated with max pooling is
the best aggregating strategy.

Figure 5.3: Influence of each architectural change in the LSTM networks for the
Buscapé dataset.

50

5.4 Feature-Based Large Language Models

This analysis considered ten Transformer models, thirteen token aggregation modal-
ities for document embedding (not all were performed for each TLM, only five were
common to all), and five databases. After ranking the results for each database, an
average rank for each TLM and aggregation modality was computed to provide an
overall performance index, regardless of the database. Table 5.5 summarizes these
results. Modalities that exploited two or more tokens usually showed better results
than their single token counterparts. The quantiles-based and "second" aggregations
performed poorly. Besides, for all methods and datasets, the aggregation modality
“first + mean + std” have achieved the best results; thus, it represents an interesting
strategy to boost the performance of TLMs that do not have dedicated tokens for
classification.

Table 5.6 shows a similar analysis, but the average rankings were calculated over
only the TLMs to produce a performance index, independent of the database and the
aggregation modality. Here, we only considered the aggregation types common to all
models ("first", "last", "mean all", "first + mean + std", "mean + min + max") to
make a fair comparison. The table also reports the average ranks obtained for each
model, including the average time, the reserved vRAM, and the allocated vRAM
required to process a batch with a size of 128. The allocated vRAM corresponds to
the portion of GPU memory currently used, while the reserved vRAM is related to
the cache memory allocated.

One may readily observe that increasing the number of parameters for models
from the same family results in higher predictive power. In other words, large model
versions consistently outperform the corresponding base models. Among the leading
models, PTT5 Large is quite competitive with BERTimbau, followed by PTT5 and
XLM-Roberta (XLM-R), all representing significantly better alternatives than m-
BERT, GPT2 Small, and GPTNeo Small. The GPT models seem unsuitable for
embedding generation in our task due to their language model structure based only
on decoder blocks and a unidirectional auto-regressive token processing, which is
adequate for content generation.

Although PTT5 Large surpassed BERTimbau Large in some cases, as shown in
Table 5.5, BERTimbau is still the model among TLM alternatives detaining the
most attractive trade-off between performance and computational cost, since it has
less than half as many parameters as PTT5 for the Large size and half as many as
for the Base size, as the Table 4.2 points out.

Regarding the remaining parameters reported in Table 5.6, generally speaking,
the reserved vRAM is correlated with the model size, while the allocated vRAM is
with the embedding size. Therefore, these numbers shed some light on the practical

51

Table 5.5: LLMs and Aggregation Modalities’ (AM) average rankings.

Model AM Rank Model AM Rank

PTT5 Large first+mean+std 1.2 GPT2 first+mean+max 51.2
BERTimbau Large first+mean+std 1.8 PTT5 Small mean+min+max 52.2
BERTimbau Large first+mean 3.4 GPT2 mean+min+max 52.4
BERTimbau Large first+mean+max 5.4 BERTimbau Base last 52.4

PTT5 Large mean+min+max 5.6 m-BERT first+mean+std 53.8
PTT5 Large mean all 6.4 XLM-R Base first 54.8

BERTimbau Large first+sum 7.0 PTT5 Base second 55.6
BERTimbau Large first 7.2 PTT5 Base last 57.2
BERTimbau Large sum all except first 7.6 m-BERT mean+min+max 57.4
BERTimbau Large sum all 7.6 XLM-R Base last 59.8
BERTimbau Large mean all except first 7.6 GPT2 mean all except first 60.4
BERTimbau Large mean all 7.6 GPT2 sum all 60.4

PTT5 Base first+mean+std 9.0 GPT2 sum all except first 60.4
BERTimbau Large mean+min+max 10.0 GPT2 mean all 60.4
BERTimbau Large quantiles 25,50,75 10.6 m-BERT first+mean+max 60.8

PTT5 Base first+mean+max 13.0 PTT5 Small sum all 60.8
BERTimbau Base first+mean+std 14.2 PTT5 Small sum all except first 62.4
BERTimbau Base first+mean 15.8 PTT5 Small mean all 65.6
BERTimbau Base first+mean+max 20.6 GPT2 quantiles 25,50,75 66.2

PTT5 Base mean+min+max 21.0 m-BERT first+mean 66.6
BERTimbau Base first+sum 22.2 PTT5 Small quantiles 25,50,75 66.6

PTT5 Base mean all 23.6 XLM-R Large first 67.2
PTT5 Base mean all except first 24.4 PTT5 Small mean all except first 67.8

BERTimbau Base mean all except first 24.6 m-BERT quantiles 25,50,75 68.8
BERTimbau Base mean all 24.6 m-BERT mean all 69.4
BERTimbau Base sum all except first 24.6 m-BERT mean all except first 69.4

PTT5 Base sum all 25.2 m-BERT first+sum 70.8
BERTimbau Base sum all 25.4 m-BERT sum all except first 71.0
BERTimbau Base mean+min+max 25.6 m-BERT sum all 71.0

PTT5 Base sum all except first 25.8 GPTNeo first+mean+max 78.8
BERTimbau Base quantiles 25,50,75 26.4 GPTNeo first+mean+std 80.0

PTT5 Large first 27.2 PTT5 Small first 80.2
PTT5 Base quantiles 25,50,75 29.0 GPTNeo mean+min+max 82.4

XLM-R Large first+mean+std 30.8 GPT2 last 83.2
XLM-R Large mean+min+max 35.4 m-BERT first 83.2

BERTimbau Base first 35.8 PTT5 Small last 84.0
BERTimbau Large second 36.0 GPTNeo sum all except first 86.2

XLM-R Large mean all 38.0 GPTNeo sum all 86.2
XLM-R Base mean+min+max 40.0 GPTNeo mean all except first 86.2
XLM-R Large last 40.8 GPTNeo mean all 86.2
PTT5 Base first 41.2 PTT5 Small second 87.2

XLM-R Base first+mean+std 41.6 GPTNeo quantiles 25,50,75 88.0
BERTimbau Large last 42.8 m-BERT last 88.6

PTT5 Large last 42.8 m-BERT second 90.0
XLM-R Base mean all 45.8 GPTNeo last 94.2
PTT5 Small first+mean+std 46.8 GPT2 second 94.8

GPT2 first+mean+std 47.6 GPTNeo second 96.0
BERTimbau Base second 49.4 GPT2 first 97.0

PTT5 Small first+mean+max 50.0 GPTNeo first 98.0

52

Table 5.6: Average ranks for the Transformer-based Language Models, and the
average time, the reserved vRAM (GB), the allocated vRAM (GB) required to
process a batch with size equal to 128.

Model Average Rank Time (s) Reserved vRAM Allocated vRAM

BERTimbau Large 9.4 1.0 1.7 1.3
PTT5 Large 9.7 1.0 3.3 2.8

BERTimbau Base 16.8 0.5 0.8 0.4
PTT5 Base 17.2 0.5 1.3 0.8

XLM-R Large 22.7 1.5 10.3 2.1
XLM-R Base 26.6 0.9 8.8 1.0
PTT5 Small 36.3 0.5 0.5 0.2
GPT2 Small 37.0 0.6 3.6 0.5

m-BERT 38.0 0.5 1.1 0.7
GPTNeo Small 45.4 0.6 3.4 0.5

compromises established between predictive performance, computational time, and
computational requirements of each model. Compared to the corresponding Base
versions, the Large models usually spend up to twice as much processing time and
memory space. The XLM-Roberta obtained interesting results despite being multi-
lingual, thanks to a cumbersome use of computational resources. PTT5 large is quite
competitive with BERTimbau in terms of performance and processing time, but it
is significantly more memory hungry (almost twice). Therefore, BERTimbau Base
is the model with the most attractive performance and computational trade-off.

Figure 5.4 depicts the predictive performance for each dataset, model, and ag-
gregation modality, restricting only to the top-seven TLMs and the five aggregation
modalities common to all models for a better content visualization. Unlike BERT,
other models, like XLM-Roberta Large, obtained competitive results when used the
“last” token. This is somewhat expected, since one of the major differences from
BERT to the remaining TLMs is the existence of a preferential token for classifica-
tion (CLS).

The results discussed in this section bring us some important practical guidelines
for dealing with operational scenarios with limited computational resources in this
and similar NLP problems. For instance, applications with more straight restric-
tions on the availability of vRAM GPUs may hinder the use of Large models. In
this case, a simple aggregation of the type “first + mean + std” or even “first +
mean” can significantly boost the Base model performance, reducing the gap be-
tween both. Additionally, all embeddings evaluated here used numbers in 16 bits
(dtype=“float16” in NumPy) precision, instead of 32 bits (the default). A quick
analysis of the influence of using 16 and 32 bits in model training for the BERTim-
bau Base and Large models with an aggregation of the type “first” has shown no

53

Figure 5.4: Values of the ROC-AUC (%) per Large Language Model, Embedding
Type, and Dataset (see text).

54

significant impact on model performance. Nonetheless, the computational time and
RAM usage reduction with 16 bits of precision is impressive. Therefore, a practical
lesson learned here is to adopt numbers with 16 bits of precision when dealing with
pre-trained BERT embedding for text classification.

55

5.5 Fine-tuned Large Language Models

Table 5.7 exhibits the results for the fine-tuned BERT models, reproducing those
from the feature-based BERT with the best aggregation type (“first + mean + std”)
to make easy the subsequent analysis. The fine-tuning process allowed the new
models to surpass all the pre-trained and baseline alternatives for all datasets. The
UTLC-Movies dataset was the one that most benefited from the fine-tuning process.
Moreover, for this dataset, the BERT models can only surpass the TF-IDF baseline
when fine-tuning is adopted, as further discussed in the next section. The BERT
model that most increased its performance with the fine-tuning was the m-BERT,
although it did not surpass the BERTimbau performance after retraining. Therefore,
the large dataset used to pre-train BERTimbau seems to contribute to its significant
predictive power.

Table 5.7: Values of the ROC-AUC (%) for the Fine-tuned BERT models, com-
pared to the Feature-based BERT with the aggregation modality "first+mean+std".

LLM Configuration Olist Buscapé B2W UTLC
Apps

UTLC
Movies

m-BERT
first+mean+std 97.0 90.0 97.3 94.7 84.9

finetuned 97.6 91.8 98.6 97.4 94.1
delta 0.6 1.8 1.3 2.7 9.2

BERTimbau Base
first+mean+std 97.8 92.7 98.7 96.6 90.7

finetuned 98.5 93.4 99.2 97.9 95.6
delta 0.7 0.7 0.5 1.3 4.9

BERTimbau Large
first+mean+std 98.1 93.0 99.0 97.1 92.4

finetuned 98.6 94.1 99.3 97.9 95.8
delta 0.5 1.1 0.3 0.8 3.4

We have also evaluated how these fine-tuned models behave in other contextual
settings. For this analysis, the five datasets considered in this work were explored
in a cross-predictive performance experiment, i.e., each model fine-tuned with a
particular dataset was evaluated with instances from another one. The cross-model
comparisons were restricted to the BERTimbau Large model, considering the “first
+ mean + std” embedding. Table 5.8 summarizes the results. For all cases, fine-
tuning the models for each dataset resulted in higher performance, as expected.
The most extensive and complex content dataset, the UTLC-Movies, exhibited the
highest gains with retraining. The general fine-tuned model obtained with the All-
Combined dataset performed better than the pre-trained alternative but worse than
the specialized models. Some datasets also seemed to benefit from fine-tuning, even
if this procedure is conducted with another dataset. A notable example is again

56

the UTLC-Movies, to which a retraining considering the B2W dataset resulted in
a gain of 1.3% percentage points (92.4% vs. 93.7%) as compared to the pre-trained
model. However, the gains observed with the retraining process for most datasets
were inferior to 1%, which might not be cost-effective for some applications.

Table 5.8: Cross-comparison of the ROC-AUC (%) values obtained with the
BERTimbau pre-trained and fine-tuned models, considering different datasets. The
highest performances per database are signalized by bold, while the lowest ones are
underlined.

Model Olist Buscapé B2W UTLC
Apps

UTLC
Movies

BERTimbau
fine-tuned

with

Olist 98.6 93.4 99.1 97.4 93.2
Buscapé 98.3 94.1 99.0 97.3 93.3

B2W 98.2 93.4 99.3 97.5 93.7
UTLC-Apps 98.4 93.8 99.1 97.9 92.7

UTLC-Movies 98.2 93.7 99.1 97.4 95.8
All-Combined 98.4 93.7 99.0 97.5 95.3

Pre-trained BERTimbau 98.1 93.0 99.0 97.1 92.4

57

5.6 Statistical Models’ Comparison

To allow a more rigorous comparison of the models, we conducted a 10-fold cross-
validation experiment involving the best setups per algorithm family, shown in Ta-
ble 5.9, using folds already defined for each database.

Table 5.10 reports the mean and standard deviation values for Accuracy,
F1-Score, and ROC-AUC derived from the ten test folds to each model and
database. UTLC-Movies presents the lowest performance metrics concerning the
other datasets. This may occur because it is the only dataset that does not analyze
any product but movies, which tend to have greater subjectivities and nuances.

Besides, over the ROC-AUC values, we performed Friedman’s Chi-Square Test
[98] to assess if the differences observed in methods’ performance are statistically
significant, assuming a significance level of 5%. Then, we conducted a subsequent
Posthoc Tukey test to identify which pairs of methods performed statistically dif-
ferently (only in the cases wherein the first test signalized an overall difference).
According to the first test, we have χ2(4) > 33.5 and p < 0.001 for all datasets, con-
firming that the differences observed in the methods’ performance are meaningful.
Based on the Posthoc Tukey test, we can establish the following relations between
the methods’ performance and databases in order of increasing performance. In
Appendix B, we provide more details about the test results.

1. Olist: BoW < CNN ≡ LSTM < FB TLM < FT TLM

2. Buscapé: BoW < CNN = LSTM ≡ FB TLM < FT TLM

3. B2W: BoW < CNN ≡ LSTM < FB TLM < FT TLM

4. UTLC-Apps: BoW < CNN < LSTM ≡ FB TLM < FT TLM

5. UTLC-Movies: BoW ≡ FB TLM < CNN < LSTM < FT TLM

As expected, the Bag-of-Words is the worst, while the Fine-tuned BERT is the
best for all cases. The CNN and LSTM models performed similarly for the Olist,
Buscapé, and B2W databases, while the LSTM surpassed the CNN in both UTLC
databases. The FB-TLM is generally equivalent or superior to the classic Deep
Learning models, except to UTLC-Movies, a database with more samples, longer,
and more complex sentences, to which models involving some training performed
better. Considering practical applications, the BoW models, despite a lower predic-
tive performance, are still attractive due to their implementation simplicity and low
computational burden, not requiring the use of high-end GPUs. If one focuses on
predictive performance, FB TLM represents an excellent intermediate alternative,
as it generally performs better than the classic Deep Learning models and has a
simple implementation when open-source pre-trained models are used.

58

Table 5.9: Hyperparameters for the best model setups for each database, in terms
of the Vocabulary Size (VS), Learning Rate (LR), Dropout Rate (DR), Hidden Size
(HS), and Agg Type (Aggregation Type), as other factors.

Model Parameter Olist Buscapé B2W UTLC-Apps UTLC-Movies

TF
IDF

Feature
selection Frequency

VS
(×103) 5 25 25 50 250

CNN

Filters 2,3 2,3,4,5 2,3 2,3 2,3

Feature
size 400

LR 10−3

DR 0.0 0.0 0.1 0.0 0.0

Epochs 16 7 14 4 5

LSTM

Layers 1

HS 128 256 128 128 128

Pooling Average ∥ Maximum

LR
(×10−3) 5 5 10 5 5

DR 0.3 0.2 0.3 0.3 0.3

Epochs 8 5 5 3 3

FB
TLM

Model BERTimbau Large

Agg
Type First + mean + std

FT
TLM

Model BERTimbau Large

LR 2× 10−5

DR 0.1

Epochs 1

59

Table 5.10: Mean and standard deviation of the ROC-AUC (%), Accuracy (%), and
F1-Score (%) values obtained with each model and database. The highest average
values are signalized in bold.

Metric Model
Family Olist Buscapé B2W UTLC

Apps
UTLC
Movies

BoW 91.8 ± 0.2 94.8 ± 0.2 94.0 ± 0.3 92.3 ± 0.1 93.1 ± 0.0
CNN 93.3 ± 0.6 95.7 ± 0.2 94.7 ± 0.6 93.1 ± 0.6 93.7 ± 0.1

Accuracy LSTM 93.4 ± 0.6 95.5 ± 0.2 94.4 ± 1.0 93.6 ± 0.1 94.0 ± 0.1
FB TLM 94.7 ± 0.4 95.6 ± 0.2 96.1 ± 0.2 93.6 ± 0.1 93.2 ± 0.1
FT TLM 95.3 ± 0.3 96.0 ± 0.1 97.0 ± 0.1 94.9 ± 0.1 95.2 ± 0.1

BoW 94.2 ± 0.2 97.2 ± 0.1 95.7 ± 0.2 95.1 ± 0.0 96.2 ± 0.0
CNN 95.2 ± 0.4 97.7 ± 0.1 96.2 ± 0.4 95.6 ± 0.4 96.5 ± 0.0

F1-Score LSTM 95.3 ± 0.4 97.6 ± 0.1 96.0 ± 0.6 95.9 ± 0.1 96.6 ± 0.1
FB TLM 96.2 ± 0.3 97.6 ± 0.1 97.2 ± 0.1 95.9 ± 0.0 96.2 ± 0.0
FT TLM 96.6 ± 0.2 97.8 ± 0.1 97.8 ± 0.1 96.7 ± 0.1 97.3 ± 0.0

BoW 96.6 ± 0.3 91.9 ± 0.6 98.1 ± 0.1 96.1 ± 0.1 92.8 ± 0.1
CNN 97.7 ± 0.1 93.3 ± 0.6 98.8 ± 0.1 97.0 ± 0.1 93.7 ± 0.1

ROC-AUC LSTM 97.6 ± 0.2 93.2 ± 0.6 98.8 ± 0.1 97.3 ± 0.1 94.5 ± 0.1
FB TLM 98.0 ± 0.1 93.0 ± 0.6 99.0 ± 0.1 97.2 ± 0.1 92.9 ± 0.1
FT TLM 98.4 ± 0.2 94.3 ± 0.4 99.4 ± 0.1 98.1 ± 0.1 96.1 ± 0.1

60

5.7 Qualitative Analysis

In order to understand the reasons for prediction errors, we performed a qualita-
tive analysis of positive texts predicted as negative and negative texts predicted as
positive. We limited the analysis to the best model, Fine-tuned Transformer-based
Language Model, and the datasets Olist (shorter sentences and product reviews)
and UTLC-Movies (longer sentences and movie reviews) datasets. In the following
two sections, we make specific comments about each sampled review, and, in the
end, we make a general conclusion about these comments.

5.7.1 Olist

Positive reviews predicted as negative

• Review: “Insatisfação com a descrição do produto.”

Comment: Target feature is apparently incorrect.

• Review: “MEU PRODUTO VEIO ERRADO.”

Comment: Target feature is apparently incorrect.

• Review: “O produto chegou muito antes do previsto, fato louvável. No en-
tanto, veio com defeito. Como devo proceder?”

Comment: The product arrived much earlier than expected, and the cus-
tomer scored the reviews as positive even though it was damaged. This duality
between delivery service and product integrity may have led to the prediction
error.

• Review: “Comprei dois produtos. Este foi entregue no prazo. O outro ainda
não foi entregue e o prazo já acabou.”

Comment: The user purchased two products, where the first one arrived on
time and the second one did not. This difference may have confused the model.

• Review: “Sem nada a acrescentar.”

Comment: The person said there is nothing to add, so a neutral review.

Negative reviews predicted as positive

• Review: “Recebi tido certinho, no prazo certo. A Loja esta de Parabéns em
relação a logistica, porém o produto não é de qualidade.”

Comment: A situation similar to the case of the previous subsection, where
the customer praises the speed of delivery, but complains about the quality of

61

the product. However, in this case, it seems that the quality of the product
weighed more negatively on the score.

• Review: “achei a cor fraca”

Comment: Target feature is apparently incorrect.

• Review: “O prazo de entrega foi de 28 dias. Chegou antes do prazo, mas
demorou 3 semanas entre a compra e a chegada. ”

Comment: The customer praises the fast delivery, but complains about the
delay of a certain stage of the logistics. This difference may have confused the
model.

• Review: “Com um mix da Walita Philips e veio aberto. Fiz o teste e está
funcionando. Achei estranho e não gostei do produto vir aberto”

Comment: The person pointed out that the product is working, but he didn’t
like that the package came opened. Again, the duality may have impaired the
prediction.

• Review: “Achei q fosse mais resistente”

Comment: The user expected a more resistant product. The model did not
get that nuance and must have focused on the word “resistente” (“resistant”)
as something positive.

5.7.2 UTLC-Movies

Positive reviews predicted as negative

• Review: “Uma das poucas adaptações de games para telona que deram certo.
(Acredito que a segunda, a primeira foi Mortal Kombat). O resto que saiba
são muito ruim.Quem jogou Tomb Raider (2013), deve familiarizar com as
cenas de ação, ótima aventura.Aguardando a continuação. Bom filme para
você!!!!!!”

Comment: The user praises the movie but criticizes other movies in the same
subgenre, which may have confused the model.

• Review: “Apesar de frio e monótono, o filme nos convida a viver experiências
que não fazem parte de um cotidiano saudável mas todos tem ciência de que
elas são reais.”

Comment: The person’s overall impression is positive, but the negative
caveat at the beginning of the sentence may have caused the model to mispre-
dict.

62

• Review: “muito terrivel, tomei um susto blaster kkkkkk recomendo”

Comment: The user may have used the word “terrível” (“terrible”), often used
in negative contexts, to praise a horror movie.

• Review: “O filme trouxe uma proposta bastante boa, no entanto a execução
fica a desejar a partir da segunda metade do filme. O terceiro ato, a meu ver,
ficou a desejar, assemelhando-se mais a um filme de terror trash e destoando
do estilo inicial do filme. Caso contrario, teria dado um 4.5, a experiência
sensorial foi muito imersiva”

Comment: The overall impression is positive, but the various negative points
raised may have led the model to a negative prediction.

• Review: “Filme chacoalhão.”

Comment: The model may not have identified the word “chacoalhão” (“shak-
ing”). Moreover, this word can be dubious since the user does not give more
details about his impressions.

Negative reviews predicted as positive

• Review: “95 minutos mais demorados :(”

Comment: The model probably did not identify the emoji, which is crucial
in expressing the person’s feelings in this case.

• Review: “Filme pra assistir com os filhos, tios, avós, pais, cachorros, pas-
sarinhos e gatos.A sensação foi a mesma de ver um filme de cinema em casa,
sessão da tarde. Não empolgou nada, muito fraco, o final até que foi legalzinho
mas nada além disso. Clichê ao extremo mas que até vale 1 hora e pouquinho
perdidas se não houver nada melhor pra fazer e você não esperar nenhuma
grande reviravolta ou algo marcante.”

Comment: The person’s opinion is that the film is not very good in terms of
artistic quality, but it is light and good to watch with the family. This nuance
may have led to the prediction error.

• Review: “Referências muito boas! Apesar de que achei o filme muito away.”

Comment: The general impression is that the person liked the film, despite
the negative polarity. The use of an English word (“away”) may have harmed
the model.

• Review: “caaaara, toca Cold Water do Damien Rice!!!!!!! e ah sim, eu gostei
do filme principalmente pq era tudo delirio mesmo, tava achando bem chatinho
ate que vi o final e ai sim, fez o filme valer”

63

Comment: Despite the negative caveat, it seems that the user liked the film
in general, leading to the belief that the negative polarity attributed to the
film is not consistent with the text.

• Review: “É lindo, mas é um porre.”

Comment: The text contains two contrasting clauses, but the grammatical
construction lets us notice that the most important opinion is present in the
second sentence. The model did not capture this nuance and placed much
emphasis on the word “lindo” (“beautiful”), very frequent in the context of
user reviews.

5.7.3 Overall Comments

Most prediction errors come from situations where the person emphasizes positive
and negative points in the same sentence. In some cases, the general impression of
the user is implied. In others, there is no indication of which point is more relevant
for the user to give a negative or positive rating.

The UTLC-Movies dataset, because it contains longer sentences and deeper anal-
ysis, has more of these nuances. In the Olist dataset, we found reviews that contra-
dict the label entirely.

Finally, this qualitative analysis elucidates the limitation of reducing sentiment
analysis to a binary text classification task. It is common for people to express
multiple opinions in texts, and it is not always explicit what is the general feeling,
positive or negative, of a text.

64

Chapter 6

Conclusions and Next Steps

6.1 Conclusions

In recent years, there has been a revolution in NLP, with the increasing size of
models and their predictive powers. However, the Portuguese language disposes
of only limited linguistic resources. In addition, previous works aiming for text
classification evaluate a wide variety of datasets or considers different targets. Also,
the subsets considered for model evaluation often differ, hindering comparing the
results.

In this way, this work collected five open-source corpora in Brazilian Portuguese
focused on sentiment analysis, cleaned and pre-processed the databases, and added
columns with pre-defined partitions, making the final dataset available in a public
repository. Such columns allow the reproducibility of the results in future works,
encouraging researchers to use these data to evaluate new techniques.

Furthermore, this work represents a comprehensive experimental study of doc-
ument embedding strategies targeting text classification, including from classical
to recently proposed Transformed-based models, the latter exploiting a transfer-
learning paradigm.

Regarding the state-of-the-art, Transformer-based Language Models, we ana-
lyzed three multilingual models, and seven focused on Brazilian Portuguese, a broad
study that we did not find in previous works for our language. In addition, we pro-
posed different ways to generate document embeddings using TLMs under a feature-
based approach, demonstrating a significant influence on predictive performance.

Concerning the experimental results, the main paper findings can be summa-
rized as follows. The simple TF-IDF approach outperformed more complex word
vector aggregation strategies, representing an attractive compromise between com-
plexity and performance, especially for simpler classification tasks over low-complex
semantic texts.

65

Classical deep learning models, such as CNN and LSTM, seem to be more signif-
icantly affected by model hyperparameters only when dealing with databases having
more complex and longer sentences, such as Buscapé and UTLC-Movies. As pointed
out by the statistical tests, their performance tends to be superior to BoW models
and inferior to Transformer-based Language Models.

Regarding the Transformer-based Language Models, increasing the model com-
plexity usually leads to higher performance for the same architecture (Large vs.
Base). Models exclusively trained with Portuguese corpora like BERTimbau and
PTT5 obtained the best results. Surprisingly, the multilingual XLM-Roberta has
shown to be competitive with BERTimbau and PTT5.

Moreover, all Transformer-based models have benefited from aggregating tokens
when generating document embeddings. From a practical point of view, the BoW
model is convenient due to implementation simplicity and reduced computational
cost. In turn, the Feature-Based TLM represents a solid alternative to intermediate
performance when a higher predictive performance is required.

Finally, it is worth mentioning that this master’s dissertation generated two
works published in international conferences and one submission to a journal in the
final review phase, as described in Appendix A.

6.2 Next Steps

In future work, it would be interesting to deepen the fine-tuning studies of the TLMs,
expand the results to models beyond BERT, and consider different schemas. In this
work, the fine-tuning considered of all weights, inspired by the reference work of Sun
et al. [96]. For instance, we could have evaluated the impact of gradually unfreezing
the Transformer weights on the models’ predictive performance.

In addition, this work considered four datasets with product reviews and one
with movie reviews, that is, only two different domains. The addition of corpora
from more varied domains, such as ReLi [99] (books), TweetSentBR [100] (posts on
the social network Twitter), and Corpus TripAdvisor [101] (hotels), would enrich
the analyzes and allow a better understanding of how the models perform in texts
on different datasets.

Furthermore, this work considered a model-centric approach, analyzing models
with different complexities targeting to achieve superior predictive performance.
However, as we saw in the qualitative analysis section, several prediction errors
involved either a clear misattribution of the label or a nuance that did not make
it clear whether the review was positive or negative. A consistent target feature is
fundamental for the model quality, and the work of Xu et al. [102] presents techniques
to improve the quality of ground-truth labels. As most studies nowadays are model-

66

centric, and in the NLP field, there is a large amount of low-quality corpus available,
such a study is of particular relevance.

67

Appendix A

Academic Publications

This appendix presents the publications produced during the development of this
master’s dissertation.

• Souza, F.D., Filho, J.B.O. (2021). "Sentiment Analysis on Brazilian
Portuguese User Reviews". In: 2021 IEEE Latin American Confer-
ence on Computational Intelligence (LA-CCI). https://doi.org/10.1109/

LA-CCI48322.2021.9769838

Abstract: Sentiment Analysis is one of the most classical and primarily stud-
ied natural language processing tasks. This problem had a notable advance
with the proposition of more complex and scalable machine learning models.
Despite this progress, the Brazilian Portuguese language still disposes only of
limited linguistic resources, such as datasets dedicated to sentiment classifi-
cation, especially when considering the existence of predefined partitions in
training, testing, and validation sets that would allow a more fair compari-
son of different algorithm alternatives. Motivated by these issues, this work
analyzes the predictive performance of a range of document embedding strate-
gies, assuming the polarity as the system outcome. This analysis includes
five sentiment analysis datasets in Brazilian Portuguese, unified in a single
dataset, and a reference partitioning in training, testing, and validation sets,
both made publicly available through a digital repository. A cross-evaluation
of dataset-specific models over different contexts is conducted to evaluate their
generalization capabilities and the feasibility of adopting a unique model for
addressing all scenarios.

• Souza, F.D., Filho, J.B.O. (2022). "BERT for Sentiment Analysis: Pre-trained
and Fine-Tuned Alternatives". In: Computational Processing of the Por-
tuguese Language. PROPOR 2022. Lecture Notes in Computer Science, vol
13208. Springer, Cham. https://doi.org/10.1007/978-3-030-98305-5_20

68

https://doi.org/10.1109/LA-CCI48322.2021.9769838
https://doi.org/10.1109/LA-CCI48322.2021.9769838
https://doi.org/10.1007/978-3-030-98305-5_20

Abstract: BERT has revolutionized the NLP field by enabling transfer learn-
ing with large language models that can capture complex textual patterns,
reaching the state-of-the-art for an expressive number of NLP applications.
For text classification tasks, BERT has already been extensively explored.
However, aspects like how to better cope with the different embeddings pro-
vided by the BERT output layer and the usage of language-specific instead of
multilingual models are not well studied in the literature, especially for the
Brazilian Portuguese language. The purpose of this article is to conduct an
extensive experimental study regarding different strategies for aggregating the
features produced in the BERT output layer, with a focus on the sentiment
analysis task. The experiments include BERT models trained with Brazil-
ian Portuguese corpora and the multilingual version, contemplating multiple
aggregation strategies and open-source datasets with predefined training, vali-
dation, and test partitions to facilitate the reproducibility of the results. BERT
achieved the highest ROC-AUC values for the majority of cases as compared
to TF-IDF. Nonetheless, TF-IDF represents a good trade-off between the pre-
dictive performance and computational cost.

• Souza, F.D., Filho, J.B.O. (2022). Embedding generation for text classifica-
tion of Brazilian Portuguese user reviews: from bag-of-words to transformers.
Neural Computing & Applications. https://doi.org/10.1007/s00521-022-

08068-6.

Abstract: Text classification is a Natural Language Processing (NLP) task
relevant to many commercial applications, like e-commerce and customer ser-
vice. Naturally, classifying such excerpts accurately often represents a chal-
lenge, due to intrinsic language aspects, like irony and nuance. To accomplish
this task, one must provide a robust numerical representation for documents,
a process known as embedding. Embedding represents a key NLP field nowa-
days, having faced a significant advance in the last decade, especially after
the introduction of the word-to-vector concept and the popularization of Deep
Learning models for solving NLP tasks, including Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), and Transformer-based
Language Models (TLMs). Despite the impressive achievements in this field,
the literature coverage regarding generating embeddings for Brazilian Por-
tuguese texts is scarce, especially when considering commercial user reviews.
Therefore, this work aims to provide a comprehensive experimental study of
embedding approaches targeting a binary sentiment classification of user re-
views in Brazilian Portuguese. This study includes from classical (Bag-of-
Words) to state-of-the-art (Transformer-based) NLP models. The methods

69

https://doi.org/10.1007/s00521-022-08068-6
https://doi.org/10.1007/s00521-022-08068-6

are evaluated with five open-source databases with predefined data partitions
made available in an open digital repository to encourage reproducibility. The
Fine-tuned TLMs achieved the best results for all cases, being followed by the
Feature-based TLM, LSTM, and CNN, with alternate ranks, depending on
the database under analysis.

70

Appendix B

Statistical Models’ Comparison

Regarding the results in Section 5.6, Table B.1 presents the ROC-AUC values
for each dataset, model, and fold. Over these data, we performed Friedman’s
Chi-Square Test using the implementation from Python’s library scipy1. Table B.2
depicts the Friedman test statistics and p-values for each dataset.

Assuming a significance level of 5%, we verified that there was a significant differ-
ence among the ROC-AUC values obtained with each model in all datasets. Then,
we conducted a Posthoc Tukey test, using the implementation from Python’s library
statsmodels2, to identify which pairs of methods performed statistically differently.
Tables B.3, B.4, B.5, B.6, and B.7 show the mean difference of ROC-AUC between
each pair of models and the adjusted p-value. With these results, we obtained the
predictive performance ordering for each dataset.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
2https://statsmodels.org/dev/generated/statsmodels.stats.multicomp.pairwise_tukeyhsd.html

71

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
https://statsmodels.org/dev/generated/statsmodels.stats.multicomp.pairwise_tukeyhsd.html

Table B.1: ROC-AUC (%) values obtained with each model, database and partition
(from fold 1 to 10).

Model Dataset 1 2 3 4 5 6 7 8 9 10

TF-IDF 96.6 96.3 96.1 96.6 97.0 96.5 96.9 96.8 96.3 96.5
CNN 97.6 97.6 97.5 97.8 97.7 97.7 97.8 97.7 97.4 97.8

Olist LSTM 97.5 97.9 97.7 97.8 97.6 97.6 97.4 97.7 97.4 98.0
FB TLM 98.2 98.1 97.8 98.2 98.0 98.2 97.9 98.0 97.8 98.1
FT TLM 98.4 98.6 98.4 98.1 98.4 98.3 98.2 98.6 98.3 98.6

TF-IDF 91.3 92.5 92.7 91.1 91.8 91.9 91.0 92.6 92.3 91.6
CNN 92.2 93.7 93.9 92.6 93.5 93.3 92.5 94.1 93.8 93.1

Buscapé LSTM 92.1 93.7 93.8 92.6 93.1 93.2 92.8 93.9 93.8 93.3
FB TLM 92.1 93.1 93.0 92.2 93.3 92.9 92.6 94.6 92.8 93.2
FT TLM 93.6 94.2 94.6 93.7 94.5 94.0 94.0 95.0 94.7 94.4

TF-IDF 98.1 98.3 97.9 98.2 98.2 98.0 98.0 98.3 98.2 98.1
CNN 98.8 98.9 98.7 98.8 98.9 98.7 98.7 98.9 98.9 98.8

B2W LSTM 98.9 98.9 98.7 98.9 98.7 98.7 98.7 98.7 98.8 98.8
FB TLM 99.0 99.1 98.9 99.1 99.2 99.0 99.0 99.0 99.0 99.0
FT TLM 99.3 99.4 99.3 99.4 99.5 99.3 99.3 99.4 99.4 99.3

TF-IDF 96.1 96.1 96.1 96.3 96.1 96.0 96.0 96.2 96.1 95.9
CNN 96.9 97.1 96.9 97.1 97.1 97.0 96.9 97.1 97.0 96.8

UTLC-Apps LSTM 97.3 97.3 97.2 97.4 97.3 97.2 97.2 97.3 97.2 97.2
FB TLM 97.1 97.3 97.1 97.3 97.3 97.2 97.1 97.2 97.2 97.1
FT TLM 98.1 98.1 98.0 98.1 98.1 98.0 98.0 98.1 98.1 98.0

TF-IDF 92.8 92.8 92.9 93.0 92.8 92.7 92.8 92.8 92.8 92.9
CNN 93.7 93.7 93.9 93.7 93.7 93.6 93.6 93.8 93.8 93.8

UTLC-Movies LSTM 94.5 94.6 94.7 94.6 94.6 94.4 94.4 94.5 94.6 94.5
FB TLM 92.9 93.0 93.1 92.8 93.0 92.6 92.8 92.9 93.0 92.8
FT TLM 96.2 96.1 96.2 96.2 96.1 96.0 96.1 96.1 96.2 96.2

Table B.2: Friedman Test statistics and p-values obtained with each dataset.
Dataset Test statistic (χ2) P-value

Olist 37.36 1.5e-07
Buscapé 33.52 9.3e-07

B2W 38.00 1.1-07
UTLC-Apps 40.00 4.3-08

UTLC-Movies 38.32 9.6-08

72

Table B.3: Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset Olist and each pairs of models.

Dataset Models Mean difference ROC-AUC Adjusted p-value

FB TLM - CNN 0.4 0.1
FT TLM - CNN 0.7 0.1
LSTM - CNN -0.0 90.0

TF-IDF - CNN -1.1 0.1
Olist FT TLM - FB TLM 0.4 0.1

LSTM - FB TLM -0.4 0.1
TF-IDF - FB TLM -1.5 0.1
LSTM - FT TLM -0.7 0.1

TF-IDF - FT TLM -1.8 0.1
TF-IDF - LSTM -1.1 0.1

Table B.4: Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset Buscapé and each pairs of models.

Dataset Models Mean difference ROC-AUC Adjusted p-value

FB TLM - CNN -0.3 78.4
FT TLM - CNN 1.0 0.4
LSTM - CNN -0.0 90.0

TF-IDF - CNN -1.4 0.1
Buscapé FT TLM - FB TLM 1.3 0.1

LSTM - FB TLM 0.3 86.5
TF-IDF - FB TLM -1.1 0.2
LSTM - FT TLM -1.1 0.3

TF-IDF - FT TLM -2.4 0.1
TF-IDF - LSTM -1.4 0.1

Table B.5: Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset B2W and each pairs of models.

Dataset Models Mean difference ROC-AUC Adjusted p-value

FB TLM - CNN 0.2 0.1
FT TLM - CNN 0.5 0.1
LSTM - CNN -0.0 75.5

TF-IDF - CNN -0.7 0.1
B2W FT TLM - FB TLM 0.3 0.1

LSTM - FB TLM -0.3 0.1
TF-IDF - FB TLM -0.9 0.1
LSTM - FT TLM -0.6 0.1

TF-IDF - FT TLM -1.2 0.1
TF-IDF - LSTM -0.6 0.1

73

Table B.6: Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset UTLC-Apps and each pairs of models.

Dataset Models Mean difference ROC-AUC Adjusted p-value

FB TLM - CNN 0.2 0.1
FT TLM - CNN 1.1 0.1
LSTM - CNN 0.3 0.1

TF-IDF - CNN -0.9 0.1
UTLC-Apps FT TLM - FB TLM 0.9 0.1

LSTM - FB TLM 0.1 34.0
TF-IDF - FB TLM -1.1 0.1
LSTM - FT TLM -0.8 0.1

TF-IDF - FT TLM -2.0 0.1
TF-IDF - LSTM -1.2 0.1

Table B.7: Mean difference in ROC-AUC (%) and Adjusted p-value (%) obtained
through Tukey Test for the dataset UTLC-Movies and each pairs of models.

Dataset Models Mean difference ROC-AUC Adjusted p-value

FB TLM - CNN -0.8 0.1
FT TLM - CNN 2.4 0.1
LSTM - CNN 0.8 0.1

TF-IDF - CNN -0.9 0.1
UTLC-Movies FT TLM - FB TLM 3.3 0.1

LSTM - FB TLM 1.6 0.1
TF-IDF - FB TLM -0.1 53.8
LSTM - FT TLM -1.6 0.1

TF-IDF - FT TLM -3.3 0.1
TF-IDF - LSTM -1.7 0.1

74

References

[1] LIU, B. “Sentiment Analysis and Opinion Mining”, Synthesis Lectures on Hu-
man Language Technologies, v. 5, n. 1, 2012. Available at: <http:

//dx.doi.org/10.2200/S00416ED1V01Y201204HLT016>.

[2] RAO, D., MCMAHAN, B. Natural Language Processing with PyTorch:
Build Intelligent Language Applications Using Deep Learning. USA,
O’Reilly Media, 2019. ISBN: 9781491978184. Available at: <https:

//books.google.com.br/books?id=NsuEDwAAQBAJ>.

[3] EISENSTEIN, J. Introduction to Natural Language Processing. Adaptive Com-
putation and Machine Learning series. USA, MIT Press, 2019. ISBN:
9780262042840.

[4] GOLDBERG, Y. Neural Network Methods for Natural Language Processing,
v. 37, Synthesis Lectures on Human Language Technologies. San Rafael,
CA, Morgan & Claypool, 2017. ISBN: 978-1-62705-298-6. doi: 10.2200/
S00762ED1V01Y201703HLT037.

[5] MINAEE, S., KALCHBRENNER, N., CAMBRIA, E., et al. “Deep Learning
Based Text Classification: A Comprehensive Review”. 2020. Available at:
<https://arxiv.org/abs/2004.03705>.

[6] LI, Q., PENG, H., LI, J., et al. “A Survey on Text Classification: From Shal-
low to Deep Learning”. 2020. Available at: <https://arxiv.org/abs/

2008.00364>.

[7] KOWSARI, MEIMANDI, J., HEIDARYSAFA, et al. “Text Classification Algo-
rithms: A Survey”, Information, v. 10, n. 4, 2019. ISSN: 2078-2489. doi:
10.3390/info10040150.

[8] PEREIRA, D. A. “A survey of sentiment analysis in the Portuguese language”,
Artificial Intelligence Review, v. 54, n. 2, 2020. doi: 10.1007/s10462-020-
09870-1.

75

http://dx.doi.org/10.2200/S00416ED1V01Y201204HLT016
http://dx.doi.org/10.2200/S00416ED1V01Y201204HLT016
https://books.google.com.br/books?id=NsuEDwAAQBAJ
https://books.google.com.br/books?id=NsuEDwAAQBAJ
https://arxiv.org/abs/2004.03705
https://arxiv.org/abs/2008.00364
https://arxiv.org/abs/2008.00364

[9] ICMC-USP. “Opinion Mining for Portuguese”. 2019. Available at: <https:

//sites.google.com/icmc.usp.br/opinando/pÃągina-inicial>.

[10] VALDIVIA, A., OTHERS. “Consensus vote models for detecting and fil-
tering neutrality in Sentiment Analysis”, Information Fusion, v. 44,
2018. ISSN: 1566-2535. doi: https://doi.org/10.1016/j.inffus.2018.03.007.
Available at: <https://www.sciencedirect.com/science/article/

pii/S1566253517306590>.

[11] KOPPEL, M., SCHLER, J. “The importance of neutral examples for learning
sentiment”, Workshop on the Analysis of Informal and Formal Informa-
tion Exchange During Negotiations (FINEXIN), 2005.

[12] MEDHAT, W., HASSAN, A., KORASHY, H. “Sentiment analysis algorithms
and applications: A survey”, Ain Shams Engineering Journal, v. 5, n. 4,
pp. 1093–1113, 2014. ISSN: 2090-4479. doi: https://doi.org/10.1016/
j.asej.2014.04.011. Available at: <https://www.sciencedirect.com/

science/article/pii/S2090447914000550>.

[13] KRIZHEVSKY, A., SUTSKEVER, I., HINTON, G. E. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Pereira, F., Burges,
C. J. C., Bottou, L., et al. (Eds.), Advances in Neural Information Pro-
cessing Systems 25, Curran Associates, Inc., pp. 1097–1105, 2012.

[14] SPARCK JONES, K. “A Statistical Interpretation of Term Specificity and Its
Application in Retrieval”. In: Document Retrieval Systems, p. 132–142,
GBR, Taylor Graham Publishing, 1988. ISBN: 0947568212.

[15] RAJARAMAN, A., ULLMAN, J. D. “Data Mining”, Mining of Massive
Datasets, p. 1–17, 2011. doi: 10.1017/CBO9781139058452.002.

[16] MIHI, S., OTHERS. “A Comparative Study of Feature Selection Methods for
Informal Arabic”, Innovation in Information Systems and Technologies to
Support Learning Research, 2020.

[17] LANDAUER, T. K., FOLTZ, P. W., LAHAM, D. “An introduction to latent
semantic analysis”, Discourse Processes, v. 25, n. 2-3, pp. 259–284, 1998.
Available at: <https://doi.org/10.1080/01638539809545028>.

[18] ZHANG, X., ZHAO, J., LECUN, Y. “Character-level Convolutional Networks
for Text Classification”, Advances in Neural Information Processing Sys-
tems, 2016. Available at: <https://proceedings.neurips.cc/paper/

2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf>.

76

https://sites.google.com/icmc.usp.br/opinando/página-inicial
https://sites.google.com/icmc.usp.br/opinando/página-inicial
https://www.sciencedirect.com/science/article/pii/S1566253517306590
https://www.sciencedirect.com/science/article/pii/S1566253517306590
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://doi.org/10.1080/01638539809545028
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

[19] CHAUBARD, F., FANG, M., GENTHIAL, G., et al. “Word Vec-
tors I: Introduction, SVD and Word2Vec”. 2019. Available at:
<http://web.stanford.edu/class/cs224n/readings/cs224n-2019-

notes01-wordvecs1.pdf>.

[20] COLLOBERT, R., WESTON, J., BOTTOU, L., et al. “Natural Language
Processing (Almost) from Scratch”, J. Mach. Learn. Res., v. 999888,
pp. 2493–2537, nov 2011. ISSN: 1532-4435. Available at: <http://

dl.acm.org/citation.cfm?id=2078183.2078186>.

[21] MIKOLOV, T., CHEN, K., CORRADO, G., et al. “Efficient Estimation of
Word Representations in Vector Space”, 1st International Conference on
Learning Representations, ICLR, 2013.

[22] PENNINGTON, J., SOCHER, R., MANNING, C. D. “Glove: Global vectors
for word representation”, EMNLP, 2014.

[23] MUNDRA, R., PENG, E., SOCHER, R., et al. “Word Vectors II: GloVe, Eval-
uation and Training”. 2019. Available at: <http://web.stanford.edu/

class/cs224n/readings/cs224n-2019-notes02-wordvecs2.pdf>.

[24] BOJANOWSKI, P., GRAVE, E., JOULIN, A., et al. “Enriching Word Vectors
with Subword Information”, CoRR, v. abs/1607.04606, 2016. Available
at: <http://arxiv.org/abs/1607.04606>.

[25] LEVY, O., GOLDBERG, Y. “Neural Word Embedding as Implicit Matrix
Factorization”, Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, 2014.

[26] SINGH, P., MUKERJEE, A. “Words are not Equal: Graded Weighting Model
for Building Composite Document Vectors”. In: Proceedings of the 12th
International Conference on Natural Language Processing, pp. 11–19,
Trivandrum, India, dec 2015. NLP Association of India. Available at:
<https://aclanthology.org/W15-5903>.

[27] ARORA, S., LIANG, Y., MA, T. “A Simple but Tough-to-Beat Baseline for
Sentence Embeddings”. In: International Conference on Learning Rep-
resentations, 2017. Available at: <https://openreview.net/forum?id=

SyK00v5xx>.

[28] GUPTA, V., KARNICK, H., BANSAL, A., et al. “Product Classifica-
tion in E-Commerce using Distributional Semantics”. In: Proceedings
of COLING 2016, the 26th International Conference on Computational

77

http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.pdf
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.pdf
http://dl.acm.org/citation.cfm?id=2078183.2078186
http://dl.acm.org/citation.cfm?id=2078183.2078186
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes02-wordvecs2.pdf
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes02-wordvecs2.pdf
http://arxiv.org/abs/1607.04606
https://aclanthology.org/W15-5903
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx

Linguistics: Technical Papers, pp. 536–546, Osaka, Japan, dec 2016.
The COLING 2016 Organizing Committee. Available at: <https:

//aclanthology.org/C16-1052>.

[29] MEKALA, D., GUPTA, V., PARANJAPE, B., et al. “SCDV : Sparse Com-
posite Document Vectors using soft clustering over distributional repre-
sentations”. In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pp. 659–669, Copenhagen, Denmark, sep
2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-
1069. Available at: <https://aclanthology.org/D17-1069>.

[30] GUPTA, V., SAW, A., NOKHIZ, P., et al. “P-SIF: Document Embed-
dings Using Partition Averaging”, The Thirty-Fourth AAAI Conference
on Artificial Intelligence, 2020. Available at: <https://aaai.org/ojs/

index.php/AAAI/article/view/6292>.

[31] LE, Q., MIKOLOV, T. “Distributed Representations of Sentences and Docu-
ments”. In: Xing, E. P., Jebara, T. (Eds.), Proceedings of the 31st Interna-
tional Conference on Machine Learning, Proceedings of Machine Learning
Research, pp. 1188–1196, Bejing, China, 22–24 Jun 2014. PMLR. Avail-
able at: <https://proceedings.mlr.press/v32/le14.html>.

[32] LIU, P., QIU, X., HUANG, X. “Learning Context-Sensitive Word Embeddings
with Neural Tensor Skip-Gram Model”, Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence, 2015.

[33] ELMAN, J. L. “Finding structure in time”, Cognitive Science, v. 14, pp. 213–
252, 1990.

[34] MOHAMMADI, M., MUNDRA, R., SOCHER, R., et al. “Language Models,
RNN, GRU and LSTM”. 2019. Available at: <http://web.stanford.edu/

class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf>.

[35] CHOLLET, F. Deep Learning with Python. 1st ed. USA, Manning Publications
Co., 2017. ISBN: 1617294438.

[36] HOCHREITER, S., SCHMIDHUBER, J. “Long Short-Term Memory”, Neural
Computation, v. 9, n. 8, pp. 1735–1780, 1997.

[37] LIU, P., QIU, X., HUANG, X. “Recurrent Neural Network for Text Classifica-
tion with Multi-Task Learning”, Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, 2016.

78

https://aclanthology.org/C16-1052
https://aclanthology.org/C16-1052
https://aclanthology.org/D17-1069
https://aaai.org/ojs/index.php/AAAI/article/view/6292
https://aaai.org/ojs/index.php/AAAI/article/view/6292
https://proceedings.mlr.press/v32/le14.html
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf

[38] NOWAK, J., TASPINAR, A., SCHERER, R. “LSTM Recurrent Neural Net-
works for Short Text and Sentiment Classification”, Artificial Intelligence
and Soft Computing, 2017.

[39] WANG, J.-H., LIU, T.-W., LUO, X., et al. “An LSTM Approach to Short
Text Sentiment Classification with Word Embeddings”. In: Proceedings of
the 30th Conference on Computational Linguistics and Speech Processing
(ROCLING 2018), pp. 214–223, Hsinchu, Taiwan, oct 2018. The Asso-
ciation for Computational Linguistics and Chinese Language Processing
(ACLCLP). Available at: <https://aclanthology.org/O18-1021>.

[40] LECUN, Y., BOTTOU, L., BENGIO, Y., et al. “Gradient-based learning ap-
plied to document recognition”, Proceedings of the IEEE, v. 86, n. 11,
pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[41] MANNING, C. “Lecture 16: ConvNets for NLP and Tree Recursive Neural Net-
works”. 2022. Available at: <http://web.stanford.edu/class/cs224n/

slides/cs224n-2022-lecture16-CNN-TreeRNN.pdf>.

[42] KIM, Y. “Convolutional Neural Networks for sentence classification”. In: Pro-
ceedings of the 2014 EMNLP, Doha, Qatar, oct 2014. Association for
Computational Linguistics. Available at: <https://aclanthology.org/

D14-1181>.

[43] ZHANG, Y., WALLACE, B. “A Sensitivity Analysis of (and Practitioners’
Guide to) Convolutional Neural Networks for Sentence Classification”. In:
Proceedings of the Eighth International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pp. 253–263, Taipei, Taiwan,
nov 2017. Asian Federation of Natural Language Processing. Available at:
<https://aclanthology.org/I17-1026>.

[44] CONNEAU, A., SCHWENK, H., BARRAULT, L., et al. “Very Deep Convo-
lutional Networks for Text Classification”, Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, apr 2017. Available at: <https:

//aclanthology.org/E17-1104>.

[45] ZHOU, C., SUN, C., LIU, Z., et al. “A C-LSTM Neural Network for Text Clas-
sification”. 2015. Available at: <https://arxiv.org/abs/1511.08630>.

[46] LEE, J. Y., DERNONCOURT, F. “Sequential Short-Text Classifica-
tion with Recurrent and Convolutional Neural Networks”, CoRR,

79

https://aclanthology.org/O18-1021
http://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture16-CNN-TreeRNN.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture16-CNN-TreeRNN.pdf
https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
https://aclanthology.org/I17-1026
https://aclanthology.org/E17-1104
https://aclanthology.org/E17-1104
https://arxiv.org/abs/1511.08630

v. abs/1603.03827, 2016. Available at: <http://arxiv.org/abs/

1603.03827>.

[47] BRADBURY, J., MERITY, S., XIONG, C., et al. “Quasi-Recurrent Neural
Networks”, International Conference on Learning Representations, 2017.
Available at: <https://openreview.net/forum?id=H1zJ-v5xl>.

[48] WU, Z., PAN, S., CHEN, F., et al. “A Comprehensive Survey on Graph
Neural Networks”, IEEE Transactions on Neural Networks and Learn-
ing Systems, v. 32, n. 1, pp. 4–24, Jan 2021. ISSN: 2162-2388.
doi: 10.1109/tnnls.2020.2978386. Available at: <http://dx.doi.org/

10.1109/TNNLS.2020.2978386>.

[49] GORI, M., MONFARDINI, G., SCARSELLI, F. “A new model for learning in
graph domains”, Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., 2005. doi: 10.1109/IJCNN.2005.1555942.

[50] SCARSELLI, F., GORI, M., TSOI, A. C., et al. “The Graph Neural Network
Model”, IEEE Transactions on Neural Networks, v. 20, n. 1, pp. 61–80,
2009. doi: 10.1109/TNN.2008.2005605.

[51] PENG, H., LI, J., HE, Y., et al. “Large-Scale Hierarchical Text Classification
with Recursively Regularized Deep Graph-CNN”, Proceedings of the 2018
World Wide Web Conference, 2018. doi: 10.1145/3178876.3186005.

[52] YAO, L., MAO, C., LUO, Y. “Graph Convolutional Networks for Text Clas-
sification”, Proceedings of the Thirty-Third AAAI Conference on Ar-
tificial Intelligence, 2019. Available at: <https://doi.org/10.1609/

aaai.v33i01.33017370>.

[53] GENTHIAL, G., LIU, L., OSHRI, B., et al. “Neural Machine Trans-
lation, Seq2seq and Attention”. 2019. Available at: <http:

//web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-

NMT_seq2seq_attention.pdf>.

[54] BAHDANAU, D., CHO, K., BENGIO, Y. “Neural Machine Translation by
Jointly Learning to Align and Translate”, 3rd International Conference
on Learning Representations, ICLR 2015, 2015. Available at: <http:

//arxiv.org/abs/1409.0473>.

[55] CHAUDHARI, S., MITHAL, V., POLATKAN, G., et al. “An Attentive Survey
of Attention Models”. 2019. Available at: <https://arxiv.org/abs/

1904.02874>.

80

http://arxiv.org/abs/1603.03827
http://arxiv.org/abs/1603.03827
https://openreview.net/forum?id=H1zJ-v5xl
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1609/aaai.v33i01.33017370
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1904.02874
https://arxiv.org/abs/1904.02874

[56] MANNING, C. “Lecture 7: Machine Translation, Sequence-to-Sequence and
Attention”. 2021. Available at: <http://web.stanford.edu/class/

cs224n/slides/cs224n-2021-lecture07-nmt.pdf>.

[57] ARIK, S. O., PFISTER, T. “TabNet: Attentive Interpretable Tabular Learn-
ing”, Proceedings of the AAAI Conference on Artificial Intelligence, v. 35,
n. 8, 2021. doi: 10.1609/aaai.v35i8.16826. Available at: <https:

//ojs.aaai.org/index.php/AAAI/article/view/16826>.

[58] WANG, Y., HUANG, M., ZHU, X., et al. “Attention-based LSTM for Aspect-
level Sentiment Classification”. In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 606–615, nov
2016. Available at: <https://aclanthology.org/D16-1058>.

[59] LIU, G., GUO, J. “Bidirectional LSTM with attention mechanism and con-
volutional layer for text classification”, Neurocomputing, v. 337, pp. 325–
338, 2019. Available at: <https://www.sciencedirect.com/science/

article/pii/S0925231219301067>.

[60] YANG, Z., YANG, D., DYER, C., et al. “Hierarchical Attention Networks for
Document Classification”. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 1480–1489, San Diego, Califor-
nia, jun 2016. Association for Computational Linguistics. doi: 10.18653/
v1/N16-1174. Available at: <https://aclanthology.org/N16-1174>.

[61] MIN, B., ROSS, H., SULEM, E., et al. “Recent Advances in Natural Language
Processing via Large Pre-Trained Language Models: A Survey”, 2021.
Available at: <https://arxiv.org/abs/2111.01243>.

[62] VASWANI, A., SHAZEER, N., PARMAR, N., et al. “Attention is All You
Need”, Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, p. 6000–6010, 2017.

[63] RUDER, S. “NLP’s ImageNet moment has arrived”. https://ruder.io/nlp-
imagenet/, 2018. Acesso em: November 8th, 2022.

[64] ROTHMAN, D. Transformers for Natural Language Processing: Build In-
novative Deep Neural Network Architectures for NLP with Python, Py-
Torch, TensorFlow, BERT, RoBERTa, and More. Packt Publishing, 2021.
ISBN: 9781800565791. Available at: <https://books.google.com.br/

books?id=Ua03zgEACAAJ>.

81

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16826
https://ojs.aaai.org/index.php/AAAI/article/view/16826
https://aclanthology.org/D16-1058
https://www.sciencedirect.com/science/article/pii/S0925231219301067
https://www.sciencedirect.com/science/article/pii/S0925231219301067
https://aclanthology.org/N16-1174
https://arxiv.org/abs/2111.01243
https://ruder.io/nlp-imagenet/
https://ruder.io/nlp-imagenet/
https://books.google.com.br/books?id=Ua03zgEACAAJ
https://books.google.com.br/books?id=Ua03zgEACAAJ

[65] ALAMMAR, J. “The Illustrated Transformer”. 2018. Available at: <http:

//jalammar.github.io/illustrated-transformer/>.

[66] PETERS, M. E., NEUMANN, M., IYYER, M., et al. “Deep Contextual-
ized Word Representations”. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), New
Orleans, Louisiana, jun 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1202. Available at: <https://aclanthology.org/

N18-1202>.

[67] KHAN, S., NASEER, M., HAYAT, M., et al. “Transformers in Vision: A
Survey”, ACM Computing Surveys, v. 54, n. 10s, pp. 1–41, 2022. Available
at: <https://doi.org/10.1145%2F3505244>.

[68] RADFORD, A., NARASIMHAN, K. “Improving Language Understand-
ing by Generative Pre-Training”, 2018. Available at: <https:

//s3-us-west-2.amazonaws.com/openai-assets/research-covers/

language-unsupervised/language_understanding_paper.pdf>.

[69] RADFORD, A., WU, J., CHILD, R., et al. “Language Mod-
els are Unsupervised Multitask Learners”, 2019. Available at:
<https://d4mucfpksywv.cloudfront.net/better-language-models/

language-models.pdf>.

[70] BROWN, T., MANN, B., RYDER, N., et al. “Language Models are Few-Shot
Learners”, Advances in Neural Information Processing Systems, pp. 1877–
1901, 2020. Available at: <https://proceedings.neurips.cc/paper/

2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf>.

[71] DEVLIN, J., CHANG, M.-W., LEE, K., et al. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4171–4186, jun 2019. Available at: <https:

//aclanthology.org/N19-1423>.

[72] LEWIS, M., LIU, Y., GOYAL, N., et al. “BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation,
and Comprehension”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 7871–7880, Online, jul
2020. Association for Computational Linguistics. Available at: <https:

//aclanthology.org/2020.acl-main.703>.

82

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://aclanthology.org/N18-1202
https://aclanthology.org/N18-1202
https://doi.org/10.1145%2F3505244
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703

[73] LIU, Y., OTT, M., GOYAL, N., et al. “RoBERTa: A Robustly Optimized
BERT Pretraining Approach”. 2019. Available at: <https://arxiv.org/

abs/1907.11692>.

[74] RAFFEL, C., SHAZEER, N., ROBERTS, A., et al. “Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer”, Journal of
Machine Learning Research, v. 21, n. 140, pp. 1–67, 2020. Available at:
<http://jmlr.org/papers/v21/20-074.html>.

[75] ALVI, A., KHARYA, P. “Using DeepSpeed and Megatron to Train Megatron-
Turing NLG 530B, the World’s Largest and Most Powerful Generative
Language Model”. https://www.microsoft.com/en-us/research/

blog/using-deepspeed-and-megatron-to-train-megatron-turing-

nlg-530b-the-worlds-largest-and-most-powerful-generative-

language-model/, Oct 2021.

[76] CONNEAU, A., KHANDELWAL, K., GOYAL, N., et al. “Unsupervised Cross-
lingual Representation Learning at Scale”. In: Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pp. 8440–
8451, jul 2020. Available at: <https://aclanthology.org/2020.acl-

main.747>.

[77] BENDER, E. M., GEBRU, T., MCMILLAN-MAJOR, A., et al. “On the
Dangers of Stochastic Parrots: Can Language Models Be Too Big?”
In: Proceedings of the 2021 ACM Conference on Fairness, Accountabil-
ity, and Transparency, FAccT ’21, p. 610–623, New York, NY, USA,
2021. Association for Computing Machinery. ISBN: 9781450383097. doi:
10.1145/3442188.3445922. Available at: <https://doi.org/10.1145/

3442188.3445922>.

[78] SOUZA, F., NOGUEIRA, R., LOTUFO, R. “BERTimbau: pretrained BERT
models for Brazilian Portuguese”, 9th Brazilian Conference on Intelligent
Systems, BRACIS, Rio Grande do Sul, Brazil, October 20-23 (to appear),
2020.

[79] WAGNER FILHO, J. A., WILKENS, R., IDIART, M., et al. “The brWaC
Corpus: A New Open Resource for Brazilian Portuguese”. In: Proceed-
ings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan, may 2018. European
Language Resources Association (ELRA). Available at: <https://

aclanthology.org/L18-1686>.

83

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://jmlr.org/papers/v21/20-074.html
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://aclanthology.org/L18-1686
https://aclanthology.org/L18-1686

[80] LOPES, E., CORREA, U., FREITAS, L. “Exploring BERT for Aspect Ex-
traction in Portuguese Language”, The International FLAIRS Conference
Proceedings, v. 34, Apr. 2021. doi: 10.32473/flairs.v34i1.128357. Available
at: <https://journals.flvc.org/FLAIRS/article/view/128357>.

[81] LEITE, J. A., SILVA, D. F., BONTCHEVA, K., et al. “Toxic Language
Detection in Social Media for Brazilian Portuguese: New Dataset and
Multilingual Analysis”, CoRR, v. abs/2010.04543, 2020. Available at:
<https://arxiv.org/abs/2010.04543>.

[82] JIANG, S., CHEN, C., LIN, N., et al. “Irony Detection in the Portuguese
Language using BERT”, Iberian Languages Evaluation Forum 2021, 2021.

[83] NETO, A., OSTI, B., AZEVEDO, C., et al. “SiDi-NLP-Team at IDPT2021:
Irony Detection in Portuguese 2021”, Iberian Languages Evaluation
Forum 2021, 2021. Available at: <http://ceur-ws.org/Vol-2943/

idpt_paper6.pdf>.

[84] CARRICO, N., QUARESMA, P. “Sentence Embeddings and Sentence Similar-
ity for Portuguese FAQs”. In: IberSPEECH 2021, pp. 200–204, 03 2021.

[85] FEIJO, D. D. V., MOREIRA, V. P. “Mono vs Multilingual Transformer-based
Models: a Comparison across Several Language Tasks”. 2020. Available
at: <https://arxiv.org/abs/2007.09757>.

[86] FINARDI, P., VIEGAS, J. D., FERREIRA, G. T., et al. “BERTaú: Itaú BERT
for digital customer service”. 2021. Available at: <https://arxiv.org/

abs/2101.12015>.

[87] CARMO, D., PIAU, M., CAMPIOTTI, I., et al. “PTT5: Pretraining and
validating the T5 model on Brazilian Portuguese data”. 2020. Available
at: <https://arxiv.org/abs/2008.09144>.

[88] OLIST. “Brazilian E-Commerce Public Dataset by Olist”. Nov 2018. Available
at: <https://www.kaggle.com/olistbr/brazilian-ecommerce>.

[89] REAL, L., OSHIRO, M., MAFRA, A. “B2W-Reviews01 - An open product
reviews corpus”, STIL - Symposium in Information and Human Language
Technology, 2019. Available at: <https://github.com/b2wdigital/

b2w-reviews01>.

[90] HARTMANN, N., AVANÇO, L., BALAGE, P., et al. “A Large Corpus of
Product Reviews in Portuguese: Tackling Out-Of-Vocabulary Words”. In:
Proceedings of the Ninth International Conference on Language Resources

84

https://journals.flvc.org/FLAIRS/article/view/128357
https://arxiv.org/abs/2010.04543
http://ceur-ws.org/Vol-2943/idpt_paper6.pdf
http://ceur-ws.org/Vol-2943/idpt_paper6.pdf
https://arxiv.org/abs/2007.09757
https://arxiv.org/abs/2101.12015
https://arxiv.org/abs/2101.12015
https://arxiv.org/abs/2008.09144
https://www.kaggle.com/olistbr/brazilian-ecommerce
https://github.com/b2wdigital/b2w-reviews01
https://github.com/b2wdigital/b2w-reviews01

and Evaluation (LREC’14), Reykjavik, Iceland, may 2014. European Lan-
guage Resources Association (ELRA).

[91] SOUSA, R. F. D., BRUM, H. B., NUNES, M. D. G. V. “A bunch of helpfulness
and sentiment corpora in brazilian portuguese”, Symposium in Informa-
tion and Human Language Technology - STIL, 2019.

[92] Núcleo Interinstitucional de Linguística Computacional. “Repositório de
Word Embeddings do NILC”. 2017. Available at: <http://

www.nilc.icmc.usp.br/embeddings>.

[93] WOLF, T., DEBUT, L., SANH, V., et al. “Transformers: State-of-the-Art
Natural Language Processing”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstra-
tions, pp. 38–45, oct 2020. Available at: <https://aclanthology.org/

2020.emnlp-demos.6>.

[94] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., et al. “Scikit-learn:
Machine Learning in Python”, Journal of Machine Learning Research,
v. 12, pp. 2825–2830, 2011.

[95] JAY ALAMMAR. “A visual guide to using BERT for the first time”. 2019. Avail-
able at: <https://jalammar.github.io/a-visual-guide-to-using-

bert-for-the-first-time/>.

[96] SUN, C., QIU, X., XU, Y., et al. “How to Fine-Tune BERT for Text Classifi-
cation?” In: Sun, M., Huang, X., Ji, H., et al. (Eds.), Chinese Computa-
tional Linguistics, pp. 194–206. Springer International Publishing, 2019.

[97] KE, G., MENG, Q., FINLEY, T., et al. “LightGBM: A Highly Efficient Gra-
dient Boosting Decision Tree”, Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, 2017.

[98] DEMŠAR, J. “Statistical Comparisons of Classifiers over Multiple Data Sets”,
JMLR, v. 7, pp. 1–30, dec 2006. ISSN: 1532-4435.

[99] FREITAS, C., MOTTA, E., MILIDIÚ, R., et al. “Sparkling Vampire... lol!
Annotating Opinions in a Book Review Corpus”. pp. 128–146, 01 2014.
ISBN: 978-1443853774.

[100] BRUM, H., DAS GRAÇAS VOLPE NUNES, M. “Building a Sentiment Cor-
pus of Tweets in Brazilian Portuguese”. In: Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC

85

http://www.nilc.icmc.usp.br/embeddings
http://www.nilc.icmc.usp.br/embeddings
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

2018), Miyazaki, Japan, May 7-12, 2018 2018. European Language Re-
sources Association (ELRA). ISBN: 979-10-95546-00-9.

[101] DE SOUZA, J. G. R., DE PAIVA OLIVEIRA, A., MOREIRA, A. “Develop-
ment of a Brazilian Portuguese Hotel’s Reviews Corpus”. In: Computa-
tional Processing of the Portuguese Language, pp. 353–361, Cham, 2018.
Springer International Publishing. ISBN: 978-3-319-99722-3.

[102] XU, L., LIU, J., PAN, X., et al. “DataCLUE: A Benchmark Suite for
Data-centric NLP”. 2021. Available at: <https://arxiv.org/abs/

2111.08647>.

[103] Google Research. “BERT”. https://github.com/google-research/bert,
2019.

[104] HOWARD, J., RUDER, S. “Universal Language Model Fine-tuning for
Text Classification”. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pp. 328–339, Melbourne, Australia, jul 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P18-1031. Available at: <https:

//aclanthology.org/P18-1031>.

[105] IYYER, M., MANJUNATHA, V., BOYD-GRABER, J., et al. “Deep Un-
ordered Composition Rivals Syntactic Methods for Text Classification”.
In: Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), pp. 1681–1691, Bei-
jing, China, jul 2015. Association for Computational Linguistics. doi:
10.3115/v1/P15-1162.

[106] ZHOU, P., QI, Z., ZHENG, S., et al. “Text Classification Improved by Integrat-
ing Bidirectional LSTM with Two-dimensional Max Pooling.” COLING,
2016.

[107] LO, S. L., CAMBRIA, E., CHIONG, R., et al. “Multilingual sentiment anal-
ysis: from formal to informal and scarce resource languages”, Artificial
Intelligence Review, v. 48, n. 4, pp. 499–527, 2016. doi: 10.1007/s10462-
016-9508-4.

[108] HUGGING FACE. “Pretrained models”. 2019. Available at: <https:

//huggingface.co/transformers/v2.4.0/pretrained_models.html>.

86

https://arxiv.org/abs/2111.08647
https://arxiv.org/abs/2111.08647
https://github.com/google-research/bert
https://aclanthology.org/P18-1031
https://aclanthology.org/P18-1031
https://huggingface.co/transformers/v2.4.0/pretrained_models.html
https://huggingface.co/transformers/v2.4.0/pretrained_models.html

[109] SOUZA, F. D., SOUZA FILHO, J. B. O. “Sentiment Analysis on Brazil-
ian Portuguese User Reviews”. In: IEEE Latin American Conference
on Computational Intelligence (LA-CCI), 2021. doi: 10.1109/LA-
CCI48322.2021.9769838.

[110] SOUZA, F. D., SOUZA FILHO, J. B. O. “BERT for Sentiment Analysis:
Pre-Trained and Fine-Tuned Alternatives”. In: Computational Processing
of the Portuguese Language (PROPOR), 2022. doi: 10.1007/978-3-030-
98305-5_20.

87

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Natural Language Processing and Machine Learning
	Research Hypotheses
	Objectives and Contributions
	Thesis Outline

	Bibliographic Review
	Text Classification and Sentiment Analysis
	Automatic Text Classification with ML
	Bag-of-Words
	TF-IDF
	Word Vectors
	Document Embeddings composed by Word Vectors
	Recurrent Neural Networks
	Convolutional Neural Networks
	Recurrent and Convolutional Neural Networks
	Graph Neural Networks
	Attention

	Transformers
	Vanilla Transformers
	Transformer-based Large Language Models
	Brazilian Portuguese TLMs

	Datasets
	Dataset Collection
	Olist
	B2W
	Buscapé
	UTLC-Apps and UTLC-Movies

	Preprocessing and Analysis

	Text Classification Pipeline
	Text pre-processing and tokenization
	Vocabulary Formation
	Pre-trained Resources
	Embeddings generation
	Bag-of-Words
	Classical Deep Learning
	Transformer-based Large Language Models
	Classifiers
	Training Procedure
	Hyperparameter tuning
	Computational resources

	Results and Discussion
	Accessing models' performance
	Bag-of-Words
	Classical Deep Learning
	Convolutional Neural Network
	Recurrent Neural Networks

	Feature-Based Large Language Models
	Fine-tuned Large Language Models
	Statistical Models' Comparison
	Qualitative Analysis
	Olist
	UTLC-Movies
	Overall Comments

	Conclusions and Next Steps
	Conclusions
	Next Steps

	Academic Publications
	Statistical Models’ Comparison
	References

