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Chapter 1

Introduction and Literature

Review

The COVID-19 pandemic is an ongoing pandemic of coronavirus disease 2019 and

has emerged as one of this century’s major global health challenges. Insufficient

scientific knowledge, the fast pace of its spread, and its capacity to cause deaths

in vulnerable groups have generated worldwide discussion and research on the best

strategies for confronting the epidemic in different parts of the world.

Governments are struggling to determine the correct course of action as the

epidemic goes through its stages. If they decide to do nothing, a lot of deaths,

mainly of the most susceptible people, will occur. On the other hand, full lockdowns

affect the economy and society negatively. Modeling the pandemic also poses several

difficulties, amongst these the rapid variation of several important parameters.

Although several vaccines have been developed, most countries have insufficient

supplies to be able to vaccinate at a recommended level. Also, even though vaccines

are effective against serious symptoms, they do not guarantee complete immunity

so that strategies such as social distancing, washing hands and wearing face masks,

known collectively as non-pharmaceutical interventions (NPIs), continue to play an

important role in controlling this epidemic.

The most simple and commonly used model is the SIR model (first introduced

in [2]) for human-to-human transmission, which describes the passage of individu-

als through three mutually exclusive stages of infection: Susceptible, Infected and

Recovered ([3]). This chapter will limit its review to the recent literature on the

modeling of COVID-19. For further references to the extensive literature on math-

ematical models for epidemics as well as its history the reader is directed to the

books: Mathematical Epidemiology ([4]), Modeling Infectious Diseases in Humans

and Animals ([5]), A Short History of Mathematical Population Dynamics ([6]).

Carcione et al. ([7]) implemented an SEIR model to compute the infected pop-

ulation and the number of casualties in the Italian region of Lombardy, one of the
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regions most severely impacted by the epidemic in the world. The additional fea-

ture of this model, with respect to the SIR model, is the exposed state E, which

represents people who have been exposed to the virus, but still not developed the

infection, due to the incubation period of the virus. After this period, the exposed

population transitions to the Infected state.

Giordano et al. ([3]) used a more complex model named SIDARTHE, that dis-

criminates between detected and undetected cases of infection and between different

severities of illness, non-life-threatening cases and potentially life-threatening cases

that require ICU admission. The eight states are the following: S, the susceptible

population; I, the asymptomatic undetected infected population; D, the diagnosed

population, corresponding to asymptomatic detected cases; A, the ailing population,

corresponding to the symptomatic undetected cases; R, the recognized population,

corresponding to the symptomatic detected cases; T, the threatened population,

corresponding to the detected cases with life-threatening symptoms; H, the hospi-

talized population; and E, the extinct or dead population. One of the difficulties

with this model is the inaccurate estimation of some of the populations, such as

populations A and I.

A model named SEIHRD was introduced in [8] and studied further in [1]. The

main difference is the state Hospitalized corresponding to people who requires ICU

installations. Inclusion of the hospitalized population in the model is important from

a strategic point of view, since it allows public health officials to avoid shortages in

hospital beds and supplies. In addition, the hospitalized population is a variable

that is easy to monitor and is made available in real time. This model is the one

that is used in this work and will be further explained in the next section.

After choosing an appropriate model, the next challenge is to use an algorithm

that is able to control the epidemic to a certain level. Many authors have used

different types of open-loop optimal control, and Model Predictive Control (MPC)

has also been proposed as a closed loop control technique. It has been proven that

an open-loop optimal control leads to simple policies under the assumption of exact

model knowledge, but in a more realistic scenario with uncertain data and model

mismatch, a feedback strategy that periodically updates the policy is much more

effective, as stated in [9].

Bin et al. ([10]) proposed a fast switching policy, consisting of multi-shot inter-

ventions based on the outcomes of two SIR-based models (SIQR and SIDARTHE)

to switch between quarantine (social isolation) and work days (normal behavior).

Pazos et al. ([1]) proposed a specific controller for determining the optimal

intensity of the NPIs using a SEIHRD model. The values calculated are based on a

proportional value to an adequate combination of states of this model. The control

law applied was robust to relatively large parametric uncertainties and also to some
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level of noncompliance of the NPIs.

A robust economic MPC for the containment of a generic stochastic SEIV

(Susceptible-Exposed-Infected-Vigilant) epidemic process is presented in [11], with

the final aim of deciding who to quarantine and for how long, in the presence of an

epidemic contagion.

Some authors considered the influence of vaccination on the epidemic model.

Kar et al. [12] studied a SIR epidemic model with a vaccination program. They

used optimal control strategies in the form of vaccination to control the number of

susceptible individuals and increase the number of recovered individuals.

An optimal daily vaccination strategy is proposed in [13]. They established an

optimal control problem to design vaccination strategies where vaccination modu-

lates dynamics susceptibility through an imperfect vaccine. The aim was to provide

vaccination policies that minimize the lost life years due to disability or premature

death by COVID-19. The simulations suggested a better response compared with a

constant vaccination rate.

In contrast with most papers aiming at reproducing the dynamics of the pan-

demic observed through various data, a study related to the concepts of epidemic

final size and herd immunity in an ample setting is done in [14]. They considered an

epidemic in a heterogeneous population modelled by a SEIR system with a contin-

uous structure variable and a general contact matrix. They derived and studied the

final size equation fulfilled by the limit distribution of the population and showed

that this limit exists and satisfies the final size equation. The main contribution

was to prove the uniqueness of this solution among the distributions smaller than

the initial condition.

Bliman et al. ([15]) investigated the effects of social distancing on a simple SIR

model. They show that it is possible to exactly answer the following question: given

maximal social distancing intensity and duration (but without prescribed starting

date), how can one minimize the epidemic final size, that is the total number of indi-

viduals infected during the outbreak? They proved the existence of an unique opti-

mal policy and demonstrated how to determine it numerically by an easily tractable

algorithm.

An optimal control problem of obtaining, by enforcing social distancing, the

largest value for the number of susceptible individuals at infinity is studied in [16].

They first established that stopping arbitrarily close to the herd immunity threshold

through long enough intervention is possible only if the social distancing intensity is

sufficiently intense. As a last result, they show that this problem may be interpreted

as equivalent to reaching a given distance to the herd immunity level by minimal

intervention time.

The main contributions of this dissertation are:
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• A simplified MPC type control approach that reduces computational effort

considerably, thus allowing the simulation of various scenarios.

• A normalized aggregate control effort that models the effect of all non-

pharmaceutical interventions and therefore takes values between zero and one,

rather than being on-off.

• Inclusion of the effect of different vaccination policies on the progress of the

pandemic.

• A simulation platform that permits understanding and design of public health

policies for the short and medium term control of the pandemic.

In this work, we investigate strategies based on N-Steps ahead optimal control for

mitigation of the COVID-19 pandemic. The main goal is to minimize the number

of deaths over time without inducing excessive economic costs, while respecting

an upper bound on the hospitalization rate. In order to do that, an optimization

problem is modeled and solved based on the techniques presented in [17] and [18].

In chapter 2, the epidemic model SEIHRD is explained in more details. In chap-

ter 3, we detail the optimal algorithm that is used to calculate the best strategy for

each moment of the epidemic. In chapter 4, we develop all simulations and compare

our strategy with other strategies already used for the same problem. Additionally,

the impact of the vaccination rate is shown in Chapter 5. Finally, conclusions and

future work are presented in chapter 6.
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Chapter 2

The SEIHRD Model

In this chapter, we will detail each state of the SEIHRD model and its relevance

in the COVID-19 epidemic model. The choice of the model is an important step.

In order to be useful for the design of control policies, it should contain the main

variables of interest, keeping in mind the difficulty of obtaining reliable data that will

permit estimation of the main model parameters. In this study, we opted for a model

called the SEIHRD model, explained in the next paragraph, since it allows for a more

detailed model of features specific to the COVID-19 epidemic, such as exposed and

asymptomatic populations, in addition to modeling occupation of hospitals, which

is important from a decision making perspective.

The SEIHRD model contains the following states or populations that each indi-

vidual can belong to:

• Susceptible (S): Individuals who did not get exposed to the virus and are not

infected.

• Exposed (E): Individuals who got exposed to the virus and are in the incu-

bation period. Even though there are no visible clinical signs, the individual

could infect other people with a lower probability (compared to one in the

Infected state). Part of this group will present symptoms after an incubation

period, moving to group I and another part will remain asymptomatic.

• Infected (I): Individuals who can infect other people and may start developing

clinical signs. Asymptomatic people who have been diagnosed as positive are

also considered in this group. After a period, the individual recover or is

hospitalized, if the symptoms are very serious.

• Hospitalized (H): Individuals who need medical assistance and occupy beds in

the hospital. After treatment, the individual might recover or die.

• Recovered (R): Individuals who recover from the infection or acquired immu-

nity.

5



S E I H D

R

αβ γp1 δp2 ϵp3

ζ(1− p1)
η(1− p2)

µ(1− p3)

Figure 2.1: SEIHRD model diagram.

• Dead (D): Individuals who were infected, hospitalized and then died.

This is a typical compartmental model and Fig. 2.1 shows the manner in which

individuals transit between these states or populations. This model also has a

mathematical representation given by the following difference equations.

Sk+1 = Sk − (αSkEk + βSkIk) (2.1)

Ek+1 = Ek + (αSkEk + βSkIk)− (γp1 + ζ(1− p1))Ek (2.2)

Ik+1 = Ik + γp1Ek − (δp2 + η(1− p2))Ik (2.3)

Hk+1 = Hk + δp2Ik − (ϵp3 + µ(1− p3))Hk (2.4)

Rk+1 = Rk + ζ(1− p1)Ek + η(1− p2)Ik + µ(1− p3)Hk + vk (2.5)

Dk+1 = Dk + ϵp3Hk (2.6)

where:

• k ∈ {1, 2, ..., K} where K ∈ N is the maximum time horizon considered in the

study.

• αSkEk is the transmission rate of the virus between Susceptible and Exposed,

while βSkIk is the transmission between Susceptible and Infected. Parameters

α and β are the probability of disease transmission in a single contact per

person. Typically, α is greater than β, since each individual tend to avoid

contact with people showing symptoms. Also, the viral load is higher in the

second case.

• p1 is the probability that exposed people develop symptoms.

• γ−1 is the average period to develop symptoms.

• ζ−1 is the average time to overcome the disease while remaining asymptomatic.

6



• p2 is the probability that infected people with symptoms require hospitaliza-

tion.

• δ−1 is the average time between infection and the need for hospitalization.

• η−1 is the average time for infected people to recover without hospitalization.

• p2 is the probability that infected people with symptoms required hospitaliza-

tion.

• ϵ−1 is the average time between the hospitalization and death.

• µ−1 is the average time to recover after hospitalization.

• p3 is the probability that hospitalized people die.

According to the equations, the populations in the compartments R and D are

always increasing, while S is always decreasing. This is expected, since the number

of Recovered and Dead people may stop increasing but will never decrease (with the

assumption that reinfections are not possible). The same idea can be applied to the

group S, that will decrease until the epidemic is finished.

This model does not discriminate detected and undetected cases of infection as

this would add an extra complexity. Although it ignores the more complex biology,

it does allow the inclusion of some important real world issues such as scarcity of

hospital beds.

The transference between the model compartments is based on mean rates, in-

dicating that the individuals stay for a certain period in each compartment. This

could also be represented by adding delays instead of using mean rates. There are

other modeling techniques, like in [19] which uses a conveyor to represent the delays.

However, in this work we chose to use the mean rates as a simplification.

A basic quantity in the analysis of epidemic models is the basic reproduction

number R0, which, informally, is the expected number of people who will be infected

by one person with the disease. If R0 is less than 1, each infected person can transmit

the virus to less than one susceptible person. This means the number of infected

will decline and the disease will die out. If R0 is greater than 1, the disease will

spread into the population and the number of infected people will increase, causing

an epidemic. A detailed explanation of the basic reproduction number can be found

in [2].

The parameters used in the model might assume different values for different

regions in the world. Specially, the parameters α and β are related with R0 and

they are influenced by different factors, like population density of a community, the

general health and average age of its population, medical infrastructure.
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Country Median R0 Confidence interval - R0

Belgium 3.6 (2.9, 4.6)
France 4.4 (3.6, 5.4)

Germany 4.7 (3.8, 5.8)
Italy 4.6 (3.7, 5.8)

Netherlands 3.5 (3.0, 4.2)
Spain 6.4 (5.2, 8.0)

Switzerland 3.5 (2.8, 4.3)
United Kingdom 3.9 (3.3, 4.6)
United States 5.9 (4.7, 7.5)

Table 2.1: R0 values for European countries and United States.

Parameter Value

α 0.179
β 0.0895
γ−1 5.1
ζ−1 14.7
δ−1 5.5
η−1 14
ϵ−1 11.2
µ−1 16
d1 21
p1 50%
p2 19%
p3 15%

Table 2.2: Parameter values used in the SEIHRD model (based on [1]).

Ke et al. [20] collected data from the United States and eight countries from

Europe before control measures were implemented during March 2020. They show

that COVID-19 has high R0 values and spread very rapidly in the absence of strong

control measures across different countries. This implies very high herd immunity

thresholds and highly effective vaccines with high levels of population coverage will

be needed to prevent sustained transmission. The results are illustrated in table 2.1.

In this work, the values of the parameters used in (2.1)-(2.6) are based on the

studies made in [1] and can be found in table 2.2.
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Chapter 3

Optimal Control Problem

In this chapter, we first present the theory behind an optimal control problem. We

base our studies mainly on [18] and [17]. In the subsequent sections, we introduce

and explain different types of controller and strategies used to control the COVID-19

epidemic.

Consider a dynamical system described by the following difference equation:

xi+1 − xi = fi(xi, ui), i = 0, 1, ..., k − 1, (3.1)

where xi ∈ En is the state of the system at time i, ui ∈ Em is the input to the

system at time i, and fi(·, ·) is a function mapping En × Em into En. The optimal

control problem consists in finding the a control sequence û = (û0, û1, ..., ˆuk−1) and

a corresponding trajectory X̂ = (x̂0, x̂1, ..., x̂k) determined by (3.1), which minimize

the sum:

k−1∑
i=0

f 0
i (xi, ui), (3.2)

where the f 0
i map En × Em into R.

This minimization is subject to the following constraints, which we write as

the intersection of inequality and equality constraints whenever appropriate. The

control constraints are:

ui ∈ Ui ⊂ Em i = 0, 1, · · · , k − 1. (3.3)

The initial boundary constraints are:

x0 ∈ X0 = X ′
0 ∩X ′′

0 X ′
0 = {x : q0(x) ≤ 0}, X ′′

0 = {x : g0(x) = 0}, (3.4)

where q0(·) maps En into Em0 and g0· maps En into El0 . The terminal boundary

9



constraints are:

xk ∈ Xk = X ′
k ∩X ′′

k X ′
k = {x : qk(x) ≤ 0}, X ′′

k = {x : gk(x) = 0}, (3.5)

where qk(·) maps En into Emk and gk·maps En into Elk . The state-space constraints

are:

xi ∈ Xi = X ′
i ∩ En = {x : qi(x) ≤ 0} i = 1, 2, · · · , k − 1, (3.6)

where qi(·) maps En into Eml . This problem may be recast in the form:

minimize f(z) (3.7)

subject to: r(z) = 0

where z ∈ Ω and the following identifications are made:

f(z) =
k−1∑
i=0

f 0
i (xi, ui) (3.8)

r(z) =


x1 − x0 − f0(x0, u0)

· · ·
xk − xk−1 − fk−1(xk−1, uk−1)

g0(x0)

gk(xk)

 (3.9)

Ω = X ′
1 ×X ′

1 ×X ′
2 × · · · ×X ′

k−1 ×X ′
k × U0 × U1 × · · · × Uk−1 (3.10)

3.1 SEIHRD model with control variable

The characteristics of COVID-19 disease make the virus spread incredibly fast into

the population. One of the strategies the government can apply is to attack the

source, when the disease is not yet disseminated in the population. Isolation of cases

and tracking of new cases and people that were in contact with someone infected

would interrupt the transmission in the source. Of course, this is very difficult in a

globalized world, where people can easily travel to all places.

Another strategy is to interrupt (or reduce) the transmission. This is mainly

achieved by increasing personal and environmental hygiene (washing hands, etc.),

using appropriate masks when in public and restricting population movements. A
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αβ γp1 δp2 ϵp3
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ζ(1− p1)
η(1− p2)

µ(1− p3)

Figure 3.1: SEIHRD model diagram with control variable.

lockdown strategy and social distancing have been observed in several parts of the

world. Middle and low income countries do not have sufficient resources and face

financial and economic challenges, which may hinder their ability to effectively im-

plement the above mentioned policies.

The strategies described above are the so called Non Pharmaceutical Interven-

tions (NPIs). Pharmaceutical intervention is mainly achieved by vaccinating the

population since, to date, there is no proven reliable treatment for infected people.

In this work, an aggregate normalized control effort varying between zero and

one will be taken to represent all the NPIs being applied (i.e., lumping together

social distancing, use of masks, adoption of hygienic measures, etc.).

Since we can only try to control the transmission between individuals, in the

mathematical model introduced in chapter 2 we may only affect the relations be-

tween compartmental groups S, E and I. In other words, we would like to prevent

susceptible people from getting into contact with people that have the virus (Ex-

posed and Infected). Therefore, the proposed model is the following:

Sk+1 = Sk − (1− uk)(αSkEk + βSkIk) (3.11)

Ek+1 = Ek + (1− uk)(αSkEk + βSkIk)− (γp1 + ζ(1− p1))Ek (3.12)

Ik+1 = Ik + γp1Ek − (δp2 + η(1− p2))Ik (3.13)

Hk+1 = Hk + δp2Ik − (ϵp3 + µ(1− p3))Hk (3.14)

Rk+1 = Rk + ζ(1− p1)Ek + η(1− p2)Ik + µ(1− p3)Hk + vk (3.15)

Dk+1 = Dk + ϵp3Hk (3.16)

The control variable affects directly the parameters α and β of the SEIHRD

model, as shown in Figure 3.1. One important fact is that by increasing the control

input, we are decreasing the observed α and β. In other words, the control prevents

susceptible individuals to get in contact with exposed and infected individuals, re-

spectively.

11



The control variable uk can assume any value between 0 and 1 (uk ∈ [0, 1]).

The lower bound value 0 means that no social distancing strategy is applied and

people are free to go wherever they want. The upper bound value 1 means that a

lockdown is in place and people have no contact with each other, meaning that the

transmission is interrupted. This is impossible in practice, since basic services for

the population require some movement of populations.

It should be observed that states D and R do not affect the dynamics of the

rest of the model (i.e., do not occur in the equations (3.11)-(3.14)). In the next

sections, we will not include them in the optimization problem, since they would

only add unnecessary complexity. However, they can be calculated using the other

state variable values.

Social distancing is the main NPI strategy to interrupt the spread of the virus in

the population. When the number of infected and hospitalized people is too high,

social distancing needs to be implemented. Since complete lockdown has well known

adverse effects in the economy, this work postulates a certain level of normalized

control effort (between zero and one) that translates into partial lockdown and

relaxation of other measures (such as the use of masks). The focus of this work is

on strategies to calculate the value of this aggregate control. It is then the task of

decision makers to translate this level of control effort into concrete NPI policies,

which is, of course, a nontrivial task. In the next sections we will show different

algorithms to calculate the best values of control variable uk during the time horizon.

3.2 N-Steps Ahead Optimal Control (NSAOC)

In this work, we introduce a controller named N-Steps Ahead Optimal Control

(NSAOC). The main idea is to calculate, at each time instant, a new control value

based on the estimation of the evolution of the state vector during the next N time

instants. So, at each time step k = 1, 2, ..., K, where k corresponds to days and K is

the time horizon applied to the epidemic model, we solve an optimization problem

over the horizon k, ..., k + N , where N is the number of days that we will use to

calculate the best values for the control variable u. The optimization result will give

us the best values for the next N control inputs. However, we will only use the entry

k, since at instant k + 1 we will have more information from the real environment

(the states of day k + 1 resulting from the applicability of uk).

It is worth mentioning that the optimization problem does the calculations based

on a certain epidemic model (SEIHRD in this work). However, the control variable

is applied to a real environment, where some parameters (if not all) can differ from

those of the model. This controller is a model predictive controller (MPC) with

the difference that there are no uncertainty in the dynamics, only in the model

12



parameters.

NSAOC Environment
uk [S,E, I,H]k+1[S,E, I,H]k

Figure 3.2: N-Steps Ahead Control Diagram.

The diagram in Fig. 3.2 illustrates the flow used in the problem. The optimiza-

tion block (NSAOC) is responsible for the calculation of the next control inputs

taking into consideration an adequate objective function. The mathematical model

is described below:

min J =
k+N∑
k

uk (3.17)

subject to: Sk+1 = Sk − (1− uk)(αSkEk + βSkIk) (3.18)

Ek+1 = Ek + (1− uk)(αSkEk + βSkIk)− (γp1 + ζ(1− p1))Ek

(3.19)

Ik+1 = Ik + γp1Ek − (δp2 + η(1− p2))Ik (3.20)

Hk+1 = Hk + δp2Ik − (ϵp3 + µ(1− p3))Hk (3.21)

Hk ≤ Hmax (3.22)

0 ≤ uk ≤ 1 (3.23)

Sk, Ek, Ik and Hk are the initial conditions and input of the algorithm. Hmax is

the maximum capacity of the medical resources. If Hk assume values higher than it,

the number of deaths would have a considerable increase, since the medical capacity

will be exceeded and, consequently, part of the population will not be covered by

medical care. No government wants this to happen, so the constraint (3.22) is added

to make sure the optimization takes this into consideration.

The objective function (3.17) takes into account only resources available for the

implementation of control efforts, while the constraints model available hospital

infrastructure. In other words, (3.17) is an administrator’s ideal objective function.

In practice, of course, other humanitarian concerns, such as limiting the number of

deaths, are more important and should also be added to the objective function. The

formulation presented in this dissertation is applicable to all such objective functions

and can be regarded as a tool to aid decision making by simulating scenarios, with

different objective functions, parameters and so on. Thus there are other objective
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functions that might be tested as well. One can try to maximize the number of

susceptible people and minimize the sum of all control effort, for example. Also,

some weights can be added to each factor to give more importance to one or another.

Another important issue is the choice of suitable values for N . We would like to

choose values as small as possible so we do not do extra calculations. On the other

side, N cannot be too small, because, over a prediction horizon that is too short, it

would fail to predict an exponential rise in hospitalizations and the situation would

get out of control. In the next section we study what are the most suitable values

for N , studying their impact in the environment.

The full algorithm we will use in this work is given below:

Algorithm 1: N-Steps Ahead Optimal Control Algorithm

for k = 1 : K do
1) Solve (3.17) - (3.23) for the interval (k : k +N), where N is the

number of steps ahead used on the algorithm. In this stage, all states

are estimated based on a COVID-19 Model with parameters defined in

table 2.2;

2) The resultant control variable array has size N . Pick the first value of

the array and use as input on the real environment, in which the

parameters will most probably differ from the ones used in the model

in Step 1;

3) Acquire (measure) the resultant state variables at instant k + 1 from

the Environment and store them for use in next iteration.
end

Menezes Morato et al. ([21]) designed an optimal On-Off social isolation strategy

based on a Model Predictive Control (MPC) policy. In contrast, as argued above,

we allow variation in the isolation level, as the values can be chosen in the interval

[0, 1].

3.3 PID-Like Control

This section will briefly present a controller proposed in [1] for the purposes of

comparison. They used control theory to determine public NPIs in order to control

the evolution of the pandemic, avoiding the collapse of the health care systems while

minimizing harmful effects on the population and economy.

Again, the control law is given by the control variable uk in equations (3.11)

- (3.16). No interventions is represented by uk = 0 and a full lockdown with no

movement allowed translates to uk = 1.

There are several possible choices of the reference signal or set point of the control

system. We also must keep in mind that some groups of the SEIHRD model are
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subjected to large inaccuracies due to unreported or undiagnosed cases. So, ideally

the controller should use states for which reliable data are available. The number of

hospitalized (H) people is very reliable. The number of people diagnosed as positive

(I) and deaths (D) are also reasonably reliable.

The controller proposed in [1] is shown schematically in Fig. 3.3. The set point

(SP ) represents parameter Hmax explained in the previous section and specified in

(3.22).

Controller Env
ukSP [SEIHRD]k+1

−

H, I

Figure 3.3: PID-Like Controller diagram ([1])

The obvious choice of feedback variable would be the number of hospitalized

people. However, since NPIs reduce contagion between susceptible and infected or

exposed people, when an individual is infected, hospitalization may be required after

δ−1 = 5.5 days or after δ−1 + γ−1 = 10.6 days on average if the infection was recent.

Hence, there exists a delay between the adoption of NPIs and their consequences

on hospitalization. If the control action relies only on the number of hospitalized

people, too many people may require hospitalization in the next 10.6 days, exceeding

the capacity for medical care.

Therefore, the control action should also take into consideration the number of

infected people. The addition of this state emulates a type of predictive control,

since it is proportional to the number of people who would require hospitalization

in the next five or six days.

However, not all infected people need hospitalization. It is reported that most

symptomatic cases are mild and remain mild. According to table 2.2, p2 = 19%

of infected people will need hospitalization in the following 5.5 days (δ−1). This

number plus the number of people already hospitalized must remain below the set

point. So, the normalized PID-Like control law proposed is:

uk = kp

(
1− SP −Hk − p2I

SP −Hk

)
∈ [0, 1] (3.24)

where kp is a scalar gain with values between [0, 1].
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3.4 Reinforcement Learning

The term “optimal control” came into use in the late 1950s to describe the problem

of designing a controller to minimize or maximize a measure of a dynamical system’s

behavior over time. One of the approaches to this problem was developed in the

mid-1950s by Richard Bellman and others by extending a nineteenth century theory

of Hamilton and Jacobi. This approach uses the concepts of a dynamical system’s

state and of a value function, or “optimal return function”, to define a functional

equation, now often called the Bellman equation. The class of methods for solving

optimal control problems by solving this equation came to be known as dynamic

programming ([22]). Bellman ([23]) also introduced the discrete stochastic version

of the optimal control problem known as Markov decision processes (MDPs). All

of these are essential elements underlying the theory and algorithms of modern

reinforcement learning.

Reinforcement learning is the problem faced by an agent (the learner) that needs

to learn the right behavior through trial-and-error interactions with a dynamic en-

vironment. The agent is not told which actions to take, but instead must discover

which actions yield the most reward by trying them. In some cases, the rewards are

not immediate and the actions can affect the next situations and, consequently, all

subsequent rewards.

Reinforcement learning is different from supervised learning. In general, the

latter refers to learning from a training set of labeled examples provided by a knowl-

edgeable external supervisor. This is not the case with reinforcement learning.

Instead, it is necessary for the agent to gather useful experience about the possible

system states, actions, transitions and rewards actively to act optimally.

The most important feature is that it uses training information that evaluates the

actions taken rather than instructs by giving correct actions. This is what creates

the need for active exploration, for an explicit search for good behavior.

The main components of reinforcement learning are the following:

• Agent: The entity that will interact with an environment via a policy.

• Environment: The dynamical system the agent interacts with.

• State: Defines the actual stage of the environment. When the agent selects

an action, the state of the environment will change and the agent will gain a

reward based on that.

• Policy: Defines the learning agent’s way of behaving at a given time. A policy

is a mapping from perceived states of the environment to actions to be taken

when in those states.
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• Reward Signal: Defines the goal of a reinforcement learning problem. At each

time step, the environment sends to agent a single number called reward. The

agent’s sole objective is to maximize the total reward it receives over the long

run.

• Value function: Specifies what is good in the long run, while reward signal in-

dicates what is good in an immediate sense. Rewards are given directly by the

environment, but values must be estimated from the sequences of observations

an agent makes over its entire lifetime.

• Environment model: This is an optional component. An environment model

mimics the behavior of the real environment. Given a state and action, the

model might predict the resultant next state and next reward. Some methods

(model-free methods) do not use it and are explicitly trial-and-error methods.

As in all of artificial intelligence, there is a tension between breadth of applicabil-

ity and mathematical tractability. In order to formalize the problem of reinforcement

learning, we need to visit the theory of Markov Decision Processes (MDPs).

3.4.1 Markov Decision Process

Markov Decision Processes (MDPs) are a classical formalization of sequential deci-

sion making, where actions influence not just immediate rewards, but also subse-

quent situations, or states, and through those future rewards. MDPs are a math-

ematically idealized form of the reinforcement learning problem for which precise

theoretical statements can be made. The theory presented in this section is based

on [24].

MDPs are meant to be a straightforward framing of the problem of learning from

interaction to achieve a goal. The learner and decision maker is called the agent.

The thing it interacts with, comprising everything outisde the agent, is called the

environment.

Agent Environment
Ak

Sk+1Sk

Rk+1Rk

Figure 3.4: Reinforcement Learning framework.
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At each time step k, the agent receives some representation of the environment’s

state (Sk ∈ S). Based on that, an action Ak ∈ A(s) is selected to be applied on the

environment. One time step later, the agent receives a numerical reward (Rk+1 ∈ R)
as a consequence of its action and finds itself in a new state Sk+1 (Figure 3.4). The

MDP and agent give rise to a sequence or trajectory that begins like:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (3.25)

In a finite MDP, the sets of states, actions and rewards(S, A and R) have a finite
number of elements. In this case, the random variables Rk and Sk have well defined

discrete probability dependent only on the preceding state and action. That is, for

particular values of these random variables, s′ ∈ S and r ∈ R, there is a probability

of those values occurring at instant k, given particular values of the preceding state

and action:

p(s′, r | s, a) = Pr{Sk = s′, Rk = r | Sk−1 = s, Ak−1 = a}, (3.26)

for all s′, s ∈ S, r ∈ R, a ∈ A(s). The function p defines the dynamics of the

MDP. The probability of each possible value for Sk and Rk depends only on the

immediately preceding state and action, Sk−1 and Ak−1. The state must include

information about all aspects of the past agent-environment interaction that make

a difference for the future. If it does, then the state is said to have the Markov

property.

In reinforcement learning, the purpose or goal of the agent is formalized in terms

of a special signal, called the reward, passing from the environment to the agent.

At each instant, the reward is a simple number, Rk ∈ R. Informally, the agent’s

goal is to maximize the total amount of reward it receives. This means maximizing

not immediate reward but cumulative in the long run. In general, we seek to maxi-

mize the expected return, where the return, denoted Gk, is defined as some specific

function of the reward sequence. In the simplest case the return is the sum of the

rewards:

Gk = Rk+1 +Rk+2 +Rk+3 + ... (3.27)

Equation (3.27) might be changed to add the concept of discounting. According

to this approach, the agent tries to select actions so that the sum of the discounted

rewards it receives over the future is maximized. In particular, it chooses Ak to

maximize the expected discounted return:

Gk = Rk+1 + γRk+2 + γ2Rk+3 + ... =
∞∑

m=0

γmRk+m+1, (3.28)
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where γ is a parameter called the discount rate (0 ≤ γ ≤ 1).

This approach makes sense in applications in which there is a natural notion of

final time step, that is, when the agent-environment interaction breaks naturally

into sub-sequences, which we call episodes. Each episode ends in a special state

called the terminal state, followed by a reset to a standard starting state.

Almost all reinforcement learning algorithms involve estimating value functions,

that estimate how good it is for the agent to be in a given state. The rewards

the agent can expect to receive in the future depend on what actions it will take.

Accordingly, value functions are defined with respect to particular ways of acting,

called policies. A policy is a mapping from states to probabilities of selecting each

possible action. If the agent is following policy π at instant k, then π(a | s) is the
probability that Ak = a if Sk = s

The value function of a state

vπ(s) = Eπ[Gk | Sk = s] = Eπ

[
∞∑

m=0

Rk+m+1 | Sk = s

]
, (3.29)

for all s ∈ S, where Eπ[·] denotes the expected value of a random variable given

that the agent follows policy π. We call the function vπ the state-value function for

policy π.

Similarly, we define the value of taking action a in state s under a policy π,

denoted qπ(s, a), as the expected return starting from s, taking the action a and

thereafter following policy π. We call qπ the action-value function for policy π.

qπ(s, a) = Eπ[Gk | Sk = s, Ak = a] = Eπ

[
∞∑

m=0

γmRk+m+1 | Sk = s, Ak = a

]
. (3.30)

A fundamental property of value functions used throughout reinforcement learn-

ing and dynamic programming is that they satisfy recursive relationships. For any

policy π and any state s, the following consistency condition holds between the value

of s and the value of its possible successor states:

vπ(s) = Eπ[Gk | Sk = s]

= Eπ[Gk+1 + γGk+1 | Sk = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a) [r + γEπ [Gk+1 | Sk+1 = s′]]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + γvπ(s
′)] ,

(3.31)

for all s ∈ S, where it is implicit that the actions, a, are taken from the set A(s),
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that the next states, s′, are taken from the set S, and the rewards, r, are taken

from the set R. Equation (3.31) is the Bellman equation for vπ. It expresses a

relationship between the value of a state and the values of its successor states.

Solving a reinforcement learning task means, roughly, finding a policy that

achieves a lot of reward over the long run. For finite MDPs, a policy π is defined to

be better than or equal to a policy π′ if its expected return is greater than or equal

to that of π′ for all states. In other words, π ≥ π′ if and only if vπ(s) ≥ vπ′(s) for all

s ∈ S. There is always at least one policy that is better than or equal to all other

policies. This is an optimal policy. It might exist more than one optimal policy and

they are denoted by π∗. They share the same state-value function, defined as:

v∗(s) = max
π

vπ(s), (3.32)

for all s ∈ S.
Optimal policies also share the same optimal action-value function, denoted q∗,

and defined as:

q∗(s, a) = max
π

qπ(s, a), (3.33)

for all s ∈ S and a ∈ A(s). We can also write q∗ in terms of v∗:

q∗(s, a) = E [Rk+1 + γv∗(Sk+1) | Sk = s, Ak = a] . (3.34)

Function v∗ is the value function for a policy, so, consequently, it needs to satisfy

the self-consistency condition given by the Bellman equation for state values (3.31).

The Bellman equation for v∗ is expressed in the following way:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gk | Sk = s, Ak = a]

= max
a

Eπ∗ [Rk+1 + γGk+1 | Sk = s, Ak = a]

= max
a

E [Rk+1 + γv∗(Sk+1) | Sk = s, Ak = a]

= max
a

∑
s′,r

p(s′, r | s, a) [r + γv∗(s
′)]

(3.35)

The Bellman optimality equation for q∗ is:
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q∗(s, a) = E
[
Rk+1 + γmax

a′
q∗(Sk+1, a

′) | Sk = s, Ak = a
]

=
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)
] (3.36)

In tasks with small, finite state sets, it is possible to form approximations using

arrays or tables with one entry for each state (or state-action pair). This we call

the tabular case, and the corresponding methods we call tabular methods. In many

cases of practical interest, however, there are far more states than could possibly be

entries in a table. In these cases the functions must be approximated, using some

sort of more compact parameterized function representation.

3.4.2 Deep Q-Learning

As stated in the previous section, reinforcement learning focuses on solving a problem

of learning how to interact with an environment by interacting with it. With the

popularity of deep learning algorithms, deep reinforcement learning (DRL) presents

a great success in solving highly challenging problems. In DRL, the value or policy

functions are often represented as deep neural networks and the related deep learning

techniques can be readily applied ([25]). In this work, we use deep Q-network

(DQN), first introduced in [26]. The algorithm was developed by enhancing a classic

Reinforcement Learning algorithm called Q-Learning with deep neural networks and

a technique called experience replay. The algorithm was able to learn to play a wide

range of Atari games and even beat the humans in most of them.

Despite its great empirical success, there exists a substantial gap between the

theory and practice of DRL. The first attempt to theoretically understand DQN is

presented in [25].

Considering the problem we want to solve in this work, the agent is the decision

maker that needs to choose what level of NPIs (mainly lockdowns) it wants to

imply. The agent interacts with an environment, in this case the SEIHRD model,

in a sequence of actions, observations and rewards. At each instant k, the agent

selects an action Ak from the set of actions A. The action is passed to the SEIHRD

model and modify its state (i.e. compartmental groups). The new state Sk+1 and

a reward Rk is received by the agent. Therefore, sequences of actions, observations

and rewards are input to the algorithm, which then learns strategies depending upon

these sequences.

The goal of the agent is to interact with the environment selecting actions in

a way that maximizes future rewards. The basic idea behind many reinforcement

learning algorithms is to estimate the action-value function by using the Bellman
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equation as an iterative update, converging to the optimal action-value function. In

practice, this approach is impractical, since the action-value function is estimated

separately for each sequence, without any generalization. Therefore, it is common

to use a function approximator to estimate the action-value function, like a linear

function approximator or even a nonlinear function approximator such as a neural

network.

In DQN algorithm, a deep neural network Qθ : S×A → R is used to approximate

q∗, where θ is a parameter. Two tricks are pivotal for the empirical success of DQN.

First, DQN use the trick of experience replay. At each instant k, the transition

(Sk, Ak, Rk, Sk+1) is stored into the replay memoryM and then sample a minitbatch

of independent samples fromM to train the neural network via stochastic gradient

descent. Since the trajectory of MDP has strong temporal correlation, the goal of

experience replay is to obtain uncorrelated samples, which yields gradient estimation

for the stochastic optimization problem. The second trick is to use a target network

Qθ∗ with parameter θ∗ (current estimate of parameter).

The algorithm used in this work is shown in Algorithm 2 ([26], [25]).
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Algorithm 2: Deep Q-Network ([25])

Input: MDP (S,A,P ,R, γ), replay memoryM, number of iterations K,

minibatch size n, exploration probability ε ∈ (0, 1), a family of deep

Q-networks Qθ : S ×A → R, an integer Ktarget for updating the target

network, and a sequence of stepsizes {αk}, k ≥ 0;

Initialize replay memoryM to be empty;

Initialize the Q-network with random weights θ;

Initialize the weights of the target network with θ∗ = θ;

Initialize the initial state S0;

for k = 1 : K do
1) With probability ε, choose Ak uniformly at random from A, and with

probability (1− ε), choose Ak such that Qθ(Sk, Ak) = maxa∈A Qθ(Sk, a);

2) Execute Ak and observe reward Rk and next state Sk+1;

3) Store transition (Sk, Ak, Rk, Sk+1) inM;

4) Experience replay: Sample random minibatch of transitions

{(si, ai, ri, s′i)}i∈[n]} fromM;

5) For each i ∈ [n], compute the target Yi = ri + γmaxa∈AQθ∗(s
′
i, a);

6) Update the Q-network: Perform a gradient descent step

θ ← θ − αk
1

n

∑
i∈[n]

[Yi −Qθ(si, ai)]∇θQθ(si, ai)

7) Update the target network: Update θ∗ ← θ every Ktarget steps;

end

Define policy π∗ as the greedy policy with respect to Qθ;

Output: Action-value function Qθ and policy π∗.

3.5 Omniscient Control

Finally, we present a benchmark globally optimal control policy, that is hypothet-

ical, since it assumes that all data for the whole control horizon is known. In this

case, of course, it is possible to calculate the open-loop globally optimal control for

any given performance index, and we will refer to this as the omniscient control,

since the control design can observe all data, without any errors or estimates. The

main objective in presenting and calculating this strategy is to have a baseline for

comparison of the other practically implementable strategies.

Given a performance index, Omniscient Control follows the classical recipe of

optimal control. At instant k = 1 we calculate all uk for k lying in the interval

(1, K).

The omniscient optimal control problem is described below in equations (3.37) -
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Omniscient Control Model
[S,E, I,H]o [u]1:K [S,E, I,H]2:K

Figure 3.5: N-Steps Ahead Control Diagram.

(3.42):

min J =
K∑
k=1

uk (3.37)

subject to: Sk+1 = Sk − (1− uk)(αSkEk + βSkIk) (3.38)

Ek+1 = Ek + (1− uk)(αSkEk + βSkIk)− (γp1 + ζ(1− p1))Ek

(3.39)

Ik+1 = Ik + γp1Ek − (δp2 + η(1− p2))Ik (3.40)

Hk+1 = Hk + δp2Ik − (ϵp3 + µ(1− p3))Hk (3.41)

Hk ≤ Hmax (3.42)

0 ≤ uk ≤ 1 (3.43)

After all control variable values are calculated, we can use them in a real world

environment. If the SEIHRD model parameters are exactly equal to the real world

parameters, the Omniscient Control would have a perfect performance. Of course,

given the multiple uncertainties and assumptions made in the model, this will almost

never happen. Thus, for each instant k, the respective optimal control uk calculated

from the model is applied to the real system which responds with the actual state

variables of the instant k + 1.

24



Chapter 4

Simulations

In the previous chapter, we explained the theory behind the strategies we chose to

use in this work. In this chapter we put the theory into practice. The simulation

consists in two cases: In the first one, the environment parameters are constant and

equal to the model used to calculate the control values. Next, parameter uncertainty

is introduced in the SEIHRD model and, consequently, their values will differ from

the ones used in the model.

In section 4.3, we analyze how the NSAOC strategy behaves. We study the

influence of parameter N on the control calculation and the consequences on each

compartment of the population. In order to solve possible problems occasioned by

the main objective function that minimizes the total effort, we study the impact of

using different performance indexes.

In the subsequent sections, we simulate the remaining strategies proposed to

compare with NSAOC strategy. First, in order to understand what might happen

when no control measure is applied on the population, section 4.1 presents the results

of this simulation. Section 4.2 presents constant interventions for the entire horizon

in order to understand which levels of control input would be needed. Section 4.4

presents the benchmark hypothetical omniscient control strategy. The PID-Like

controller proposed in [1] is presented in section 4.5. Lastly, the reinforcement

learning strategy is used in section 4.6.

4.1 SEIHRD Model without intervention

In this section, no control measure is applied on the population. This is equivalent

of using equations 2.1 - 2.6 to calculate the new values of each state of SEIHRD

model for each instant k (i.e. each day).

The results of this simulation are shown in Figure 4.1 for k assuming values from

1 to 250. If no action is done to control the epidemic, approximately 82% of the

entire population would be infected by the virus. Also, at minimum 4.59% of the
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population would die. However, this number probably would be higher, since the

number of hospitalized people would reach 5%, which is much more than the limit

(0.8%) recommended by the World Health Organization (WHO).
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Figure 4.1: Evolution of SEIHRD model states with constant parameters and no
interventions applied in the environment.

One important instant of the graph is the peak the Exposed curve. This is

the moment where the epidemic starts to decline, since the number of susceptible

individuals is not high enough to keep increasing the number of exposed and infected

individuals. This occurs at instant k = 70 and the percentage of susceptible and

exposed individuals are 12.03% and 50.77%, respectively.
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4.2 Intervention using constant control variable

In this section, we simulate how the SEIHRD model reacts when using constant

values as input control. In order to do that, we use equations (3.11) - (3.16) and

replace uk by a constant value. As stated in the previous chapter, uk is in the

interval [0, 1]. For this simulation, we use 6 different values:

U = {0, 0.1, 0.2, 0.3, 0.4, 0.5}, uk ∈ U (4.1)

The parameters used in the SEIHRD model are specified in table 2.2. Figure 4.2

shows the results for k assuming values from 1 to 800. The output of this simulation

is very useful to understand the impacts of using different control values.

The first observation is that when uk is increased, the number of deaths is smaller.

Also, the peaks of exposed, infected and hospitalized individuals are smaller and

occur later. As a consequence, the pandemic lasts longer, since less individuals

are contaminated each day and there is always a relevant number of susceptible

individuals.

For certain levels of control input, the number of hospitalized people does not

exceed the desired limit Hmax. For example, the maximum number of hospitalized

people with uk = 0.4 is 0.775%. However, for very high control levels, the hospital-

ization level is kept very low, which is an indication that some NPIs can be relaxed

without impacting the economy severely.

One can also note that varying uk has the effect of changing the observed α and β

parameters of the epidemic, since it affects directly the contact between susceptible,

exposed and infected people.

4.3 N-Steps Ahead Optimal Control Algorithm

This section applies the NSAOC algorithm discussed in chapter 3. First, in order

to show how the algorithm performs, a simulation using a SEIHRD model with

constant parameters is used. The parameters of the SEIHRD model are resultant

from an estimation study given the data available from the observations and also

some additional considerations ([1]). In the real world, we know that these values

are subjected to disturbances and their real values are very likely to change, for

instance because we already have many different COVID-19 variants.

The algorithm assumes N = 10 and uses only one objective function, which is

to only minimize the total control input over the time horizon (equation(4.2)). In

the subsequent sections, an analysis for these two statements is presented.
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Figure 4.2: Results of a SEIHRD model with constant parameters using different
levels of constant control input.
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J1 =
k+N∑
k

uk (4.2)

For the first simulation, we use the values of table 2.2 and also consider that they

do not change over time. In terms of Figure 3.2, we suppose that the model used

to calculate the control variables (inside block NSAOC) is the same as the model

used in the environment. The simulation horizon is K = 600 days and we use Ipopt

optimizer (as in any other simulation containing optimization in this work).
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Figure 4.3: Results of a SEIHRD model with constant parameters using NSAOC
algorithm with N = 10, time horizon K = 600 and using performance index J1.

In NSAOC strategy, the only parameter we need to adjust is the parameter

N and, indeed, this is one of its good features. As stated earlier, this parameter

represents the number of steps ahead of the actual instant the calculation of the

optimal solution is carried out. For example, if we use N = 10 (Figure 4.3), the

epidemic can be controlled and the number of hospitalized people never exceeds the

specified limit of 0.8%. Also, the control input is only greater than zero when the

number of hospitalized people reaches a dangerous level. Then, a severe lockdown
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Parameter Distribution

α Normal(0.1786, 0.05)
β α/2
γ−1 Normal(5.1, 2)
ζ−1 Normal(14.7, 1)
δ−1 Normal(5.5, 2)
η−1 Normal(11.2, 4)
ϵ−1 Normal(16, 4)
µ−1 Normal(14, 1)
p1 Normal(50%, 20%)
p2 Normal(19%, 10%)
p3 Normal(15%, 3%)

Table 4.1: Parameter values for SEIHRD model on a simulation with parameter
uncertainty.

is put in place (u = 1) for a week, approximately. After the contamination starts to

decrease, the input control can be relaxed to a lower level.

The final percentage of deaths is 3.62%, which is still a high percentage, but

lower than the first simulation where no control measure is applied. Also, the peak

of infected and exposed individuals are smaller, since the control applied reduces

the contact between susceptible and individuals carrying the virus.

In the real world, only expected values of most of the parameters of the SEIHRD

model are available. In the next simulation, we consider a SEIHRD model with pa-

rameter uncertainty. As shown in table 4.1, in this work we use normal distribution

to represent the parameter uncertainty, as it is one most used distributions and fits

well in the model. Consequently, multiple scenarios could occur. Thus the simula-

tion is repeated 1000 times in order increase the possibility of considering adverse

scenarios in the analysis.

The results are presented in Figure 4.4. The lines represent the mean of all states

for each instant, while the dashed areas represent the variation that was identified

in the simulations. The strategy applied still worked well, obeying the value limit

specified for hospitalized people, even in the worst case scenario where the maximum

hospitalization level was 0.8%. This is the main advantage of using NSAOC and it

is only possible due to the feedback present in the algorithm, where every day the

actual measurements of each state of the model are used to calculate a new control

value.

In order to compare with the previous simulation where the parameters were

constant, three scenarios are used: The worst case scenario, the best case scenario

and the mean of all simulations. Table 4.2 summarizes the comparison.

Considering the mean case, the peak of infected population is higher than the
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Figure 4.4: Results of a SEIHRD model with parameter uncertainty using NSAOC
algorithm with N = 10, time horizon K = 600 and using performance index J1.

constant case, as the algorithm cannot predict the rate of spread of the virus. The

direct consequence is seen in the total control applied, much higher in the mean

case (90.26) due to the need to increase the control input and thus avoid contact of

susceptible individuals with infected and exposed individuals. This also leads to a

higher total number of deaths, as the epidemic is better stabilized in the Constant

case.

If we change the performance index and choose one that only minimizes the

number of daily deaths, the result would be the following function:

JD =
k+N−1∑
i=k

k+N∑
j=k+1

Di −Dj (4.3)

The results are shown in Figure 4.5. The resultant control would assume the

maximum level (uk = 1) for a certain period, until the number of infected and

exposed individuals go to 0. Then, the virus is eliminated from the population.
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SEIHRD Parameters Max I Max E Max H Deaths Sum uk

Constant 1.997% 3.063% 0.8% 3.624% 74.82
Var. - Worst Case 2.187% 3.798% 0.8% 3.851% 196.0
Var. - Best Case 1.946% 2.307% 0.796% 3.715% 31.36
Var. - Mean Case 2.049% 3.002% 0.799% 3.781% 90.26

Table 4.2: Result comparison of four different cases using strategy NSAOC with
N = 10 and using performance index J1.

However, this is a hypothetical case considering that it is possible to interrupt every

contact between individuals, which is not an option in the real world.
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Figure 4.5: Results of a SEIHRD model using NSAOC algorithm with N = 10 and

time horizon K = 600 using performance index JD.

4.3.1 Objective function comparison

In the previous section, only one objective function was used, with the main goal

being to minimize the total control input while keeping the total number of hospi-
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talizations below a desired level. What if we use different performance indices? This

section compares three different functions to analyze the benefits of each one.

The performance indices used in this section are the following:

J1 =
k+N∑
k

uk (4.4)

J2 =
k+N∑
k

wuk (4.5)

J3 =
k+N∑
k

wuk +
k+N−1∑
i=k

k+N∑
j=k+1

(ui − uj)
2 (4.6)

The first objective function (4.4) is the same we used in the previous sections

and the main goal is to simply minimize the total control input applied on the

population. This performance index is used in [1] and we also use in this work in

order to compare the strategies.

The second objective function (4.5) is similar to the first one, but it has an extra

vector w. This is a weight vector and we define it as w = [N2, (N − 1)2, (N −
2)2, ..., 12]. This modification results in giving more importance to closer instants,

making the corresponding control input higher than more distant instants.

The third objective function (4.6) adds a slew rate penalty to the second one. As

we will observe in the simulations, the second objective makes the controller vary a

lot between high values and low values. The slew rate term penalizes big jumps in

the control, smoothening the control signal, which is desirable.

The first simulation uses a SEIHRDmodel with constant parameters. The results

of the simulation using different objective functions is shown in Figure 4.6 and table

4.3.

Although the objective function J2 has the lowest total control input applied,

the difference between the inputs on each day varies a lot, which can be impossible

to implement in a real situation. An interesting fact is that, even though the peak

of state I is higher when using J3, the peak of state E is higher when using J2.

This is explained by the slew rate penalty (also parameter N has an influence, as

we will observe in next section) added only in J3. The controller identifies that the

hospitalization level can exceed the limit and acts accordingly. However, due to

the mentioned penalty, use of index J3 smoothens the control decrease, leading to

a higher peak of infected individuals, unlike J2 which results in a sudden control

decrease.

The objective function J3 has similar behavior to J1, but results in a smoother

control. Furthermore, the hospitalization level is always below the desired level,
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Figure 4.6: Comparison of each state from SEIHRD model and the control input,
using NSAOC strategy (N = 10) and performance indices J1, J2 and J3 in a scenario
with constant parameters.
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with J1 having a higher slack compared to Hmax, but also having a higher total

control input.

Obj. Function Max I Max E Max H Deaths Sum uk

J1 1.997% 3.063% 0.8% 3.624% 74.82
J2 2.16% 3.304% 0.8% 3.624% 70.91
J3 2.188% 3.258% 0.8% 3.625% 72.42

Table 4.3: Comparison between different objective functions using SEIHRD with
constant parameters.

4.3.2 Parameter N: Impact Study

In this section, we vary the parameter N of the NSAOC algorithm and experiment in

the SEIHRD model without parameter uncertainty. We consider all three objective

functions discussed in the last section 4.3.1, defined earlier in equations (4.4), (4.5)

and (4.6).

As stated before in this work, COVID-19 is a disease with a relatively high

incubation period and the consequences of the actions taken today will most likely

only appear in a week or even more. Therefore, parameter N must be chosen wisely

in order to predict specially the hospitalization level early enough.

First, we investigate the impact of different values of N on the hospitalization

level and number of deaths. As shown in Figure 4.7, when using objective function

J1 the minimum value we should use for N is 9, while for objective functions J2 and

J3 this value changes to 10. This strategy maintains the hospitalization level below

the desired limit Hmax.

We also note that for values of N below 9 (using J1) and 10 (using J2 and J3),

the optimization problem is infeasible. This occurs because it cannot see enough

steps ahead to identify that the people exposed and infected at the actual instant

will become ill a few days later and the number of hospitalized people will exceed

the limit Hmax, violating the constraint (and making N < 9 step ahead problem

infeasible).

As long as N increases (and is larger than 10), the maximum hospitalization

level stabilize near the specified limit Hmax for all performance indexes, even though

it takes more time to reach the limit using J1, as shown in previous simulations. The

number of deaths seems to oscillate near the value 3.8%, indicating that changing

parameter N does not result in better results. So, considering only 4.7, we conclude

that the best choice for N is 10, since it results in faster calculations.

When it comes to total control effort, a different behavior when using different

objective functions can be also noted. Again, for N smaller than 10, the algorithm
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Figure 4.7: Maximum value of hospitalization level and final number of deaths using
NSAOC strategy with different values of parameter N and objective functions J1,
J2 and J3 in a SEIHRD model with constant parameters.

is not able to find a feasible solution. For higher values of N , the total control effort

increases as N also increases when using objective function J1. However, when using

functions J2 and J3, the total control does not vary much as N increases, because

the controller only acts when it is really needed.

In Figure 4.9, the similarity of behavior between NSAOC-J2 and NSAOC-J3 is

even more evident, especially when parameter N is relatively high (greater than 15).

The peak number of infected individuals is the same in both strategies and also the

peaks of exposed individuals are very similar. When using NSAOC-J1, the peaks

are smaller as N increases, until N = 18, when the peaks tend to not be affected by

any increase of N anymore.
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Figure 4.8: Total control input using NSAOC strategy with different values of pa-
rameter N and objective functions J1, J2 and J3 in a SEIHRD model with constant
parameters.
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Figure 4.9: Maximum value of exposed and infected individuals using NSAOC strat-

egy with different values of parameter N and objective functions J1, J2 and J3 in a

SEIHRD model with constant parameters.
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4.4 Omniscient Control Algorithm

In this section, we investigate the response of the SEIHRD Model to omniscient

optimal control. In the first simulation, all SEIHRD parameters are constant based

on table 2.2. After, parameter uncertainty is considered in the SEIHRD model

according to table 4.1.

When we apply the control inputs to the SEIHRD model without parameter

uncertainty, it is expected that the environment reacts exactly as expected. In that

case, the control strategy succeeds.
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Figure 4.10: Results of a SEIHRD model with constant parameters using omniscient

strategy and time horizon K = 600.

The results are shown in Figure 4.10. At the beginning of the period simulated,

no restrictions are applied and the epidemic grows exponentially as the hospitals still

have capacity to treat all sick people. When the number of individuals that requires

hospitals starts to increase, the first restrictions are applied. After that, periods of

full lockdown and no restrictions at all are alternated. Due to this behavior, the

38



Time (Day)
0.00

0.02

0.04

0.06

0.08

Po
pu

la
tio

n

SEIHRD States
E
I
H
D
Hmax

0 50 100 150 200 250 300 350 400 450 500 550 600
Time (Day)

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n 
/ C

on
tro

l E
ffo

rt

Susceptible & Control Effort
S
u

Figure 4.11: Results of a SEIHRD model with parameter uncertainty using omni-
scient strategy and time horizon K = 600.

number of exposed and infected individuals keeps oscillating the entire period. In

order to avoid that behaviour, a different performance index could be used, like

J = u2
k. The results would present a smoother control curve with the cost of

increasing the total control input.

In the end of the time horizon studied, 34.84% of the population are still in the

susceptible group, 3.64% died and the total control input was 70.82. The number

of hospitalized did not exceed the limit Hmax (0.8%).

In the next simulation, we consider parameter uncertainty in the SEIHRD model

in accordance with table 4.1 and the same omniscient control strategy is applied.

In order to include all scenarios in the analysis, the simulation is repeated 1000

times. The mean of state values over all simulations are shown in Figure 4.11 and

the dashed area represents its variation.

The results show that the number of hospitalized individuals exceeds its limit

between days 43 and 44 and only returns to an acceptable level at instant 170. Since

we do not have any kind of feedback on the state of each population compartment, it
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SEIHRD Parameters S Max(I) Max(H) Deaths Sum(u)

Constant 2.243% 3.415% 0.8% 3.643% 70.82
Variable 3.895% 5.963% 1.407% 3.589% 70.82

Table 4.4: Result comparison using Omniscient Control on a SEIHRD model with
constant parameters and parameter uncertainty.

is very hard to identify if the control strategy can fail or not. One good real example

would be a bad estimation on the value of α and β, leading to an increase on the

curve of infected and exposed people that would impact directly on the number of

hospitalized people.

The results are summarized in table 4.4. We can observe that there is a peak of

people needing hospital care of 1.407% (difference of 0.607% to the specified limit

0.8%) when we allow some variance on SEIHRD model parameters. The number of

deaths should be much higher in this case if it is supposed that the probability of

not surviving is much higher if no hospital is available.

4.5 PID-Like Control

In this section, we investigate the response of the SEIHRD Model to the PID-Like

control proposed in [1] and explained in section 3.3. In the first part we consider

that all parameters are constant based in table 2.2. The time horizon studied has a

size of K = 1200 days.

We explained how Pazos et al. ([1]) developed the control calculation that re-

sulted in equation (3.24). As in their work, we also use kp = 1 to illustrate how the

control strategy performs in a SEIHRD model.

The results are shown in Figure 4.12. The control is successful in keeping the

number of hospitalized individuals below Hmax. However, there is still a margin that

could be used by relaxing the input control. This could be achieved by lowering the

value of kp or even including it in the optimization problem instead of using a

constant value 1.

In the end of the time horizon, 3.099% of the population died and the total

control input was 190.94. The number of hospitalized never exceeded the limit

Hmax (0.8%), reaching a peak of 0.538%. The peak number of states I and E were

1.297% and 1.448%, respectively, resulting in a controlled epidemic.

Compared to the previous presented strategies, PID-Like strategy was able to

present less deaths in the end, although with a high cost represented by the high

total control value. Also, the hospitalization level was always kept in a secure level.

In the next simulation, the PID-Like strategy is applied in a SEIHRD environ-
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Figure 4.12: Results of a SEIHRD model with constant parameters using a PID-Like
controller ([1]) and time horizon K = 1200.

ment with parameter uncertainty. The parameters vary according to table 4.1.

The simulation consists in running the SEIHRD model for 1000 times and extract

the mean of all results and its variance.

The results are shown in figure 4.13. The peak of infected people is higher when

parameter variation is allowed. However, since the PID-Like controller observes this

increase, it reacts with a stronger control input, being able to maintain the number

of hospitalized people below the maximum value Hmax.

The hospitalization level is well controlled and it does not show a high variance,

being always below Hmax. The result values are shown in table 4.5.
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SEIHRD Parameters Max I Max E Max H Deaths Sum uk

Constant 1.297% 1.448% 0.538% 3.099% 190.94

Var. - Worst Case 1.647% 2.111% 0.611% 3.358% 268.61

Var. - Best Case 1.302% 1.422% 0.538% 3.247% 168.22

Var. - Mean Case 1.457% 1.708% 0.571% 3.305% 213.24

Table 4.5: Result comparison using PID-Like Controller proposed by [1].

Time (Day)
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Po
pu

la
tio

n

SEIHRD States
E
I
H
D
Hmax

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (Day)

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n 
/ C

on
tro

l E
ffo

rt

Susceptible & Control Effort
S
u

Figure 4.13: Results of a SEIHRD model with parameter uncertainty using a PID-

Like controller ([1]) and time horizon K = 1200.

4.6 Reinforcement Learning

The last algorithm used is the DQN (Deep Q-Learning). As introduced in the last

chapter, the problem to be solved can be regarded as a game that can be played

multiple times by using deep reinforcement learning algorithms so the agent can
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learn how to interact with the environment to gain higher rewards.

At each instant, the agent receives a representation of the current environment’s

state. Based on the actual state, the agent chooses one of the available actions,

which is the control input that is applied in the environment. The values allowed

are the following:

A = {0, 0.25, 0.5, 0.75, 1} (4.7)

The environment responds with a new state and a immediate reward. The reward

is evaluated by equation (4.8), which is based on [27]. The first part of the equation

is responsible for penalizing the actions (or sequence of actions) that lead to a level

of hospitalized people greater than the desired maximum. The second part tries to

minimize the total control input applied in the environment. So, in general, this

strategy applies the same ideas used in the optimization algorithm.

rk = −max

(
Hk −Hmax

Hmax

, 0

)
− 0.1

u
3/2
k

43/2
(4.8)

After training over 1000 episodes, the agent was capable of selecting the right

actions in order to minimize the total control input and also not exceed the hospi-

talization limit level. As shown in Figure 4.14, the agent successfully understood

how to control the level of hospitalized people and also tried to minimize the total

effort applied. Instead of waiting to the last moment to react to the pandemic, it

started to apply lighter lockdown earlier than the competing controls.

In the end, the total control input applied was 83.5 and 3.502% of the population

died. The peak of hospitalized individuals was 0.788%, presenting a small margin

compared to the specified limit Hmax = 0.8%.

When the same trained agent acts in a SEIRHD model with parameter uncer-

tainty, in most cases, the strategy also succeed in controlling the epidemic, as show

in Figure 4.15. In order to cover all scenarios, the same simulation was run for 1000

times. The dashed green area represents the variance of the number of hospitalized

individuals and it is visible that the area exceeds the limit Hmax in some cases.

In table 4.6, the values of the simulations are shown. The simulation of a

SEIHRD with parameter uncertainty was divided in three final results: The worst

case, the best case and the mean over all simulations. The agent learned very well

how to react to a case with constant parameters. In an environment with parameter

uncertainty, the agent could also control the epidemic, but not in all cases. The

agent learned to interact with a specific model with defined parameters. When the

parameters changed, the agent tried to apply the same logic learned before, but in

some cases it did not as expected.

43



Day
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Po
pu

la
tio

n

SEIHRD States
E
I
H
D
Hmax

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Day

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n 
/ C

on
tro

l E
ffo

rt

Susceptible & Control Effort
S
u

Figure 4.14: Results of a SEIHRD model with constant parameters using Reinforce-
ment Learning Algorithm and time horizon K = 800.
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Figure 4.15: Results of a SEIHRD model with parameter uncertainty using Rein-
forcement Learning Algorithm and time horizon K = 800.
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SEIHRD Parameters Max I Max E Max H Deaths Sum uk

Constant 1.692% 1.831% 0.788% 3.502% 83.5
Var. - Worst Case 1.816% 2.166% 0.806% 3.636% 196.25
Var. - Best Case 1.623% 1.619% 0.776% 3.57% 62.5
Var. - Mean Case 1.742% 1.862% 0.79% 3.609% 102.12

Table 4.6: Result comparison of four different cases using strategy Reinforcement
Learning Algorithm.

4.7 Result Comparison

This section brings all strategies together and compares the results. When using

NSAOC, the parameter N assumes the value 10. Therefore, the following strategies

are used:

• NSAOC-J1 (N=10)

• NSAOC-J2 (N=10)

• NSAOC-J3 (N=10)

• Omniscient Control

• PID-Like Control (proposed in [1]).

• Reinforcement Learning

The first simulation applies the above strategies in a SEIHRD environment with

constant parameters. The results are shown in Figure 4.16. The control input when

using NSAOC-J2 and Omnscient strategies work approximately as a On-Off policy,

while the other strategies apply smooth changes from one time instant to another.

As a consequence, the Exposed, Infected population keep oscillating when using the

first two strategies, specially the Omniscient strategy. The PID-Like strategy tends

to choose safer decisions as it starts acting before the others and also tries to respond

actively to the number of infected individuals.

The aggressiveness of the strategies affect directly the first peaks of infected and

exposed people. The Omniscient strategy has the highest peaks in the infected and

hospitalized states I and H, as this is the most aggressive strategy. Right after we

can find NSAOC-J2 and NSAOC-J3. One interesting fact is that the peak of exposed

people is higher when using NSAOC-J2 whilst the peak of infected people is higher

when using NSAOC-J3. This is explained by the extra factor present in objective

function J3 that smoothens the changes applied in the control input. So, instead of

forcing the values to be almost only 0 or 1 (like J2), it tries to choose intermediate
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Figure 4.16: Results of a SEIHRD model with constant parameters using different
strategies.
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Strategy Max(I) Max(E) Max(H) Deaths Sum(u)

NSAOC-J1 1.997% 3.063% 0.8% 3.624% 74.82
NSAOC-J2 2.16% 3.304% 0.8% 3.624% 70.91
NSAOC-J3 2.188% 3.258% 0.8% 3.625% 72.42
Omniscient 2.243% 3.415% 0.8% 3.643% 70.82

Prop. 1.297% 1.448% 0.538% 3.099% 190.94
RL 1.692% 1.831% 0.788% 3.502% 83.5

Table 4.7: Result values of a SEIHRD model with constant parameters using differ-
ent strategies.

values to smooth the lockdown level descent. As a consequence, the interactions are

higher after the exposed peak is reached, making the peak of infected people higher

when using NSAOC-J3.

The number of deaths does not differ between all NSAOC strategies and Om-

niscient strategy, presenting a final value of 3.624% (3.625% using J3 and 3.623%

for Omniscient). When using RL strategy, the total control input increases and the

number of deaths decreases. The same behavior occurs with Proportional strategy,

what gives us an indication that the final number of deaths decreases if you increase

your total control input.

The level of hospitalized people is below the limit Hmax for all strategies. The

hospitalized graph is amplified in Figure 4.17 in order to give a better view on levels

closer to Hmax. The PID-Like strategy keeps the level considerably below the lower

bound. This is achieved by applying a stronger total control in the environment, as

presented in table 4.7. RL and NSAOC-J1 strategies present a greater slack com-

pared to the specified limit Hmax. The remaining strategies (NSAOC-J2, NSAOC-J3

and Omniscient) present curves very close to the limit.

Thus, considering that SEIHRD parameters remain constant during the entire

time horizon, strategies NSAOC-J2 and omniscient are impossible to implement due

to their high frequency behavior. Even thought PID-Like strategy presents good

levels of hospitalized and deaths, the control could be more relaxed to not impact

much in the economy. Finally, strategies NSAOC-J1 and NSAOC-J3 present the

most balanced results. If the estimation of the parameters of the environment is

reliable, NSAOC-J3 strategy offers the best result. If not, then NSAOC-J1 is the

best recommendation, as it reaches a lower level of hospitalized population with

slight increase in total control applied compared to NSAOC-J3 strategy.

When parameter variation is allowed in the SEIHRD model, the results are not

as good as using constant parameters, specially for strategies with more aggressive

behavior in the control input. Again, 1000 simulations are done for each strategy in

order to extract the mean of all values and also the variance.
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Figure 4.17: Hospitalization level graph amplified for different strategies using a
SEIHRD model with constant parameters.

In Figure 4.18, the continuous lines represent the mean of each instant over all

simulations, while the shaded areas represent the variance. The first conclusion is

that the variance when using Omniscient Control is greater than all other strategies

due to the fact of not having any feedback structure in its strategy.

The control effort graph shows that the mean values resultant from NSAOC

strategies after instant k = 60 tend to decrease together around the same value.

However, the variance is different for each objective function and, as we noted when

using constant parameters, strategy NSAOC-J1 is smoother than NSAOC-J2 and

NSAOC-J3. This is confirmed by the dashed blue area, which is smaller than the

green and gray one.

The most important graph is the Hospitalization. Omniscient strategy is the

worse one as expected, due to not having any feedback structure. PID-Like control

keeps being the smoothest and safest strategy, securing the greatest slack to the

limit. The last three strategies use NSAOC algorithm and the hospitalization levels

are closer to Hmax after they establish.

In Figure 4.19, we amplify the levels closer to Hmax and also remove Omniscient

and PID-Like strategies, since they do not lie closer to this level. First, even the

mean values exceeds Hmax using strategy NSAOC-J2, with the worst case almost

reaching 0.009. Strategy NSAOC-J3 has their mean values below Hmax, however

in some cases the hospitalization level also exceeds its desired capacity limit, which

can be noted by the dashed green area around instant k = 45. The same occurs
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Figure 4.18: Results of a SEIHRD model with parameter uncertainty using all
different strategies.
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for strategy RL, that in most cases the curve is below the line, except for a small

dashed area around instant k = 100. The variance is also high due to the inability

to adapt to a model with different parameter values. Finally, strategy NSAOC-J1 is

always below Hmax, even in the worst case scenario. However, this fact has a small

cost, being the strategy with the third higher total control input, as listed in Table

4.8.
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Figure 4.19: Hospitalization level graph amplified with strategies NSAOC-J1,
NSAOC-J2, NSAOC-J3 and RL using a SEIHRD model with parameter uncer-
tainty.

Strategy Max(I) Max(E) Max(H) Deaths Sum(u)

NSAOC-J1 2.049% 3.002% 0.799% 3.781% 90.26
NSAOC-J2 2.326% 3.422% 0.818% 3.786% 85.15
NSAOC-J3 2.249% 3.257% 0.799% 3.782% 87.4
Omniscient 3.895% 5.963% 1.407% 3.589% 70.82

Prop. 1.457% 1.708% 0.571% 3.305% 213.24
RL 1.742% 1.862% 0.79% 3.609% 102.12

Table 4.8: Mean values of all simulations using all strategies in a SEIHRD model
with parameter uncertainty.

Thus, considering that parameters vary in a real world, the best strategy seems

to be NSAOC-J1, as it guarantees the hospitalization level below Hmax with a total

control effort slightly superior to other similar strategies.
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Chapter 5

Vaccination

In the previous chapter, simulations only considered one control variable that low-

ers the contact between individuals carrying the virus (i.e. infected and exposed

population) and susceptible individuals.

In this chapter, we introduce a new control variable. The vaccination variable

affects directly the susceptible state, making the individuals from this group acquire

immunity without having to be infected. They go directly to the Recovered group.

The new control schema is shown in Figure 5.1.

After adding a new control variable, the control problem is changed. In fact,

several control problems turn controllable after adding a new control variable to it.

The new proposed model is very similar to the one presented in Chapter 3 (Figure

3.1). The only difference is the additional vaccination variable in the equation of

the susceptible individuals:

S E I H D

R

αβ γp1 δp2 ϵp3

vk

uk

ζ(1− p1)
η(1− p2)

µ(1− p3)

Figure 5.1: SEIHRD model diagram with 2 control variables: the NPIs level and
vaccination.
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Sk+1 = Sk − (1− uk)(αSkEk + βSkIk)− vk−d1 (5.1)

Ek+1 = Ek + (1− uk)(αSkEk + βSkIk)− (γp1 + ζ(1− p1))Ek (5.2)

Ik+1 = Ik + γp1Ek − (δp2 + η(1− p2))Ik (5.3)

Hk+1 = Hk + δp2Ik − (ϵp3 + µ(1− p3))Hk (5.4)

Rk+1 = Rk + ζ(1− p1)Ek + η(1− p2)Ik + µ(1− p3)Hk + vk (5.5)

Dk+1 = Dk + ϵp3Hk (5.6)

In equation (5.1), vk−d1 is the vaccination rate applied on the population at

instant k and d1 is the duration to the vaccine takes effect, considering that one

shot gives full immunity.

In order to compare the effects of the vaccination, we use strategy NSAOC with

performance index J1 and parameter N = 10. This strategy was used in the previous

chapter without any vaccination plan and it performed well, even with parameter

uncertainty. So, the optimization problem we aim to solve in this chapter is:

min J =
k+N∑
k

uk (5.7)

subject to: Sk+1 = Sk − (1− uk)(αSkEk + βSkIk)− vk−d1 (5.8)

Ek+1 = Ek + (1− uk)(αSkEk + βSkIk)− (γp1 + ζ(1− p1))Ek (5.9)

Ik+1 = Ik + γp1Ek − (δp2 + η(1− p2))Ik (5.10)

Hk+1 = Hk + δp2Ik − (ϵp3 + µ(1− p3))Hk (5.11)

Hk ≤ Hmax (5.12)

0 ≤ uk ≤ 1 (5.13)

Several vaccination strategies can be used. An optimal daily vaccination strat-

egy is proposed in [13]. They established an optimal control problem to design

vaccination strategies where vaccination modulates dynamics susceptibility through

an imperfect vaccine. However, in this work we apply constant vaccination rate in

order to analyze the effects of vaccination in the total control input and the states

of the SEIHRD model.

From Figure 5.2, the total effort to control the epidemic decays when the vaccina-

tion rate is increased. When this rate is greater than 1.8%, there is no need to apply

any kind of lockdown on the population. This would be equivalent of vaccinating

3.8 million individuals per day in Brazil, for example.

The evolution of the control effort and the number of susceptible individuals for
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Figure 5.2: Total control input and variant vaccination rate using NSAOC (N = 10)
in a SEIHRD model with constant parameters.

each vaccination rate is shown in Figure 5.3). In the first graph, we note that when

the vaccination rate increases, it is possible to start acting (uk > 0) with a higher

delay, since there are fewer susceptible individuals at the same instant. Also, the

peaks around the start of the period have lower values and they last for less time.

In the second graph, the total number of susceptible individuals decays faster for

higher vaccination rates, as expected. The last case (v = 1.8%), the curve decay is

constant, since the vaccination rate is constant and no control effort is applied in

the population.

Similarly, the number of deaths decreases significantly with the first lower vacci-

nation rates, as shown in Figure 5.4. As noted in table 5.1, even with a vaccination

rate of 0.1%, it results in 1.2% less deaths compared to no vaccination plans. For

higher vaccination rates, the differences are smaller, being less than 0.1% less deaths

per additional 0.1% in the vaccination rate.

The hospitalization starts to decrease significantly when the vaccination rate is

higher than 1.8%. This is related with the previous result that no NPIs are needed

after this rate. So, as long as more individuals get vaccinated, less people will get

infected and hospitalized, resulting in lower hospitalization levels. The numeric

results for all vaccination rates are shown in table 5.1.
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Figure 5.3: Control input and susceptible individuals using NSAOC-J1 (N = 10) in
a SEIHRD model with constant parameters for each vaccination rate.
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Figure 5.4: Number of deaths and hospitalization level using NSAOC-J1 (N = 10)
in a SEIHRD model with constant parameters for each vaccination rate.
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Vac. Rate H D u

0.0 0.8% 3.624% 74.82
0.1 0.8% 2.478% 46.69
0.2 0.8% 1.921% 33.17
0.3 0.799% 1.588% 25.21
0.4 0.799% 1.365% 20.0
0.5 0.799% 1.204% 16.31
0.6 0.799% 1.083% 13.53
0.7 0.798% 0.987% 11.43
0.8 0.798% 0.91% 9.76
0.9 0.798% 0.844% 8.49
1.0 0.798% 0.788% 7.49
1.1 0.798% 0.74% 6.7
1.2 0.797% 0.701% 5.96
1.3 0.797% 0.669% 5.24
1.4 0.797% 0.643% 4.49
1.5 0.797% 0.621% 3.64
1.6 0.797% 0.605% 2.6
1.7 0.796% 0.594% 1.03
1.8 0.766% 0.567% 0.0
1.9 0.725% 0.53% 0.0
2.0 0.688% 0.498% 0.0

Table 5.1: Result values of a SEIHRD model with constant parameters for each
vaccination rate.

55



Chapter 6

Conclusion

Different strategies are being used by governments all around the world involving

the balance between public health and economic issues. In order to take such de-

cisions, most of them rely on expert advice based on the results of epidemiological

mathematical models and on daily case reports.

In this work, we explored different strategies that governments can use to control

the COVID-19 epidemic. The main results from our analysis are the following:

• All strategies worked well when the SEIHRD model parameters are constant.

They succeed on controlling the level of hospitalized people while minimized

the total effort.

• Omniscient and NSAOC-J2 strategies resulted in a less total control effort,

although they apply too many sequences of full lock down and no restrictions

at all (like a On-Off policy). This can be difficult to apply in the real world.

• NSAOC-J1 and NSAOC-J3 presented a better behavior, since they imply a

restricted lockdown at the beginning and start to relax as time goes on. How-

ever, the total control input is higher than using Omniscient Control.

• Reinforcement Learning and PID-Like Controller are safer strategies that take

actions before the disease really spreads into the population, being easier to

control the epidemic. However, they lead to higher total control inputs, with

negative economic impacts.

• When the SEIHRD model parameters are not reliable enough, using any type

of open loop control and, specifically, even the ideal Omniscient Control could

result in not being able to control the level of hospitalized people, which can

lead to a very high number of deaths.

• Only NSAOC-J1 and PID-Like strategies were able to keep the hospitaliza-

tion level below the specified limit Hmax in a SEIHRD model with parameter
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uncertainty in all simulations. In most cases, NSAOC-J3 and RL strategies

also succeed, as the mean values are below the limit.

• The number of deaths is proportional to the total control input aplied. Hence,

reinforcement learning and PID-Like strategies had better results in this met-

ric.

• In a SEIHRD model with parameter uncertainty, the number of deaths in

all strategies increased due to the inability of predicting the future instants

correctly.

• When the SEIHRD model parameters are not reliable, using Omniscient Con-

trol can result in not being able to control the level of hospitalized people,

which can lead to a very high number of deaths. NSAOC strategies are able

to control it due to their feedback structure.

• Adding vaccination results in less total control input, less deaths and smaller

pandemic duration. For the first rate increases, the effects are more significant,

leading to higher differences in the main performance indexes.

Many ideas can be further explored in future works:

• In our simulations, we considered daily strategies, which are difficult to apply

in practice. Weekly strategies might be investigated corresponding to policies

used in practice by several health autorities.

• The vaccination follows a constant rate in this work. However, it is possible

to consider variable rates during time as presented in [13]. A different opti-

mization problem could be studied to find an optimal vaccination strategy for

SEIHRD model.

• Different performance indexes could be explored.

• A mapping relating total control input and real government actions could be

created, indicating what represents each control level for the population.
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