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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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RASTREAMENTO DE FONTES SONORAS POR MEIO DE ARRANJOS DE
MICROFONES E APRENDIZAGEM PROFUNDA

Eduardo Alves da Silva

Setembro/2022

Orientador: Luiz Wagner Pereira Biscainho

Programa: Engenharia Elétrica

A irrupção de aplicações como alto-falantes inteligentes, robótica para interação
humana, dentre outras, gerou uma pressão pelo desenvolvimento de técnicas mais
avançadas de processamento de sinais de áudio e aprendizagem de máquina. Dezenas
de sistemas capazes de realizar localização e rastreamento de fontes sonoras surgi-
ram. Neste trabalho, apresentamos uma técnica nova, chamada Spectral Cross3D,
inspirada em técnicas preexistentes de processamento de sinais de arranjos de micro-
fones e aprendizagem profunda, para o rastreamento de fontes acústicas. A partir
da combinação do clássico método de estimação de direção de chegada MUSIC com
uma rede neural convolucional, foi possível obter uma nova abordagem capaz de
obter resultados competitivos com arquiteturas do estado da arte.

Esse trabalho se divide em duas partes. Na primeira, a teoria acerca do proces-
samento de sinais de arranjos de microfones é introduzida, juntamente com métodos
de localização e rastreamento de fontes sonoras clássicos. Em seguida, o sistema pro-
posto é apresentado, os experimentos conduzidos para sua avaliação são explicados
e, por fim, os resultados são discutidos.
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SOUND SOURCE TRACKING USING MICROPHONE ARRAYS AND DEEP
LEARNING

Eduardo Alves da Silva

September/2022
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Department: Electrical Engineering

The explosion of applications such as intelligent speakers, human-robot interac-
tion and many others have driven the development of more advanced techniques of
audio signal processing and machine learning. Dozens of systems capable of per-
forming sound source localization and tracking were brought to light. In this work,
we present a novel technique, called Spectral Cross3D, inspired by existing tech-
niques of microphone array signal processing and deep learning for acoustic source
tracking. From the combination of the classical MUSIC direction-of-arrival estima-
tor with a convolutional neural network, it was possible to obtain a new approach
that achieves results competitive with those of state-of-the-art architectures.

This work is divided into two parts. First, the theory around microphone array
signal processing is introduced, along with the classical methods for sound source
localization and tracking. Next, the proposed system is presented, the experiments
designed to evaluate it are explained and, finally, the results of these experiments
are discussed.

vii



Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Signal Model 3
2.1 Microphone array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Single Sound Source . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Multiple sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Reverberation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Sound source localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Sound source tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Classical Solutions for Sound Source Localization 10
3.1 TDOA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Generalizations to the Cross-Correlation . . . . . . . . . . . . . 11
3.1.3 Least Squares Estimation of Source Position . . . . . . . . . . . 12

3.2 Steered Response Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Other Subspace Methods . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Neural Networks for SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Logistic Regression and Linear Models . . . . . . . . . . . . . . 18
3.4.2 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Input Features and Output Formats . . . . . . . . . . . . . . . . 22
3.4.4 Example: MUSIC-DNN . . . . . . . . . . . . . . . . . . . . . . . 23

viii



4 Classical Solutions for Tracking 24
4.1 Bayesian Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Neural Networks for Tracking . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 29
4.2.3 Example: Cross3D . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Proposed Solution: Spectral Cross3D 37
5.1 Preprocessing stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 MUSIC Power Map Calculations . . . . . . . . . . . . . . . . . . 37
5.1.2 Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Experiments and Results 42
6.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.1 Microphone Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.2 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.3 Trajectory Generation . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.4 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.5 Voice Activity Detector . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Neural Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.2 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.3 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.1 Training time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.2 LibriSpeech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.4 Final Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.5 LOCATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusions 52
7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References 54

ix



List of Figures

2.1 Microphone array, comprised of 4 microphones. . . . . . . . . . . . . . 4
2.2 Definition of the azimuth (θ) and elevation (ϕ) angles. . . . . . . . . . 5
2.3 Diagram of a wave front hitting a 3-microphone uniform linear array. 6

3.1 Logistic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Sign and Hyperbolic Tangent functions. . . . . . . . . . . . . . . . . . . 19
3.3 Graphical diagram of the linear model. . . . . . . . . . . . . . . . . . . . 20
3.4 Graphical diagram of a neural network. . . . . . . . . . . . . . . . . . . 20
3.5 ReLU and different variations of the PReLU. . . . . . . . . . . . . . . . 22

4.1 Graphical diagrams of RNN. . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Graphical diagram of RNN unfolded. . . . . . . . . . . . . . . . . . . . . 29
4.3 Graphical description of the feature maps and weights in a convolu-

tional layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Graphical description of the convolutional procedure of the CNN. . . 31
4.5 Graphical description of the pooling procedure of the CNN. . . . . . . 31
4.6 Graphical description of the padding procedure. . . . . . . . . . . . . . 32
4.7 Graphical description of the stride parameter. . . . . . . . . . . . . . . 33
4.8 Graphical description of grouped convolutions. . . . . . . . . . . . . . . 34
4.9 Graphical description of dilated convolutions. . . . . . . . . . . . . . . . 34
4.10 Graphical description of the preprocessing procedure in Cross3D. . . . 35
4.11 Graphical description of the neural network architecture in Cross3D. . 36

5.1 Maps generated using the SRP-PHAT and the MUSIC methods. . . . 38
5.2 Graphical description of the pre-processing procedure in Spectral

Cross3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Graphical description of the neural network architecture in Spectral

Cross3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Comparison of the RMSAE attained by the original Cross3D and its
retrained version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



6.2 Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 30 dB. . . . . . . . . . . . . . 48

6.3 Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 15 dB. . . . . . . . . . . . . . 48

6.4 Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 5 dB. . . . . . . . . . . . . . . 49

6.5 Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 0 dB. . . . . . . . . . . . . . . 49

6.6 Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of −5 dB. . . . . . . . . . . . . . 50

6.7 Example of C3D* and SpC3D_1 in an acoustic scene. . . . . . . . . . 50
6.8 Comparison of the RMSAE attained with the retrained Cross3D and

the Spectral Cross3D with the full spectrum. . . . . . . . . . . . . . . . 51

xi



List of Tables

6.1 Specification of the simulated rooms. . . . . . . . . . . . . . . . . . . . . 43
6.2 Number of parameters in Cross3D and Spectral Cross3D architectures. 45
6.3 Mean Absolute Azimuthal Error in the LOCATA Challenge dataset. . 51

xii



Chapter 1

Introduction

The ability to localize multiple sound sources is innate to humans. Being able to
identify, through audition, the correct position of prey, predators or any source of
imminent danger was crucial for the success of our species. Also, whenever we see
ourselves in an environment where multiple speakers are present, spatial information
is often necessary to perform proper sound source segregation. Thus, it makes sense
that there is a strong desire to replicate this capacity in computational systems.
This has led to studies in the area of microphone array signal processing [1, 2], with
the goal of performing sound source localization. Moreover, applications such as
human-robot interaction [3], acoustic navigation [4], audio based surveillance [5],
and intelligent speakers [6] started to be discussed and developed.

When we consider scenarios of multiple sound sources, moving sound sources,
moving microphones, or high levels of noise and reverberation, it becomes clear that
the problem at hand is rather complex. The recent success of deep learning [7] for
supervised tasks has made it clear that exploring their applicability for this task
is a viable path to tackle more challenging situations. As a result, many different
approaches using deep learning for acoustic source tracking were developed.

1.1 Objectives

This project has two main goals. The first objective is to study both classical and
more recent machine learning based approaches to sound source localization and
tracking. More specifically, this text is intended to become a gentle introduction to
these topics, for people looking forward to working with acoustic localization. The
second objective is to develop a novel system capable of performing sound source
tracking, specifically for the case of single speech source. It is desirable that the
system is evaluated on a public dataset, and have its results compared with some
state-of-the-art system from the literature.

1



1.2 Materials

All the systems in this work were implemented using the Python programming
language. Specifically, the PyTorch framework was intensively used, with many
other scientific computing libraries. Network training was performed in an NVIDIA
Titan Xp1 graphical processing unit. The LaTeX typesetting software was used for
documentation.

1.3 Outline

After this Introduction, the work is organized as follows. The basic signal model
used in most of acoustic localization literature is described in Chapter 2. The main
solutions for sound source localization and tracking are described in Chapters 3
and 4, respectively. Then, our system is introduced in Chapter 5. We describe
the training and test procedures in Chapter 6, where we also discuss the results of
the experiments. Final conclusions and proposals for future works are presented in
Chapter 7.

1https://www.nvidia.com/en-us/titan/titan-xp/
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Chapter 2

Signal Model

In this section, we will introduce the signal modeling necessary for a complete un-
derstanding of sound source localization and tracking techniques.

2.1 Microphone array

A microphone array consists of a set of M microphones arranged in some geometry,
as depicted in Figure 2.1. The sound captured by the microphone indexed by m ∈

{1,2, . . . ,M} is a digital signal sampled at frequency Fs (measured in Hz), denoted
by ym[n]. The following simplifications are adopted for the microphone array and
the signal captured by the microphones:

• Each microphone is subjected to zero-mean independent white noise, denoted
by vm[n].

• Every microphone is omnidirectional, i.e. it does not favor sound coming from
any specific direction1.

• The array mounting surface does not influence the sound captured by the mi-
crophones, i.e. diffraction effects due to microphone mounting can be ignored2.

2.1.1 Single Sound Source

When a sound source is emitting an acoustic signal s(t) in an anechoic environment,
the sound captured by microphone m is given by

xm(t) = αms(t − tm), (2.1)
1This is generally not the case for the Ambisonics array framework, which will not be discussed

in this work.
2This is generally not the case for the spherical array framework, which will not be discussed

in this work.
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y4[n]

y3[n]

y1[n]

y2[n]

Figure 2.1: Microphone array, comprised of 4 microphones.

where
αm ∝

1

∥rs − rm∥
(2.2)

is the sound wave attenuation,

tm =
∥rs − rm∥

c
(2.3)

is the time delay; ∥⋅∥ denotes the Euclidean norm of a vector, rs is the source position,
rm is the position of the m-th microphone (both in Cartesian coordinates) and c is
the speed of sound.

Since measuring the absolute time delay is impractical, it is common to repa-
rameterize Equation (2.1) as

xm(t) = αms(t − tr − τ
′
rm), (2.4)

where the r indexes the reference microphone and

τ ′ij = tj − ti (2.5)

is the time delay difference, commonly referred to as the time difference of arrival
(TDOA).

As we will only work with discrete-time signals, and to keep consistence with the
related literature, we will define τij as the value of τ ′ij measured in samples taken at
sampling frequency Fs:

τij = Fsτ
′
ij = Fs

∥rs − ri∥ − ∥rs − rj∥

c
(2.6)

As will be seen, Equation (2.6) is extremely useful, as it maps the position of the

4



sound source to the expected TDOA of any two microphones. Since the evaluation
of τij can be made without prior knowledge of tr, it is well suited for sound source
localization methods.

It should be noted that the discretization process will lead to approximation
errors in the final estimate. In this work, we will assume that Fs is high enough that
we can ignore this error.

A common simplification made to the aforementioned model is to assume the
distance between the sound source and any microphone in the array is a few orders
of magnitude greater than the distance between any two microphones in the array.
This leads to the so-called far field model, in which the following assumptions are
valid:

1. All attenuation coefficients αi, i = 1,2, . . . ,M , are equal;

2. The TDOA depends only on the azimuth angle θ and the elevation angle ϕ,
depicted in Figure 2.2.

x

y

z

θ

ϕ

Figure 2.2: Definition of the azimuth (θ) and elevation (ϕ) angles.

Therefore, throughout this work, we will assume that, unless stated otherwise,
αm = α, m = 1,2, . . . ,M . Also, taking in account the previous comments, we can
simplify our modeling of the TDOA and rewrite Equation (2.6) as

τij =
1

c
ζT (ϕ, θ)(rj − ri), (2.7)

where [8]

ζT (ϕ, θ) = [sinϕ cos θ sinϕ sin θ cosϕ]
T
. (2.8)

5



Finally, we can write the signal that is captured by a microphone in the presence
of a sound source as

ym[n] = xm[n] + vm[n] = αs[n − Fstr − τrm] + vm[n]. (2.9)

Also, in some cases it will be convenient to represent the output of each micro-
phone as an element of column vector

y[n] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1[n]

y2[n]

⋮

yM[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1[n]

x2[n]

⋮

xM[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v1[n]

v2[n]

⋮

vM[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= x[n] + v[n]. (2.10)

Uniform linear microphone array

A particularly interesting case of microphone array is the so-called uniform linear
microphone array (ULA), where the microphones are uniformly spaced in a linear
configuration along the x-axis as depicted in Figure 2.3.

y3[n]

W
ave Front

y2[n] y1[n]

s(t)

d d

2d
co
s(
θ)

d c
os
(θ
)

θθ

Figure 2.3: Diagram of a wave front hitting a 3-microphone uniform linear array.

This array configuration is specially useful in the far field case. Consider a sound
source s(t) at a great distance from (but at the same height as) a uniform linear
array, where the spacing between two adjacent microphones is d. In this scenario,
the spherical acoustic wave is seen as a planar wave3, which impinges the array at an
angle θ with respect to the line connecting the microphones. Therefore, the difference
between the distance traveled by the wave arriving at two adjacent microphones is

3This is another way of interpreting the second assumption made previously.
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constant (as indicated in Figure 2.3), leading to [1]

τi,i+1 =
d cos (θ)

c
. (2.11)

Taking microphone 1 as the reference, one can simplify equation (2.7) as

τ1m = (m − 1)τ12 = (m − 1)τ. (2.12)

This simple formulation of the TDOA makes the ULA a good choice for most
source localization methods.

2.1.2 Multiple sources

Whenever there are multiple sources present, one must extend the model presented
in equation (2.9) to take them all into account. In an acoustic scene comprised of L
sound sources, each emitting the signal labeled as sl(t), all these signals are added
at the microphone, leading to

xm[n] =
L

∑
l=1

αlsl[n − Fstl,r − τl,mr], (2.13)

where tl,r and τl,ij are defined exactly as (2.3) and (2.6) respectively, according to
the position of source l.

2.1.3 Reverberation

In all these settings, we considered only the anechoic environment, i.e. either the
sound source is in the open field or in an enclosed space where the sound waves
are absorbed by the walls, ceiling, floor and any object inside the room. In reality,
each time the travelling sound wave hits an object only a fraction of the energy gets
absorbed, and the remaining energy acts as a reflected wave. The ratio between
absorbed and reflected energy depends (mostly) on the material of that object. A
full analysis of the reflection process can be found in Kuttruff et al [9]. In the
present work, we will consider only the case of specular reflections, i.e. reflections
on perfectly smooth surfaces.

Consider that a sound wave propagating from a source hits W surfaces, each with
a reflection coefficient βw, and K samples are taken upon arrival at a microphone.
The signal produced by that sound wave is given by

s[n −K]
W

∏
w=1

βw. (2.14)

7



Along with the wave that travels along the direct path from the source to the
array, an infinite number of sound waves hit the array with different delays and dif-
ferent attenuation constants. This is equivalent to passing the source signal through
a linear, time-invariant, spatial filter. In other words, we can consider that if the
source is stationary in space, then equation (2.1) can be extended to incorporate
multiple reflections as

xm[n] = (gm ∗ s)[n], (2.15)

where gm[n] represents the impulse response of the room (room impulse response, or
RIR) relating to the position of the source at time n and the position of microphone
m.

The standard modeling approach considers that after a certain number K of
samples, the energy of the waves that reach the microphone is too small and can be
disregarded. This allows one to use system identification techniques to model the
RIR. However, a common problem of this model is that it requires a large value of
K to attain a reasonable performance.

2.2 Sound source localization

The problem of sound source localization (SSL) using microphone arrays can now
be properly defined as follows. Given a set of samples of the output y belonging to
a microphone array with known geometry, produce an estimate r̂s of the position of
sound sources active in the acoustic scene, emitting the signals sl(t), l = 1, . . . , L.

A complete localization procedure aims to identify three spatial coordinate val-
ues. However, it is common to reduce the problem to simply identifying the angular
coordinates θ and ϕ of the source. Depending on the array geometry and on the
end goal, one can go a step further and take only the azimuth as the desired coor-
dinate. In either case, the simplified problem is called Direction of Arrival (DOA)
determination.

It must have been clear that the TDOA between multiple microphones plays a
significant role in the SSL problem. Equations (2.6), (2.7) and (2.11) show how one
can map the sound source position onto a equivalent set of TDOA values. We can
point out two different types of solutions [8]:

1. Directly estimating the TDOA between every pair of microphones, and
through a reverse mapping, finding the most likely source position accord-
ing to some criterion (e.g. maximum likelihood). This is sometimes called the
two-step approach.

2. Given a set of candidate positions for the sound source, selecting the optimum

8



solution by either maximizing or minimizing (depending on the context) some
suitable spatio-temporal statistic.

Since the mapping transformation of the TDOA from the source position is nonlin-
ear, small errors in the estimation may lead to significantly noisy position estimates.
In contrast, the second approach presented involves the evaluation of a function
which, as we will see in Chapter 3, requires the calculation of all the TDOAs asso-
ciated with the candidate positions in the whole search space, which can be compu-
tationally demanding, but gives a more robust position estimate.

2.3 Sound source tracking

The extension of the SSL problem for non-stationary sound sources leads to the
problem of sound source tracking (SST), which we define as follows. Given a set of
observations of the output signal y[n] produced by a microphone array with known
geometry, estimate the trajectories of a set of sound sources r̂sl[j], l = 1, . . . , L.

As we shall see in Chapter 3, most methods require a set of W contiguous samples
(often referred to as a window or a frame) to produce a single estimate r̂sl[j]. So, it
will often be the case that the observations vector y[n] and the positions estimates
have two different time scales. To remove any ambiguity, we will always use the
index j when referring to the frame-based time scale, and n for the sample-based
one.

In general, some sort of evolution model is assumed, aiming to predict the future
position of the sound source given present and previous estimates. If there is no need
for real time tracking, one can combine the previous approach with a retrodiction
model, which attempts to model past source positions given present and future
observations and estimates.

In the present work, we will restrict ourselves to the task of real-time tracking
of a single sound source.
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Chapter 3

Classical Solutions for Sound Source
Localization

In this chapter, we are going to see some examples of solutions to the SSL prob-
lem. We start discussing techniques of TDOA estimation (often called time delay
estimation, or TDE techniques), necessary for the two-step approach discussed pre-
viously. We follow it with a presentation of the steered response power method and
the multiple signal classifier method, both centered around the use of a spatiotem-
poral statistic for localization. We finish the chapter presenting neural networks as
a newer class of solutions to SSL.

Throughout the chapter, we will deal with the following setup: an acoustic source
positioned at rs emitting a certain signal s[n]. The microphone array is comprised
of M microphones, each at a known position rm. Since we have defined that the
noise captured by each microphone is white, they all have the same cross-correlation,
given by rCC

vv [k] = σ
2
vδ[k]

1.

3.1 TDOA Estimation

In order to estimate the TDOA, we are going to make use of the second order
statistical moments of the microphone signals. More specifically, the time cross-
correlation is going to be useful, as we shall see briefly.

3.1.1 Cross-Correlation

For instance, assume there are two microphones with signals y1[n] and y2[n] in an
anechoic acoustic scene with a sound source s[n] present, which is emitting white

1δ[k] =
⎧⎪⎪⎨⎪⎪⎩

1, k = 0
0, elsewhere
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noise with zero mean and auto-correlation rCC
ss [k] = σ

2
sδ[k]. Then, (2.9) leads to

y1[n] = αs[n − Fst1] + v1[n] (3.1)

y2[n] = αs[n − Fst1 − τ12] + v2[n]. (3.2)

Given that the noise signals are uncorrelated with each other and with the source
signal, the cross-correlation rCC

y2y1[k] of the two signals is given by

rCC
y2y1[k] = E[y2[n]y1[n − k]] (3.3)

= α2rCC
ss [k − τ12] (3.4)

= α2σ2
sδ[k − τ12], (3.5)

which presents a peak at the value of k = τ12. Even in the case where the sound
source is not white-noise, it is well known that (3.4) will have its maximum value in
that same position [10]. Thus, if one is able to calculate the cross-correlation of the
signal at microphones i and j, it is possible to identify the TDOA τij through

τ̂CC
ij = argmax

k
rCC
yiyj
[k]. (3.6)

Since rCC
yiyj
[k] would require an expectation amongst all possible realizations

of yi and yj, in practice an estimate r̂CC
yiyj
[k] is calculated by averaging along

the temporal dimension. Considering a time window of W samples, comprised
of {yi[n], yi[n + 1], . . . , yi[n +W − 1]} and {yj[n], yj[n + 1], . . . , yj[n +W − 1]}, it is
possible to obtain asymptotically unbiased estimations with

r̂CC
yiyj
[k] =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
W ∑

W−k−1
w=0 yi[n +w]yj[n +w − k], k ≥ 0

r̂CC
yiyj
[−k], k < 0.

(3.7)

A closer look at Equation (3.7) reveals that one can perform the same operation
in the frequency domain [11]. Thus, if the discrete Fourier transforms (DFTs) of yi
and yj are given by Y1(ω) and Yj(ω), respectively, one can write

r̂CC
yiyj
[k] = F−1 [Yi(ω)Y

∗
j (ω)] = ∫

∞

−∞
Y1(ω)Y

∗
2 (ω)e

ȷωndω. (3.8)

3.1.2 Generalizations to the Cross-Correlation

Equation (3.8) can be generalized by introducing a factor Ψ(ω) on its right-hand
side, as

r̂GCC
yiyj
[k] = ∫

∞

−∞
Ψ(ω)Y1(ω)Y

∗
2 (ω)e

ȷωndω. (3.9)

11



This leads to the so-called generalized cross correlation[12] (GCC), where one can
use different weights for every frequency component, in order to attain a better
estimate for the TDOA.

There are many different possible choices for Ψ(ω), which leads to a family of
estimators [13–16]. Here, we will bring into focus the phase transform (PHAT).

Phase Transform

The phase transform[1] arises from the observation that the TDOA information
is conveyed by the phase rather than the amplitude of the signals. Thus, to
avoid the fluctuations imposed by different absolute values, we choose Ψ(ω) =

(∣Yi(ω)Y ∗j (ω)∣)−1, which yields

r̂PHAT
yiyj

[k] = ∫
∞

−∞
Y1(ω)Y ∗2 (ω)
∣Y1(ω)Y ∗2 (ω)∣

eȷωndω = ∫
∞

−∞
eȷ(∠Yi(ω)−∠Yj(ω))eȷωndω. (3.10)

Due to its robustness, the phase transform has found large applicability in dif-
ferent schemes of source localization.

3.1.3 Least Squares Estimation of Source Position

Having estimated the values of all the different TDOAs, the next step is to identify
the position of the source. There are many different solutions for this task in the
literature, and here we will present one such approach, based on the least squares
(LS) spherical error minimization [17].

For the sake of simplicity, we present a version of the algorithm that uses only
the values of τm1, m = 2, . . . ,M . The extension to the complete version is direct.
Also, without loss of generality, we are going to assume that the microphone of index
1 is positioned at the origin of the Cartesian plane, i.e. r1 = [0 0 0]

T
.

Firstly, we introduce the quantity Dm, which is the distance from the source to
the m-th microphone. By definition, D1 = ∥rs∥. For m = 1, . . . ,M , we have

Dm = ∥rs − rm∥ =D1 + dm1, (3.11)

where dm1 is defined as the difference Dm−D1. Given (2.6), it is possible to estimate
dm1 as

d̂m1 =
c

Fs

τ̂m1, (3.12)

providing the estimate D̂m = ∥rs∥ + d̂m1. Also, equation (3.11) leads to:

D2
m = ∥rs∥

2 − 2rTs rm + ∥rm∥
2. (3.13)
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Combining (3.13) with the definition of D̂m, we define the squared spherical error
esp,m as a function of a candidate position r̂s, where

esp,m(r̂s) =
1

2
(D̂2

m −D
2
m)

= d̂m1∥rs∥ + r
T
s rm −

1

2
(∥rm∥

2 − d̂2m1). (3.14)

The spherical error receives its name due to the fact that it evaluates the mis-
match between the estimated radial distances between the microphone m and the
sound sources and their true values. Equation (3.14) can be extended by stacking
all errors esp,m, m = 2, . . . ,M in a vector notation, as

esp(rs) =Aθ − ξ, (3.15)

where we have defined

A = [S ∣d] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣ rT2 ∣ d̂21

⋮ ⋮

∣ rTM ∣ d̂M1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

θ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣

rs

∣

∥rs∥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ξ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2(∥r2∥

2 − d̂221)

⋮

1
2(∥rM∥

2 − d̂2M1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.16)

Thus, our goal is to minimize ∥esp∥
2. One such way to perform this is the so called

spherical intersector (SX) [18]. It comes from the observation that Equation (3.15)
would have a linear dependence on rs if the value of ∥rs∥ were known and vice-versa.
Thus, to implement the SX estimator, we assume initially that the value of ∥rs∥ is
known. Then, the estimate r̂s is given by [19]

r̂LS-SP
s = S†(ξ − ∥rs∥d), (3.17)

where S† = (STS)−1S. Then, observing that ∥rs∥2 = rTs rs, with Equation (3.17) we
get

∥rs∥
2 = [S†(ξ − ∥rs∥d)]

T
[S†(ξ − ∥rs∥d)] Ô⇒ a1∥rs∥

2 + a2∥rs∥ + a3 = 0, (3.18)

where a1 = 1 − ∥S†d∥2, a2 = 2ξTS†TS†d and a3 = −∥S†ξ∥2. Equation (3.18) can
be solved in order to find the value of ∥rs∥. If there is only one real and positive
solution, it is taken and used in (3.17) to find the source position. If there are two
real positive solutions and neither can be discarded by some criterion (e.g. being
outside the region of interest) or if none of the solutions is a positive real number,
the method fails to present a location. If that happens, one must apply other source
position estimation methods [17].
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3.2 Steered Response Power

The intuition behind the steered response power (SRP) methods is to use a tempo-
spatial filter (also commonly known as beamformer) to extract only the sound com-
ing from one specific direction and evaluate its power. A grid search is then per-
formed to generate a map of the acoustic scene, with high energy points indicating
a high probability of having a sound source at that position. Many methods apply
this principle, using different types of beamformers as the main filter [20, 21], and
the SRP uses the delay and sum (DS) technique [1].

In order to explain its fundamentals, it will be useful to define τ1m(r) as the
expected TDOA value considering the source to be positioned at r. The DS beam-
former time aligns the different microphones, and averages their signals in order to
attenuate noise. Denoting zDS as the output, this is equivalent to

zDS[n, r] =
1

M

M

∑
m=1

ym[n + τ1m(r)] (3.19)

The SRP method consists of evaluating the power of zDS[n, r], given by

PSRP(r) = ∫
∞

−∞
∣ZDS(r, ω)∣

2dω, (3.20)

where ZDS(r, ω) is the Fourier transform of zDS[n, r], in a grid of possible values
of r. This generates a heatmap where points that are associated with higher power
measures have a high probability of containing a sound source. Thus, to identify the
position of a sound source, the maximum of (3.20) needs to be evaluated, leading to

r̂SRP
s = argrmaxPSRP(r). (3.21)

In [2], a more general formulation was presented, which relates the SRP method
and the GCC equation (3.9), and it is given by

PSRP-GCC(r) =
M

∑
m=1

M

∑
l=1
∫

∞

−∞
Ψlm(ω)Yl(ω)Y

∗
m(ω)e

ȷωτml(r)dω (3.22)

=
M

∑
m=1

M

∑
l=1

r̂GCC
ymyl
[τml(r)]. (3.23)

Just as we did in Section 3.1.1, we can use the PHAT to generate more robust
power maps and increase localization performance. This leads to the so-called SRP-
PHAT method, given by

r̂SRP-PHAT
s = argrmaxPSRP-PHAT(r) = argrmax

M

∑
m=1

M

∑
l=1

r̂PHAT
ymyl

[τml(r)]. (3.24)
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The main issue associated with the SRP-PHAT is its computational complex-
ity. As it involves a grid search and the evaluation of multiple cross-correlations,
computational cost can be prohibitive for certain applications. A great number of
solutions to address this problem have been presented in literature, two of which we
are presented as follows:

• Stochastic region contraction [22]: Consists of evaluating PSRP(r) in a given
volume, selecting a subset of the best solutions and restricting the volume to
a region that contains those points. Doing this in an iterative way, the defined
volume is shrunken to a sufficiently fine one (according to some criterion).
Although this leads to a small number of evaluations of the SRP functional
map, the nondeterministic nature of SRC can lead to poor results.

• Volumetric steered response power [23]: instead of a grid points search, a
volumetric search is performed, which uses a coarser grid. The working volume
is systematically decreased using a branch-and-bound paradigm, until a small
enough volume is achieved and, finally, classical SRP can be applied.

3.3 MUSIC

The multiple signal classifier (MUSIC) [1] falls into the class of SSL solutions called
subspace methods. The common feature of these methods is the exploitation of the
eigenstructure of the signals spatial correlation matrices (SPCMs).

Starting from Equation (2.10), we can apply the Fourier transform to obtain

y⇀(ω) = x⇀(ω) + v⇀(ω) = S(ω)ς(ω, rs) + v⇀(ω), (3.25)

where we have defined the steering vectors ς(ω, rs) = [e−ȷωτ11(rs) . . . e−ȷωτM1(rs)]
T
.

In order to keep notation more readable, we shall omit dependency on ω wherever
necessary. We can calculate the narrowband SPCM Ryy(ω), which is defined as

Ryy(ω) =
∆ E [y⇀(ω)y⇀(ω)H]

=Rxx(ω) +Rvv(ω)

= σ2
sς(rs)ς(rs)

H + σ2
vI,

(3.26)

where we have defined the source and noise covariances as [1]

σ2
s = E[∣S(ω)∣2],

σ2
v = E[∣V1(ω)∣

2] = . . . = E[∣VM(ω)∣
2],

(3.27)

respectively.
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Equation (3.26) writes the SPCM as a sum of a rank 1 Hermitian matrix Rxx and
an identity (therefore full rank) matrix Rvv. This leads to a very particular eigen-
decomposition [1], where the eigenvectors matrix B and their associated eigenvalues
diagonal matrix Λ are given by

B = [b1 b2 . . . bM]
T

(3.28)

Λ = diag[λs + σ
2
v , σ

2
v , . . . , σ

2
v]. (3.29)

Combining Equation (3.28) with the eigenvalue equation, and with result (3.26)
we find the remarkable result

bH
mς(r)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

= 0 r = rs

≠ 0 elsewhere.
(3.30)

The result found in (3.30) states that the eigenvectors associated with the eigen-
value σ2

v , i.e. bm, m ≥ 2, are orthogonal to the steering vector corresponding to the
correct source direction rs. These eigenvectors are called noise eigenvectors, and
the subspace they span is called the noise subspace. Also, since B must form a
complete basis for the M dimensional space, b1 must have the same direction of
ς(rs). For this reason, it is called the signal eigenvector, and accordingly, it spans
the signal subspace2. In order to take advantage of this orthogonality, we can define
a power-like map

PMUSIC(ω, r) =
1

M

∑
m=2
∣bH

mς(r)∣
2

, (3.31)

and the associated source location is given by

r̂MUSIC
s = argrmaxPMUSIC(r). (3.32)

Since PMUSIC(rs)→∞, the maps generated via the MUSIC method presents very
well defined peaks. However, the main disadvantage is the necessity of choosing a
good value for ω. Since the success of the method relies on λs ≫ σs, frequency com-
ponent selection is critical. If the signals we wish to localize are broadband, it can be
challenging to select a particular frequency to perform the method. Furthermore,
when dealing with non-stationary signals, such as speech or music, this selection
must be made on a frame-by-frame basis, which can be troublesome. Tackling this
problem is an ongoing topic in research [24, 25]. A broadband variation of MUSIC
is proposed in [1], which uses the time SPCM. Albeit it solves the frequency esti-

2Since the noise fills the whole spatial correlation space, the more appropriate (and less com-
monly used) term would be signal and noise eigenvector/subspace.
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mation problem, it has a high complexity and does not produce peaks as prominent
as its narrowband counterpart. Also, while the MUSIC method generalizes well for
the case of multiple sources (as long as the number of sources is smaller than the
number of microphones), the broadband approach does not work in this scenario.

3.3.1 Other Subspace Methods

A few other approaches exist within the subspace decomposition framework. A
couple of those methods are presented below, but a more extensive list of methods
can be found in [26].

• Weighted Subspace Fitting [27]: This method was conceived within the multi-
ple sources framework, and it explores the fact that the signal subspace vectors
have the same direction as the steering vectors corresponding to the correct
source locations. By jointly minimizing the projection of the signal subspace
vectors on the orthogonal subspace of the steering vectors, it is possible to find
estimates of the different source positions. A broadband version also exists [2].

• ROOT-MUSIC [2]: When the microphone array being used is a ULA, the
steering vectors take the form of a polynomial vector ς(θs) = [1 z z2 . . . zM ]

T ,
where z = eȷω cos θ/d. This means that Equation (3.30) can be seen as a polyno-
mial equation. Since it is expected that a solution for such equation exist in
the unitary circle, given by the value of z corresponding to the correct source
position, one can use this information to identify the correct source position
with no need to perform a grid search in the localization space, leading to the
so-called ROOT-MUSIC method.

3.4 Neural Networks for SSL

There is a common problem found in the methods mentioned above: although in
different degrees, every method loses localization capabilities in scenarios with a high
level of reverberation and/or a low SNR. Meanwhile, with the great developments of
artificial neural networks (NN) research and their unquestionable success on audio
signal processing tasks, such as speech recognition [28] and dereverberation [29], it
has become apparent that they could become a viable direction for SSL research.
As expected, a multitude of NN systems for SSL have been developed.

There are many different ways of interpreting Neural Networks. In this work,
we will do so by showing that they can be seen as a generalization of the logistic
regression machine [30]. After this description, we will present examples to illustrate
how NN have been used for SSL.
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3.4.1 Logistic Regression and Linear Models

Consider the task of, given an input vector x ∈ RM , finding the probability that the
binary target variable t associated with x is 1. It is also assumed that there is a
dataset of L observations of xl, denoted by X, and their associated target values tl,
denoted by t. This is the so called supervised density estimation task, and there are
many different statistical models capable of performing such task [31]. The logistic
regression machine takes a linear approach by introducing a scalar quantity s called
the activation, given by

s =wTx + b, (3.33)

where w ∈ RM is the weight vector, used to combine linearly all the input features
(i.e. the different entries in the vector x), and b is a scalar term, called the bias.
This quantity is used to produce the model output, given by f(s). For the density
estimation problem, f(s) is given by the logistic function, presented in Figure 3.1,
which is defined as

f(s) = σ(s) =
1

1 + e−s
. (3.34)
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Figure 3.1: Logistic Function

In order to find the values of w and b, one usually resorts to gradient-based
optimization techniques [30], such as gradient descent and its variants. These are
applied to reduce some sort of error function which measures the difference between
the logistic function output and the expected target for all the input samples in the
dataset. For this task, the cross-entropy error function

L(X, t) =
1

L

L

∑
l=1

tl ln(
1

f(wTx + b)
) + (1 − tl) ln(

1

1 − f(wTx + b)
) , (3.35)
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is usually minimized.
For tasks other than probability density estimation, the so-called activation func-

tion f(s) can be replaced to make the output and the target compatible. For in-
stance, if instead of identifying the probability of t = 1, one wishes to implement a
detector, such that the output of the model f(s) = 1 if t = 1 and f(s) = −1 if t = 0,
then it is possible to use the sign function, given by

f(s) = sign(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 s ≥ 0

−1 otherwise,
(3.36)

which can be seen in the blue curve on Figure 3.2.
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Figure 3.2: Sign function (Blue, continuous) and hyperbolic tangent (Red, dash-
dotted).

This detector is commonly called the perceptron [30]. Although there are a few
training algorithms available for the perceptron model, it is usually more common
to initially treat the classification problem as a density estimation one. Thus, one
can perform training on a logistic regression machine, and after acquiring w and
b, use their values for the perceptron machine. This is usually justifiable, as Equa-
tion (3.36) can be rewritten as

sign(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 σ(s) ≥ 0.5

−1 otherwise.
(3.37)

If the task of interest evolves around predicting a target that spans the real
domain (a position, or an angle, in our case), one can use f(s) = s, arriving at the
linear regression machine. These three models are often called linear models, and a
common way to graphically illustrate them can be seen in Figure 3.3.
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Figure 3.3: Graphical diagram of the linear model. Every component xi of the input
vector x is multiplied by the associated weight vector w component wi. The bias
term is omitted for simplicity.

3.4.2 Multi-layer perceptron

For many datasets, a linear model may be sub-optimal; in the task of classification,
for instance, the perceptron can only correctly classify linearly separable data [30].
If the optimal decision boundary is a nonlinear manifold, a nonlinear model should
be used. A simple and effective way to extend the perceptron for nonlinear classi-
fication tasks is to connect multiple perceptrons in a network as the one presented
in Figure 3.4. The outputs of the perceptrons in layer l − 1 are the inputs for the
perceptrons in layer3 l.

Figure 3.4: Graphical diagram of a neural network.

Activation Functions

Just like the linear model, the neural network is flexible in the sense of being possible
to use it in many different tasks (classification, regression and density estimation).
Moreover, since the only layer that has a task-specific activation function is the final
one, it is possible to use different activations and activation functions in the other
layers. Aside from the ones described above, the literature is filled with examples [7],
a few of which we will describe in higher detail.

3In the machine learning community, the input features are assigned as layer l = 0 of the neural
network.
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The first one to be described is the hyperbolic tangent function (also known as
tanh), which is given by

f(s) =
ex − e−x

ex + e−x
, (3.38)

and also illustrated on Figure 3.2, in the red curve. As can be seen in the figure,
the tanh is a smooth version of the sign function. They are also often called the soft
and hard threshold functions, respectively. The fact that the hyperbolic tangent is
continuous and differentiable allows it to be used with gradient based optimization
techniques. It is also easy to show that the tanh is a scaled and translated version
of the logistic function. They are both part of a group of functions called sigmoids,
due to their shape.

Whenever the problem in hands includes multiple classes, the standard approach
is to use that same number of neurons in the output layer, and use softmax as the
activation function. The softmax can be seen as a generalization of the logistic
function for multiple classes. In the case of K classes, given the value of sk as the
activation of the k-th neuron, its output (and thus, the modelled probability of the
input belonging to class k) is given by

softmaxk(s1, . . . , sK) =
esk

K

∑
l=1

esl
. (3.39)

The so called rectified linear unit (ReLU) is a piecewise linear function given by

f(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s s ≥ 0

0 otherwise,
(3.40)

graphically illustrated by the solid curve in Figure 3.5, that has become a popular
activation function in the machine learning community. Being almost linear, it
enjoys the properties that make linear models simple to train via gradient based
optimization [7]. Many different variations of the ReLU were tested on NN systems,
and a few of them stood the test of time. One of those, which will be of great interest
in this work, is the parametric rectified linear unit (PReLU). It is also a piecewise
linear function, defined by the expression

f(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s s ≥ 0

as otherwise,
(3.41)

where a is a learnable parameter that scales the response in the negative domain.
Figure 3.5 illustrates the result of different values of a. The ReLU can be seen as a
PReLU with constant a = 0.

21



−10 −5 0 5 10
−2

0

2

4

6

8

10

s

f
(
s)

ReLU
PReLU (a = 0.2)
PReLU (a = −0.1)

PReLU (a = 2)

Figure 3.5: ReLU and different variations of the PReLU.

3.4.3 Input Features and Output Formats

When resorting to NN for a task, one has to answer the question of which input
features should be used for learning. Although feeding raw data directly into a
neural network is possible, better results can be attained by carefully designing the
pre-processing and data transformation stage. For SSL, there has been plenty of
different ways to transform multichannel audio signals into good input features.
Classical choices of input features are the spectrogram [32–34] and the cross corre-
lation map [35].

When it comes to SSL, another important debate is how to deal with the network
output. One can deal with localization as a multi-class classification problem; in
this case, the network output layer comprises K neurons, each one associated with
a region in space. For example, if the goal is to identify the azimuth in a range from
0o to 180o, one can use 36 neurons and divide the θ space in 36 regions of 5o each.
Thus, the region associated to the neuron with the highest activation is taken as
the source most probable position range. This output format has the advantage of
easy extension to the multiple sources scenario, but has a limited resolution, defined
by the number of classes. The other common approach is to deal with SSL as a
regression problem. Depending on the localization type, one can use one, two or
three neurons in the output layer, each representing a different target dimension.
Although this approach seems more natural, it is sometimes deemed as more difficult
to obtain a proper learning algorithm. A more detailed discussion on the output
format topic can be found in [36, 37].

It should also be pointed out that hybrid approaches, although not so common,
exist in the literature [38, 39]. They train NNs to provide outputs that in turn aid
another localization method such as the ones previously mentioned. A complete
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survey of deep learning methods for SSL that explores models with different input
features and output formats can be found in [40].

3.4.4 Example: MUSIC-DNN

In order to motivate the proposed method, we are going to present an NN-based
solution for SSL that also has its roots on the MUSIC method and was brought
forward in [41]. In this approach, the eigenvectors of the narrowband SPCM, as
presented in Section 3.3, are used as the input features of the network. Also, in
the input layer of the network, an activation function called directional activation,
which mimics the procedure of Equation (3.30), is defined as

f(x,a) = 1 −
∣aHx∣

∥x∥
, (3.42)

where a is a learnable parameter that is expected to imitate the steering vectors. The
NN also includes two layers with logistic activation functions to partially integrate
all outputs from the directional layers, and a fully connected softmax output layer.
The model adopts the classification framework for SSL. The success of [41] is an
indication that using narrowband features and partially integrating them along the
network can be very effective.
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Chapter 4

Classical Solutions for Tracking

Whenever the source we are trying to track moves, it can be interesting to use previ-
ous information about its last estimated position (and even its velocity/acceleration)
in order to estimate its current position. The tracking problem has a wide range of
applications and different techniques. In this context, the Bayesian filtering frame-
work [31, 42, 43] has been widely successful [44–46]. Also, in recent years, deep
neural networks (DNN) have also been used to tackle acoustic source tracking us-
ing temporal context aware methodologies, such as temporal convolutional neural
networks and recurrent neural networks. In this work, we are going to describe
Bayesian filters in the two most common used flavors: Kalman filtering and particle
filtering. Then, the deep learning (DL) solutions will be discussed and motivated.

4.1 Bayesian Filters

Consider the following setup: an unknown time varying quantity of interest x[n]

is to be determined. For example, if we are interested in sound source tracking, a
possible quantity of interest could be x[n] = rs[n]. Time characteristics of the signal
are described by an evolution model, given by

x[n] = fn(x[n − 1]) + v[n], (4.1)

where fn(⋅) is a known function called the evolution model, and v[n] is comprised
of noise (details on colouring and distribution are application specific). Instead of
observing x directly, only a noisy measurement z is available, and their relationship
is described by the measurement function h, which is given by

z[n] = hn(x[n]) +w[n], (4.2)
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where w is another random noise component. Depending on the literature, the pair
x and z has a different naming convention. Here, we will refer to them as state
and observation variables, respectively. The framework is based on two steps: a
prediction step, where all the information available up to a time instant n − 1 is
used to predict the value of the state x[n]; and then an update step, where we use
information from the measurement z[n] to correct our estimate. As we are going to
take a probabilistic approach, it will be useful to define a few quantities of interest.
Namely, we will define the prior belief distribution as

bel(x[n]) = p(x[n] ∣z[n − 1], . . . ,z[0]) = p(x[n] ∣z[n − 1]), (4.3)

and the belief distribution as

bel(x[n]) = p(x[n] ∣z[n], . . . ,z[0]) = p(x[n] ∣z[n]). (4.4)

In both cases, the right-hand side equality was derived from the so called Markov
assumption, which assumes that the states variables are complete, i.e if z[n − 1] is
known, knowledge from past observations does not convey any additional informa-
tion to the model. The prior belief density represents the knowledge on the value of
x[n] given all observations up to time instant n− 1, and the belief distribution rep-
resents the knowledge on the value of x[n] given all observations up to time instant
n (i.e., incorporating into the prior belief information coming from z[n]). When an
estimate of x[n] is necessary, one can find the value that maximizes bel(x[n]), and
take it as the most probable state value.

Since both Equations (4.1) and (4.2) have random components, we will describe
the evolution and observation processes in terms of distributions p(x[n] ∣x[n − 1])

and p(z[n] ∣x[n]) respectively, and we will assume that those distributions have
some functional dependence on fn(x[n−1]) and hn(x[n]) (for instance, they can be
the average of their respective distributions). With this in mind, and applying the
theorem of total probability and the Bayes rule [42], we can derive the prediction
and update steps of the Bayes filter

bel(x[n]) = ∫ p(x[n] ∣x[n − 1])bel(x[n − 1])dx[n − 1] (4.5)

bel(x[n]) = ηp(z[n] ∣x[n])bel(x[n]), (4.6)

where η is a normalization constant. The way these densities are modeled and
calculated will lead to different approaches of Bayesian filters.
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4.1.1 Kalman Filter

The Kalman filter, also commonly called the linear quadratic estimator (LQE), is
a particular implementation of the Bayesian filter. It makes a few assumptions on
the previously presented model, with the intention of making the problem tractable.
The first assumption is that the evolution and observation functions are linear. This
allows us to rewrite (4.1) and (4.2) as

x[n] =Anx[n − 1] + v[n], (4.7)

z[n] =Cnx[n] +w[n]. (4.8)

The second assumption made in the LQE framework is that both v[n] and
w[n] are zero-mean white Gaussian noises, with correlation matrices Qv and Qw,
respectively. This leads to the conditional probabilities bel(x[n]) and bel(x[n])

in the model being normal densities [31]. Since the Gaussian density can be fully
characterized by its mean vector and correlation matrix, we only need to keep track
of these entities along the filtering processes. In the Kalman filtering literature,
the average and correlation matrix of bel(x[n]) is called xn∣n and Pn∣n, and the
parameters of bel(x[n]) are referred to as xn∣n−1 and Pn∣n−1. Also, to simplify the
algorithmic description, we will define the innovation quantity yn = z[n]−Cnxn∣n−1,
which is a measurement of the discrepancy between the predicted observation (based
on the predicted state) and the actual observation. The innovation covariance matrix
is given by Sn.

The Kalman filter algorithm is described in Algorithm 1. A detailed mathemat-
ical derivation of it can be found in [42]. An important aspect of the LQE is the
Kalman gain matrix Kn. It is an indication of how much the information coming
from z[n] is going to be incorporated into the current state estimate. It is simple
to see that a zero matrix would keep bel(x[n]) = bel(x[n]).

4.1.2 Particle Filter

The Kalman filter takes a parametric approach to implement the Bayes filter, as it
models the belief and the prior belief as Gaussians. This would lead to problems if
either the evolution model or the observation model were not linear equations. A few
variations of the Kalman filter were proposed to deal with such problems, such as
the extended Kalman filter [42], which linearizes both the evolution and observation
models using Taylor series. Still, for highly non-Gaussian belief distributions (which
can result from highly nonlinear models), this is still a poor aproximation.

The nonparametric approaches to the Bayes filter attempts to model the beliefs
by decomposing their state space into a finite number of regions. One of such
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Algorithm 1: Kalman Filter Algorithm
Input : x0∣0 , P0∣0

1 xn∣n ←Ð x0∣0
2 Pn∣n ←Ð P0∣0

3 for n = 1,2, . . . do
4 xn∣n−1 =Anxn−1∣n−1 ; // Prediction Step (Mean)
5 Pn∣n−1 =AnPn−1∣n−1AT

n +Qv ; // Prediction Step (Cov. Matrix)

6 yn = z[n] −Cnxn∣n−1 ; // Innovation
7 Sn =CnPn∣n−1CT

n +Qw ; // Innovation Cov. Matrix

8 Kn = Pn∣n−1CnS−1n ; // Kalman Gain Matrix

9 xn∣n = xn∣n−1 +Knyn ; // Update Step (Mean)
10 Pn∣n = (I −KnCn)Pn∣n−1 ; // Update Step (Cov. Matrix)

approaches is the particle filter (PF), which approximates their values using random
samples drawn from the posterior distributions. At each time step, we keep the
sets Xn and Xn, which store samples (also called particles) and weights, with the
intent of modeling bel(x[n]) and bel(x[n]) respectively. Each particle x[l][n] has an
associated weight w

[l]
n , which represents the probability associated with that state

value.
The PF is described in Algorithm 2. A complete mathematical description of it

can be found in [42]. Sampling of x[l][n], as described in the step 5 of the algorithm,
can be done using Equation (4.1), and the importance factor calculation is performed
through Equation (4.2).

Algorithm 2: Particle Filter Algorithm
Input : p(x[0])

1 Xn ←Ð ∅

2 Xn ←Ð ∅

3 for n = 1,2, . . . do
4 for l = 1, . . . , L do
5 x[l][n] ∼ p(x[n] ∣x[l][n − 1]) ; // Evolution Model
6 w

[l]
n = p(z[n] ∣x[l][n]) ; // Importance Factor

7 Xn = Xn + (x[l][n],w
[l]
n ) ;

8 for l = 1, . . . , L do
9 Draw x[i][n] from Xn with probability w

[i]
n ; // Resampling

10 Xn = Xn + (x[i][n]) ;

Particle Filters have been widely adopted in SST solutions. Suppose the quantity
of interest is the Cartesian position of the sound source x[n] = rs[n], and that
the observed signal is comprised of the TDoAs between each pair of microphones.
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Although source motion can be characterized by a linear evolution model, such as the
van-Keuk’s mode [43], the measured quantity is usually taken to be the TDOA τij,
governed by Equation (2.6) and therefore a nonlinear function of the state variables.
Thus, a nonparametric approach is well suited.

4.2 Neural Networks for Tracking

There are a few different ways to introduce temporal context into DNNs. Time
varying targets usually require time varying input features in order to have a good
tracking performance. A variety of solutions exist combining previously discussed
input features with architectures that explore temporal correlations to perform their
inference process.

4.2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) [7] were developed specifically to deal with time
series data. Many variations of RNN exist, but the main concept is the same across
them. Assume a sequence of data points x[0],x[1], . . . ,x[L] such that for each of
them an associated target t[0], t[1], . . . , t[L] is provided. An RNN basic unit at
time n uses as input not only x[n], but also a function of the previous activation, to
compute the output. This allows the information from previous inputs to contribute
to the current output.

The operation of a generic RNN is graphically depicted in Figure 4.1. To make
the time evolution clearer, an unfolded version of the diagram is also provided in
Figure 4.2, where the dashed units represent the previous activations, occurred at
past time instants.

(a) Graphical diagram of an RNN at time 0. (b) Graphical diagram of an RNN at time 1.

Figure 4.1: Graphical diagrams of RNN at two subsequent time instants. The z−1

block denotes the unit time-delay operation.
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Figure 4.2: Graphical diagram of RNN unfolded.

Several variations of RNN units exist [47–50], each with different ways to incor-
porate information from past inputs. To give an example, we will present a simple
implementation, using linear activations and the tanh activation function. The set
of equations that characterize the forward pass in this RNN is given by

h[n] = tanh (Wx[n] +Uh[n − 1] + b) (4.9)

s[n] =Vh[n] + c (4.10)

f(s[n]) = tanh (s[n]), (4.11)

where W, U, b, V and c are the network parameters. The quantity h[n] is often
called the state in the machine learning community1, and its propagation through
time is what allows the RNN to perform proper tracking. It is clear that the im-
mediate predecessor state has a larger impact on the current estimate than older
ones, which can be problematic for certain applications. Variations of the vanilla
version presented in Equations (4.9) through (4.11) have been developed to provide
the system with longer term memory [49].

4.2.2 Convolutional Neural Networks

Just like audio, image is a very particular type of signal. The identity of an image
(or, in the machine learning framework, its class) is usually translation and scale
invariant. It is also well known that closer pixels are more correlated than more
distant ones. Furthermore, pictures usually present local features (such as edges
and textures) that are spread along the whole scene.

Convolutional neural networks (CNN) [7, 31] were designed with the intent of
analyzing images. They were specifically tailored to deal well with their particulari-
ties. As we shall see briefly, they use weight sharing to explore local features across
the whole feature map and perform progressive sub-sampling.

1Although there is a similarity with the state variable defined previously, we will treat them
differently and will not discuss this further.
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Assume x ∈ RL1×L2×1. We will also define a ∈ RLl
1×Ll

2×Dl as the output of the
activation function at layer l. A common naming convention for a is feature map,
and the dimensions Ll

1 and Ll
2 are called the map dimensions2. In a classical CNN,

we have convolutional, pooling and activation layers, which are usually stacked in
triplets along the network3. In classical CNN architectures, during the forward pass
of the data through the network, there is a reduction of the feature map dimensions,
as well as an increase in the number of maps Dl. This last dimension is often
called the number of channels of the feature maps, which comes from the idea of
color channels in an image. Although we are going to describe the details of the
CNN procedure for image data and two dimensional feature maps, these concepts
effortlessly generalize for three dimensional data, with so called three dimensional
convolutions.

The parameters of a convolutional layer are a set of weight matrices Wl
k (also

called filters or kernels) and a bias term. Both the feature maps and the filters are
going to be presented as rectangular blocks, as seen in Figure 4.3.

Figure 4.3: Graphical description of the feature maps (in grey) and weights (in blue)
in a convolutional layer.

The main operation of the convolutional layer is the cross correlation between the
filter and the feature map, which consists of applying a sliding point-wise product.
In the graphical representation, this is classically represented by overlapping the
filter with the image, as depicted in Figure 4.4. After performing the point-wise
product between overlapped sections, the result is summed up, added to the bias,
and stored in a map structure (which we will refer to as convolutional map), as
depicted in Figure 4.4. The filter is shifted across the feature map, following the
same procedure. This sliding process ensures that weights are shared along various
regions of the feature map.

After the whole feature map is covered, the pooling operation is applied to the
2As in Section 3.4.2, we will refer to the input image as the feature map of layer l = 0
3In the literature the term “convolutional layer” often refers to the triplet convolutional / pooling

/ activation layer for brevity. In this work, we will refer to the triplet as a convolutional stack.
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Figure 4.4: Graphical description of the convolutional procedure of the CNN. The
grey block represents the feature map, and the blue block represents the filter.

outcome of each convolutional layer. The two most common pooling operations are
max-pooling and average pooling. Pooling layers also use filters, but instead of cal-
culating the point-wise product within the overlap of the filter and the convolutional
map, they sub-sample the convolutional map, by either applying to the overlap be-
tween the map and the filter the maximum operation (in the case of max-pooling)
or the average operation (in the case of average pooling). Afterwards, the result is
passed along to the next feature map. This procedure is used to reduce even more
the size of the feature maps, and is illustrated with an example in Figure 4.5.

Figure 4.5: Graphical description of the pooling procedure of the CNN. Each color
represents a section of the feature map that intersects with a different application
of the pooling filter. The results of both types of pooling operations are illustrated.

Finally, an activation layer is applied, where an activation function such as the
ReLU or PReLU, discussed in Section 3.4.2, is applied to every output of the previous
pooling layer, finally arriving at another feature map.

The idea of the CNN is to use initial layers to identify simple features in an
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image, such as the presence of edges in different directions, and in later layers of the
network combine those low-level features into more complex ones, such as geometric
shapes. This approach has an unquestionable success in the image processing field.

Padding

In the convolutional procedure, it is evident that the edges of a feature map will be
less used in calculations than the center of the image. In some applications, this can
lead to a bad performance. Also, the reduction in the feature map shapes along the
network can also be problematic whenever spatial information is required. One of
the many ways to tackle both these issues is to use padding. The idea of padding
is to extend the feature map borders, as seen in Figure 4.6. The strategies used for
this purpose are chosen based on the nature of input data and the supervised task
at hand. The most common approaches are zero-padding (which fills the padded
region with zeros), reflection padding (in which the padded region is symmetric with
respect to the border) and circular padding (which “wraps” the feature map using
the border values at the opposite end).

Figure 4.6: Graphical description of the padding procedure.

Stride

One aspect that can be defined in a convolutional layer is the stride used in the cross
correlation process. A graphical description of the effect of changing its value can
be observed in Figure 4.7. This parameter can be adjusted to control the feature
map dimensions along the network.

Grouped convolutions

Another adjustable parameter is whether or not to use grouped convolutions. In-
stead of applying every kernel to every feature map, one can group a selection of
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Figure 4.7: Graphical description of the stride parameter. When using a value
of stride equal to one, the filter sliding process acts similar to the original cross-
correlation procedure, as depicted on the top left image (where the red and blue
blocks represent subsequent calculations, and the purple region represents their in-
tersection). When using a higher value for the stride parameter, one can reduce the
intersection, as seen in the bottom left figure, or even have no intersection, as in the
right figure. Increasing the stride leads to a reduction in the next feature map size,
as depicted on the figure.

kernels to operate on specific channels. If the number of output feature maps is
held constant, grouped convolutions can reduce the number of filters, thus reducing
the number of learnable parameters in the network. For instance, when selecting
group = 2, it is equivalent to using two parallel convolutional layers, each seeing half
of the feature maps and producing half of the output feature maps. This case is
illustrated in Figure 4.8

Dilation

The last element of CNNs that we will focus on are the dilated convolutions. The
dilation factor dictates the spacing between different points in the convolutional
kernel. It can be applied to all dimensions of the kernel, or only to some directions.
A visual description of how this parameter affects the convolutional procedure can
be found in Figure 4.9. Although it seems uncanny to use a dilation factor other
than 1 (which is the default for vanilla CNNs), large values of dilation are used
in the temporal convolutional neural networks (TCNN) [51]. Whenever one of the
dimensions of the feature map represents time, using a high dilation factor along
that dimension allows the filters to observe information from time frames that are
further apart, thus exploring long-term temporal correlations in the data. TCNNs
can be modified using adequate padding to perform only causal computations, which
would be the case in real-time applications such as tracking.
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Figure 4.8: Graphical description of grouped convolutions. The top image exempli-
fies the scenario when there is no grouping (i.e. the groups parameter is set to one)
and all of the convolutional kernels (in red) are applied to all of the input (in blue)
channels, generating the output (in violet). Meanwhile, the bottom image illustrates
the case when the groups parameter is set to two, when half the kernels are applied
to half the input channels, generating half of the output channels.

Figure 4.9: Graphical description of dilated convolutions.

Both TCNNs and RNN have been used successfully in SST literature. An ex-
tensive survey on different methods based on DNN can be found in [40].
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4.2.3 Example: Cross3D

One of the most successful applications of DNN for the DoA tracking problem is the
Cross3D model [52]. It combines the previously mentioned SRP-PHAT power maps,
taken as input features, and a TCNN architecture that outputs a three dimensional
vector. This vector is used to estimate the source position, and the Euclidean
distance between this vector and the unitary vector that points to the correct source
location is used as the loss function for training.

The pre-processing stage of Cross3D works as follows. Firstly, the system applies
a 4096-sample Hanning window (with 1024 samples of overlap) to the microphone
signals, dividing it into time frames. Then, a voice activity detector is used 4 to
identify the silent frames. The SRP-PHAT power maps are then calculated and
structured in a three dimensional tensor, with dimensions Rθ×Rϕ×T , that represent
the azimuth, the elevation and the time dimensions respectively. Also, the values of
θ and ϕ that maximize each power map (which we will represent by θ∗ and ϕ∗) are
identified, originating two constant maps for each time frame. These constant maps
(called max tensors) are gathered together with the previously calculated maps for
the input of the network. In the case of silent frames, the power maps are replaced
by constant zero blocks. This is illustrated in Figure 4.10

Multichannel Audio

⋮

Windowing and VAD

SRP-PHAT

Arg Max

Rθ

Rϕ

T

SRP-PHAT Maps

θ∗ ϕ∗

Max Tensors

Figure 4.10: Graphical description of the preprocessing procedure in Cross3D.

4The system assumes a speech-like source.
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As mentioned in the previous section, traditional CNNs take a subsampling ap-
proach by applying systematic pooling operations after each convolution. Although
this is effective for image classification tasks, whenever we wish to find spatial infor-
mation encoded in the feature maps, the pooling procedure may be inefficient [52].
To remedy this, after some initial three dimensional convolutional stacks, the ar-
chitecture uses two “paths”, each containing stacks that perform pooling on along
one specific dimension of the feature map, keeping the other dimension fixed along
the network. These paths are combined in later layers of the network, providing
the final inferred DoA. This architecture is illustrated in Figure 4.11. The fact that
three dimensional convolutions are used and that this crossed pooling procedure is
used explains the name Cross3D.

SRP-PHAT Maps

32 Filters, shape: 5 × 5 × 5
3D Convolutional Causal Layer

PReLU Activation

32 Filters, shape: 5 × 3 × 3
3D Convolutional Causal Layer

1 × 1 × 2 Max Pool Layer
PReLU Activation

4×
32 Filters, shape: 5 × 3 × 3

3D Convolutional Causal Layer
1 × 2 × 1 Max Pool Layer

PReLU Activation

Concatenation and
Reshaping

4×

128 Filters, shape: 5
1D Convolutional Causal Layer

Dilation Factor = 2
PReLU Activation

3 Filters, shape: 5
1D Convolutional Causal Layer

Dilation Factor = 2
Tanh Activation

Figure 4.11: Graphical description of the neural network architecture in Cross3D.

The success of Cross3D is an indication that the combination of classical local-
ization approaches with DNNs can perform better than either solution alone. The
flexibility provided by the large number of parameters allows these approaches to
overcome the difficulties that rise from adverse environments, such as low SNR and
high reverberation.
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Chapter 5

Proposed Solution: Spectral Cross3D

After presenting the theoretical background and examining a few solutions for SSL
and SST, we can now introduce our proposed method, called the Spectral Cross3D
(SC3D). In terms of proximity, our approach is highly inspired by the Cross3D
solution [52], but with input features that resemble those of the MUSIC-DNN [41]
solution.

5.1 Preprocessing stage

One of the main points in the Cross3D solution is the aforementioned fact that it
uses a well established solution for SSL, the SRP-PHAT, and enhances its capabil-
ities by applying it to a TCNN. In our solution, we replaced the SRP-PHAT maps
PSRP-PHAT(r) with the MUSIC power-like maps PMUSIC(r, ω). This preprocessing
choice is similar to that used in MUSIC-DNN, but instead of delivering the raw
eigenvectors of the narrowband SPCM, we perform the operations involving the
steering vectors and the power-maps generation. To illustrate the difference be-
tween both types of map, we generated one sample from each technique, displayed
on Figure 5.1.

For the initial approach, we chose to generate maps for all frequencies in the
discrete spectrum. In later approaches, we included some frequency selection mech-
anism in the preprocessing chain. The performances attained with selected frequen-
cies and with the full spectrum are compared.

5.1.1 MUSIC Power Map Calculations

The main issue with implementing the MUSIC method is how to compute matrix
Ryy(ω). Equation (3.26) shows that it would be necessary to compute the expected
value of y⇀(ω)y⇀(ω)H . In mathematical terms, this would imply an infinite observa-
tion of all values of y, which is impractical. A viable path is to rely on the ergodicity

37



(a) Map generated using the SRP-PHAT
method.

(b) Map generated using the MUSIC
method.

Figure 5.1: Maps generated using the SRP-PHAT and the MUSIC methods. In
both cases, the green dot represents the actual source position.

approximation [53], and use a time average instead of the statistical mean. Although
there are limitations on the effectiveness of this solution, it is widely adopted and
shall be used here for this purpose.

Starting with the M microphone signals y1[n], . . . , yM[n] sampled at 16 kHz,
we applied a rectangular 4096-point window, with 1024 samples of overlap (or,
equivalently, a 3072-sample hop size), leading to T time frames. For each of them,
a Hanning 256-point window with 32-point overlap is applied in order to perform
a short-time Fourier transform (STFT). This leads to a tensor Ŷ with dimensions
M×J×F , where J is the number of time windows1 and F is the number of frequencies
(in this case, F = 128). For a fixed frequency, the narrowband SPCM can be
approximated using

R̂(ω) =
1

M

J

∑
j=1

Ŷ(j, ω)ŶH(j, ω). (5.1)

From this information, it is possible to generate the MUSIC maps through the
procedures described in Section 3.3. Subsequently, it is possible to identify the
coordinates of the maxima from each map, which are stored for later use as side
information in later layers. Finally, the maps are concatenated into a four dimen-
sional tensor Y with shape Rθ ×Rϕ × T ×F , where Rθ and Rϕ are, respectively, the
number of grid-points in the azimuth and elevation dimensions. This pre-processing
chain is illustrated in Figure 5.2, where green blocks highlight modifications with
respect to Cross3D.

1It is important to notice that we are applying windowing to an already windowed signal.
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Figure 5.2: Graphical description of the pre-processing procedure in Spectral
Cross3D.

5.1.2 Frequency Selection

Since for the MUSIC method to work properly it is important that λs ≫ σs, many
frequency maps may contain no information for localization. Also, the spatial alias-
ing phenomenon [1] states that the spatial correlation can present artificial peaks
for frequencies above a given threshold that depends on the array geometry. These
facts suggest that providing MUSIC maps for all frequencies might be sub-optimal.
Even though there is an expectation that the neural architecture may learn how
to properly identify usable maps and to combine them, reducing unnecessary data
features is always an advisable strategy [30]. With this in mind, another step in the
pre-processing chain (to be introduced later in this work) is the selection of the best
set of frequencies to be delivered to the network. Two mechanisms were devised to
this end, namely a spectral based selection and a map based selection.

Spectral Based Selection

The first approach consists of using the information in tensor Ŷ to estimate the
signal power spectral density (PSD) [53, 54], and then use it to select the best
candidate frequencies to feed the inference system. Given the non-stationarity of
speech signals, it is apparent that this procedure must be performed on a frame-by-
frame basis.

For the selection part, we considered the possibility of selecting F ∗ frequencies
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that maximize the PSD, with the option of performing this selection by first dividing
the spectrum in L equally spaced sub-bands and then selecting F ∗

L frequencies from
each sub-band.

The main advantage of using this scheme is that the calculation of the power-
like maps, which is a computationally heavy process, will be performed only F ∗

times, instead of F . If we have F ∗ ≪ F , the computational time savings would be
significant. However, this selection criterion has the disadvantage of performing the
choice without actually seeing the maps. It is implicitly assumed that the best maps
to provide useful information to the network are those with the maximum PSDs,
but there is no guarantee that they will actually convey useful information.

Map Based Selection

The second approach consists of performing the selection after calculating the maps,
and using some criterion to evaluate the quality of the map prior to selecting it. As
the main point of the MUSIC method is to provide a peak at the correct position
of the sound source, we adopted a sparsity criterion such that only maps with the
smallest l1-norm are presented to the network, i.e.,

∥Y(t, ω)∥1 =max
θ

⎛

⎝
∑
ϕ

∣Y(θ, ϕ, t, ω)∣
⎞

⎠
. (5.2)

An option to perform this selection after dividing the spectrum in sub-bands, as in
the frequency selection criterion, was also provided. Just like the spectral selection,
this procedure is done on a frame-by-frame basis.

The main advantage of this method is the fact that the maps are observed and
taken into account in order to perform the selection. While the PSD can indicate
frequencies that could potentially generate high quality maps, directly observing the
maps can lead to a much better performance. The drawback, however, is that this
method requires the calculation of all input maps before performing the selection.
Thus, not only there is no computational savings in the preprocessing stage, but its
complexity is increased by the l1 norm calculation for each map.

5.2 Neural Network Architecture

In terms of the DNN used, we decided to follow an approach very close to the one
used in Cross3D. This is because one of the goals in this work was to evaluate
whether or not narrowband MUSIC maps could lead to a better performance than
SRP-PHAT maps.

As the changes in the preprocessing stage lead to input features with different
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dimensions, it was necessary to perform minor modifications to the DNN architecture
to accommodate them. Also, it is expected that input data with higher dimensions
require more parameters to perform the inference. Thus, it was decided to add
to the network two convolutional stacks, using grouped convolutions, and keep the
remaining layers of the network as they were. These convolutions were designed in
a way not to look into past feature maps when generating their output, thus not
increasing the temporal receptive field.

Also, we decided to incorporate information from the map maxima into the fully
connected layers at the end of the network, instead of feeding them as input maps.
All changes made in the architecture of Cross3D are indicated as green blocks in
Figure 5.3.

MUSIC Maps

. . .

72 Filters, shape: 1 × 5 × 5
3D Convolutional Layer

PReLU Activation

36 Filters, shape: 1 × 5 × 5
3D Convolutional Layer

Groups: 2
PReLU Activation

32 Filters, shape: 5 × 5 × 5
3D Convolutional Causal Layer

PReLU Activation

32 Filters, shape: 5 × 3 × 3
3D Convolutional Causal Layer

1 × 1 × 2 Max Pool Layer
PReLU Activation

4×
32 Filters, shape: 5 × 3 × 3

3D Convolutional Causal Layer
1 × 2 × 1 Max Pool Layer

PReLU Activation

4×

Concatenation and
Reshaping

128 Filters, shape: 5
1D Convolutional Causal Layer

Dilation Factor = 2
PReLU Activation

3 Filters, shape: 5
1D Convolutional Causal Layer

Dilation Factor = 2
Tanh Activation

Arg Max

Figure 5.3: Graphical description of the neural network architecture in Spectral
Cross3D.
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Chapter 6

Experiments and Results

In this chapter, we motivate the experiments we performed and analyze their results.
The scheme of the experiments is as follows. First, a speech signal is selected
from a corpus dataset. It is subjected to a random trajectory with the aid of an
acoustic simulator that generates the corresponding signals that would reach each
microphone, taking into account noise and reverberation effects. An epoch of the
training procedure of the network consists of a whole pass over the speech corpus,
with one random trajectory generated per signal. A detailed explanation of the data
generation and network training procedure, as well as a discussion of the attained
results is given in the following sections.

6.1 Data Generation

6.1.1 Microphone Array

To perform our simulations, we selected a 12-microphone array designed for an
NAO robot head [55]. Since we wished to perform simulations concurrently with
the network training, we decided not to include scattering effects of the robot head
within the simulation procedure. Since this array is not planar (i.e there is no
two dimensional plane that contains all the microphones), we were able to perform
elevation tracking from 0o to 180o.

6.1.2 Corpus

The speech signals selected were the ones in the LibriSpeech corpus [56], which is a
compilation of audio-book readings, sampled at 16 kHz. This dataset has separate
splits, called train-clean, dev-clean and test-clean. The first one was used in the
network training process. The second split was used in the regularization and model
selection stages. Finally, the third split was selected for a final evaluation and
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comparison between the original Cross3D solution and our approach.

6.1.3 Trajectory Generation

To generate diverse trajectories, the same procedure used in [52] was adopted, which
can be briefly described as follows. An initial r0 and a final r∗L are chosen at ran-
dom (within the limits of the simulated room). A linear trajectory is interpolated
connecting the two points. Two vectors containing three random frequencies ω and
three random amplitudes a are sampled, and the linear trajectory is modified to
give

ri = r0 +
i

L − 1
(r∗L − r0) +A⊙ sin (ωi), (6.1)

where we have denoted as ⊙ the point-wise product performed in the second term
of the left-hand side. With a probability of 25%, the trajectory is ignored, and the
simulated source is taken to be stationary at r0.

6.1.4 Simulator

Our simulated procedure consists on the following steps. A random room dimension
is selected, within the range described in Table 6.1. Then, a random value for
the reverberation time parameter is chosen uniformly in the range of 0.2 s to 1.3 s.
Formally, the so-called RT60 measures how long in seconds the power at a given
receiver takes to decay by 60 dB after a constant power source inside the room
suddenly goes silent; it is usual to assign to a room an average RT60 without defining
source and microphone positions. A value of signal-to-noise ratio (SNR) is also
chosen, in a range that varies depending on the training stage of the network. While
it starts at a fixed value of 40 dB, after 40 epochs it is reduced to a uniform random
value between 5 dB to 30 dB. The array position inside the room is also randomly
selected (guaranteeing a minimal separation from the walls of the room). Specifically,
the values of x and y coordinates were chosen to be within the range of 10% and
90% of their maximum value, and the value of z is chosen in the lower half of the
room.

Dimension Min Max
x 3 m 10 m
y 3 m 8 m
z 2.5 m 6 m

Table 6.1: Specification of the simulated rooms.

The simulator we used is the so-called gpuRIR simulator [57], which uses a GPU
implementation of the image source method [58, 59] (ISM). Although there are
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methods that perform more reliable simulations [60, 61], the gpuRIR is fast enough
to be used on-line with the network training, allowing the system to be exposed to
various scenarios during the training stage. This allows us to avoid overfitting to
specific situations.

6.1.5 Voice Activity Detector

We used the WebRTC voice activity detection (VAD) system [62]. As we are training
our system to work with speech signals, it makes sense to employ a system capable
of identifying voice activity. For more general SSL and SST, a general sound activity
detector could be trained in parallel with our system.

6.2 Neural Network Training

We performed the training of Spectral Cross3D (C3D) with a few variations of the
preprocessing stage, as described in Section 5.1.2. Alongside the two previously
described mechanisms, we also implemented an option to generate maps only up
to a certain frequency. This was motivated by the fact that the spatial aliasing
phenomenon [1] occurs at high frequencies. The trained systems were

1. SC3D using the full spectrum (referred to as SpC3D_1);

2. SC3D using the 32 highest values of the PSD (referred to as SpC3D_2);

3. SC3D using the 4 highest values in each of the 8 subbands the PSD has been
split into (referred to as SpC3D_3);

4. SC3D using 32 frequencies centered around the spectral centroid (referred to
as SpC3D_4);

5. SC3D using the 4 maps with the lowest l1 norm in each of the 8 subbands the
PSD has been split into (referred to as SpC3D_5); and

6. SC3D using frequencies lower than 4 kHz (referred to as SpC3D_6).

As the number of maps being fed to the network varies with the preprocessing
mechanism, the number of channels in some layers of the network must be mod-
ified to accommodate these changes. The number of parameters for each system,
including Cross3D, is shown in Table 6.2.
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Table 6.2: Number of parameters in Cross3D and Spectral Cross3D architectures.

Model # of parameters
Cross3D 5,626,148

SpC3D_1 6,591,188
SpC3D_2, SpC3D_3, 6,161,108SpC3D_4, SpC3D_5

SpC3D_6 6,304,468

6.2.1 Loss Function

We took as the loss function the Cartesian distance between the generated vector
and the vector that points to the direction of the correct source position. This error
is calculated and averaged over time, leading to a mean squared error loss function,
which is minimized in the training stage.

Another useful function used in this work is the root mean squared angular error
(RMSAE), which uses the great-circle distance [63], and calculates its root mean
squared 1 (RMS) value across different time frames.

6.2.2 Optimizer

The network optimizer selected for the network parameters updating was the Adam
optimizer [64], with coefficients β1 and β2 at their default values. It performs adap-
tive moments estimation to efficiently attain stochastic gradient-based loss mini-
mization. A step scheduling strategy was also used for the algorithms’ learning rate
parameter γ, with a step size of 10 epochs and a decay factor of 0.8. The initial
value of γ was set to 0.0003, and every 10 epochs the value was updated by

γt+10 = 0.8γt, (6.2)

where γt+10 is the new value, and γt was the previous value. A mini batch size of
25 samples was implemented, i.e. the training parameters were updated after 25
samples had been observed.

6.2.3 Early Stopping

We also implemented the early stopping regularization technique [30]. It consists of
stopping the training of the neural network when there is little or no increase in the
accuracy of the system after a determined amount of epochs (called the patience
factor), usually evaluated in another dataset. The selected patience factor was of 15

1xrms =
√
∫

T
−T x2(t)dt
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epochs, and the minimal relative decrease in the RMSAE necessary was of 0.1%. The
dataset used in this evaluation was the dev-clean split of the LibriSpeech database.

6.3 Results

In order to properly compare the results attained in this work with those of [52], it
was necessary to retrain the original Cross 3D architecture using the scheme pre-
sented in Section 6.2. This action had the goal of removing any bias unintentionally
created by the training procedures when comparing the different models, making it
possible to better grasp if the pre-processing stage was responsible for any increase
in performance. Also, it is desired to select amongst all different preprocessing
strategies the best suited to our system. Thus, we must undergo a two folded stage
of model selection: one for comparing the original Cross3D system (which shall be
referred to as C3D) with the retrained version (referred to as C3D*), and one for
selecting each of the SpC3D preprocessing chain mechanisms presented previously.

6.3.1 Training time

All the systems mentioned above were trained on the same machine, described in
Section 1.2. All the systems stopped their training at approximately 180 epochs. For
the C3D* system, the training took two days. All the different versions of SpC3D
took four days to train.

6.3.2 LibriSpeech

For the model comparison, we used the dev-clean split of LibriSpeech. This was
the same split used for the early stopping criterion, but with different trajectories
than those used in the training stage. A final evaluation is also performed, with the
selected models from both architectures, in the test-clean split with another set of
trajectories.

6.3.3 Model Selection

Cross3D

The results achieved with the original and the retrained Cross3D are displayed in
Figure 6.1, for the root mean squared angular error (RMSAE) metric. As it can be
seen, for every environmental setting, the retrained version attains a lower RMSAE
value (on average, there is a reduction of 4.8%). Thus, comparing C3D* with our
solution should allow for a fair assessment of the quality of the proposed method.
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Figure 6.1: Comparison of the RMSAE attained by the original Cross3D (orange)
and its retrained version (blue), for different values of SNR (different trace styles)
and different reverberation times (x-axis).

Spectral Cross3D

The comparison of all different strategies applied to Spectral Cross3D can be seen
in Figures 6.2, 6.3, 6.4, 6.5 and 6.6. The SpC3D_1, i.e, the full spectrum applied
directly to the network, was clearly superior to all approaches in terms of the RM-
SAE, as it had the smallest RMSAE in every environmental condition. Meanwhile,
the SpC3D_4 (which selects 32 frequencies around the spectral centroid) and the
SpC3D_5 (which selects the 4 maps with the lowest l1 norm in each spectral sub-
band) had the highest RMSAE values in almost every environmental condition. The
other approaches had varying levels of performance, none above that attained with
SpC3D_1.

6.3.4 Final Evaluation

We performed a final evaluation of the two selected systems C3D* and SpC3D_1
using the test-clean split of LibriSpeech, and with newly generated trajectories. An
example of how the two systems track an acoustic scene from the dataset can be
seen in Figure 6.7.

The results attained are displayed in Figure 6.8. As can be seen, SpC3D_1 is
superior in 25 scenarios (against 5 for C3D*). On average, SpC3D_1 provided a
relative reduction of RMSAE around 9.1%.
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Figure 6.2: Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 30 dB — names specified in Section 6.2.
The x-axis represents different RT60 values.

Figure 6.3: Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 15 dB — names specified in Section 6.2.
The x-axis represents different RT60 values.

6.3.5 LOCATA

The acoustic source localization and tracking (LOCATA) Challenge [65] took place
in 2018, and included a small set of audio signals for competitors to evaluate their
SSL and SST systems. Although the small number of samples implies a high variance
in the error evaluation, we found it useful to compare our system with the baseline
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Figure 6.4: Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 5 dB — names specified in Section 6.2.
The x-axis represents different RT60 values.

Figure 6.5: Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of 0 dB — names specified in Section 6.2.
The x-axis represents different RT60 values.

presented for the challenge and thus evaluate its viability.
The Challenge was comprised of 6 tasks, of which only three (Tasks 1,3 and 5)

were single-source tasks. The description of each task is given as follows. Task 1
had static loudspeakers and a static microphone array. Task 3 consisted of tracking
moving speakers with a stationary microphone array. Finally, task 5 presented
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Figure 6.6: Comparison of the RMSAE attained with the different preprocessing
chains of Spectral Cross3D, at an SNR of −5 dB — names specified in Section 6.2.
The x-axis represents different RT60 values.

Figure 6.7: Example of C3D* (in blue) and SpC3D_1 (in orange) in an acoustic
scene, where the ground truth is shown in green. The grey areas represent the silent
frames identified by the VAD.
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Figure 6.8: Comparison of the RMSAE attained with the retrained Cross3D (blue)
and the Spectral Cross3D with the full spectrum (orange), for different values of
Reverberation time (x-axis) and for different SNR levels (different traces).

moving speakers and moving microphone arrays.
The mean absolute azimuth error (MAAE), adopted as the comparison metric

in the challenge, was calculated for SpC3D_1 and compared with the values corre-
sponding to the LOCATA baseline (BL) in Table 6.3. As can be seen, the results
show that SpC3D_1 yields a performance comparable to that of the BL. Even in
Task 5, which proposes a scenario on which our system has not been trained, our
results outperform the baseline.

Task MAAE (SpC3D) MAAE (BL)
Task 1 6.6○ 4.2○

Task 3 4.5○ 9.4○

Task 5 4.2○ 5.4○

Table 6.3: Mean Absolute Azimuthal Error in the LOCATA Challenge dataset.
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Chapter 7

Conclusions

In this work, we have introduced Spectral Cross3D, a new system for sound source
tracking based on deep learning and the MUSIC DoA estimation method. It is
inspired by a state-of-the-art architecture, called Cross3D [52], with major modi-
fications in the pre-processing chain and some minor changes both in the neural
architecture and in the training procedure. Initially, a comparison was drawn using
our system with different preprocessing stages, and the use of the full spectrum has
proven to be best solution amongst the tested approaches. With this setup, we
have shown that our system was able to achieve results on average superior to those
obtained with Cross3D (even the latter taking advantage of our remodeled training
stage): 9.1% better in terms of the RMSAE in a test dataset. We also observed
that a viable result was attained in the LOCATA Challenge dataset, in terms of the
MAAE measure.

7.1 Future Works

Although many different criteria have been tried for the spectral selection mech-
anism, not only can others be proposed and evaluated, but also a more extensive
parameter evaluation can be performed. Even though the present work suggests
that the full spectrum solution is more successful in the tracking task, understand-
ing how these choices affect the overall system performance is of extreme importance
to moving forward.

Another aspect that must be addressed in the continuation of this work is the
simulator software. Although gpuRIR provides the necessary speed for performing
simulations simultaneously with the network training, it uses a method that does
not model phenomena such as frequency-varying reflection coefficients. Training
with a more realistic simulator could better characterize the performance of systems
in a real usage scenario.

Finally, it is worth mentioning that, while this work was being concluded, other
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solutions inspired by Cross3D were proposed [66, 67], pushing the state-of-the-art
to even higher standards. Testing whether these systems would benefit from the
preprocessing approach presented in this work should be another important research
direction.

53



References

[1] BENESTY, J., CHEN, J., HUANG, Y. Microphone Array Signal Processing.
Heidelberg, Germany, Springer, 2008. ISBN: 978-3-540-78611-5.

[2] DIBIASE, J. H., SILVERMAN, H. F., BRANDSTEIN, M. S. “Robust Localiza-
tion in Reverberant Rooms”. In: Brandstein, M., Ward, D. (Eds.), Micro-
phone Arrays: Signal Processing Techniques and Applications, Springer,
pp. 157–180, Berlin, Germany, 2001. ISBN: 978-3-662-04619-7. doi:
10.1007/978-3-662-04619-7_8.

[3] ZHANG, B., MASAHIDE, K., LIM, H. “Sound source localization and interac-
tion based human searching robot under disaster environment”. In: 2019
SICE International Symposium on Control Systems (SICE ISCS), pp.
16–20, Kumamoto, Japan, March 2019. doi: 10.23919/SICEISCS.2019.
8758766.

[4] TAN, T.-H., LIN, Y.-T., CHANG, Y.-L., et al. “Sound source localization using a
convolutional neural network and regression model”, Sensors, v. 21, n. 23,
December 2021. ISSN: 1424-8220. doi: 10.3390/s21238031.

[5] ABU-EL-QURAN, A., GOUBRAN, R., CHAN, A. “Security monitoring using
microphone arrays and audio classification”, IEEE Transactions on In-
strumentation and Measurement, v. 55, n. 4, pp. 1025–1032, 2006. doi:
10.1109/TIM.2006.876394.

[6] WANG, W., LI, J., HE, Y., et al. “Symphony: Localizing Multiple Acoustic
Sources with a Single Microphone Array”. In: Proceedings of the 18th
Conference on Embedded Networked Sensor Systems, SenSys ’20, p. 82–94,
New York, USA, 2020. Association for Computing Machinery. ISBN:
9781450375900.

[7] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. Cambridge,
United States, MIT Press, 2016. http://www.deeplearningbook.org.

[8] DMOCHOWSKI, J. P., BENESTY, J. “Steered Beamforming Approaches for
Acoustic Source Localization”. In: Cohen, I., Benesty, J., Gannot, S.

54

http://www.deeplearningbook.org


(Eds.), Speech Processing in Modern Communication: Challenges and
Perspectives, Springer, pp. 307–337, Berlin, Germany, 2010. ISBN: 978-
3-642-11130-3. doi: 10.1007/978-3-642-11130-3_12.

[9] KUTTRUFF, H. Room Acoustics, v. 1. 6 ed. Heidelberg, Germany, Springer,
2008. ISBN: 9780367870997.

[10] KAY, S. Intuitive Probability and Random Processes using MATLAB®. New
York, United States, Springer, 2006.

[11] DINIZ, P. S. R., DA SILVA, E. A. B., NETTO, S. L. Digital Signal Processing:
Systems analysis and design. 2 ed. New York, United States, Cambridge,
2010. ISBN: 978-0521887755.

[12] KNAPP, C., CARTER, G. “The generalized correlation method for estimation
of time delay”, IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, v. 24, n. 4, pp. 320–327, August 1976. doi: 10.1109/TASSP.1976.
1162830.

[13] ROTH, P. R. “Effective measurements using digital signal analysis”, IEEE
Spectrum, v. 8, n. 4, pp. 62–70, April 1971. doi: 10.1109/MSPEC.1971.
5218046.

[14] AL-HUSSAINI, E., KASSAM, S. “Robust Eckart filters for time delay esti-
mation”, IEEE Transactions on Acoustics, Speech, and Signal Processing,
v. 32, n. 5, pp. 1052–1063, October 1984. doi: 10.1109/TASSP.1984.
1164428.

[15] CARTER, G., NUTTALL, A., CABLE, P. “The smoothed coherence trans-
form”, Proceedings of the IEEE, v. 61, n. 10, pp. 1497–1498, October
1973. doi: 10.1109/PROC.1973.9300.

[16] DONOHUE, K. D., HANNEMANN, J., DIETZ, H. G. “Performance of phase
transform for detecting sound sources with microphone arrays in reverber-
ant and noisy environments”, Signal Processing, v. 87, n. 7, pp. 1677–1691,
July 2007. ISSN: 0165-1684. doi: https://doi.org/10.1016/j.sigpro.2007.
01.013.

[17] HUANG, Y. A., BENESTY, J., CHEN, J. “Time Delay Estimation and
Source Localization”. In: Benesty, J., Sondhi, M. M., Huang, Y. A.
(Eds.), Springer Handbook of Speech Processing, Springer, pp. 1043–
1063, Berlin, Germany, 2008. ISBN: 978-3-540-49127-9. doi: 10.1007/
978-3-540-49127-9_51.

55



[18] SCHAU, H., ROBINSON, A. “Passive source localization employing intersect-
ing spherical surfaces from time-of-arrival differences”, IEEE Transactions
on Acoustics, Speech, and Signal Processing, v. 35, n. 8, pp. 1223–1225,
August 1987. doi: 10.1109/TASSP.1987.1165266.

[19] OZEKI, K. Theory of Affine Projection Algorithms for Adaptive Filtering.
Tokyo, Japan, Springer, 2015. ISBN: 9784431557371.

[20] CAPON, J. “High-resolution frequency-wavenumber spectrum analysis”, Pro-
ceedings of the IEEE, v. 57, n. 8, pp. 1408–1418, August 1969. doi:
10.1109/PROC.1969.7278.

[21] GRIFFITHS, L., JIM, C. “An alternative approach to linearly constrained
adaptive beamforming”, IEEE Transactions on Antennas and Propaga-
tion, v. 30, n. 1, pp. 27–34, January 1982. doi: 10.1109/TAP.1982.1142739.

[22] BERGER, M., SILVERMAN, H. “Microphone array optimization by stochastic
region contraction”, IEEE Transactions on Signal Processing, v. 39, n. 11,
pp. 2377–2386, November 1991. doi: 10.1109/78.97993.

[23] LIMA, M. V. S., MARTINS, W. A., NUNES, L. O., et al. “A volumetric
SRP with refinement step for sound source Localization”, IEEE Signal
Processing Letters, v. 22, n. 8, pp. 1098–1102, December 2015. doi: 10.
1109/LSP.2014.2385864.

[24] GAO, S., HUANG, Y., ZHANG, T., et al. “A Modified Frequency Weighted
MUSIC Algorithm for Multiple Sound Sources Localization”. In: IEEE
23rd International Conference on Digital Signal Processing (DSP), pp. 1–
4, Shanghai, China, November 2018. doi: 10.1109/ICDSP.2018.8631636.

[25] YANG, J.-M., CHOI, M.-S., KANG, H.-G. “Two-channel DOA estimation usign
frequency selective MUSIC algorithm with a phase compensation in re-
verberant room”. In: 5th IEEE Sensor Array and Multichannel Signal
Processing Workshop, pp. 365–368, Darmstadt, Germany, July 2008. doi:
10.1109/SAM.2008.4606891.

[26] KRIM, H., VIBERG, M. “Two decades of array signal processing research:
the parametric approach”, IEEE Signal Processing Magazine, v. 13, n. 4,
pp. 67–94, July 1996. doi: 10.1109/79.526899.

[27] VIBERG, M., OTTERSTEN, B., KAILATH, T. “Detection and estimation
in sensor arrays using weighted subspace fitting”, IEEE Transactions on
Signal Processing, v. 39, n. 11, pp. 2436–2449, November 1991. doi: 10.
1109/78.97999.

56



[28] ŽMOLÍKOVÁ, K., DELCROIX, M., KINOSHITA, K., et al. “Learning speaker
representation for neural network based multichannel speaker extraction”.
In: IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 8–15, Okinawa, Japan, December 2017. doi: 10.1109/ASRU.
2017.8268910.

[29] NERCESSIAN, S., LUKIN, A. “Speech dereverberation using recurrent neural
networks”. In: 22nd International Conference on Digital Audio Effects
(DAFx-19), pp. 152–156, Birmingham, United Kingdom, September 2019.

[30] ABU-MOSTAFA, Y. S., MAGDON-ISMAIL, M., LIN, H.-T. Learning From
Data. California, United States, AMLBook, 2012. ISBN: 1600490069.

[31] BISHOP, C. Pattern Recognition and Machine Learning. New York, United
States, Springer, 2013. ISBN: 978-0-387-31073-2.

[32] MACK, W., BHARADWAJ, U., CHAKRABARTY, S., et al. “Signal-aware
broadband DOA estimation using attention mechanisms”. In: IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4930–4934, Barcelona, Spain, May 2020. doi: 10.1109/
ICASSP40776.2020.9053658.

[33] MANE, S. S., MALI, S. G., MAHAJAN, S. P. “Localization of steady sound
source and direction detection of moving sound source using CNN”. In:
10th International Conference on Computing, Communication and Net-
working Technologies (ICCCNT), pp. 1–6, Kanpur, India, July 2019. doi:
10.1109/ICCCNT45670.2019.8944612.

[34] ADAVANNE, S., POLITIS, A., VIRTANEN, T. “Direction of arrival estima-
tion for multiple sound sources using convolutional recurrent neural net-
work”. In: 26th European Signal Processing Conference (EUSIPCO), pp.
1462–1466, Rome, Italy, September 2018. doi: 10.23919/EUSIPCO.2018.
8553182.

[35] DING, J., REN, B., ZHENG, N. “Microphone array acoustic source localization
system based on deep learning”. In: 2018 11th International Symposium
on Chinese Spoken Language Processing (ISCSLP), pp. 409–413, Taipei,
China, November 2018. doi: 10.1109/ISCSLP.2018.8706599.

[36] TANG, Z., KANU, J. D., HOGAN, K., et al. “Regression and Classification
for Direction-of-Arrival Estimation with Convolutional Recurrent Neu-
ral Networks”. In: Proc. Interspeech 2019, pp. 654–658, Graz, Austria,
September 2019. doi: 10.21437/Interspeech.2019-1111.

57



[37] PEROTIN, L., DÉFOSSEZ, A., VINCENT, E., et al. “Regression Versus
Classification for Neural Network Based Audio Source Localization”. In:
IEEE Workshop on Applications of Signal Processing to Audio and Acous-
tics (WASPAA), pp. 343–347, New Paltz, USA, October 2019. doi:
10.1109/WASPAA.2019.8937277.

[38] SALVATI, D., DRIOLI, C., FORESTI, G. L. “Exploiting CNNs for Improving
Acoustic Source Localization in Noisy and Reverberant Conditions”, IEEE
Transactions on Emerging Topics in Computational Intelligence, v. 2, n. 2,
pp. 103–116, March 2018. doi: 10.1109/TETCI.2017.2775237.

[39] WANG, Z.-Q., ZHANG, X., WANG, D. “Robust Speaker Localization Guided
by Deep Learning-Based Time-Frequency Masking”, IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, v. 27, n. 1, pp. 178–188,
October 2019. doi: 10.1109/TASLP.2018.2876169.

[40] GRUMIAUX, P.-A., KITIĆ, S., GIRIN, L., et al. “A Survey of Sound Source
Localization with Deep Learning Methods”, The Journal of the Acoustical
Society of America, v. 1, pp. 107–151, July 2021. doi: 10.1121/10.0011809.

[41] TAKEDA, R., KOMATANI, K. “Sound source localization based on deep neu-
ral networks with directional activate function exploiting phase informa-
tion”. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 405–409, Shanghai, China, March 2016. doi:
10.1109/ICASSP.2016.7471706.

[42] THRUN, S., BURGARD, W., FOX, D., et al. Probabilistic Robotics. Cam-
bridge, United States, MIT Press, 2005. ISBN: 9780262201629.

[43] KOCH, W. Tracking and Sensor Data Fusion. Berlin, Germany, Springer, 2014.

[44] FÉ, J., CORREIA, S. D., TOMIC, S., et al. “Kalman filtering for track-
ing a moving acoustic source based on energy measurements”. In: In-
ternational Conference on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME), pp. 1–6, October 2021. doi:
10.1109/ICECCME52200.2021.9590919.

[45] CHEN, C., WANG, H., ALI, A., et al. “Particle filtering approach to lo-
calization and tracking of a moving acoustic source in a reverberant
room”. In: IEEE International Conference on Acoustics Speech and
Signal Processing (ICASSP), v. 4, Tolouse, France, May 2006. doi:
10.1109/ICASSP.2006.1661102.

58



[46] DO, H., SILVERMAN, H. F. “Stochastic particle filtering: A fast SRP-PHAT
single source localization algorithm”. In: 2009 IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics, pp. 213–216, 2009.
doi: 10.1109/ASPAA.2009.5346540.

[47] ELMAN, J. L. “Finding Structure in Time”, Cognitive Science, v. 14,
n. 2, pp. 179–211, March 1990. doi: https://doi.org/10.1207/
s15516709cog1402\_1.

[48] JORDAN, M. I. “Serial Order: A Parallel Distributed Processing Approach”. In:
Donahoe, J. W., Dorsel, V. P. (Eds.), Neural-Network Models of Cogni-
tion, v. 121, North-Holland, pp. 471–495, Amsterdam, Netherlands, 1997.
doi: https://doi.org/10.1016/S0166-4115(97)80111-2.

[49] HOCHREITER, S., SCHMIDHUBER, J. “Long Short-term Memory”, Neural
computation, v. 9, pp. 1735–80, December 1997. doi: 10.1162/neco.1997.
9.8.1735.

[50] CHO, K., VAN MERRIËNBOER, B., BAHDANAU, D., et al. “On the Prop-
erties of Neural Machine Translation: Encoder–Decoder Approaches”. In:
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, pp. 103–111, Doha, Qatar, out. 2014. As-
sociation for Computational Linguistics. doi: 10.3115/v1/W14-4012.

[51] LEA, C., FLYNN, M. D., VIDAL, R., et al. “Temporal Convolutional Networks
for Action Segmentation and Detection”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1003–1012, July 2017.
doi: 10.1109/CVPR.2017.113.

[52] DIAZ-GUERRA, D., MIGUEL, A., BELTRAN, J. R. “Robust sound
source tracking using SRP-PHAT and 3D convolutional neural networks”,
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
v. 29, pp. 300–311, November 2021. doi: 10.1109/TASLP.2020.3040031.

[53] PEEBLES, JR., P. Z. Probability, Random Variables and Random Signal Prin-
ciples. 4 ed. New York, United States, McGraw-Hill, 2001. ISBN: 978-
0071181815.

[54] HAYES, M. Statistical Digital Signal Processing and Modeling. New York,
United states, Wiley, 1996. ISBN: 9780471594314.

[55] LÖLLMANN, H., MOORE, A., NAYLOR, P., et al. “Microphone Array Signal
Processing for Robot Audition”. In: IEEE Workshop on Hands-free Speech

59



Communication and Microphone Arrays, pp. 51–55, San Francisco, United
States, March 2017. IEEE Signal Processing Society, IEEE. doi: 10.1109/
HSCMA.2017.7895560.

[56] PANAYOTOV, V., CHEN, G., POVEY, D., et al. “Librispeech: An ASR corpus
based on public domain audio books”. In: IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210,
Brisbane, Australia, April 2015. doi: 10.1109/ICASSP.2015.7178964.

[57] DIAZ-GUERRA, D., MIGUEL, A., BELTRAN, J. R. “gpuRIR: A python
library for room impulse response simulation with GPU acceleration”,
Multimedia Tools and Applications, v. 80, n. 4, pp. 5653–5671, February
2021. ISSN: 1573-7721. doi: 10.1007/s11042-020-09905-3.

[58] ALLEN, J. B., BERKLEY, D. A. “Image method for efficiently simulating
small-room acoustics”, The Journal of the Acoustical Society of America,
v. 65, n. 4, pp. 943–950, 1979. doi: 10.1121/1.382599.

[59] LEHMANN, E. A., JOHANSSON, A. M. “Diffuse Reverberation Model for
Efficient Image-Source Simulation of Room Impulse Responses”, IEEE
Transactions on Audio, Speech, and Language Processing, v. 18, n. 6,
pp. 1429–1439, 2010. doi: 10.1109/TASL.2009.2035038.

[60] TORRES, J. C. “BRASS - Brazilian Room Acoustic Simulator”. In: XXVIII
ENCONTRO DA SOBRAC, Porto Alegre, Brazil, January 2018. doi:
10.17648/sobrac-87152. (in portuguese).

[61] RINDEL, J. H. “Computer Simulation Techniques for Acoustical Design of
Rooms”, Acoustics Australia / Australian Acoustical Society, v. 23, pp. 81–
86, 01 1995.

[62] WISEMAN, J. “py-webrtcvad”. https://github.com/wiseman/

py-webrtcvad, 2022. [Online; accessed 17-May-2022].

[63] KELLS, L. M., KERN, W. F., BLAND, J. R. Plane and Spherical Trigonome-
try. New York, United States, McGraw-Hill, 1940. ISBN: 9781296235581.

[64] KINGMA, D. P., BA, J. “Adam: A Method for Stochastic Optimization”. In:
3rd International Conference on Learning Representations (ICLR), San
Diego, USA, May 2015.

[65] EVERS, C., LÖLLMANN, H., MELLMANN, H., et al. “The LOCATA Chal-
lenge: Acoustic Source Localization and Tracking”, IEEE/ACM Trans-

60

https://github.com/wiseman/py-webrtcvad
https://github.com/wiseman/py-webrtcvad


actions on Audio, Speech, and Language Processing, April 2020. doi:
10.1109/TASLP.2020.2990485.

[66] ZHONG, T., VELÁZQUEZ, I. M., REN, Y., et al. “Spherical convolu-
tional recurrent neural network for real-time sound source tracking”. In:
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 5063–5067, Marina Bay Sands, Singapore, May 2022.
doi: 10.1109/ICASSP43922.2022.9747845.

[67] DIAZ-GUERRA, D., MIGUEL, A., BELTRAN, J. R. “Direction of Ar-
rival Estimation of Sound Sources Using Icosahedral CNNs”. Available
at https://arxiv.org/abs/2203.16940, 2022.

61

https://arxiv.org/abs/2203.16940

	List of Figures
	List of Tables
	Introduction
	Objectives
	Materials
	Outline

	Signal Model
	Microphone array
	Single Sound Source
	Multiple sources
	Reverberation

	Sound source localization
	Sound source tracking

	Classical Solutions for Sound Source Localization
	TDOA Estimation
	Cross-Correlation
	Generalizations to the Cross-Correlation
	Least Squares Estimation of Source Position

	Steered Response Power
	MUSIC
	Other Subspace Methods

	Neural Networks for SSL
	Logistic Regression and Linear Models
	Multi-layer perceptron
	Input Features and Output Formats
	Example: MUSIC-DNN


	Classical Solutions for Tracking
	Bayesian Filters
	Kalman Filter
	Particle Filter

	Neural Networks for Tracking
	Recurrent Neural Networks
	Convolutional Neural Networks
	Example: Cross3D


	Proposed Solution: Spectral Cross3D
	Preprocessing stage
	MUSIC Power Map Calculations
	Frequency Selection

	Neural Network Architecture

	Experiments and Results
	Data Generation
	Microphone Array
	Corpus
	Trajectory Generation
	Simulator
	Voice Activity Detector

	Neural Network Training
	Loss Function
	Optimizer
	Early Stopping

	Results
	Training time
	LibriSpeech
	Model Selection
	Final Evaluation
	LOCATA


	Conclusions
	Future Works

	References

