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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

SELEÇÃO ÓTIMA DE SUBSISTEMAS PARA DIAGNOSE SÍNCRONA
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Março/2022

Orientador: Marcos Vicente de Brito Moreira

Programa: Engenharia Elétrica

Diagnóstico de falhas em sistemas de automação é uma tarefa muito importante,
visto que falhas podem alterar o comportamento esperado do sistema, danificando
equipamentos e gerando riscos aos operadores. Normalmente, os sistemas são forma-
dos por diversos subsistemas ou módulos e, portanto, o modelo do sistema completo
pode crescer exponencialmente com o número de componentes do sistema. Em
função disso, pode ser necessário um espaço de memória elevado para implementar
diagnosticadores calculados utilizando métodos tradicionais, uma vez que os mes-
mos são baseados no modelo da planta completa. Recentemente, foi proposto um
novo método para diagnose de falhas, chamado diagnose síncrona. O diagnosticador
calculado por esse método é baseado em estimadores de estados dos comportamen-
tos livres de falha dos modelos dos componentes do sistema, evitando assim que
seja necessário implementar o observador do sistema completo. Na estratégia de
diagnose síncrona, todos os modelos livres de falha do sistema são utilizados para a
detecção da ocorrência da falha. No entanto, na prática, alguns subsistemas podem
não adicionar nenhuma informação útil para o diagnóstico da falha, ou ainda, a
mesma informação pode ser obtida em outros módulos, mostrando que esses subsis-
temas não são necessários para a arquitetura de diagnose síncrona. Neste trabalho,
é proposto um algoritmo para calcular todos os conjuntos minimais de módulos
que garantem a diagnosticabilidade síncrona em um Sistema a Eventos Discreto.
A performance do algoritmo é comparada com a performance do método de busca
exaustiva, e é mostrado que usando o método proposto é possível uma redução sig-
nificativa no custo computacional para encontrar todos os conjuntos de módulos
minimais que garantem a diagnose síncrona.
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Fault diagnosis of automated systems is a very important task, since faults can
alter the expected behavior of systems, damaging equipment and bringing risk to
operators. In general, systems are composed of several subsystems or modules, and
therefore, the complete system model may grow exponentially with the number of
system components. This fact shows that a large amount of memory space may be
needed to implement diagnosers computed using traditional methods, since they are
based on the complete system model. Recently, a new method for fault diagnosis,
called synchronous diagnosis, has been proposed. The diagnoser computed using
this method is based on the state estimators of the fault-free component models of
the system, avoiding the implementation of the state observer of the composed sys-
tem model. In the synchronous diagnosis strategy it is supposed that all fault-free
subsystem models are used to detect the fault occurrence. However, in practice,
some subsystems may not add useful information regarding the fault diagnosis, or
the same information can be obtained from the other modules, which shows that
these subsystems are not necessary in the synchronous diagnosis scheme. In this
work, an algorithm for computing all minimal sets of modules that ensure the syn-
chronous diagnosability of a Discrete Event System is proposed. The performance of
the proposed algorithm is compared with the performance of the exhaustive search
method, and we show that using the proposed method there is a significant reduc-
tion in the computational cost of finding all minimal sets of modules that ensure
synchronous diagnosability.
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Chapter 1

Introduction

Discrete event systems (DES) are systems whose evolution is given by the occurrence
of events [1, 2]. The act of pushing a button by an operator, starting or ending a
task, or the changing of a sensor state are examples of events. This kind of systems
can be seen in several applications, such as robotic systems, operational systems,
manufacturing systems, and data management.

It is important to remark that, in DES, events are defined as instantaneous occur-
rences, that can change the system state. This avoids the adoption of mathematical
formalism based on differential or difference equations to represent these systems.
Thus, it is necessary to adopt a mathematical formalism capable of dealing with the
characteristics of a DES. In order to model DES, the most common formalisms are
Petri nets and automata [1–5]. Petri nets are bipartite graphs, or bigraphs, in the
sense that it has two types of nodes (places and transitions), where nodes of the
same type cannot be connected. Tokens are assigned to the places of the Petri net,
such that the number of tokens of each place forms the marking of the Petri net,
which also represents the system state modeled by the net. Automata are directed
graphs, in which states and events are represented, respectively, by vertices and arcs.
In this work, automata are used to model DES.

As any other system, DES are subject to the occurrence of faults, i.e., events
that can alter their expected behavior, reducing its reliability and performance, or,
even in the worst case scenario, leading the system to a halt. Considering this, fault
diagnosis of automated systems is a very important task, since faults can alter the
expected behavior of systems, damaging equipment and bringing risk to operators.
This problem is addressed in several works in the literature [6–22], with different
objectives, such as: robust diagnosis, considering permanent loss of observation in
TOMOLA et al. [14], CARVALHO et al. [15] and intermittent loss of observation
in CARVALHO et al. [16, 17]; optimizing the sensors that ensure diagnosability in
SANTORO et al. [23]; combining diagnosis and prognosis for safe controllability in
WATANABE et al. [18, 19].
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In the seminal work SAMPATH et al. [6], a diagnoser automaton is proposed
to perform fault diagnosis and to verify the diagnosability of the system language,
i.e., to verify if the fault occurrence can be detected within a bounded number of
event occurrences after the fault. The main problem with respect to the solution
presented in SAMPATH et al. [6], is that the diagnoser is constructed based on an
observer automaton, whose state space may grow exponentially with the number of
system states.

In order to overcome the exponential complexity for verifying the diagnosability
of the system language, in MOREIRA et al. [24] it is proposed a different strategy
based on a verifier automaton that can be computed in polynomial time. However,
the verifier cannot be straightforwardly used for online diagnosis.

In order to circumvent the problem of the size of the classical diagnoser, a new
approach is presented in DEBOUK et al. [25] and CONTANT et al. [26] is the
modular diagnosability, where the idea is to infer the occurrence of the fault event
by observing only the local component where the fault is modeled. It is important
to remark that in the modular diagnosis techniques, the following two assumptions
are considered: (i) all common events between subsystems are observable; and (ii)

the component where the fault event is modeled has persistent excitation, i.e., the
component where the fault is modeled must be able to perform events, otherwise, the
observed component may stay in the same state and the complete system continuing
to perform events and the diagnoser will not observe that. Note that, according to
these assumptions, the system modules cannot be synchronized with unobservable
events, which implies that the fault event cannot be modeled in more than one
system module, restricting its applicability. In addition, it is necessary to guarantee
the persistence of excitation property, which requires the previous knowledge of the
system behavior, which is not shown in DEBOUK et al. [25] and CONTANT et al.
[26].

In order to relax all assumptions considered in the modular diagnosis strategy
and avoid the exponential growth with the number of components, a new diagnosis
technique, called synchronous diagnosis, is proposed in CABRAL and MOREIRA
[20]. The method relies on the computation of a diagnoser based on the state ob-
servers of the fault-free component models of the system. This approach avoids
the implementation of the state observer of the composed system model, provid-
ing an online state estimate of each fault-free subsystem model, but deals with an
augmented fault-free language. Another approach is the synchronous decentralized
diagnosis [27, 28], which is based on local diagnosers, each one built considering one
subsystem model with its own set of observable events, meaning that an event can
be observable for a local diagnoser, but unobservable for other. It is important to re-
mark that those diagnosers do not communicate with the other local diagnosers, and
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the fault event is diagnosed when at least one local diagnoser identifies its occurrence
and sends that information to a coordinator. Similar to the centralized synchronous
diagnosis, the decentralized deals with an augmented fault-free language. Another
recent scheme is the synchronous distributed diagnosis, where local diagnosers are
allowed to exchange information regarding the observation of events and local state
estimates through a network [22]. This allow the local diagnosers to refine the state
estimate of the fault-free behavior of the system modules, reducing the augmented
fault-free language.

In the synchronous centralized diagnosis strategy it is supposed that all fault-
free subsystem models are used to detect the fault occurrence. However, in practice,
some subsystems may not add useful information regarding the fault occurrence,
or the same information can be obtained from the other modules, which implies
that these modules are not necessary for the synchronous diagnosis scheme. It is
important to remark that finding the minimum number of system modules needed
for diagnosing the fault occurrence reduces the size of the diagnoser and the memory
space required to store it on a computer. A method for the computation of the useful
components or subsystems for synchronous fault diagnosis is not carried out in [20].

The simplest way to find all minimal subsets of modules that ensure language
synchronous diagnosability is to perform an exhaustive search, computing the veri-
fier for all 2r− 1 possible subsets of modules, where r denotes the number of system
modules, and selecting those that have smaller cardinality and do not contain an-
other subset of modules. This procedure has a high computational cost. Thus, in
this work, we present a method to compute all minimal sets of modules that are
necessary to guarantee the synchronous diagnosability of the system language, that,
in general, does not require the computation of the verifier for all subsets of sys-
tem modules. After that, the minimum cardinality sets can be obtained simply by
choosing those that have smaller cardinality. In this work, we considered only the
permanent faults.

This work is organized as follows. In Chapter 2, we present some preliminary
concepts of DES modeled as automata. The notions of diagnosability, considering
the classical approach and the synchronous approach are presented in Chapter 3.
In addition, we present an example of a system that is synchronously diagnosable
which motivates the possibility of reducing the number of modules. In Chapter 4,
we present the method to compute the subsystems needed for ensuring synchronous
diagnosability, examples to illustrate the implementation of the method, and dis-
cussions of the results. The conclusions are drawn in Chapter 5.
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Chapter 2

Discrete Event Systems

In Section 2.1 we introduce the notion of languages of a system and some operations
with languages, and in Section 2.2 we present the model of a deterministic and non-
deterministic automaton, the language of these automata and some basic operations
using them.

2.1 Languages

To introduce the concept of languages, it is first necessary to present some notations
and definitions. The set formed of all possible events is the “alphabet” denoted as Σ.
The concatenation of events forms sequences that can be interpreted as “words” of
a language. The words can be called strings or traces as well, and the language of
a system is the set of traces that the system can execute. The length of a sequence,
denoted as ‖s‖, is the number of events that form it, considering multiple occurrences
of the same event. The empty sequence ε is a sequence with zero length.

Definition 2.1 (Language) A language defined over an event set Σ is a set of
finite length sequences formed with events in Σ.

Example 2.1 Let Σ = {a, b}. Then L = {ε, b, ab, ba, bab, baba} is a language de-
fined over Σ, where the length of sequence baba is ‖baba‖ = 4.

Since languages are sets, it is important to remark that all set operations can
be applied to languages, such as union, intersection, difference, and complement.
Some other operations can be applied to languages, such as the ones presented in
the sequel.

2.1.1 Language Operations

Concatenation is an important operation related to the construction of traces from
a set of events Σ, traces and languages. For example, the trace baba is formed by the
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concatenation of the trace ba with the trace ba. The trace ba itself is a concatenation
of the event b with event a. It is important to remark that the empty trace ε is the
identity element of concatenation operation, meaning that εe = eε = εeε = e.

Definition 2.2 (Concatenation) Let L1, L2 ⊆ Σ∗, then the concatenation L1L2

is given by:

L1L2 = {s = s1s2 : (s1 ∈ L1) and (s2 ∈ L2)}

A trace s is in L1L2 if it is formed by the concatenation of s1 ∈ L1 and s2 ∈ L2.

Let us denote by Σ∗ the Kleene-closure of the set of events Σ, which consists
of all sequences of finite length that can be formed using elements of Σ including
the empty sequence ε. Thus, a language L defined over Σ is a subset of Σ∗. The
Kleene-closure operation can also be applied to languages as presented in definition
2.3

Definition 2.3 (Kleene-clousure) Let L ⊆ Σ∗. Then the Kleene-closure opera-
tion L∗ is given by:

L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ . . .

Consider now the trace s = tuv, where t, u, v ∈ Σ∗, t is the prefix of s, u is the
subtrace of s and v is the suffix of s. Considering that t, u, v ∈ Σ∗, then the traces ε
and s are also prefixes, subtraces and sufixes of s. The Prefix-closure of a language
L is defined as follows.

Definition 2.4 (Prefix-closure) Let L ⊆ Σ∗.Then the prefix-closure operation L̄

is given by:

L̄ = {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}.

The prefix-closure of a language L is the set of all prefixes of all traces of L,
consequently L ⊆ L̄. A language is said to be prefix-closed if L = L̄, i.e., if all
prefixes of all traces of language L are also elements of L.

Other important operation applied to traces and languages is the natural pro-
jection, defined as follows:

Definition 2.5 (Projection) Consider Σs and Σl, such that Σs ⊂ Σl. The natural
projection P l

s : Σ∗l → Σ∗s is defined recursively as bellow:

P l
s(ε) = ε,

5



P l
s(σ) =

σ, if σ ∈ Σs,

ε, if σ ∈ Σl\Σs,

P l
s(sσ) = P l

s(s)P
l
s(σ) for all s ∈ Σ∗l , σ ∈ Σl,

where \ denotes set difference.

The projection operation P l
s(s) erases all events σ ∈ Σl\Σs from the traces

s ∈ Σ∗l . This operation can be extended to languages by applying the operation to
all traces of the language.

Another important operation applied to traces and languages is the inverse pro-
jection, defined as follows:

Definition 2.6 (Inverse projection) The inverse projection P l−1

s : Σ∗s → 2Σ∗l is
defined as:

P l−1

s (t) = {s ∈ Σ∗l : P l
s(s) = t}. (2.1)

For a given trace t, formed with events from Σs, P l−1

s (t) produces a set formed
with all the traces s that can be constructed with Σl whose projection P l

s(s) is equal
to t.

Similarly to the projection operation, the inverse projection can be extended to
languages by applying Equation 2.1 to all traces t that belong to the language.

The language of a DES is used to model the system behavior by representing all
traces that the system is capable of executing. Nonetheless, the representation of the
system behavior using only their languages is not simple to work with. Considering
this, it is necessary to use another formalism to describe DES to make it easier to
analyse and manipulate DES with more complex behavior.

2.2 Automata

An automaton is a device that is capable of representing a language according to
well-defined rules, and is formally defined in the sequel [1, 2].

Definition 2.7 (Automaton) An automaton, denoted by G, is a five-tuple

G = (Q,Σ, f , q0, Qm),

where Q is the set of states, Σ is the set of events, f : Q× Σ→ Σ is the transition
function, q0 is the initial state, and Qm is the set of marked states.
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For the sake of simplicity, unless otherwise stated, the set of marked states Qm

will be omitted from the automata defined in this work.
ΓG(q) is the set of all events σ ∈ Σ for which the transition function f(q, σ) is

defined.
Graphically, an automaton can be represented by an oriented graph called state

transition diagram, which can reproduce all characteristics defined in G. The state
transition diagram is formed of vertices and edges, represented by circles and arcs,
respectively. The states of the system are represented by the vertices and the tran-
sition between states are represented by the edges. The events of Σ associated with
the transitions appear as labels of the edges. The initial state is represented by an
arc with no origin state, and a marked state is represented by two concentric circles.
Example 2.2 shows an automaton and its state transition diagram.

Example 2.2 Consider an automaton G = (Q,Σ, f, q0, Qm) with state set Q =

{0, 1, 2, 3}, event set Σ = {b, e, h}, transition function defined as f(0, b) =

1, f(1, h) = 2, f(2, e) = 3, f(3, h) = 1 and active event function given by ΓG(0) =

{b}, ΓG(1) = {h}, ΓG(2) = {e}, ΓG(3) = {h}. The initial state q0 is 0, and the set of
marked states is Qm = {1, 3}. The state transition diagram representing automaton
G is depicted in Figure 2.1.

0
b h

1 2 3
e

h

Figure 2.1: State transition diagram of Example 2.2.

Another important definition is of a path in automaton G, which is a sequence
(q1, σ1, q2, . . . , qn−1, σn−1, qn), where σi ∈ Σ and qi+1 = f(qi, σi), i = 1, 2, . . . , n−1. A
path (q1, σ1, q2, . . . , qn−1, σn−1, qn) is said to be cyclic if q1 = qn and the set of states
of a cyclic path forms a cycle.

In the following we present the definition of generated and marked languages.

Definition 2.8 (Generated and marked languages) The generated language
of an automaton G = (Q,Σ, f, q0, Qm) is defined as:

L(G) = {s ∈ Σ∗ : f(q0, s) is defined}

The marked language of G is defined as:

Lm(G) = {s ∈ L(G) : f(q0, s) ∈ Qm}
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It is important to remark that, in Definition 2.8 the domain of the transition
function is extended to Q× Σ∗. Additionally, for any G such that Q 6= ∅, ε ∈ L(G)

The language L(G) is composed of all traces that can be generated by following
the transitions of the state transition diagram starting at the initial state. Conse-
quently, knowing that a trace is only feasible if all its prefixes are also feasible, the
generated language L(G) is, by definition, prefix-closed. Furthermore, if f is a total
function over its domain, then L(G) = Σ∗. In this work, for the sake of simplicity,
the generated language of G, L(G), is also referred to as L.

The language marked by G, Lm(G), is a subset of L composed of all traces s
that reach a marked state starting at the initial state, i.e., all traces s such that
f(q0, s) ∈ Qm. In this case, knowing that Qm is not necessarily equal to Q, Lm(G)

is not necessarily prefix-closed.
The language of an automaton G = (Q,Σ, f, q0) is said to be live if ΓG(q) 6= ∅

for all q ∈ Q.
In the next section we present some operations that can be applied to automata.

2.2.1 Operations on automata

There are several operations that can be applied to automata, and those can be
separated into two groups: unary and composition operations.

Unary operations

Unary operations are applied to a single automata, altering its state transitions dia-
gram, but keeping its event set the same. In the following we present two examples
of unary operations: accessible part and coaccessible part.

Definition 2.9 (Accessible part) Consider automaton G = (Q,Σ, f, q0, Qm).
The accessible part of G, denoted as Ac(G), is defined as:

Ac(G) = (Qac,Σ, fac, q0, Qac,m),

where Qac = {q ∈ Q : (∃s ∈ Σ∗)[f(q0, s) = q]}, fac : Qac × Σ → Qac and Qac,m =

Qm ∩Qac. The transition function fac differs from the transition function f due to
the restricted domain of the accessible states Qac.

In the operation of taking the accessible part of an automaton G, the states which
are not reachable from the initial state q0 and its related transitions are erased from
G. Note that this operation does not modify the generated language of G.

Definition 2.10 (Coaccessible part) Consider automaton G = (Q,Σ, f, q0, Qm).
The coaccessible part of G, denoted as CoAc(G), is defined as:
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CoAc(G) = (Qcoac,Σ, fcoac, q0,coac, Qm),

where Qcoac = {q ∈ Q : (∃s ∈ Σ∗)[f(q, s) ∈ Qm]}, fcoac : Qcoac × Σ → Qcoac and
q0,coac = q0 if qo ∈ Qcoac and q0,coac is not defined, if q0 6∈ Qcoac.

In the operation of taking the coaccessible part of G, all states q such that a
path from q to a marked state does not exist are deleted.

It is important to remark that although the marked language of the coaccessible
part of G is not modified, i.e.,Lm(CoAc(G)) = Lm(G), the generated language of
the coaccessible part can be reduced i.e.,L(CoAc(G)) ⊆ L(G).

Composition operations

Composition operations applied to DES modeled by automata are those that allow
us to combine automata, and the result of the operation is another automaton. In
the sequel we present two important composition operations.

Definition 2.11 (Product composition) Let G1 = (Q1,Σ1, f1, q0,1, Qm1) and
G2 = (Q2,Σ2, f2, q0,2, Qm2) be two automata. The product composition of G1 and G2

results in automaton:

G1 ×G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f1×2, (q0,1, q0,2), Qm1 ×Qm2),

where

f1×2((q1, q2), σ) =

(f1(q1, σ), f2(q2, σ)), if σ ∈ ΓG1(q1) ∩ ΓG2(q2)

undefined, otherwise.

The product composition is known as completely synchronous composition due
to the fact that an event can only occurs in the resulting automaton G1 × G2 if it
occurs simultaneously in G1 and G2.

Another important characteristic of the product composition, as consequence
of the complete synchronization, is that the generated language of G1 × G2 is the
intersection of the languages of the automata used in the composition, i.e., L(G1×
G2) = L(G1) ∩ L(G2), and if Σ1 ∩ Σ2 = ∅, then L(G1 ×G2) = ε.

In general, complex systems are formed of several components, which work to-
gether to accomplish their tasks. The usual way to obtain the global model of the
system from the model of its components is by making the parallel composition of
the component models. Differently from the product composition, the parallel com-
position allows each component to maintain its private behavior and synchronize
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only the common events of the components. In the following we present the formal
definition of the parallel composition.

Definition 2.12 (Parallel composition) Let G1 = (Q1,Σ1, f1, q0,1, Qm1) and
G2 = (Q2,Σ2, f2, q0,2, Qm2) be two automata. The parallel composition of G1 and
G2 results in automaton:

G1 ‖ G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f1‖2, (q0,1, q0,2), Qm1 ×Qm2),

where

f1‖2((q1, q2), σ) =



(f1(q1, σ), f2(q2, σ)), if σ ∈ ΓG1(q1) ∩ ΓG2(q2)

(f1(q1, σ), q2), if σ ∈ ΓG1(q1)\Σ2

(f2(q2, σ), q1), if σ ∈ ΓG2(q2)\Σ1

undefined, otherwise.

It is important to remark that in the parallel composition an event σ ∈ Σ1 ∪
Σ2 can only occur in the composed automaton G1 ‖ G2 if it is enabled in G1

and G2 simultaneously, and, consequently, is performed in both at the same time.
The private events, on the other hand, can be executed whenever possible in its
automaton, i.e., events in Σ1\Σ2 can occur in G1 ‖ G2 when possible in G1 and
events in Σ2\Σ1 can occur in G1 ‖ G2 when possible in G2.

It is important to remark that in the cases where Σ1 = Σ2 the parallel composi-
tion is exactly the same as the product composition, namely G1 ‖ G2 = G1 ×G2.

The generated language of the parallel composition G1 ‖ G2 is obtained by using
the natural projections Pi = (Σ1 ∪Σ2)∗ → Σ∗i , for i = 1, 2. The generated language
of the parallel composition is L(G1 ‖ G2) = P−1

1 (L(G1))∩P−1
2 (L(G2)). In the sequel

we present an example of product and parallel composition.

Example 2.3 Let G1 = (Q1,Σ1, f1, q0,1) and G2 = (Q2,Σ2, f2, q0,2) be two au-
tomata, with event sets Σ1 = {a, b, c} and Σ2 = {a, b}, whose state transition dia-
grams are presented in Figures 2.2a and 2.2b respectively. The automaton Gprod is
obtained by making the product composition of G1 and G2, Gprod = G1 × G2, and
the result is shown in Figure 2.3a, and the parallel composition between G1 and G2

results in automaton Gpar = G1 ‖ G2,, which is presented in Figure 2.3b.

2.2.2 Automata with partially observed events

In real word systems, the observation of the occurrence of all events is a very difficult
task. The number of sensors and the position where they must be placed in order
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Figure 2.2: Automata G1 and G2 of Example 2.3.
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(b) Gpar.

Figure 2.3: Automata Gprod and Gpar of Example 2.3.

to provide the information for the occurrence of events usually make it impossible
to observe all events of interest. To represent that, we introduce the notion of
unobservable events, which are those not associated with a sensor or fault events,
that do not cause immediate change in sensor readings. One way to represent this
is that the event set Σ can be partitioned as Σ = Σo∪̇Σuo, where ∪̇ represents the
disjoint union, a union which the sets do not have any element in common.

One way to obtain the observable language of a system, is by applying the
projection Po(L), where Po : Σ∗ → Σ∗o, and the unobservable reach of state q ∈ Q.

Definition 2.13 (Unobservable reach) The unobservable reach of a state q ∈ Q,
denoted by UR(q), is defined as:

UR(q) = {y ∈ Q : (∃t ∈ Σ∗uo)[f(q, t) = y]}

The unobservable reach can also be defined for a set of states B ∈ 2Q as:

UR(B) =
⋃
q∈B

UR(q)

The unobservable reach of a state qv is the set of states composed of all states
reached from qv by transitions and sequence of transitions with unobservable events.
It is possible to build a deterministic automaton from G that generates the observed
language of G,Po(L), using the unobservable reach. This automaton is called the
observer automaton of G, denoted as Obs(G,Σo), defined as follows.

Definition 2.14 (Observer automaton) The observer of an automaton G with
respect to a set of observable events Σo, denoted by Obs(G,Σo), is defined as:

Obs(G,Σo) = (Qobs,Σo, fobs, q0,obs, Qm,obs),
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where qobs ⊆ 2Q, fobs, q0,obs and Qm,obs are obtained following the steps of algorithm.

Algorithm 2.1 Observer automaton

Input: G = (Q,Σ, f, q0, Qm), and the observable event set Σo, where Σ = Σo∪̇Σuo

Output: Observer automaton Obs(G,Σo) = (Qobs,Σo, fobs, q0,obs, Qm,obs)

1: Define q0,obs := UR(qo), Qobs := {q0,obs} and Q̃obs := Qobs.

2: Q̂obs := Q̃obs and Q̃obs := ∅.

3: For each B ∈ Q̂obs :

3.1: Γobs(B) :=
(⋃

q∈B ΓG(q)
)
∩ Σo

3.2: For each σ ∈ Γobs(B),

fobs(B, σ) := UR({q ∈ Q : (∃y ∈ B)[q = f(y, σ)]}).

3.3: Q̃obs := Q̃obs ∪ fobs(B, σ).

4: Qobs := Qobs ∪ Q̃obs.

5: Repeat steps 2 to 4 until all accessible part of Obs(G,Σo) is constructed

6: Qm,obs := {B ∈ Qobs : B ∩Qm 6= ∅}.

In the sequel, we present an example of the construction of the observer
Obs(G,Σo) of G.

Example 2.4 Consider automaton G shown in Figure 2.4a. The set of states is
Q = {0, 1, 2, 3} and the set of events is Σ = {e, h, σ1, σ2}, where Σo = {e, h} and
Σuo = {σ1, σ2}. The observer automaton of G,Obs(G,Σo), computed using Algo-
rithm 2.1, is shown in Figure 2.4b. Let us suppose that trace s = hσ1eh has been
executed. In this case, the observed trace is Po(s) = heh, where Po : Σ∗ → Σ∗o. After
observed the trace heh, it is impossible to be certain in which state the system is,
but it is possible to estimate it, and in this case the estimated states are 1, 2 and 3.
This can be seen in Figure 2.4b, where each state represent the state estimate of G
after observing a trace s ∈ Po(L).
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Figure 2.4: Observer Obs(G,Σo) of Example 2.4.

2.3 Final Comments

In this chapter, the background of DES is presented. This background includes the
definition of languages and their operations, the automaton formalism to represent
DES and automata with partially observed events. That background is important
to study the diagnosability of a DES. In the next chapter we introduce the concepts
of diagnosability and synchronous diagnosability of DES.
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Chapter 3

Diagnosability and Synchronous
Diagnosability of Discrete Event
Systems

Systems are subject to fault events that may alter their expected normal behavior.
If the fault event is observable it can be diagnosed trivially, thus, we focus on the
diagnosis of unobservable fault events. In this chapter, some preliminary results
considering the diagnosis of DES are first presented, and then we introduce the
classical definition of diagnosability of DES (SAMPATH et al. [6]) in Section 3.1.
Then, in Section 3.2, we introduce the definition of synchronous diagnosability.

3.1 Diagnosability of DES

Let G be the automaton model of the system, and let L(G) = L denote the language
generated by G. The set of fault events is denoted by Σf , where Σf ⊆ Σuo and,
for the sake of simplicity, in this work, we assume that the set of fault events is
composed of only one fault event Σf = {σf}. This simplification is not restrictive
since, for systems with more than one fault type, each type of fault can be considered
separately [29].

In order to present the definition of language diagnosability of DES, we will
introduce the notion of faulty and fault-free traces as follows.

Definition 3.1 (Faulty and fault-free traces) A trace s ∈ L is a faulty trace if
σf is one of the events that form s, otherwise, the trace is said to be a fault-free
trace.

The fault-free language LN ⊂ L denotes the set of all fault-free traces of L, and
the subautomaton of G that generates LN is denoted by GN . Thus, the set of all
faulty traces is defined as LF = L\LN .
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After the definition of fault-free and faulty traces, prior to the definition of diag-
nosability, it is necessary to state two assumptions on the system under investigation:

A1) The language L generated by G is live. This means that there is a transition
defined at each state q ∈ Q, i.e., the system cannot reach a state at which no
event is possible.

A2) There does not exist in G any cycle of unobservable events, i.e.,

∃n0 ∈ N such that ∀st ∈ L, s ∈ Σ∗uo ⇒ ‖s‖ ≤ n0

where ‖s‖ is the length of a trace s.

After the definition of fault-free and faulty traces, and assumptions A1 and A2,
the definition of diagnosability of the system language can be stated [6].

Definition 3.2 (Language diagnosability) Let L and LN ⊂ L be the live and
prefix-closed languages generated by G and GN , respectively. L is said to be diag-
nosable with respect to projection Po : Σ∗ → Σ∗o and Σf if:

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF )(‖t‖ ≥ z)⇒ (Po(st) /∈ Po(LN)).

According to Definition 3.2, L is diagnosable with respect to projection Po and
Σf if, and only if, for all faulty traces st with arbitrarily long length after the
occurrence of the fault event, there does not exist a fault-free trace sN ∈ LN , such
that Po(st) = Po(sN). As a consequence, if L is diagnosable, then it is always
possible to identify the occurrence of a fault event after the occurrence of a bounded
number of events.

In [1, 6, 7] an automaton, called diagnoser, that can be used to verify the diag-
nosability of L and also for online fault diagnosis is presented. The procedure to
construct the diagnoser automaton Gd is presented in Algorithm 3.1.

Algorithm 3.1 Diagnoser automaton of the system [6].

Input: G = (Q,Σ, f, q0), set of fault events Σf .
Output: Automaton Gd.

1: Define Al := (Ql,Σf , fl, q0,l) where Ql = {N,F}, q0,l = {N}, fl(N, σf ) = F

and fl(F, σf ) = F for all σf ∈ Σf .

2: Compute Gl = G‖Al.

3: Construct the diagnoser automaton Gd = (Qd,Σo, fd, q0,d) = Obs(Gl,Σo).
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In Step 1 of Algorithm 3.1, automaton Al is defined as Al = (Ql,Σf , fl, q0,l)

where Ql = {N,F}, fl(N, σf ) = F , fl(F, σf ) = F , q0,l = N. The state transition
diagram of Al is presented in Figure 3.1. In Step 2, automaton Gl is computed
from the plant model G, as Gl = G‖Al. Such that, if a state of G is reached by
a fault-free trace, then it is labeled with N , otherwise, if the state is reached by a
trace that contains σf , it is labeled with F . In Step 3, the diagnoser automaton Gd

is obtained by computing the observer of Gl with respect to its observable events,
i.e., Gd = (Qd,Σo, fd, q0,d) = Obs(Gl,Σo).

σf

N F

σf

Figure 3.1: Automaton Al.

It is important to notice that the generated language of Gd is the natural projec-
tion of L, i.e., L(Gd) = Po(L). Furthermore, it is important to notice that the states
of Gd are the state estimates of Gl after the observation of a trace. Consequently, if
Gd reaches a state where all labels are F , the fault has occurred and is diagnosed.
On the other hand, if Gd reaches a state where all labels are N , the fault has not
occurred.

In the cases that there are states labeled with F and N in a state estimate
qd ∈ Qd, then qd is called an uncertain state, since after the observation of a trace,
it is uncertain if this trace is a fault-free trace or a faulty one. A cycle formed of
uncertain states is called an uncertain cycle, and in the cases that an uncertain cycle
can be associated with two cycles in Gl, one with states labeled with F and another
one with states labeled with N , it is called an indetermined cycle. In order to verify
the diagnosability of L it is necessary to search for indeterminate cycles in Gd. If
Gd has an indetermined cycle, L is not diagnosable. On the other hand, if Gd does
not have indeterminate cycles then L is diagnosable [1, 6, 7].

In the sequel we present an example showing the construction of the diagnoser
automaton Gd.

Example 3.1 Consider the system G depicted in Figure 3.2a. The state set is
Q = {0, 1, 2, 3, 4}, the event set is Σ = {e, h, σ1, σ2, σf}, where the observable event
set is Σo = {e, h}, the unobservable event set is Σuo = {σ1, σ2, σf}, and the fault
event set is Σf = {σf}. In Figure 3.2b automaton Gl = G‖Al is presented and the
diagnoser automaton, depicted in Figure 3.2c, is obtained by computing the observer
of Gl with respect to its observable event set Σo.
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(c) Gd.

Figure 3.2: System automaton G (a), label automaton Gl (b), and diagnoser au-
tomaton Gd (c) from Example 3.1.

Considering that the first observed event is e, we are certain that the fault has
not occurred, since state {3N} is reached. However, if the first observed event is
h, automaton Gd reaches an uncertain state {1N ; 2N ; 3N ; 4F}. After that, if event
h is observed again, we are certain that the fault has occurred since state {4F} is
reached. It is important to remark that, in this example, there is an uncertain cycle
{{1N, 2N, 3N, 4F}, e, {0N, 4F}, h, {1N, 2N, 3N, 4F}} which can be associated with
two cycles in Gl, where one is reached after the occurrence of σf (hσf{eh}∗) and
the other without the occurrence of σf (h{σ1eh}∗). Thus, L is not diagnosable with
respect to Po : Σ∗ → Σ∗o and Σf .

Even though the diagnoser automaton Gd can be used for the verification of
the diagnosability of L, the set of states of Gd may grow exponentially with the
cardinality of the system states. To avoid this problem, in MOREIRA et al. [24, 30],
an algorithm for the construction of a verifier automaton whose cardinality of the set
of states grows polynomially with the set of states of the system is presented. It is
important to remark that the verifier does not require assumptions on the liveness of
the language generated by the system or the nonexistence of cycles of unobservable
events, assumptions A1 and A2.

In order to use the method proposed in MOREIRA et al. [24], we first need to
present Algorithm 3.2 to obtain the fault-free and faulty automata [24].

Algorithm 3.2 Fault-free and faulty model of the system [24].

Input: G = (Q,Σ, f, q0), set of fault events Σf .
Output: Automata GN and GF .

1: Define ΣN := Σ\Σf .
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2: Define AN := (QN ,ΣN , fN , q0,N) where QN = {N}, q0,N = {N}, fN(N, σ) = N

for all σ ∈ ΣN .

3: Construct the fault-free automaton GN = G× AN = (QN ,Σ, fN , q0,N).

4: Redefine the event set of GN as ΣN , i.e., GN = (QN ,ΣN , fN , q0,N).

5: Compute automaton GF , whose marked language corresponds to the fault be-
havior of the system, as follows:

5.1: Define Al := (Ql,Σf , fl, q0,l) where Ql = {N,F}, q0,l = {N}, fl(N, σf ) =

F and fl(F, σf ) = F for all σf ∈ Σf .

5.2: Compute Gl = G‖Al and mark all the states of Gl whose second coordi-
nate is equal to F .

5.3: Compute the faulty automaton GF = CoAc(Gl).

With Algorithm 3.2, it is possible to compute automata GN and GF , and with
those automata, it is possible to use the method proposed in MOREIRA et al. [24].
This method is used to compute a verifier, and the verifier is used to verify if the
language is diagnosable with respect to Po and Σf , by following Algorithm 3.3.

Algorithm 3.3 Diagnosability verification [24].

Input: G = (Q,Σ, f, q0), set of fault events Σf , and Σ = Σo∪̇Σuo.
Output: Diagnosability decision.

1: Compute GN and GF according to Algorithm 3.2.

2: Define function R = ΣN → ΣR as:

R(σ) =

σ, if σ ∈ Σo

σR, if σ ∈ Σuo\Σf

.

Construct automaton G̃N = (QN ,ΣR, f̃N , q0,N), with f̃N(qN , R(σ)) :=

fN(qN , σ) for all σ ∈ ΣN .

3: Compute the verifier automaton GV = G̃N‖GF = (QV ,ΣR ∪ Σ, fV , q0,V ).

4: Verify the existence of a cyclic path cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V ), where

γ ≥ δ > 0, in GV satisfying the following conditions:

∃j ∈ {δ, δ + 1, . . . , γ} s.t. for some qjV , (q
j
l = F ) ∧ (σj ∈ Σ).

18



If the answer is yes, then L is not diagnosable with respect to Po and Σf .
Otherwise, L is diagnosable.

A state of GV is given by qV = (qN , qF ), where qN and qF are the states of
G̃N and GF , respectively, and qF = (q, ql), where q and ql are states of G and Al,
respectively.

Example 3.2 Consider, again, the system G of Example 3.1 depicted in Figure
3.3a. In Figure 3.3b automaton GN is presented and automaton GF is shown in
Figure 3.3c. In Figure 3.4 automaton G̃N is presented and the verifier automaton,
depicted in Figure 3.5, is obtained by computing the parallel composition of G̃N with
GF , i.e., GV = G̃N ‖ GF .
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e e

0 1

23

4

σ1

σ1

e, h

e

(a) G.

h

e e

0;N 1;N

2;N3;N σ1

σ1e

(b) GN .

h σf

e e

0;N 1;N

2;N3;N

4;F

σ1

σ1

e, h

e

(c) GF .

Figure 3.3: System automaton G (a), automaton GN (b), and automaton GF (c)
from Example 3.2.

h

e e

0;N 1;N

2;N3;N σ1R

σ1Re

Figure 3.4: Automaton G̃N from Example 3.2.

Considering Algorithm 3.3, it is possible to notice that there are two cyclic
paths with events that were not renamed, violating the diagnosability. The first
one is {(0N, 4F ), e, (3N, 4F ), e, (0N, 4F )}; and the second one is {(1N, 4F ), σ1R,

(2N, 4F ), e, (0N, 4F ), h, (1N, 4F )}. Thus, the language is not diagnosable.

Example 3.2 shows the implementation of the verifier presented in MOREIRA
et al. [24]. This verifier advantage is to present a diagnosability decision of the
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Figure 3.5: Automaton GV from Example 3.2.

language in polynomial time in the number of states and events of the system.
However, in the cases where the system is complex, composed of several subsystems,
the plant model may grow exponentially with the number of subsystems, making
the implementation cost of the monolithic diagnoser based on G very high. In these
cases, other schemes have been proposed in the literature, such as the synchronous
diagnosis. In the following we present this architecture.

3.2 Centralized Synchronous diagnosability of DES

In [20], the definition of centralized synchronous diagnosability of a DES is pre-
sented. To do so, it is assumed that the system is composed of r modules
Gk = (Qk,Σk, fk, q0,k), k = 1, . . . , r, i.e., the composed plant is given byG = ‖rk=1Gk.
It is also assumed that the event set of each module Gk can be partitioned as
Σk = Σk,o∪̇Σk,uo, where Σk,o and Σk,uo denote the sets of observable and unob-
servable events of Gk, respectively. In this scheme, if an event is observable for
one module Gi, and is defined for another module Gj, then it is observable for
Gj. In addition, each component has its fault-free behavior modeled by automaton
GNk

= (QNk
,Σk \Σf , fNk

, q0,k), and it is important to remark that in this approach,
assumptions A1 and A2 are not required.

Figure 3.6 presents the synchronous diagnosis architecture. In this strategy,
a state observer Dk is constructed for each module, performing the online state
estimation of each fault-free model GNk

. If an event σ ∈ Σk,o generated by the plant
is observed by Dk, and σ is feasible in at least one state of the current state estimate
of GNk

, then the state estimate is updated. Otherwise, if σ is not feasible for all
states of the current state estimate of GNk

, then Dk indicates that the fault has
occurred. This leads to the following definition of synchronous diagnosability [20].
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Figure 3.6: Synchronous diagnosis architecture.

Definition 3.3 (Synchronous diagnosability) Let GN = ‖rk=1GNk
, and let LNk

denotes the language generated by GNk
, for k = 1, . . . , r. Let Po : Σ∗ → Σ∗o, with

Σo = ∪rk=1Σk,o. Then, L is synchronously diagnosable with respect to Po, LNk
,

k = 1, . . . , r, and Σf if

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ z)⇒ Po(st) 6∈ LNa ,

where LNa = ∩rk=1P
o−1

k,o (Pk,o(LNk
)), such that P o

k,o : Σ∗o → Σ∗k,o, and Pk,o : Σ∗ → Σ∗k,o
are projections. �

Remark 3.1 Since Po(LN) ⊆ ∩rk=1P
o−1

k,o (Pk,o(LNk
)) = LNa [28], then a language

can be diagnosable but not synchronously diagnosable. �

According to Definition 3.3, the system language L is synchronously diagnosable
if any occurrence of the fault event σf can be detected after a number z ∈ N of
event occurrences after the fault, by at least one local diagnoser Dk constructed
based on module GNk

. In order to verify the the centralized synchronous diagnos-
ability of a language, two algorithms were proposed in CABRAL and MOREIRA
[20]. Algorithm 3.4 is one approach to compute the fault-free behavior models GNk

from the system modules Gk; and Algorithm 3.5 is used to verify the synchronous
diagnosability of the language of a composed system.

Algorithm 3.4 Fault-free behavior models of the system components [20].

Input: Gk = (Qk,Σk, fk, q0,k) for k = 1, . . . , r and G = (Q,Σ, f, q0).
Output: GNk

= (QNk
,ΣNk

, fNk
, q0,Nk

) for k = 1, . . . , r.

1: Compute GN according to Algorithm 3.2 [24].

2: For all transitions fN(qN , σ) = q′N in GN , flag the transitions fk(qk, σ) = q′k
in Gk for k = 1, . . . , r, where qk and q′k are the k-th elements of qN and q′N ,
respectively.
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3: Obtain G′k by erasing from Gk all transitions that are not flagged.

4: Compute automata GNk
= Ac(G′k) = (QNk

,ΣNk
, fNk

, q0,Nk
) for k = 1, . . . , r.

5: Redefine the event set ΣNk
:= Σk\Σf for k = 1, . . . , r.

In the sequel, we present an example to illustrate that, in some cases, even
in modules where the fault event is not modeled, the fault-free behavior may be
restricted, due to the interactions with other modules.

Example 3.3 Consider a system G shown in Figure 3.7, with event set Σ =

{a, b, c, d, σ1, σf}, composed of two subsystems G1 and G2, shown respectively in
Figures 3.8a and 3.8b. Automaton G is obtained by the parallel composition of
G1 and G2, i.e., G = G1‖G2. The event sets of G1 and G2 are, respectively,
Σ1 = {a, b, c, σ1, σf} and Σ2 = {b, d, σ1}, where Σ1,o = {a, b, c}, Σ1,uo = {σ1, σf},
Σ2,o = {b, d}, and Σ2,uo = {σ1}. Following step 1 of Algorithm 3.4, GN , showed in
Figure 3.9, is obtained, which is the automaton that models the fault-free behavior
of G. Notice that according to GN the transition (0, σ1, 2) of automaton G2 is only
allowed after the occurrence of σf , and, consequently, even when the fault event is
not modeled in G2, the transition (0, σ1, 2) does not belong to the fault-free behavior
of G2. Automata GN1 and GN2, obtained by following step 4 of Algorithm 3.4, are
presented in Figure 3.10a and 3.10b, respectively.
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Figure 3.7: Automaton G of Example 3.3.
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Figure 3.8: Automata G1 and G2 of Example 3.3.
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Figure 3.10: Automata that represents the fault-free behavior for each local diag-
noser of Example 3.3.

After computing the fault-free behavior of each module, we can present the
algorithm for the verification of the synchronous diagnosability of the language of a
system proposed by CABRAL and MOREIRA [20].

Algorithm 3.5 Synchronous Diagnosability Verification [20].

Input: System modules Gk, for k = 1, . . . , r.
Output: Synchronous diagnosability decision.

1: Compute automaton GF according to Algorithm 3.2.

2: Compute automaton GNk
by following the steps of Algorithm 3.4.

3: Compute automaton GR
N = (QR

N ,Σ
R, fRN , q0):

3.1: Define function Rk = ΣNk
→ ΣR

Nk
as:

Rk(σ) =

σ, if σ ∈ Σk,o,

σRk
, if σ ∈ Σk,uo.

.

3.2: Construct automata GR
Nk

= (QNk
,ΣR

Nk
, fRNk

, q0,Nk
), k = 1, . . . , r with

fRNk
(qNk

, Rk(σ)) = fNk
(qNk

, σ) ∀qNk
∈ QNk

and ∀σ ∈ ΣNk
.

3.3: Compute GR
N = ‖rk=1G

R
Nk
.

4: Compute the verifier automaton GSD
V = (QV ,ΣV , fV , q0,V ) = GF‖GR

N . Notice
that a state of GSD

V is given by qV = (qF , q
R
N), where qF and qRN are states of

GF and GR
N , respectively, and qF = (q, ql), where q ∈ Q and ql ∈ {N,F}.
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5: Verify the existence of a cyclic path cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V ), where

γ ≥ δ > 0, in GSD
V such that:

(∃j ∈ {δ, δ + 1, . . . , γ} such that for some qjV
(qjl = F ) ∧ (σj ∈ Σ)

If the answer is yes, then L is not synchronously diagnosable with respect to
LNk

, P o
k,o : Σ∗o → Σ∗k,o, Pk,o : Σ∗ → Σ∗k,o, for k = 1, . . . , r, Po : Σ∗ → Σ∗o and Σf .

Otherwise, L is synchronously diagnosable.

In the following, to show the augmented fault-free language generated in the
process, we present an example of the verification of synchronous diagnosis using
Algorithm 3.5.

Example 3.4 Consider a system G, composed of two components G1 and G2,
presented, respectively, in Figures 3.11a and 3.11b. The automaton that mod-
els the global system G = G1‖G2 is shown in Figure 3.12, the set of events is
Σ = {a, b, c, d, e, σu, σf} where Σo = {a, b, c, d, e}, Σuo = {σu, σf}, Σf = {σf},
Σ1 = {a, b, d, σu, σf}, Σ2 = {b, c, d, e, σu}, Σ1,o = {a, b, d} and Σ2,o = {b, c, d, e}.
Following Algorithm 3.5 in Step 1 automaton GF is constructed, depicted in Figure
3.13. Continuing to Step 2, automata GN1 and GN2 are computed and presented
in Figures 3.14a and 3.14b, respectively. In the following, in Step 3, by applying
function Rk(σ), automata GR

N1
and GR

N2
are obtained and shown in Figure 3.15.

Automaton GR
N is constructed as the parallel composition of GR

N1
and GR

N2
, i.e.,

GR
N = GR

N1
‖GR

N2
, presented in Figure 3.16. The process to obtain GR

N generates an
augmented generated language, and in order to represent that, the states that repre-
sents the growth of faulty-free language, which means, the states that does not exist
in GN are indicated in gray. Finally, in Step 4 we obtain the synchronous verifier
automaton GSD

V , shown in Figure 3.17.
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Figure 3.11: Automata G1 and G2 of Example 3.4.
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Figure 3.12: Automaton G of Example 3.4.
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Figure 3.13: Automaton GF of Example 3.4.
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Figure 3.14: Automata GN1 and GN2 , representing the fault-free languages of each
module of Example 3.4.
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Figure 3.15: Automata GR
N1

and GR
N2
, representing the fault-free languages of each

module, with the unobserved events renamed in order to make them particular
events of Example 3.4.
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Figure 3.16: Automaton GR
N , representing the augmented fault-free language of

of the system considering the renamed unobserved events as particular events of
Example 3.4.
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Figure 3.17: Automaton GSD
V , representing the synchronous diagnosis verifier for

the system of Example 3.4.

In this example, it is possible to notice that there exists a cyclic path in
GSD
V , ({4, 0, F ; 2, 0}, e, {4, 0, F ; 2, 0}) labeled with F such that at least one transition

is labeled with a non-renamed event, event e, thus, we conclude that L is not syn-
chronously diagnosable with respect to LN1 , LN2 , P

o
1,o : Σ∗o → Σ∗1,o, P o

2,o : Σ∗o → Σ∗2,o,
P1,o : Σ∗ → Σ∗1,o, P2,o : Σ∗ → Σ∗2,o, Po : Σ∗ → Σ∗o and Σf .

In example 3.4, we presented the implementation of Algorithms 3.4 and 3.5, that
results in the diagnosability decision for the system. In the example, the system
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is not synchronously diagnosable with respect to LN1 , LN2 , P
o
1,o : Σ∗o → Σ∗1,o, P o

2,o :

Σ∗o → Σ∗2,o, P1,o : Σ∗ → Σ∗1,o, P2,o : Σ∗ → Σ∗2,o, Po : Σ∗ → Σ∗o and Σf . In the following,
we present a practical example, presented in [20], composed of two modules that is
synchronously diagnosable using only the second module.

The system is the cube assembly mechatronic system of the manufecturer Chris-
tiani [31], installed at the Laboratory of Control and Automation of the Federal
University of Rio de Janeiro. Figure 3.18 presents the schematic of the system, and
this mechatronic system is composed of two modules: (i) a conveyor belt with a
sensor testing unit that can be fed with plastic or metallic cube halves; and (ii) a
handling unit composed of a robotic arm, which has a pneumatic mechanism that
activates a suction cup in order to pick up, transport and deliver pieces to a press
used to assemble a cube.

M1
M2

S2S1

Sc

Si

Han
dlin

g uni
t

Pneumatic press

Conveyor belt

Deposit

Figure 3.18: Schematic of the mechatronic system installed in Laboratory of Control
and Automation of the Federal University of Rio de Janeiro.

The automated system was designed to deliver two cube halves to the press, and
then discard this two halves without assembling them. It starts when the conveyor
belt is fed with a cube half that is delivered to the handling unit. Then, the robotic
arm allocates the cube half in the press and wait for the second half. In the sequel, a
plastic half is delivered to the conveyor belt and is transported to the handling unit.
After that, the second cube half is delivered to the press by the robotic arm, and
then, both halves are discarded by the robotic arm, once at a time. The automata
that models the conveyor belt and the handling unit are, respectively G1, presented
in Figure 3.19a, and G2, presented in 3.19b. In order to understand the automaton
models, the states and events are described, respectively, in Tables 3.1 and 3.2.
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Figure 3.19: System components from Example 3.5.

The robotic arm model uses a high speed counter and a inductive sensor. The
high speed counter is triggered when the arm starts to turn, and when the high speed
counter reaches a specific value, representing an angular position, the robotic arm
stops. As a routine to avoid positioning errors, after delivering a piece to the press
or discarding a piece, the robotic arm is rotated to a position where an inductive
sensor is activated and the high speed counter is reseted. This action is modeled by
event si, meaning that when si occurs, the process of removing or delivering a cube
half to the press is completed, and then the robotic arm is ready to remove a piece
from the conveyor belt or from the press.

The malfunctioning of the suction cup of the robotic arm is modeled as the fault
event σf . If the fault event occurs, the robotic arm will not be able to pick up the
cube halves. In that case, the pieces will not be removed from the conveyor belt and
event sr does not happen. On the other hand, the robotic arm still tries to pick up
the pieces, and the unsuccessful attempt is modeled as ur.

As there are no sensors in the robotic arm or in the press in order to indicate the
presence of the pieces, the behavior of the G2 is the same, represented by the parallel
transitions between H2 and H3, as much as between the states H6 and H7, labeled
with sr and ur. Regarding the automaton that models the conveyor belt, G1, the
fault event changes the behavior of the system, once the conveyor belt cannot be
switched on if the cube is not removed from it by the robotic arm.

In order to verify the synchronous diagnosability of the system, it is necessary to
compute the fault free behavior of each component. Notice that for the automaton
that models the fault-free behavior of the handling unit, GN2 , depicted in Figure
3.20b, the only difference is that event ur is removed. For the automaton that
models the fault-free behavior of the conveyor belt, GN1 , presented in Figure 3.20a,
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Table 3.1: States of G.

State Meaning
C0 Conveyor belt switched off and no cube halves on it
C1 Conveyor belt switched off and one cube halves on it
C2 Conveyor belt switched on and one cube halves on it
C3 Conveyor belt switched on and no cube halves at its end
C4 Conveyor belt switched off and no cube halves at its end
C5 Conveyor belt switched on and no cube halves after fault
C6 Conveyor belt switched off and no cube halves after fault
H0 Robotic arm ready to remove the first cube half
H1 Waiting the command to remove the first cube half
H2 Removing the first cube half from the conveyor belt
H3 Delivering the first cube half to the press
H4 Robotic arm ready to remove the second cube half
H5 Waiting the command to remove the first cube half
H6 Removing the second cube half from the conveyor belt
H7 Delivering the second cube half to the press
H8 Robotic arm discarding the first cube half from the press
H9 Robotic arm discarding the second cube half from the press

Table 3.2: Events of G.

Event Meaning
ap A cube half arrives in the conveyor belt
son The conveyor belt is switched on
l A cube half reaches the end of the conveyor belt

soff The conveyor belt is switched off
sr A cube half is successfully removed from the conveyor belt
lon Cube half at the end of the conveyor belt
ur Unsuccessful attempt to remove a piece from the conveyor belt
σf The robotic suction cup fails
c Command to remove a piece from the conveyor belt
si Inductive sensor is activated

the events σf and ur are removed, and the accessible part is a version of a fault-free
behavior of the system. In the sequel we present Example 3.5, showing that it is
possible for a system to be synchronously diagnosable using a subset of modules, in
this case, only the second module. Starting now, in order to let the figures more
comprehensible and avoid the excess of information, for the verifiers automata, we
will omit the label “N” in the components of GR

Ni
, keeping the labels “N” and “F”

for the components of GF in the states.

Example 3.5 Consider the mechatronic system G described previously. The
set of events of G1 and G2 are Σ1 = {ap, son, l, soff , sr, lon, ur, σf} and Σ2 =

{c, si, sr, lon, ur}, respectively, where the set of observable events are Σ1,o =

{ap, son, l, soff , sr, lon} and Σ2,o = {c, si, sr, lon}, and the set of unobservable events
are Σ1,uo = {ur, σf} and Σ2,uo = {ur}. The objective is to show that the language is
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Figure 3.20: Fault-free modules automata from Example 3.5.

synchronously diagnosable with a subset of modules, composed only of one module.
The automata that models the fault-free languages and faulty language, GF , are

presented in Figures 3.20 and 3.21, respectively. In this case, the automata that
models the fault-free languages of each module with renamed events are the same as
the automata that models the fault-free languages. The verifiers G{1}V and G{2}V are
computed as the parallel composition of the renamed fault-free automaton and the
automaton that models the faulty behavior, i.e., G{1}V = GF ‖ GN1N

R and G{2}V =

GF ‖ GN2N
R, presented in 3.23 and 3.24, respectively. Notice that in verifier G{2}V

there does not exist any cyclic path labeled with F in which at least one transition
is performed by a non-renamed event. Thus, we conclude that L is synchronously
diagnosable with respect to LN2 , P

o
2,o : Σ∗o → Σ∗2,o, Po : Σ∗ → Σ∗o, and Σf .

3.3 Final comments

In this chapter, two notions of fault diagnosability of DES modeled by automata
are introduced, starting with the classical definition of diagnosability presented in
the seminal work of SAMPATH et al. [6]. Due to the difficulty associated with the
growth of the diagnoser with the number of modules and states, a new architecture
was proposed by [20], called centralized synchronous diagnosis, an architecture that
relies on the modularity of the system.

Even with the synchronous diagnosis approach, we notice that in cases with
great number of system components, it is possible that the diagnosability is assured
without computing a verifier with all system components. In the next chapter, an
approach to perform a synchronous diagnosis avoiding using all system components
is proposed.

30



C0H0N C1H0N C2H0N C3H0N C4H0N

C3H1N C4H1N

C3H2N C4H2N

C0H4N C0H3N

C1H4N C1H3N

C2H4N C2H3N

ap son l soff

soff

soff

si

si

si

C3H4N C3H3N
si

C4H4N C4H3N
si

C3H5N C4H5N
soff

lon lon

c c

sr

ap ap

son son

l
l

soff
soff

lon
lon

C3H6N C4H6Nsoff

c c
C0H7N C1H7N C2H7N C3H7N C4H7N

ap son

l

soff

C0H8N C1H8N C2H8N C3H8N C4H8N
ap son l soff

C0H9N C1H9N C2H9N C3H9N C4H9N
ap son l soff

sisi si si si

sisi si si si

sisi si
si si

sr

C6H1F C6H0F

C6H9F

C6H8F

C6H7F

C5H3FC5H4F

C5H5F

C5H6F C6H6F

lon

soff

C6H3FC6H4F

C6H5F

C6H2F

lon

c

ur

C5H1F

C5H0F

C5H9F C5H8F C5H7F
sisi

si

lon

σf

σf

σf

σf

σf

σf

C5H2F

c

σf

σf

σf σf

σf
σf

σf

si

si

c

si

si

soff

si

c

lon

σf

ur

σf

σf

σf

σf

σf

σf

soff

soff

soffsoff

soff

soff

soff

soff

Figure 3.21: Automaton GF from Example 3.5.
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Figure 3.22: Automaton GN from Example 3.5.
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Figure 3.23: Verifier of module 1 from Example 3.5. G{1}V = GF‖GR
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.
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Chapter 4

Optimal Selection of Subsystems for
Ensuring Synchronous Diagnosability

The main advantage of the synchronous diagnosis approach is that the size of the
diagnoser grows polynomially with the number of system modules, which reduces
the memory space required to store the diagnoser in comparison with traditional
techniques. This reduction can be, in some cases, even greater since, depending
on the fault and on the system model, the modules needed for diagnosis can be a
subset of the complete set of system modules. In Section 4.1, we present a method
to compute all minimal subsets that ensure the synchronous diagnosability of the
system language. Then, in Section 4.2 we present the results and discussion.

4.1 Method for the Computation of all Minimal

Subsets that Ensure Synchronous Diagnostica-

bility

Let Ir = {1, 2, . . . , r} denote the set of indices of all system components. Thus,
our objective is to find all minimal subsets B ∈ 2Ir , such that L is synchronously
diagnosable with respect to Po, LNk

, for k ∈ B, and Σf , i.e., we want to find the
minimal sets B such that

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ z)⇒ (Po(st) /∈ L̇Na),

where L̇Na = ∩k∈BP o−1
k,o (Pk,o(LNk

)). It is important to remark, as it can be straight-
forwardly deduced from Definition 3.3, that if the system language L is syn-
chronously diagnosable with respect to B, then it is synchronously diagnosable with
respect to any subset B′ ∈ 2Ir such that B ⊂ B′, i.e., the monotonicity property is
valid, as stated in Theorem 4.1.
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Theorem 4.1 If the system language L is synchronously diagnosable with respect
to B, then, the monotonicity property is valid, and the system language is syn-
chronously diagnosable with respect to any subset B′ ∈ 2Ir such that B ⊂ B′

Proof: Considering the synchronous diagnosability with respect to a subset of mod-
ules B, if a language is synchronously diagnosable with respect to Po, LNk

, for k ∈ B,
and Σf , it means that

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ z)⇒ (Po(st) /∈ L̇Na),

where L̇Na = ∩k∈BP o−1
k,o (Pk,o(LNk

)).

Suppose now that ∃s ∈ LF and st ∈ LF such that (Po(st) ∈ P o−1
j,o (Pj,o(LNj

)). In
this case,

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ z)⇒

(Po(st) /∈ ∩k∈BP o−1
k,o (Pk,o(LNk

)) ∩ P o−1
j,o (Pj,o(LNj

)).

Thus, the language of the system is synchronously diagnosable with respect to
any B′ such that B ⊆ B′.

�

Thus, if we obtain all minimal subsets B ∈ Ir that ensure synchronous diag-
nosability, then we are able to provide all possible subsets of modules that ensure
synchronous diagnosability. In this work, those subsets are called Synchronous Di-
agnosis Modular bases as the Definition 4.1.

Definition 4.1 The subset of indices B ∈ 2Ir such that the associated modules
ensure the synchronous diagnosability of the system language with respect to Po,
LNk

, for k ∈ B, and Σf , is called a Synchronous Diagnosis Modular Basis (SDMB).
�

In Example 3.5, we presented a system in which it is possible to verify the
synchronous diagnosability of a system with a subset of modules, in that case, with
one module. In a more complex system, it is possible to reach a subset B that forms
an SDMB starting with one module and adding modules to it.

A method to verify if B forms an SDMB can be obtained by constructing the
verifier restricted to the modules associated with B, GB

V = GF‖(‖k∈BGR
Nk

), and then
searching for the existence of a cyclic path in GB

V that violates the synchronous
diagnosability condition. Thus, if an exhaustive search method is used to find all
minimal SDMB, then it is necessary to compute 2r − 1 verifiers GB

V , for each non-
empty subset S ∈ 2Ir , and therefore the minimum SDMB will be those with smallest
cardinality. In the exhaustive search method, to compute a new verifier, adding a
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module to a subset, it is necessary to compute the parallel composition of the verifier
of that subset with the verifier of the module to be added, i.e., GB′

V = GB
V ‖Gj

V , where
j is the module to be added.

In order to mitigate the exponential complexity problem, we present a test to
avoid the computation of a verifier. The test consists in selecting a path that violates
the synchronous diagnosability in the verifier of subset B, compute an automaton
whose generated language is the prefix-closure of the sequence associated with the
selected path GB

Vp
. Instead of computing the parallel composition of the verifier of

subset B with the module to be added, the test is to compute the parallel com-
position of the path automaton GB

Vp
with the verifier of the module to be added

Gj
V . If exists a sequence that violates the synchronous diagnosability in the parallel

composition GB
Vp
‖Gj

V , the verifier composed by the subset B ∪ j does not need to
be computed because the language is not synchronously diagnosable with respect to
Po, LNk

, for k ∈ B ∪ j, and Σf , as stated in Theorem 4.2.

Theorem 4.2 If there exists a sequence s ∈ L that violates the synchronous diag-
nosability with respect to Po, LNk

, for ∀k ∈ B, and Σf , and s violates the synchronous
diagnosability with respect to Po, LNj

, and Σf then s violates the synchronous diag-
nosability with respect to Po, LNk

, for k ∈ B ∪ {j}, where j /∈ B, and Σf .

Proof: The proof can be straightforwardly deduced from Definition 3.3. The lan-
guage is not synchronously diagnosable with respect to Po, LNk

, for ∀k ∈ B, and
Σf , and the language is not synchronously diagnosable with respect to Po, LNj

,
where j /∈ B, and Σf , the language is not synchronously diagnosable with respect
to Po, LNk

, for k ∈ B ∪ {j}, and Σf . �

This avoids computational costs due to the fact that it is possible to avoid the
computation of parallel composition of automata with elevated number of states and
transitions, computing only the parallel composition of a reduced automaton and
the verifier of the module to be added. In the following, we present an example to
illustrate that situation.

Example 4.1 Consider a system G, composed of four modules, G1, G2, G3 and
G4 showed in Figure 4.1, where their event sets are Σ1 = {a, c, e, g, σ1},Σ2 =

{e, h, σ1, σ2, σf},Σ3 = {b, d, h, σf},Σ4 = {e, h, σf}, with observable event set Σo =

{a, b, c, d, e, h, g}, unobservable event set Σuo = {σ1, σ2, σf}, and fault event set
Σf = {σf}. In order to compute the verifiers of each module, it is necessary to
compute automaton GF , which is presented in Figure 4.2.

In Figure 4.3 automata GN1 , GN2 , GN3 and GN4, that represent the fault-free be-
havior of each subsystem are depicted. The next step consists in computing automata
GR
Nk
, the automata of the fault-free behavior of the system modules after applying

the renaming function, i.e., GR
N1
, GR

N2
, GR

N3
, and GR

N4
, presented in Figure 4.4.
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Figure 4.1: Automata that models the system components G1, G2, G3 and G4 from
Example 4.1.
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Figure 4.2: Automaton that models the faulty language of the system GF from
Example 4.1.
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Figure 4.3: Automata that models the fault-free modules language of the modules
of the system from Example 4.1.

Computing the verifier of module 3 it is possible to notice in Figure 4.5 that
the path {(0000N ; 0), h, (0111N ; 1), σf , (0422F ; 1), e, (3423F ; 1), e, (0423F ; 1), e,

(3423F ; 1)} is associated with a sequence that violates synchronous diagnosability
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Figure 4.4: Automata that represents the fault-free modules with unobservable
events renamed from Example 4.1.

with respect to LN3 , P
o
3,o : Σ∗o → Σ∗3,o, Po : Σ∗ → Σ∗o, and Σf .
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Figure 4.5: Verifier of module 3 from Example 4.1, highlighting a sequence that
violates the synchronous diagnosability.

In Figure 4.6 it is possible to notice that the sequence that violates the syn-
chronous diagnosability in module 3 exists in the verifier computed for module
4, consequently, the language is not synchronously diagnosable with respect to
LN4 , P

o
4,o : Σ∗o → Σ∗4,o, Po : Σ∗ → Σ∗o, and Σf .

Finally, as stated in Theorem 4.2, it is possible to notice the sequence that violates
the syncrhonous diagnosability in modules 3 and 4 in the verifier computed with the
subset of modules {3, 4}. Thus, the language is not synchronously diagnosable with
respect to LN3 , P

o
3,o : Σ∗o → Σ∗3,o, LN4 , P

o
4,o : Σ∗o → Σ∗4,o, Po : Σ∗ → Σ∗o, and Σf .

Example 4.1 illustrates the cases where the computation of the verifier can be
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Figure 4.6: Verifier of module 4 from Example 4.1, highlighting a sequence that
violates the synchronous diagnosability.
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Figure 4.7: Verifier of modules {3, 4} from Example 4.1, highlighting a sequence
that violates the synchronous diagnosability.

avoided. On the other hand, in cases where the sequence that violates the syn-
chronous diagnosability GB

Vp
is not possible in the parallel composition with the

verifier to be added ,GB
Vp
‖Gj

V , it is necessary to compute the new verifier. The new
verifier is computed as the parallel composition GB

V ‖Gj
V . The necessity of computing

this verifier lies in the fact that at least one sequence that violates the synchronous
diagnosability in the subset B is eliminated adding the module j. Thus, with the
new verifier is possible to evaluate if the other sequences are eliminated and conse-
quently if the language is synchronously diagnosable with respect to LNK

, k ∈ B∪j,
Po and Σf .

In the following, in Example 4.2, we present the two cases, one that the se-
quence that violates the synchronous diagnosability is eliminated and the language
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is synchronously diagnosable with respect to the new subset. And another that
the sequence is eliminated but the language is not synchronously diagnosable with
respect to the new subset.

Example 4.2 Consider the same system G of Example 4.1, G1, G2, G3 and G4

are shown in Figure 4.1 and automaton GF is presented in Figure 4.2. Automata
GN1 , GN2 , GN3 and GN4, that represent the fault-free behavior of each subsystem are
depicted in Figure 4.3, and automata GR

N1
, GR

N2
, GR

N3
, and GR

N4
are presented in

Figure 4.4.
For this example, computing the verifier of module 3 it is possible to notice in

Figure 4.8 another path {(0000N ; 0), h, (0111N ; 1), σf , (0422F ; 1), h, (0424F ; 1),

h, (0424F ; 1)} that is associated with a sequence that violates synchronous diagnos-
ability with respect to LN3 , P

o
3,o : Σ∗o → Σ∗3,o, Po : Σ∗ → Σ∗o, and Σf .
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Figure 4.8: Verifier of module 3 from Example 4.2, highlighting a sequence that
violates the synchronous diagnosability.

In Figure 4.9 it is possible to notice that the sequence that violates the syn-
chronous diagnosability in module 3 does not exist in the verifier computed for mod-
ule 2, consequently, it is necessary to compute the verifier considering the subset
{2, 3}, presented in Figure 4.10.

In Figure 4.10 it is possible to notice that there is no sequence that violates
the synchronous diagnosability in the verifier computed for subset {2, 3}, conse-
quently, the language is synchronously diagnosable with respect to LN2 , P

o
2,o : Σ∗o →

Σ∗2,o, LN3 , P
o
3,o : Σ∗o → Σ∗3,o, Po : Σ∗ → Σ∗o, and Σf .

In Figure 4.6 it is possible to notice that the sequence that violates the syn-
chronous diagnosability in module 3 does not exist in the verifier computed for mod-
ule 4, consequently, it is necessary to compute the verifier considering the subset
{3, 4}, presented in Figure 4.12.
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Figure 4.9: Verifier of module 2 from Example 4.2.

It is possible to notice that there exist a sequence that violates the syncrhonous
diagnosability in subset {3, 4}. Thus, the language is not synchronously diagnosable
with respect to LN3 , P

o
3,o : Σ∗o → Σ∗3,o, LN4 , P

o
4,o : Σ∗o → Σ∗4,o, Po : Σ∗ → Σ∗o, and Σf .

Considering this, in REIS and MOREIRA [32], a method to compute all minimal
SDMB for the system language was presented. This method is based on the depth-
first search and implemented by Algorithm 4.1. The sequence that the modules are
added follows the tree architecture, and, for a system composed of 4 modules, the
tree architecture is presented in Figure 4.13.

In Step 1 of Algorithm 4.1, M and T , representing the set of all minimal SDMB
and the set of module indices k such that {k} is not a minimal SDMB, respectively,
are defined as the empty set. In Step 2, for each module k, the verifier G{k}V is
computed as the parallel composition of the renamed fault-free behavior model GR

Nk

and the fault automaton GF . Then, the indices of the verifiers that do not have
cyclic paths that violate the synchronous diagnosability condition are added to M
as minimal SDMB, and those that have this kind of cyclic path are added to N .
In Step 3, the set BGV

of verifiers G{k}V , such that k ∈ T , is created. This step is
important due to the fact that the indices k ∈M already form minimal SDMB with
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Figure 4.10: Verifier of subset {2, 3} from Example 4.2.
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Figure 4.11: Verifier of module 4 from Example 4.1.

cardinality one, and therefore, are not added to other subsets when searching for
minimal SDMB with cardinality greater than one. In Step 4, the recursive inclusion
of modules using Algorithm 4.2 is performed. Finally, in Step 5, the SDMB that are
not minimal are removed from M .
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Figure 4.12: Verifier of subset {3, 4} from Example 4.2, highlighting a sequence that
violates the synchronous diagnosability.
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Figure 4.13: Trees architecture that defines the order of adding components.

Algorithm 4.2 is responsible for the recursive module inclusions to form the
SDMBs. In Step 1, a path p of verifier GB

V , associated with a fault sequence that
violates the synchronous diagnosability, is obtained, and in Step 2, the subautomaton
GB
Vp

formed from path p is computed. In Step 3 the loop to add modules is started,
and the addition of modules to B is carried out each module at a time, as described
in the following steps. Firstly, in Step 3.1, if there does not exist an element of
M , E, such that E ⊆ B ∪ {j}, the automaton Gj,B

Vp
is computed as the parallel

composition of the partial verifier, GB
Vp
, and the verifier of the j-th module, that is

being checked if it can be added to B, G{j}V . If there exists a cyclic path that violates
the synchronous diagnosability in Gj,B

Vp
, it means that module j is not capable of

eliminating the violating cyclic path associated with p, and consequently, it will not
be added to B. Otherwise, if no violating cyclic path remains in the test performed in
Step 3.1.1, j is added to B in Step 3.1.2 and verifier GB∪{j}

V = GB
V ‖G{j}V is computed.

In Step 3.1.2.1, it is verified if B ∪{j} forms an SDMB. If B ∪{j} forms an SDMB,
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then it is added to M , else, a new module is searched to be added to B ∪ {j} by
running function ADD_MODULE_MINIMAL(GB∪{j}

V ,BGV
).

Algorithm 4.1 Computation of all minimal SDMB

Input: GR
Nk
, for k ∈ Ir, and GF

Output: Set of all minimal SDMB, M .

1: M := ∅, T := ∅

2: For k ∈ Ir

2.1: Compute G{k}V = GF‖GR
Nk

2.2: If L is synchronously diagnosable with respect to Po, LNk
, and Σf , then

M := M ∪ {{k}}, else T := T ∪ {k}

3: BGV
= {G{k}V : k ∈ T}

4: For k ∈ T

4.1: ADD_MODULE_MINIMAL(G{k}V , BGV
)

5: Find all elements of M , E, such that there exists another element E ′, where
E ⊂ E ′, and eliminate E ′ from M

Algorithm 4.2 ADD_MODULE_MINIMAL(GB
V ,BGV

)

1: Find a path p of GB
V that departs from its initial state with an embedded cyclic

path cl that violates the synchronous diagnosability

2: Compute the subautomaton of GB
V from path p, denoted as GB

Vp

3: For j ∈ T \B

3.1: If there does not exist E ∈M such that E ⊆ B ∪ {j} then

3.1.1: Compute Gj,B
Vp

= GB
Vp
‖G{j}V

3.1.2: If there does not exist a cyclic path in Gj,B
Vp

associated with the cyclic
path cl of GB

V then compute GB∪{j}
V = GB

V ‖G{j}V
3.1.2.1: If there does not exist a cyclic path violating the synchronous

diagnosability in G
S∪{j}
V , then M := M ∪ {S ∪ {j}}, else :

ADD_MODULE_MINIMAL(GS∪{j}
V ,BGV

)
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Theorem 4.3 Algorithm 4.1 computes all minimal synchronous diagnosis module
basis considering fault-free behavior models of the system modules given by GNk

,
k ∈ Ir, and fault behavior model given by GF .

Proof: Note that in Algorithm 4.1, each element of M is computed recursively by
adding to it only the modules that eliminate a cyclic path violating the synchronous
diagnosability, until there does not exist any violating cyclic path. Thus, all elements
ofM are SDMB. In Step 5 of Algorithm 4.1, all elements ofM that contains another
element of M are removed, and consequently, all redundant SDMB are eliminated
from M . In addition, note that Algorithm 4.1 computes all possible subsets of Ir
by adding to B, incrementally, each module of Ir that eliminates a cyclic path that
violates the synchronous diagnosability. Thus, the elements of M form all minimal
SDMB of the system. �

Remark 4.1 It is important to remark that an algorithm for the computation of
all minimal sets of observable events that guarantee the system diagnosability is
proposed in [23]. The main difference in comparison with the method proposed in
this paper is that we are searching for sets of modules, and not sets of events, that
ensure the synchronous diagnosability of the system language. �

It is important to remark that the minimum SDMB can be obtained by searching
in the set of all minimal SDMB, M , those that have the smallest cardinality.

In order to find all minimal SDMB and all minimum SDMB, applying Algorithm
4.1, we implemented a python program which takes as input only the system mod-
ules. The program calculates the automata required by the algorithms and returns
the minimal and minimum SDMB, in a way that no further knowledge of the system
is required. The python program is available in [33]. In the following, we present
an example of the implementation of Algorithm 4.1. For the sake of comprehension,
some verifiers automata are presented to illustrate Example 4.3, but all the verifiers
automata and auxiliary automata computed are presented in Appendix 5.1.

Example 4.3 Consider the system G presented in Example 4.1, and consider the
problem of computing all the minimal and minimum SDMB. In order to do so, in
this example we will use Algorithm 4.1.

The automata that model the system components, their fault-free behavior, and
faulty behavior remain the same as in Example 4.1, and are presented in Figures 4.1,
4.3, 4.4, and 4.2, respectively. In Step 1 of Algorithm 4.1, the sets M and T are
defined as ∅. In Step 2 the verifiers G{1}V , G

{2}
V , G

{3}
V , G

{4}
V are computed as the parallel
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composition of the automaton that models the faulty behavior and the renamed fault-
free automaton, presented in Figures 4.14, 4.15, 4.16 and 4.17, respectively. In
this case, no module can be used alone to diagnose the system language, and the
cycles with events of Σ are highlighted in each of the verifiers. Thus, M = ∅,
T = {1, 2, 3, 4}, and BGV

= {G{1}V , G
{2}
V , G

{3}
V , G

{4}
V }. Then, Algorithm 4.1 starts a

recursive search for the subsets with Algorithm 4.2.
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Figure 4.14: Verifier of module 1 of Example 4.3. G{1}V = GF‖GR
N1
.

Starting with the subset {1}, attempting to add module 2, Algorithm 4.2 selected
the path {(0000N ; 0), h, (0111N ; 0), σf , (0422F ; 0), d, (0422F ; 0)}. Automaton
G
{1}
Vp

, whose generated language is the prefix-closure of the sequence associated with
the selected path, is presented in Figure 4.18. To verify if the addition of module
2 eliminates the path {(0000N ; 0), h, (0111N ; 0), σf , (0422F ; 0), d, (0422F ; 0)},
the parallel composition of G{1}Vp with G

{2}
V is computed, presented in Figure 4.19.

Notice that the sequence that violates the diagnosability leads to a violating cyclic
path in G2,{1}

Vp
, and, consequently in G{1,2}V . Thus, the language of the system is not

synchronously diagnosable using only modules 1 and 2.
In the sequel, Algorithm 4.2 attempts to add module 3 to verifier G{1,2}V . As

G
{1,2}
V is not computed, it needs to be computed now. The path {(0000N ; 00), h,

(0111N ; 01), σf , (0422F ; 01), d, (0422F ; 01)} is selected. Automaton G
{1,2}
Vp

is ob-
tained, and the parallel composition of G{1,2}Vp

with G{3}V , depicted in Figure 4.20, is
computed. Notice that the sequence that violates the diagnosability does not lead to
a violating cyclic path in G3,{1,2}

Vp
. Considering this, the verifier G{1,2,3}V is computed,

and it can be verified that there does not exist any cyclic path labeled with F in which
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Figure 4.15: Verifier of module 2 of Example 4.3. G{2}V = GF‖GR
N2
.
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Figure 4.16: Verifier of module 3 of Example 4.3. G{3}V = GF‖GR
N3
.

at least one transition is performed by a non-renamed event. Thus, we conclude that
L is synchronously diagnosable with respect to LN1 , LN2 , LN3 , P

o
1,o : Σ∗o → Σ∗1,o, P

o
2,o :
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Figure 4.17: Verifier of module 4 of Example 4.3. G{4}V = GF‖GR
N4
.

h σf
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d

Figure 4.18: Automaton G{1}Vp , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from
Example 4.3.

0; 0000N ; 0 2; 0422F ; 1σf
1; 0111N ; 1

h

d

Figure 4.19: Automaton that represents G2,{1}
Vp

= G
{1}
Vp
‖G{2}V of Example 4.3.

Σ∗o → Σ∗2,o, P
o
3,o : Σ∗o → Σ∗3,o, Po : Σ∗ → Σ∗o, and Σf , and the subset {1, 2, 3} is added

to M . As the method provides only minimal SDMB, the computation of verifier
G
{1,2,3,4}
V is avoided, since {1, 2, 3} is already an SDMB.

0; 0000N ; 0 2; 0422F ; 1
σf

1; 0111N ; 1
h

Figure 4.20: Automaton that represents G3,{1,2}
Vp

= G
{1,2}
Vp
‖G{3}V of Example 4.3.

In the sequel, Algorithm 4.2 attempts to add module 4 to verifier G{1,2}V . The path
{(0000N ; 00), h, (0111N ; 01), σf , (0422F ; 01), d, (0422F ; 01)} is selected. The paral-
lel composition of G{1,2}Vp

with G{4}V is computed, resulting in automaton G4,{1,2}
Vp

. The
sequence that violates the diagnosability leads to a violating cyclic path in G

4,{1,2}
Vp

,
and, consequently in G{1,2,4}V . Thus, the language of the system is not synchronously
diagnosable using only modules 1, 2 and 4.

In the following, Algorithm 4.2 attempts to add module 3 to the verifier G{1}V .
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Consider again path {(0000N ; 0), h, (0111N ; 0), σf , (0422F ; 0), d, (0422F ; 0)} and
automaton G

{1}
Vp

. The parallel composition of G{1}Vp with G{3}V is computed, resulting
in automaton G3,{1}

Vp
. In this case, the sequence that violates the diagnosability does

not lead to a violating cyclic path in G
3,{1}
Vp

. Then, the verifier G{1,3}V is computed,
but there exists cyclic paths labeled with F in which at least one transition is labeled
with a non-renamed event. Thus, the language of the system is not synchronously
diagnosable using only modules 1 and 3.

In the sequel, Algorithm 4.2 attempts to add module 4 to the verifier G{1,3}V .
Consider now path {(0000N ; 00), h, (0111N ; 01), σf , (0422F ; 01), h, (0424F ; 01), h,

(0424F ; 01)}. Automaton G
{1,3}
Vp

is obtained, and the parallel composition of G{1,3}Vp

with G{4}V is computed, resulting in automaton G
4,{1,3}
Vp

. In this automaton, the se-
quence that violates the diagnosability does not lead to a violating cyclic path in
G

4,{1,3}
Vp

. Considering this, the verifier G{1,3,4}V is computed, but there exists cyclic
paths labeled with F in which at least one transition is labeled with a non-renamed
event. Thus, the language of the system is not synchronously diagnosable using only
modules 1, 3 and 4.

Algorithm 4.2, in the sequel, verify the possibility of adding module 4 to verifier
G
{1}
V . Consider again path {(0000N ; 0), h, (0111N ; 0), σf , (0422F ; 0), d, (0422F ; 0)}

and automaton G
{1}
Vp

. The parallel composition of G{1}Vp with G{4}V is computed, re-
sulting in automaton G4,{1}

Vp
. The sequence that violates the diagnosability leads to a

violating cyclic path in G
4,{1}
Vp

, and, consequently, in G
{1,4}
V . Thus, the language of

the system is not synchronously diagnosable using only modules 1 and 4.
Starting now with module 2 and verifier G{2}V , Algorithm 4.2 attempts to add

module 3. In order to do so, the path {(0000N ; 0), h, (0111N ; 1), σf , (0422F ; 1), d,

(0422F ; 1)} is selected. Automaton G
{2}
Vp

is computed. The parallel composition of
G
{2}
Vp

with G{3}V is obtained, resulting in automaton G
3,{2}
Vp

. In this automaton, the
sequence that violates the diagnosability does not lead to a violating cyclic path in
G

3,{2}
Vp

. Considering this, the verifier G{2,3}V is computed, presented in 4.21, and since
there does not exist any cyclic path labeled with F in which at least one transition is
performed by a non-renamed event, we conclude that L is synchronously diagnosable
with respect to LN2 , LN3 , P

o
2,o : Σ∗o → Σ∗2,o, P

o
3,o : Σ∗o → Σ∗3,o, Po : Σ∗ → Σ∗o, and Σf ,

and the subset {2, 3} is added to M . As the method searches only minimal SDMB,
the computation of verifier G{2,3,4}V is avoided, since {2, 3} is already an SDMB.

Then, Algorithm 4.2 verify the possibility of adding module 4 to verifier G{2}V .
Consider again path {(0000N ; 0), h, (0111N ; 1), σf , (0422F ; 1), d, (0422F ; 1)} and
automaton G{2}Vp . The parallel composition of G{2}Vp with G{4}V is computed, resulting in
automaton G4,{2}

Vp
. The sequence that violates the diagnosability leads to a violating

cyclic path in G4,{2}
Vp

, and, consequently, in G{2,4}V . Thus, the language of the system
is not synchronously diagnosable using only modules 2 and 4.
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Figure 4.21: Verifier computed with modules {2, 3} from Example 4.3 G23
V .

The last subset to be tested is formed by modules {3, 4}, adding module 4 to
the verifier composed by module 3, G{3}V . Consider now the path {(0000N ; 0), h,

(0111N ; 1), σf , (0422F ; 1), h, (0424F ; 1), h, (0424F ; 1)}. Automaton G
{3}
Vp

is pre-
sented in Figure 4.22. The parallel composition of G{3}Vp with G

{4}
V is computed,

resulting in automaton G
4,{3}
Vp

. In this automaton, the sequence that violates the
diagnosability does not lead to a violating cyclic path in G

4,{3}
Vp

. Thus, the verifier
G
{3,4}
V is computed, depicted in 4.23, but it is possible to notice that there exists a

cyclic path labeled with F in which at least one transition is labeled with a non-
renamed event, in that case, {(3423F ; 10), e, (0423F ; 10), e, (3423F ; 10)}. Thus,
the language of the system is not synchronously diagnosable using only modules 3

and 4.
Thus, the set of candidates of minimal SDMB, M = {{1, 2, 3}, {2, 3}} is formed

in Step 4. In Step 5, the set M is refined leading to M = {{2, 3}}.
Notice that in this case, the SDMB {2, 3} is the only minimal SDMB, and,

consequently, it is the minimum SDMB. �
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Figure 4.22: Automaton G{3}Vp , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from
Example 4.3.
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Figure 4.23: Verifier computed with modules {3, 4} from Example 4.3 G34
V .

In Example 4.3, we presented a system composed of four modules, which has
one minimum SDMB given by {2, 3}. According to this example, a system may be
synchronously diagnosable with a subset of modules. In the following, we present
another approach to find all minimal SDMB, an approach based on the breadth-first
search, implemented by Algorithm 4.3.

In Step 1 of Algorithm 4.3, M , T and R, representing the set of all minimal
SDMB, the set of module indices k such that {k} is not a minimal SDMB and the
set of module subsets indexes i such that {i} is not a minimal SDMB, respectively,
are defined as the empty set. In Step 2, for each module k, the verifier G{k}V is
computed as the parallel composition of the fault automaton GF and the renamed
fault-free behavior model GR

Nk
. Then, the indexes of the verifiers that do not have

cyclic paths that violate the synchronous diagnosability condition are added to M
as minimal SDMB, and those that have this kind of cyclic path are added to T and
R. In Step 3, the recursive inclusion of modules using Algorithm 4.4 is performed.
Note that in this case, every subset with the same cardinality is testes previously to
increment the cardinality, and in a case with 4 modules, the order that the subsets
are formed is presented in Figure 4.24. This can be comprehended as the indexes
of the subsets that are not SDMB are added to the the set R and the addition of a
module is performed by the modules whose indexes are elements of T .
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{3, 4}
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Figure 4.24: Architecture that defines the order of adding components.

Algorithm 4.4 is responsible for the module inclusions to form the SDMBs. In
Step 1, a path p of verifier GB

V , associated with a fault sequence that violates the
synchronous diagnosability, is obtained, and in Step 2, the subautomatonGB

Vp
formed

from path p is computed. In Step 3 if there does not exist an element of M , E, such
that E ⊆ B ∪ {j}, the automaton Gj,B

Vp
is computed as the parallel composition of

the partial verifier, GB
Vp
, and the verifier of the subset of modules {j}, that is being

checked if it can be added to B, G{j}V . If there exists a cyclic path that violates
the synchronous diagnosability in Gj,B

Vp
, it means that module j is not capable of

eliminating the violating cyclic path associated with p, and consequently, it will not
be added to B. Otherwise, if no violating cyclic path remains in the test performed
in Step 3.1, j is added to B in Step 3.2 and verifier GB∪{j}

V = GB
V ‖G{j}V is computed.

In step 3.2.1, it is verified if B∪{j} forms a SDMB. If B∪{j} forms a SDMB, then
it is added to M , else, it is added to R.

Algorithm 4.3 Computation of all minimal SDMB

Input: GR
Nk
, for k ∈ Ir, and GF

Output: Set of all minimal SDMB, M .

1: M := ∅, T := ∅, R := ∅

2: For k ∈ Ir

2.1: Compute G{k}V = GF‖GR
Nk

2.2: If L is synchronously diagnosable with respect to Po, LNk
, and Σf , then

M := M ∪ {{k}}, else T := T ∪ {k}, R := R ∪ {k}

3: For i ∈ R, where i is a subset with the indexes

3.1: For k ∈ T , such as index related to k is greater than the greater index in
i
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3.1.1: ADD_MODULE_MINIMUM(G{i}V , {G{k}V )

Algorithm 4.4 ADD_MODULE_MINIMUM(GB
V ,G

j
V )

1: Find a path p of GB
V that departs from its initial state with an embedded cyclic

path cl that violates the synchronous diagnosability

2: Compute the subautomaton of GB
V from path p, denoted as GB

Vp

3: If there does not exist E ∈M such that E ⊆ B ∪ {j} then

3.1: Compute Gj,B
Vp

= GB
Vp
‖G{j}V

3.2: If there does not exist a cyclic path in Gj,B
Vp

associated with the cyclic path
cl of GB

V then compute GB∪{j}
V = GB

V ‖G{j}V
3.2.1: If there does not exist a cyclic path violating the synchronous diagnos-

ability in GB∪{j}
V , then M := M ∪{B∪{j}}, else R := R∪{B∪{j}}

It is important to remark that Algorithm 4.3 searches for the all minimal SDMB
and forms set M . Thus, to find all minimum SDMB, it is necessary to search in M
the sets with the smallest cardinality. However, if the objective is to find only the
minimum SDMB the algorithm can be stop as soon as it finds a SDMB and finishes
the search in its cardinality.

In the following, we present Example 4.4 that shows the implementation of Algo-
rithm 4.3 to the same system of Example 4.3. Again, for the sake of comprehension,
some verifiers automata are presented to illustrate Example 4.4, but all the verifiers
automata computed are presented in Appendix 5.1.

Example 4.4 Consider, again, the system G presented in Examples 4.1 and 4.3,
and consider the problem of computing all the minimal and minimum SDMB using
Algorithm 4.3.

The automata that model the system components, their fault-free behavior, and
faulty behavior are presented in Figures 4.1, 4.3, 4.4, and 4.2, respectively. In Step
1 of Algorithm 4.3, the sets M , T and R are defined as ∅. In Step 2 the verifiers
G
{1}
V , G

{2}
V , G

{3}
V , G

{4}
V are computed as the parallel composition of the automaton that

models the faulty behavior and the renamed fault-free automaton, presented in Fig-
ures 4.14, 4.15, 4.16 and 4.17, respectively. As noticed in Example 4.3, no module
can be used alone to diagnose the system language. Thus, M = ∅, T = {1, 2, 3, 4},
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R = {1, 2, 3, 4}, and BGV
= {G{1}V , G

{2}
V , G

{3}
V , G

{4}
V }. Then, Algorithm 4.3 starts a

recursive search for the subsets with Algorithm 4.4.
Differently from Algorithm 4.1, the recursive search tests the verifier with the

same cardinality before increasing the cardinality of the verifiers, following Fig-
ure 4.24. Considering this, starting with the subset {1}, attempting to add mod-
ule 2, Algorithm 4.4 selected the path {(0000N ; 0), h, (0111N ; 0), σf , (0422F ; 0),

d, (0422F ; 0)}. Automaton G
{1}
Vp

, whose generated language is the prefix-closure of
the sequence associated with the selected path, is presented in Figure 4.18. To ver-
ify if the addition of module 2 eliminates the path {(0000N ; 0), h, (0111N ; 0), σf ,

(0422F ; 0), d, (0422F ; 0)}, the parallel composition of G{1}Vp with G{2}V is computed,
presented in Figure 4.19. As in Example 4.3, the sequence that violates the diagnos-
ability leads to a violating cyclic path in G

2,{1}
Vp

, and, consequently in G
{1,2}
V . Thus,

the language of the system is not synchronously diagnosable using only modules 1

and 2, and the element {1, 2} is added to the set R.
In the following, Algorithm 4.4 attempts to add module 3 to the verifier G{1}V .

Consider again path {(0000N ; 0), h, (0111N ; 0), σf , (0422F ; 0), d, (0422F ; 0)} and
automaton G

{1}
Vp

. The parallel composition of G{1}Vp with G{3}V is computed, resulting
in automaton G3,{1}

Vp
. In this case, the sequence that violates the diagnosability does

not lead to a violating cyclic path in G
3,{1}
Vp

. Then, the verifier G{1,3}V is computed,
but there exists cyclic paths labeled with F in which at least one transition is labeled
with a non-renamed event. Thus, the language of the system is not synchronously
diagnosable using only modules 1 and 3, and the element {1, 3} is added to the set
R.

Algorithm 4.4, in the sequel, verify the possibility of adding module 4 to verifier
G
{1}
V . Consider again path {(0000N ; 0), h, (0111N ; 0), σf , (0422F ; 0), d, (0422F ; 0)}

and automaton G
{1}
Vp

. The parallel composition of G{1}Vp with G{4}V is computed, re-
sulting in automaton G

4,{1}
Vp

. The sequence that violates the diagnosability leads to
a violating cyclic path in G

4,{1}
Vp

, and, consequently, in G
{1,4}
V . Thus, the language

of the system is not synchronously diagnosable using only modules 1 and 4, and the
element {1, 4} is added to the set R.

In the following, Algorithm 4.4 attempts to add module 3 to the verifier G{2}V . In
order to do so, the path {(0000N ; 0), h, (0111N ; 1), σf , (0422F ; 1), d, (0422F ; 1)}
is selected. Automaton G

{2}
Vp

is computed. The parallel composition of G{2}Vp with
G
{3}
V is obtained, resulting in automaton G

3,{2}
Vp

. In this automaton, the sequence
that violates the diagnosability does not lead to a violating cyclic path in G

3,{2}
Vp

.
Considering this, the verifier G{2,3}V is computed, presented in 4.21, and since there
does not exist any cyclic path labeled with F in which at least one transition is
performed by a non-renamed event, we conclude that L is synchronously diagnosable
with respect to LN2 , LN3 , P

o
2,o : Σ∗o → Σ∗2,o, P

o
3,o : Σ∗o → Σ∗3,o, Po : Σ∗ → Σ∗o, and Σf ,
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and the subset {2, 3} is added to M . As the method searches only minimal SDMB,
the computation of verifiers G{1,2,3}V , G{1,2,3,4}V and G{2,3,4}V are avoided, since {2, 3}
is already an SDMB.

Then, Algorithm 4.4 verify the possibility of adding module 4 to verifier G{2}V .
Consider again path {(0000N ; 0), h, (0111N ; 1), σf , (0422F ; 1), d, (0422F ; 1)} and
automaton G{2}Vp . The parallel composition of G{2}Vp with G{4}V is computed, resulting in
automaton G4,{2}

Vp
. The sequence that violates the diagnosability leads to a violating

cyclic path in G4,{2}
Vp

, and, consequently, in G{2,4}V . Thus, the language of the system
is not synchronously diagnosable using only modules 2 and 4, and the element {2, 4}
is added to the set R.

The last subset with cardinality 2 to be tested is formed by modules {3, 4},
adding module 4 to the verifier composed by module 3, G{3}V . Consider now the
path {(0000N ; 0), h, (0111N ; 1), σf , (0422F ; 1), h, (0424F ; 1), h, (0424F ; 1)}. Au-
tomaton G{3}Vp is presented in Figure 4.22. The parallel composition of G{3}Vp with G{4}V
is computed, resulting in automaton G4,{3}

Vp
. In this automaton, the sequence that vi-

olates the diagnosability does not lead to a violating cyclic path in G4,{3}
Vp

. Thus, the
verifier G{3,4}V is computed, depicted in 4.23, but it is possible to notice that there
exists a cyclic path labeled with F in which at least one transition is labeled with
a non-renamed event, in that case, {(3423F ; 10), e, (0423F ; 10), e, (3423F ; 10)}.
Thus, the language of the system is not synchronously diagnosable using only mod-
ules 3 and 4, and the element {3, 4} is added to the set R.

Starting the verifiers of cardinality 3, the verifier composed of modules {1, 2, 3}
does not need to be computed due to the fact that {2, 3} is a SDMB. Thus, in the
sequel, Algorithm 4.4 attempts to add module 4 to verifier G{1,2}V , and as that verifier
was not computed, now it is necessary to compute it. Then, the path {(0000N ; 00), h,

(0111N ; 01), σf , (0422F ; 01), d, (0422F ; 01)} is selected. The parallel composition of
G
{1,2}
Vp

with G{4}V is computed, resulting in automaton G4,{1,2}
Vp

. The sequence that vi-
olates the diagnosability leads to a violating cyclic path in G4,{1,2}

Vp
, and, consequently

in G{1,2,4}V . Thus, the language of the system is not synchronously diagnosable using
only modules 1, 2 and 4, and the element {1, 2, 4} is added to the set R.

In the sequel, Algorithm 4.4 attempts to add module 4 to the verifier G{1,3}V .
Consider now path {(0000N ; 00), h, (0111N ; 01), σf , (0422F ; 01), h, (0424F ; 01), h,

(0424F ; 01)}. Automaton G
{1,3}
Vp

is obtained, and the parallel composition of G{1,3}Vp

with G{4}V is computed, resulting in automaton G
4,{1,3}
Vp

. In this automaton, the se-
quence that violates the diagnosability does not lead to a violating cyclic path in
G

4,{1,3}
Vp

. Considering this, the verifier G{1,3,4}V is computed, but there exists cyclic
paths labeled with F in which at least one transition is labeled with a non-renamed
event. Thus, the language of the system is not synchronously diagnosable using only
modules 1, 3 and 4, and the element {1, 3, 4} is added to the set R.
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The verifiers composed of modules {2, 3, 4} and {1, 2, 3, 4} do not need to be
computed due to the fact that {2, 3} is a SDMB. Thus, the set of minimal SDMB,
M = {{2, 3}} is formed in Step 4. Notice that, as expected, the SDMB {2, 3} is the
only minimal SDMB, and, consequently, it is the minimum SDMB. �

Example 4.4 presents the implementation of Algorithm 4.3, which is based on
the breadth-first search. In order to find all minimal SDMB, the difference between
Algorithms 4.1 and 4.3 are not very significant. However, searching for all minimum
SDMB with Algorithm 4.3 makes possible to stop the search as soon as the cardi-
nality of the first SDMB is found. In the following, in Example 4.5, we present a
system with eight modules that the minimum SDMB is found with three modules.

Example 4.5 Consider a system G, composed of eight modules, G1, G2, G3,
G4, G5, G6, G7 and G8 showed in Figure 4.25, where their event sets are
Σ1 = {a, c, e, g, σ1},Σ2 = {e, h, σ1, σ2, σf},Σ3 = {d, h, σf},Σ4 = {e, h, σf}, Σ5 =

{b, h, σf},Σ6 = {a, c, g, σ1},Σ7 = {e, h},Σ8 = {c, e, g, σ1}, with observable event set
Σo = {a, b, c, d, e, h, g}, unobservable event set Σuo = {σ1, σ2, σf}, and fault event
set Σf = {σf}. In order to compute the verifiers of each module, it is necessary to
compute automaton GF , that is not represented due to the size and complexity of
the figure.

In Figure 4.26 automata GR
N1
, GR

N2
, GR

N3
, GR

N4
, GR

N5
, GR

N6
, GR

N7
, and GR

N8
, that

represent the fault-free behavior of the system modules after applying the renaming
function are depicted.

In the following, Algorithm 4.3 computes the verifier for each module and starts
the search for all minimum SDMB. In that case, there is only one minimum SDMB,
which is {2, 3, 5}

In Examples 4.3 and 4.4 were presented the implementation of Algorithms 4.1,
4.2, 4.3 and 4.4 in order to obtain all the minimal and minimum SDMB. In Example
4.5 Algorithms 4.3 and 4.4 were implemented in order to find only the minimum
SDMB. The results of the implementation of the proposed method and its discussions
are presented in next Section.

4.2 Results and Discussions

In this section we compare the computational cost of finding all minimal SDMB using
the exhaustive search method with the method proposed in this work, considering
the system worked in Examples 4.1, 4.3 and 4.4, and Algorithms 4.1 and 4.3, since
the order that the modules are computed is different.
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Figure 4.25: Automata that models the system components G1, G2, G3, G4, G5,
G6, G7, and G8 from Example 4.5

Another comparison we present is the comparison between the computational
cost of finding all minimum SDMB using Algorithm 4.3 and the exhaustive search,
and the computation cost of finding all mininal SDMB with Algorithms 4.1 and 4.3
and the exhaustive search related to each one. For that comparison, the system
worked was the one presented in Example 4.5, a system that is composed of eight
modules.

4.2.1 Searching for minimal and minimum SDMB in a system

with four modules.

The order to compute the subsets of modules presented in Algorithm 4.1 follows the
trees architecture, presented in Figure 4.27. In Examples 4.3 and 4.4, there are four
components and the minimal SDMB found was {2, 3}.

Considering the order to compute subsets of modules in Algorithm 4.1, per-
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Figure 4.26: Automata that represents the fault-free modules with unobservable
events renamed from Example 4.5

forming the exhaustive search to find all minimal SDMB, 13 automata must be
computed, which results in the computation of 368 states and 794 transitions. The
time spent in the process was 1,129.57ms, and the complete information about the
verifiers that are computed using the exhaustive search is presented in Table 4.2 and
the automata that are computed are presented in table 4.1.

Using the method proposed in this work, following the steps of Algorithm 4.1,
instead of computing several parallel compositions with verifiers with a large number
of states, partial verifiersGB

Vp
, presented in Table 4.3 are calculated, as those depicted

in Figures 4.18 and 4.22. Since all verifiers GB
V , such that B is a singleton, have

a cyclic path that violates the synchronous diagnosability, then Algorithm 4.2 is
recursively repeated until all minimal SDMB are computed. In this procedure, the
verifiers presented in Table 4.1 are computed. Note that verifiers G{1,4}V , G{2,4}V , and
G
{1,3,4}
V , that are computed in the exhaustive search method respecting the order

proposed in Algorithm 4.1, are not computed using this proposed method.
The total number of automata that are computed using Algorithm 4.1, presented

in Tables 4.2, 4.3, and 4.4, was 24, with total number of states equal to 338 and
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Figure 4.27: Trees architecture that defines the order of adding components.

Table 4.1: Verifiers GB
V computed using the exhaustive search and the proposed

method.

B {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
Exhaus. tree X X X X X X X X
Algorithm 4.1 X X X X X X X
Exhaus. cardin. X X X X X X X X
Algorithm 4.3 X X X X X X X
B {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4}
Exhaus. tree X X X X X
Algorithm 4.1 X X X
Exhaus. cardin. X X X X
Algorithm 4.3 X X

with total number of transitions 654. The time spent in the process of obtaining the
minimal SDMB, {2, 3}, using Algorithm 4.1, was 804.57ms. This shows a reduction
of 29% in time, 17% in the number of states and 30% in the number of transitions,
as shown in Table 4.5, in comparison with the exhaustive search method respecting
the order proposed in Algorithm 4.1.

On the other hand, the order to compute the subsets of modules presented in
Algorithm 4.3 respects the cardinality of the subsets and is presented in Figure
4.28. Considering that order, performing the exhaustive search to find all minimal
SDMB, 12 automata must be computed, resulting in the computation of 344 states
and 738 transitions. The time spent in the process was 845.26ms, and the com-
plete information about the verifiers that are computed using the exhaustive search
considering this order to compute the subsets of modules is presented in Table 4.2
and the automata that are computed are presented in table 4.1. Notice that subset
{1, 2, 3} was not computed due to the fact that the subset {2, 3} is a SDMB and
was computed previously.

Using the method proposed in this work, following the steps of Algorithm 4.3,
again, partial verifiers GB

Vp
, presented in Table 4.3 are calculated. Since all verifiers
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Table 4.2: Number of states and transitions of the verifiers GB
V from Example 4.3.

B {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}
States 30 28 16 14 52 30 26 28
Transitions 66 65 25 25 135 53 51 56
B {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4}
States 28 14 52 52 26
Transitions 65 20 118 135 42

Table 4.3: Number of states and transitions of the partial verifiers GB
Vp

that are
computed in the Example 4.3 using Algorithms 4.1 and 4.2.

GBVp G
{1}
Vp

G
{2}
Vp

G
{3}
Vp

G
{1,2}
Vp

G
{1,3}
Vp

States 3 3 4 3 4
Transitions 3 3 4 3 4

GB
V , such that B is a singleton, have a cyclic path that violates the synchronous

diagnosability, then Algorithm 4.4 is recursively repeated until all minimal SDMB
are computed. In this procedure, the verifiers presented in Table 4.1 are computed.
Note that verifiers G{1,4}V , G{2,4}V , and G{1,2,4}V , that are computed in the exhaustive
search method respecting the order proposed in Algorithm 4.3, are not computed
using this proposed method. Note that comparing with Algorithm 4.1, the subset
{1, 2, 3} was not computed due to the fact that the subset {2, 3} is a SDMB and
was computed previously.

The total number of automata that are computed using Algorithm 4.3, presented
in Tables 4.2, 4.3, and 4.4, was 22, with total number of states equal to 283 and
with total number of transitions 534. The time spent in the process of obtaining the
minimal SDMB, {2, 3}, using Algorithm 4.3, was 507.86ms. This shows a reduction
of 40% in time, 17% in the number of states and 28% in the number of transitions,
as shown in Table 4.6, in comparison with the exhaustive search method respecting
the order proposed in Algorithm 4.3.

{1}

{1, 2} {1, 3} {1, 4}
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{1, 2, 3, 4}

{1, 3, 4}
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Figure 4.28: Architecture that defines the order of adding components.
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Table 4.4: Number of states and transitions of the testing automata Gj,B
Vp

computed
in Example 4.3 using Algorithms 4.1 and 4.2.

Gj,BVp G
2,{1}
Vp

G
3,{1}
Vp

G
4,{1}
Vp

G
3,{2}
Vp

G
4,{2}
Vp

G
4,{3}
Vp

G
3,{1,2}
Vp

G
4,{1,2}
Vp

G
4,{1,3}
Vp

States 7 3 3 3 3 3 3 3 3
Trans. 13 2 3 2 3 2 2 3 2

Table 4.5: Total number of states and transitions that are computed using the
exhaustive search and the proposed method with Algorithm 4.1, and reduction in
the computational cost and execution time in Example 4.3.

States Transitions Execution Time (ms)
Exhaustive tree 368 794 1,129.57ms
Algorithm 4.1 318 613 804.57ms
Reduction 17% 30% 29%

After computing all minimal SDMB, it is possible to obtain all minimum SDMB,
and in the system worked in Examples 4.3 and 4.4, it is equal to {2, 3}. Even with the
increase in the number of automata calculated, the number of states and transitions
were reduced, and the time spent had a relevant reduction due to the fact that the
auxiliary verifiers are simple automata, and the test to verify if a component should
be added to the verifier is performed with this simpler automata.

It is important to remark that with Algorithm 4.3 it is possible to perform a direct
search for the minimum SDMB, finishing the search in the cardinality that the first
SDMB is found. In Example 4.4, Algorithm 4.3 stops in cardinality 2, computing
only 7 verifiers. The total automata computed was 16, with total number of states
equal to 192 and with total number of transitions 345. The time spent in the process
of obtaining the minimum SDMB, {2, 3}, using Algorithm 4.3, was 171ms. The
economy in time lies in the fact that the verifiers with greater cardinality demands
more time to be computed.

4.2.2 Searching for minimal and minimum SDMB in a system

with eight modules.

Considering more complex systems, with a greater number of components the ex-
pected reduction in number of event transitions, states and execution time is even
greater. In order to illustrate it, Example 4.5 was presented. In that Example, a
system composed of eight modules is synchronously diagnosable with three modules,
{2, 3, 5}. In order to compute the minimal SDMB for this system, Algorithms 4.1
and 4.3 were implemented in a python program [33]. The summary of the implemen-
tation of the search for the minimal SDMB is presented in Table 4.7. It is possible to
notice that the number of automata using Algorithms 4.1 and 4.3 is greater than the
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Table 4.6: Total number of states and transitions that are computed using the
exhaustive search and the proposed method with Algorithm 4.3, and reduction in
the computational cost and execution time in Example 4.4.

States Transitions Execution Time (ms)
Exhaustive cardinality 344 738 845.29ms

Algorithm 4.3 283 534 507.86ms
Reduction 17% 28% 40%

respective exhaustive search. On the other hand, the number of states, transitions
and execution time are smaller.

Table 4.7: Total number of states and transitions that are computed using the ex-
haustive search and the proposed method with Algorithms 4.1 and 4.3, and reduction
in the computational cost and execution time in Example 4.5

Automata States Transitions Exec. Time (ms) Economy
Exhaus. tree 227 8428 19834 72549.00ms -
Algorithm 4.1 462 5210 9266 14036.00ms 80%

Exhaus. cardinality 224 8347 19697 78854.00ms -
Algorithm 4.3 462 5120 9123 14296.00ms 82%

The advantage of Algorithm 4.3 is that it is possible to search directly for all
the minimum SDMB. In that case, we performed an exhaustive search stopping in
cardinality 3 in order to compare the results with Algorithm 4.3. The summary of
that comparison is presented in Table 4.8.

Table 4.8: Total number of states and transitions that are computed using the
exhaustive search and the proposed method with Algorithm 4.3, and reduction in
the computational cost and execution time in Example 4.5 searching directly for the
minimum SDMB.

States Transitions Execution Time (ms)
Exhaustive cardinality 2376 5177 9274.00ms

Algorithm 4.3 1187 1946 1128.00ms
Reduction 50% 62% 88%

It is possible to notice that Algorithm 4.3 shows a significant reduction in exe-
cution time in comparison with the exhaustive search for all minimum SDMB. It is
important to remark that the search for all minimum SDMB with Algorithm 4.3 is
faster than the search for all minimal SDMB with the proposed method in this work
with Algorithms 4.1 or 4.3. The advantage is that it is possible to find all minimum
SDMB with a lower computational cost. On the other hand, the disadvantage is
that other minimal SDMB are not computed.
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4.3 Final Remarks

In this chapter, we present in Example 4.3, a system that can be synchronously
diagnosable using a subset of modules to compute a verifier. After that, in order to
show that the proposed method can be more effective with more complex systems,
we present a Example 4.5, with eight modules, that is synchronously diagnosable
with three module. Finally, we present the results considering the computational
costs and evaluate its reduction.
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Chapter 5

Conclusions

In this work, we defined the synchronous diagnosis modular basis and proposed a
method to discover all the minimal and consequently all minimum SDMB. This
method is based on an algorithm and a test. Two algorithms were proposed, one
based on the depth-first search, Algorithm 4.1, and another based on the breadth-
first search, Algorithm 4.3. Both algorithms can be used to find all minimal SDMB,
and then find all minimum SDMB. However, with Algorithm 4.3, it is possible to
search directly for all minimum SDMB, since the algorithms searches by cardinality,
and as soon as a SDMB is found, the algorithm stops the search at the end of that
cardinality.

The algorithms define the order the modules will be tested to compose the ver-
ifier. The test consists of building an automaton GB

Vp
, whose generated language

is the prefix-closure of the sequence associated with the path that violate the syn-
chronous diagnosability of subset {B}, and compute the parallel composition with
the verifier of the module we want to add G

{j}
V . Thus, it is possible to verify if

the sequence that violates the synchronous diagnosability does lead to a violating
cyclic path in this parallel composition, Gj,B

Vp
= GB

Vp
‖G{j}V . This test avoids the

computation of verifiers, reducing the computational cost.
The computational cost of the proposed algorithms is compared with the exhaus-

tive search method respecting the order the modules are added, and we show that,
with the proposed method, there is a significant reduction in the execution time
and in the number of states and transitions of the automata needed to compute the
minimal SDMB as presented in examples 4.3 and 4.4. The examples shows that the
test with auxiliary verifiers avoid the computation of some verifiers, and that results
in the economy in computational cost.

As the complexity of the systems grows in number of components, the complex-
ity of the verifier grows polynomially. Thus, with a complex system, even with a
synchronous diagnosis approach, the diagnoser will demand an elevated amount of
memory to be stored. With the method presented in this work, finding a subset of
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modules will need a lower computational cost to be obtained and demand less mem-
ory to store the diagnoser. This can be observed in Example 4.5, where it is possible
to notice as 80% economy in execution time searching for all minimal SDMB. In this
example, using Algorithm 4.3, it is possible to notice a good performance searching
directly for all minimum SDMB, with almost 90% of economy in execution time.

In summary, the main contributions of this work are as follows:

• In order to reduce the computational cost, the first approach is to define the
order the modules are supposed to be added. The proposed orders, Algorithm
4.1 and 4.3, guarantee that every combination of subsets will be considered.
Once a SDMB is found, adding modules to this SDMB creates a new SDMB
with no necessary calculation due to the monotonicity property.

• Adding a component to the verifier may cause considerable calculations. In
order to avoid this, a test with a sequence that violates the synchronous diag-
nosability in the current verifier with the verifier that is supposed to be added
is carried out. This test consist in the parallel composition of automaton whose
generated language is the prefix-closure of the sequence associated with the
selected path, and the verifier of the module that is supposed to be added. If
the sequence that violates the diagnosability does not lead to a violating cyclic
path in the parallel composition, the new verifier is computed, otherwise, the
algorithm chooses another module.

5.1 Future works

It is important to remark that this work is focused in reducing the computational
cost to obtain the SDMB, and, consequently, have a reduced synchronous diagnoser
to be stored and used. Considering this, we are currently investigating strategies
to reduce even more the computational cost of the method in order to mitigate the
exponential complexity of computing all minimal SDMB. Initially, we will search for
characteristics of the modules, since that the method is sensitive to the module that
is used in the beginning of Algorithms 4.1 and 4.3. Depending on the first module,
the reduction in computational cost may be higher. In Examples 4.3 and 4.4, the
minimal SDMB is {2, 3}. If Algorithm 4.1 started with module 3 and then modules
2, 4 and 1 are chosen, the computational cost would be smaller. Furthermore, other
characteristics of the automata that model the system components will be studied in
order to find any characteristic, such as the number of states, transitions, observed
events and fault events, that help to define which module must be chosen to start
Algorithms 4.1 and 4.3, and the modules that are chosen to continue with Algorithms
4.1 and 4.2.
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Another possibility is to consider the delay of diagnosis. It is a important factor
to consider and, once the minimal SDMB are defined, this is important to con-
sider together with the computational memory required to store the synchronous
diagnoser.

Another possible future work is to extend the method proposed in this work to
the decentralized synchronous diagnosis.
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Appendices

Automata for Examples 4.3 and 4.4

In this appendix, we present all computed verifier automata for Examples 4.3 and
4.4. In chapter 4 some of those automata were presented in order to illustrated the
examples, but for the sake of comprehension, they were presented here.
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Figure 1: Verifier computed with module {1} from Examples 4.3 and 4.4, G1
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Figure 5: Verifier computed with modules {1, 2} from Examples 4.3 and 4.4, G12
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Figure 6: Verifier computed with modules {1, 3} from Examples 4.3 and 4.4, G13
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Figure 7: Verifier computed with modules {1, 4} from Examples 4.3 and 4.4, G14
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Figure 8: Verifier computed with modules {2, 3} from Examples 4.3 and 4.4, G23
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Figure 9: Verifier computed with modules {2, 4} from Examples 4.3 and 4.4, G24
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Figure 10: Verifier computed with modules {3, 4} from Examples 4.3 and 4.4, G34
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Figure 11: Verifier computed with modules {1, 2, 3} from Examples 4.3 and 4.4,
G123
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Figure 12: Verifier computed with modules {1, 2, 4} from Examples 4.3 and 4.4,
G124
V .
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Figure 13: Verifier computed with modules {1, 3, 4} from Examples 4.3 and 4.4,
G134
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Figure 14: Automaton G{1}Vp , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from
Examples 4.3 and 4.4.

h σf
0 1 2

d

Figure 15: Automaton G{2}Vp , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from
Examples 4.3 and 4.4.
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Figure 16: Automaton G{3}Vp , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from
Examples 4.3 and 4.4.
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Figure 17: Automaton G{1,2}Vp
, whose generated language is the prefix-closure of the

sequence, that violates the diagnosability, associated with the selected path, from
Examples 4.3 and 4.4.

h σf0 1 2
h

3

h

Figure 18: Automaton G{1,3}Vp
, whose generated language is the prefix-closure of the

sequence, that violates the diagnosability, associated with the selected path, from
Examples 4.3 and 4.4.

0; 0000N ; 0 2; 0422F ; 1σf
1; 0111N ; 1

h

d

Figure 19: Automaton that represents G2,{1}
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= G
{1}
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‖G{2}V of Example 4.3 and 4.4.
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Figure 20: Automaton that represents G3,{1}
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= G
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‖G{3}V of Example 4.3 and 4.4.
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Figure 21: Automaton that represents G4,{1}
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= G
{1}
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‖G{4}V of Example 4.3 and 4.4.
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Figure 22: Automaton that represents G3,{2}
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= G
{2}
Vp
‖G{3}V of Example 4.3 and 4.4.
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Figure 23: Automaton that represents G4,{2}
Vp

= G
{2}
Vp
‖G{4}V of Example 4.3 and 4.4.
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Figure 24: Automaton that represents G4,{3}
Vp

= G
{3}
Vp
‖G{4}V of Example 4.3 and 4.4.
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Figure 25: Automaton that represents G3,{1,2}
Vp

= G
{1,2}
Vp
‖G{3}V of Example 4.3 and

4.4.
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Figure 26: Automaton that represents G4,{1,2}
Vp

= G
{1,2}
Vp
‖G{4}V of Example 4.3 and

4.4.
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Figure 27: Automaton that represents G4,{1,3}
Vp

= G
{1,3}
Vp
‖G{4}V of Example 4.3 and

4.4.
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