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André Luiz Diniz Souto Lima

Aprovada por: Prof. Carmen Lucia Tancredo Borges

Prof. André Luiz Diniz Souto Lima

Dr. Vitor Luiz de Matos

Prof. Laura Silvia Bahiense da Silva Leite

RIO DE JANEIRO, RJ – BRASIL
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A otimização do planejamento da geração de energia elétrica é muito importante

para alcançar os custos mais baixos posśıveis, contrabalanceando da melhor forma

com a segurança da rede elétrica. São necessários altos recursos computacionais

para resolver esse problema, que é multi-estágio, estocástico, complexo e de grande

porte. Em alguns casos, o uso de paralelização torna-se imperativo. Um método

amplamente utilizado para resolver problemas de planejamento energético de longo

prazo é uma extensão da Programação Dinâmica Dual (PDD), denominada Pro-

gramação Dinâmica Dual Estocástica (PDDE), que utiliza técnicas de amostragem

para lidar com problemas da alta dimensionalidade. Neste trabalho é proposto um

esquema paralelo asśıncrono para a PDDE, que é capaz de superar o sincronismo

intŕınseco existente no método de paralelização tradicionalmente utilizado para a

PDDE, e permitindo explorar melhor os recursos paralelos. Com isso, o algoritmo

visa diminuir o tempo total da CPU para resolver o problema. Testes de consistência

e desempenho foram aplicados para avaliar a abordagem asśıncrona da PDDE e uma

variante da mesma em um problema de tamanho equivalente ao sistema brasileiro

real, onde se verificaram suas vantagens em relação ao método de paralelização

convencionalmente utilizados.
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Optimizing power generation planning is very important to achieve the lowest

possible costs while keeping an adequate trade-off with electrical network security.

High computational resources are required to solve this problem, which is a mul-

tistage, stochastic, complex and large scale problem. In some cases, the use of

parallel schemes becomes mandatory. A widely used method to solve long-term

energy planning problems is an extension of Dual Dynamic Programming (DDP)

called Stochastic Dual Dynamic Programming (SDDP) which makes use of sampling

techniques to be able to deal with high-dimensional state-spaces. In this work we

propose an asynchronous SDDP parallel scheme capable of overcoming the intrinsic

synchronism of the traditional parallel version of the SDDP method, thus allowing

to better exploit the parallel resources and decrease the overall CPU time to solve

the problem. Consistency and performance tests were applied to evaluate the pro-

posed asynchronous SDDP approach and one variant of this algorithm in a problem

equivalent to the real Brazilian system, where was verified advantages over using

the traditional parallel schema.
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Chapter 1

Introduction

Operation planning of large-scale hydrothermal systems is a very important and

complex task, which requires a calculation process involving a large number of

variables, constraints and uncertainties on a multi stage stochastic problem. In

predominantly hydro systems, as for example in Brazil and Norway, it is of utmost

importance to model the high uncertainty related to water inflows, which aggregates

additional complexity to model and solve the problem [45] [25].

The uncertainties in mid and long term planning problems can be represented as

a scenario tree. The more complex the problem is, the more dependent it becomes

of computational resources to obtain a solution in acceptable time. Even though in

principle it could be solved as a single large optimization problem, computational

time can rapidly became prohibitive and decomposition methods like Dual Dynamic

Programming (DDP) [6] or sampling based methods as Stochastic Dual Dynamic

Programming (SDDP) [55] must be applied to better use the computational re-

sources.

As presented in [55], the SDDP method does not traverse the entire scenario tree,

but rather solves scenario samples in each iteration instead. Both DDP and SDDP

are iterative methods that perform forward and backward passes, with a convergence

criterion based on a tolerance between the difference in the upper and lower bounds

for the former [6] or on a confidence interval for the latter [55]. Although asymptotic

convergence of the SDDP method is guaranteed if resampling is applied [57], the

convergence rate can be very slow, demanding too much time to reach acceptable

results. For this reason, parallelization should be used to accelerate the standard

SDDP method. However, the traditional parallel version of the SDDP algorithm

[58] has an undesirable synchronization point in every time step, thus slowing down

its parallel performance.
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1.1 Objective and contributions of this work

In order to overcome the limitation of synchronization point at every stage, this

work proposes an asynchronous SDDP algorithm that is more suitable for parallel

environments. This idea was sketched in [20] but with neither a more thorough in-

vestigation nor a substantial implementation was employed. This approach is based

on successful algorithms previously proposed in [62] and [9] for the DDP method

in deterministic and stochastic problems, respectively, with the aim to decrease the

effect of the synchronization point, therefore reducing CPU time and improving

scalability.

In addition, this work aims to improve the level of scalability of parallel algo-

rithms applied to the SDDP approach, by changing the parallelism paradigm. While

traditional parallel SDDP approaches divide the sub problems to processes according

to forward or backward scenarios the proposed algorithm divides the sub problems

among processes by stage. This way the work load can be divided in a more efficient

way, not only because the communication overhead is reduced, but also because the

number of stages is usually high and using a small number of forward passes per

iteration tends to be advantageous [33]. This makes the proposed approach useful

both from the modeling and the computational point of view.

1.2 Relevance and application

Since it was first proposed in [55], the SDDP algorithm has been explored and

improved by many researchers in different ways, as for example in [40] [57] [58] [63]

[16] [30] [10]. Therefore, improving SDDP performance may have a positive impact

in many applications presented by the scientific community.

In Brazil, the official long/mid term planning model NEWAVE ([46] [45] [43])

uses SDDP as its main solution algorithm. In this way, improvements in the SDDP

performance allows further enhancements in the model, as for example a greater

refinement in the system representation and constraints.

We note that this work modeled the hydrothermal planning problem in individual

hydro plants, rather than equivalent reservoirs, [47] and also applying an accurate

model of the hydro production function [19].

1.3 Arrangements

The dissertation is organized as follows:

• Chapter 2: introduces the Hydrothermal Coordination Problem, which is the

context in which the algorithm was applied.

2



• Chapter 3: explains some parallel programming concepts that are applied in

this work.

• Chapter 4: describes the Stochastic Dual Dynamic Programming approach

usually applied in the literature, as well as its traditional parallel approach.

• Chapter 5: proposes an asynchronous approach to SDDP and one variant: the

first one with a synchronous point at each step and the second one without

any synchronous point.

• Chapter 6: presents the numerical experiments, which comprises a direct ap-

plication to solve the HTC problem and an assessment of the algorithm con-

sistency and performance.

• Chapter 7: presents the conclusions and future work.

3



Chapter 2

Mid/Long Hydrothermal

Coordination Problem

Power generation planning comprises the determination of the best use of the gen-

eration resources. Traditionally, the problem consists in minimizing the operation

cost, which is directly associated with the fuel used for thermal generation to sat-

isfy all constraints along the planning horizon. The inclusion of hydro plants with

reservoirs in the system creates an additional level of difficulty for power operation

planning because water can be stored for further use. In addition, reservoirs can be

spatially coupled in cascade, where the operation of upstream plants impacts the

availability of water in downstream plants.

Therefore, the Hydrothermal Coordination Problem (HTC) consists of coordi-

nating the use or storage of water, to achieve the objective of minimizing the high

costs of generation of thermal plants. When controlling the stored water, some sit-

uations may occur due to uncertainty on the natural water inflows to the reservoirs

(which is a random variable), leading to “right” or “wrong” decisions, as illustrated

in Fig. 2.1. Such situations are associated to combinations of high or low inflows

in the future with the decisions that are taken in the present: right decisions arise

when water is stored today and low inflows occur in the future, or when water is

stored today and high inflows occur in the future. By contrast, wrong decisions are

those where water is not stored today and low inflows occur in the future, or when

water is stored today and high inflows occur in the future.

One way to represent the sequence of such decisions along time is by considering

a discrete time discretization combined with a discretization of the random variables,

resulting in a discrete scenario tree, as shown in Fig. 2.2. Each time step will be

referred to in this work as a “stage”, and the uncertainty in the HTC problem is

related to the inflows to the hydro plants.

Ideally, the HTC problem should be modeled considering as many components

and constraints as possible, thus resulting in a better representation of reality. How-

4



Figure 2.1: Water use decision.

ever, since this may lead to a computationally intractable problem, HTC is usually

split into long, mid and short term problems, each one with an emphasis on the as-

pects that are most suitable for its corresponding time discretization and planning

horizon [25] [45] [27] [21].

This work is related to the long and mid term planning problems, taking into

account in the latter a proper coupling with a cost-to-go function provided by the

former. The aim is to solve multi-stage optimization problems expressed as a linear

programs (LPs), with the objective function of minimizing system operation costs

and considering both linear constraints and convex piecewise linear approximations

of nonlinear constraints. The variables of the problem represent major hydro and

thermal plants characteristics, taking into account cascaded hydro plants along the

river basins and a single node representation of the system. The following assump-

tions are also made:

• Each stage of the planning horizon is split into three load blocks to better rep-

resent intra-stage aspects. The consideration of load blocks allows to consider

the load variation inside a stage, then improving the precision over considering

one single value as average. Moreover, this approach is computationally less

5



Figure 2.2: Scenario tree representation.

costly than increasing the number of stages by decreasing the duration of each

time step;

• to enable complete recourse for the overall multistage stochastic problem that

is decomposed into smaller subproblems, slack variables are included for all

constraints with high artificial costs;

• Uncertain inflows to reservoirs are stage-wise independent.

The planning horizon contains several stages, leading to a huge scenario tree. In

order to solve this problem, the sampling based approach of dual dynamic program-

ming called stochastic dual dynamic programming (SDDP) is applied, as explained

in Chapter 4.

The following sections will describe the objective function and constraints of

the subproblem for each stage t and value for the random variables s in which the

6



problem is decomposed, as well as additional constraints related to variables bounds.

In the sequel each possibility s for the values of the random variables in each stage

will be denoted as “stage scenario”.

2.1 Objective function

The objective function comprises thermal generation costs plus the expected value

of future costs, associated to the subproblems of all subsequent nodes:

minimize
NL∑
p=1

NT∑
i=1

ctigt
t,s,p
i +Qt(v

t,s) (2.1)

where:

NL = Number of load blocks;

NT = Number of thermal plants;

cti = Linear incremental cost of each thermal plant (piecewise linear costs

can be modeled by splitting the generation range in several segments);

gtt,s,pi = Generation of thermal plant on stage t,

stage scenario s and load block p.

Function Qt(v
t,s) is the so called future cost function (FCF) for stage t, which is

a lower approximation of the expected value of the future costs beyond this stage,

as a function of storages in the reservoirs. Such function is obtained by Benders

cuts generated during the course of the DDP or SDDP solution algorithms, and is

evaluated for the vector of final storages vt,s in the reservoirs at the corresponding

stage and stage scenario. Some artificial costs are also applied for practical reasons:

slack variables with high penalty costs to allow violation of some constraints, as well

as small penalty values to avoid unnecessary spillage and water waste.

2.2 Load supply

A load supply constraint is applied to each stage, scenario and load block:

NH∑
i=1

ght,s,pi +
NT∑
j=1

gtt,s,pj + def t,s,p = dt,p p = 1, ..., NL (2.2)

where:
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NL = Number of load blocks,

NH = Number of hydro plants,

NT = Number of thermal plants,

dt,p = Demand of load block p and stage t;

ght,s,pi = Generation of hydro plant i at stage t,

stage scenario s and load block p;

gtt,s,pj = Generation of thermal plant j at stage t,

stage scenario s and load block p;

def t,s,p= Energy deficit at stage t,

stage scenario s and load block p;

dt,p = Load demand of stage t and load block p.

2.3 Water balance

Water balance constraints are applied to each hydro plant i and stage t, taking into

account the topological structure of upstream and downstream plants along the river

courses:

vt,si − vt−1,r
i +

NL∑
p=1

(qtt,s,pi + qst,s,pi )+

−
NL∑
p=1

∑
j∈Ωup

i

(qtt,s,pj + qst,s,pj ) = I t,si i = 1, ..., NH

(2.3)

where:

vt,si = Storage at reservoir i at the end of stage t and scenario s;

vt−1,r
i = Storage at reservoir i at the end of the ascendant node r

(in stage t− 1) of scenario s;

qtt,s,pi = Turbined outflow of hydro plant i at stage t,

scenario s and load block p;

qst,s,pi = Spilled outflow of hydro plant i stage t,

stage scenario s and load block p;

I t,si = Water inflow hydro plant i at step t,

stage scenario s;

Ωup
i = Set of upstream hydro plants to hydro plant i.

Such constraints imply both a spatial coupling (due to variables qtt,s,pj and qst,s,pj ,

related to set of upstream hydro plants Ωup
i ) and a time coupling (due to variables

vt,si and vt−1,r
i ) among variables and constraints of the problem formulation.

8



2.4 Hydro plant production function

The generation of the hydro plants is modeled to represent water head effects when

transforming the turbined outflow into electrical energy. One approach is to apply

the so-called Approximate Hydro Production Function (AHPF) proposed in [19],

which consists in a piecewise linear model that also takes into account the effect of

spillage. Therefore, the following inequality constraints are considered for each load

block, hydro plant, stage and stage scenario:

ght,s,pi ≤ γ
(k)
0,i,t + γ

(k)
v,i,t(v

t−1,r
i + vt,si )/2

+γ
(k)
q,i,tqt

t,s,p
i + γ

(k)
s,i,tqs

t,s,p
i

k = 1, ..., NCUTi; i = 1, ..., NH; p = 1, ..., NL

(2.4)

where:

NCUT= Number of linear aproximations for the hydro production

function of hydro plant i,

γ
(k)
0,i,t = independent term of cut k, hydro plant i, and stage t;

γv,i,t = term related to reservoir storage for cut k of hydro plant i,

for stage t

γ
(k)
q,i,t = term related to turbined outflow for cut k of hydro plant i, for stage t;

γ
(k)
s,i,t = term related to spillage for cut k of hydro plant i, for stage t.

All γ coefficients to all cuts are pre-calculated before solving the problem.

2.5 Future cost function (FCF)

In order to couple the last stage to water values given by a long term model, a

so-called future cost function (FCF) is applied. It is represented by a set of linear

inequalities that provide the expected value of system operating costs in the future

(related to thermal generation and energy deficit) as a function of the vector of

storages in the reservoirs at the end of the planning horizon.

This work considered a future cost function provided by the long term model

NEWAVE [46]. However, since the official use of the NEWAVE model for the

Brazilian system considers the representation of hydro plants as equivalent reservoirs

(EER), conversion coefficients ρ were used to translate the value of stored energy in

each EER into water values for the individual storage in each reservoir, as shown

below. We note that the future cost function was obtained by the NEWAVE model

with a configuration that is spatially compatible with the study cases considered in

this work, where all hydro plants are inside one EER.
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FCF T,s ≥ π
(k)
0,T +

NEER∑
j=1

π
(k)
j,TE

T,s
eerj

k = 1, ..., NCUTFCF ;

ET,s
eerj

=
∑
i∈Ωj

ρiv
T,s
i

(2.5)

where:

T = last stage of the planning horizon;

NCUTFCF= Number of cuts (linear inequalities) that compose the FCF

from the long term model;

NEER = Number of EERs;

π
(k)
0,T = Constant term of cut k of the FCF;

π
(k)
j,T = Coefficient related to EER j for cut k of the FCF;

ET,s
eerj

= Energy stored in EER j, stage T and

for stage scenario s;

Ωj = Set of hydro plants associated to EER j;

ρi = Conversion coefficient for hydro plant i;

vT,si = Reservoir storage for hydro plant i at the end of stage T and

stage scenario s;
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Chapter 3

Parallel programming

This chapter aims to explain parallel programming concepts and terms to ensure a

proper understanding and to avoid ambiguities in this text.

The purpose of parallel processing is to reduce computational time as well as to

make some programs viable to be used in practice. A parallel scheme can be made

in several ways [52], depending on computer hardware, software architecture, and

operational system. Prior to writing parallel models, these characteristics must be

considered. Some classifications are used to create these parallel models, such as:

how data is accessed, memory storage, and the parallelism grain size.

3.1 Definitions

• CPU: Central Processing Unit. Consists on a group of processors that can

contain some cores. Computers may have more than one CPU, but desktops

usually have only one CPU with multi-cores.

• Node: Node is the term used to a complete computer inside a computer cluster.

• Cluster: Computer cluster is a group of computers working together to solve

a problem.

• Task: Group of instructions to be executed by processors.

• Communication: Sending of data between tasks over shared memory or net-

work connections.

• Thread: Lightweight processes instantiated and linked from a larger program.

Executes a small portion of the program and has their program counters,

instructions and even owns a part of the memory.

• Latency: Time to send data between tasks.
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• Scalability: Capacity of increasing hardware resources to the complete com-

puter architecture. It means the capacity of a parallel model to improve per-

formance as the hardware to execute the program is increased.

3.2 Model classification

Parallel programming models use Flynn’s taxonomy [24], which classifies them in

two dimensions: “Instruction Stream” and “Data Stream”, with two possible states:

“Single” or “Multiple”. As a result, four possible combinations associated with

Processor Unit (PU) can be generated, as described below.

3.2.1 SISD - Single Instruction Single Data

During a clock cycle, only one stream of instruction is used on PU, using a single

input of data stream, Fig. 3.1. shows a single processor computer used in small

scale to specific purposes. As an example, Internet of Things (IoT) devices and

computers to simple activities make use of the SISD architecture.

Figure 3.1: SISD - Single Instruction Single Data scheme.

3.2.2 SIMD - Single Instruction Multiple Data

During a clock cycle, only one stream of instruction is used on PU with a multiple

data stream input (Fig. 3.2). It is considered as a computer with parallel processor
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using vectorial data processing. This configuration is applied on common cases like

image processing, which is used by Graphic Processor Units (GPU), for example.

Figure 3.2: SIMD - Single Instruction Multiple Data scheme.

3.2.3 MISD - Multiple Instruction Single Data

The single data stream can be processed by a stream of multiple instructions on

PU during a clock cycle, as shown in Fig. 3.3. The use of this classification is less

spread than others.

3.2.4 MIMD - Multiple Instruction Multiple Data

Multiple data streams can be processed by a stream of multiple instructions during

a clock cycle on a PU, as shown in Fig. 3.4. This classification disseminated to most

of the current Central Processor Units (CPU).

3.3 Memory classification

Memory in parallel programming can be classified by Processor Unit access as fol-

lows:
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Figure 3.3: MISD - Multiple Instruction Single Data scheme.

Figure 3.4: MIMD - Multiple Instruction Multiple Data scheme.

3.3.1 Shared memory

All processors have direct access to the same global memory address, and can operate

independently accessing the same memory space and also do not need to commu-

nicate data. Moreover, when one processor changes data in memory, all processors

have access to this modification. This behavior tends to improve performance since

communication is not needed, but a layer of memory access control has to be used

to prevent memory miswriting/misreading.
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There are two kinds of shared memory to be considered [71]:

UMA - Uniform Memory Access

PUs can access direct shared memory with the same latency, as shown in Fig. 3.5.

This kind of shared memory does not have good scalability because the increase in

the number of processors also increases the number of memory access requests, and

only one processor can make this access at a time.

Figure 3.5: Shared memory scheme.

When a PU has a cache memory, this architecture has to reflect memory modi-

fications to the cache in all PUs simultaneously.

NUMA - Non Uniform Memory Access

This kind of memory architecture has a global memory that is accessed by all PUs,

but the latency is not the same, since this access is made through an interconnection

bus that is even located in the same hardware. This scheme has a higher scalability

than UMA because memories and PUs can be inserted into the same bus.

3.3.2 Distributed memory

In this memory architecture each PU maps its own memory and does not depend

on other PUs, thus not leading to a global memory scheme as in Section 3.3.1.

A memory change does not affect the memory of other PUs, so communication is

required to reflect this change (Fig. 3.6 shows this architecture scheme). There are

some similarities between this architecture and NUMA (described in Section 3.3.1),
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since both have an interconnection bus between PUs. However, in the NUMA

architecture the PUs maps memory into global memory, which does not apply to

distributed memory.

Figure 3.6: Distributed memory scheme.

This architecture has a good scalability, because an increase in the number of

PUs in the network increases the available memory, since each PU has its own

memory, and interconnection overload does not exist. However, this architecture

requires an explicit data communication among PUs.

3.3.3 Hybrid memory

Hybrid memory consists of using shared and distributed memories simultaneously,

as shown in Fig. 3.7. Shared memory is used by PUs with physically shared memory,

like current CPUs or GPUs, and distributed memory is used for communicating over

a network connection.

The scalability of this architecture is the greatest among the mentioned architec-

tures, because inserting a computer in the network is relatively easier than inserting

another PU on a computer. However, memory management is an issue, because it

must be done manually by the programmer.

Due to its high scalability and flexibility of use, this memory architecture was

employed to all implemented algorithms, then using shared or distributed memory

as convenient. If the processing occurs in the same processor shared memory was

used, otherwise distributed memory was applied by communicating data
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Figure 3.7: Hybrid memory scheme.

3.4 Parallelism grain size

Grain size is a measure of the amount of computation running on a task [35]. Some

characteristics, like running and communication time, as well as hardware architec-

ture, are considered when classifying the granularity in different levels, as described

in [35] and shown in Fig. 3.8.

Figure 3.8: Grain size level. Remade from [37]

• Instruction level : Processors’ instructions can be processed in parallel. Pro-
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grammers do not usually apply this parallelism level due to hard implementa-

tion, which is usually the work of a compiler;

• Loop level : This parallelism is usually applied by SIMD machines, mainly by

vectorized machines. It can be made by compiler or programmer on MIMD

machines, where a loop is split to parallel execution. This level is considered

as fine grain;

• Procedure level : This level consists of split procedures, or even a rewrite of

some parts to different processes. It is usually made by the programmer and

requires some communication. This level is considered as medium grain;

• Sub program level : Code is split in large parts and sometimes becomes different

for each process. It requires communication and is considered as medium grain

like the Procedure level, or coarse grain if source code grouped in very large

parts;

• Program level : Program level grain is the more practical level and is usually

applied to embarrassingly parallel problems. A low amount of communication

is required.

The grain size applied to this work was chosen considering a procedure level

aiming achieving a better scalability. The finer the grain the more is the depen-

dence on hardware architecture, which directly affects the scalability. Furthermore,

a coarse grain is more suited to embarrassingly parallel problems, which are not

applied to this work, since increasing the number of processors also increases the

communication. Then, a medium grain size is more suited to this work.

3.5 Evaluation of parallelism performance

A very common measure to evaluate performance on parallel programs is the speedup

and efficiency metrics [71].

Speedup is a ratio between serial and parallel execution time, as shown in Equa-

tion (3.1):

S(p) =
Ts

Tp(p)
(3.1)

where:

p = number of processors,

Ts = serial execution time associated to the best algorithm known in the

literature,

Tp(p)= parallel execution time to p processors
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Figure 3.9: Speedup regions.

The efficiency metric is derived from speedup and measures how scalable a par-

allel algorithm is, as shown in Equations (3.2) or (3.3):

E(p) =
Ts

Tp(p)p
(3.2)

E(p) =
S(p)

p
100% (3.3)

A speedup chart can be drawn to evaluate performance for increasing values of

p, as shown in Fig. 3.9. This chart shows three different regions, whose meanings

are as follows:

• Linear speedup: if S(p) = p, which means that increasing the number of

processors to computation adds no overhead on CPU time;

• Superlinear speedup: if S(p) > p, it may happen that the serial algorithm

to which the parallel algorithm is being compared to is not the fastest one.

However, in some cases it may be due to hardware features, such as more

memory in the parallel system than in the serial system;

• Common speedup region: if S(p) < p, which is the expected speedup region,

since Tp(p) will probably be smaller than
Ts
p

, due to communication overhead
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and idle processing time. Therefore, the most common scenario is the one

where S(p) saturates on increasing p.

3.5.1 Amdahl ’s law

In the work [2], Amdahl stated that speedup can be calculated based on a factor

f of the serial fraction of the algorithm and the number of processors, as shown in

Equation (3.4). In this computation, the problem size was fixed to Ts + Tp = 1.

S(p) =
Ts

fTs + (1 − f)
Ts
p

=
p

1 + (p− 1)f (3.4)

where:

Ts= serial time,

f = factor of only serial part of algorithm

0 ≤ f ≤ 1

In Equation (3.4), increasing the number of processors to infinity leads to the

maximum value of speedup, which is:

lim
p→∞

S(p) =
1

f.
(3.5)

However, Amdahl had a pessimistic view of the parallel performance, because

in his speedup calculation a constant problem size was assumed. The section below

describes a different point of view.

3.5.2 Gustafson ’s law

In [28], Gustafson discussed Amdahl’s law and argued, using scalability concepts,

that speedup should be measured by fixing the CPU time to solve the problem

and not the problem size, as in Amdahl’s law. Usually, a parallel program has a

fixed serial time due to data input and handling, and a parallel time that can be

split among the processors. Therefore, adding more processors implies on reducing

the parallel time but not the serial time, as shown in Equation (3.6). This scaled

speedup compares an equivalent serial time by taking into account the processing

time of all processors (T ′s + pT ′p) with the time considering p processors (T ′s + T ′p).

The total time was fixed in T ′s + T ′p = 1 to perform calculations.

Sscaled(p) =
T ′s + pT ′p
T ′s + T ′p

(3.6)

where:
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Sscaled(p)= scaled speedup considering a fixed time,

T ′s = fixed serial time,

T ′p = parallel time

Considering f ′ =
T ′s

T ′s + T ′p
as the fraction of the serial part of algorithm:

Sscaled(p) = f ′ + (1 − f ′)p (3.7)

where:

Sscaled(p)= scaled speedup considering a fixed time,

f ′ = factor of only serial part of scaled algorithm

0 ≤ f ′ ≤ 1

We note that the serial factor f , from Amdahl’s law, is different from f ′ in

Gustafson’s law. The first one considers the size of problem fixed. The second one

considers that the problem size increases when the number of processors p is in-

creased too. Therefore, f ′ is a fraction of an increasing problem size. In Gustafson’s

law the time is fixed as well as the serial part, therefore increasing the number of

processors has positive aspects to the speedup and efficiency evaluation. This is a

more optimistic view about the speedup calculations of parallel models as compared

to Amdahl’s law.

This work used a mixed point of view of Amdahl’s and Gustafson’s law [4],

because the number of subproblems to be solved in each SDDP iteration (which

depends on the number of forward scenarios) grows when the number of processors is

increased (like in Gustafson’s point of view). The proposed algorithm does not follow

the same assumption, and can be scaled without increasing the work load, until the

number of processors is equal to the number of stages (i.e. p = T ). Therefore, the

adopted serial time is related to the problem with 1 processor executed with the

SDDP algorithm.

3.6 Parallel programming models

Parallel programming models consider the computer system architecture to perform

processors and memory arrangements, and can be made by different ways [18] on

more general groups: pure parallel programming, heterogeneous parallel programming

and hybrid parallel programming.

3.6.1 Pure parallels programming models

The models associated with pure parallel programming can be of two types: pure

shared or distributed memory. Shared memory models imply different tasks using
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the same memory region to read or write. There are some alternatives to achieve

this: to execute the program more than once sharing the same memory region, (see

Fig. 3.10) and thread models with Portable Operating System Interface for Linux

(POSIX) and OpenMP (see Fig.3.11), using threads.

Figure 3.10: Pure parallel models: Shared memory without threads.

Figure 3.11: Pure parallel models: Shared memory with threads.

Distributed shared memory is another possibility of pure parallel programming
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model and Message Passing Interface (MPI) can be used. In this work, parallel

programming focuses on MPI communication between processes due to its high

scaling capability.

Message Passing Interface (MPI)

MPI is a message communication-based protocol used by processes to communicate

with each other. The implementation is not a language but rather a library, being

supported by several languages [29] like C, Fortran, Java, and Python.

Processes will be included in groups (called communicators) and receive an

identification (called rank id) for each communicator. The initial communicator

is “MPI COMM WORLD”, which contains all processes initiated by the program.

Communication among processes can be collective or point to point, depending

on what is best suited for the situation. Both forms of communication have associate

parameters: communicator, the rank id, and in some cases a tag that identifies a

specific message.

Synchronism is another characteristic exploited by sending and receiving data.

Messages can be synchronous, such that all processes involved in communication

have to be at this code point to communicate with each other, or can be asyn-

chronous, when processes can send the message without the receiver being in this

code point. Asynchronous communications apply user or system buffered data, and

the system buffered depends on the MPI library implementation.

Implementations of MPI libraries have to follow the IEEE standard [3], and some

methods must exist to ”point to point” and collective communications. Some exam-

ples are “MPI Send” and “MPI Reveive” to “point to point” (both to synchronous

or asynchronous communications), and “MPI Broadcast” to collective communica-

tions. These libraries can contain additional methods to improve user experience.

3.6.2 Heterogeneous parallel programming models

In 2001, NVIDIA introduced the first programmable GPU: GeForce3, and later, in

2003, the Siggraph/ Eurographics Graphics Hardware workshop, held in San Diego,

first introduced the GPGPU (General-purpose GPU) concept [41]. At this point,

programming to GPU was already possible, also allowing programmers to use all

GPU cores. Considering that, a computer that already possesses a CPU could use

a GPU as well.

NVIDIA creates a language to enable the programmer to use GPU hardware:

CUDA (Compute Unified Device Architecture) [53]. This language was specific to

NVIDIA cards, so the community worked together to create OpenCL (Open Com-

puting Language) standards to enable the use of heterogeneous parallel programming

23



with other graphic cards [38].

3.6.3 Hybrid parallel programming models

The hybrid parallel programming aims to combine different models to suit problem

needs. Pure shared memory parallel models have better use of memory since they

do not have to communicate with each other, as opposed to the distributed memory

parallel model. When the problem allows combining coarse grain with a fine grain, a

hybrid MPI+OpenMP can be used, for example. A very intensive computation and

coarse grain of problem suits to a hybrid CUDA+MPI. The survey [18] exploited

some possibles hybrid combinations.

This work could use different parallel programming models, but the available

resources limited the choice. Then, a pure parallel programming model using MPI

was applied, once the available resources are restricted to nodes with a limited

number of cores and the scalability resides on increasing the number of nodes.
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Chapter 4

Stochastic Dual Dynamic

Programming

The main objective of this chapter is to explain the Stochastic Dual Dynamic Pro-

gramming (SDDP technique) that is widely applied to solve large multistage stochas-

tic problems. We start describing a general stochastic programming problem, using

the decomposition-based dual dynamic programming (DDP) approach as a refer-

ence method to solve it, until reaching the SDDP method in particular, which is a

sampling-based extension of DDP. Later on, we discuss the SDDP tree traversing

protocol with forward and backward passes, that apply the Benders decomposition

technique to build piecewise linear approximation of the future cost function for

each stage. Finally, we discuss the application of parallel strategies to SDDP.

4.1 Stochastic Programming

A key point in the hydrothermal coordination problem is the representation of un-

certainties, especially stochastic inflows to the reservoir in predominantly hydro

systems [45] [65] [25] [27].

Consider a multi-stage problem with multiple scenarios, as shown in Figure 2.2,

where both the time steps and the inflow scenarios are discrete. The so-called “com-

plete” tree consists of all possibilities for this model. Each time step is denoted by t,

each possible inflow on time step as s, and each combination of (t, s) defines a node

in the tree, to which is a subproblem SP s
t is related, with conditional probability pst

to the parent (previous) node of the tree. The total cost from node (t,s) until the

end of the planning horizon is described by Equation 4.1.

Time step is the discretization of smaller portion of the horizon study, and it

depends on problem being solved, i.e., long, mid and short term can use different

sizes of time step. Different time steps associated with there inflow possibilities
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can be grouped forming a sub tree when algorithm is solving the problem, the

so called “stage”. This work considered one time step to each stage, and to avoid

misunderstanding problems with “time step” and “step” (explained later on Chapter

5), the term “time step” was called along this work as “stage”.

Cs
t = f(xst) +

∑
s∈Ωt+1

pst+1fSP s
t+1 (4.1)

where:

Cs
t = Total cost for node (t,s),

xst = Decision variables of the problem for node (t,s),

f(xst) = Present cost function for the subproblem of node (t,s),

Ωt+1 = Set of all descendant subproblems of node (t, s) in stage t+ 1,

pst+1 = Conditional probability of node (t+ 1, s), related to its parent node

in stage t− 1,

fSP s
t+1

= Future cost function (or recourse function, as known in the stochastic

programming literature), for the subproblem of node (t, s)

The straightforward approach to solve this problem is to to gather the variables

and constraints related to all nodes of the scenario tree in one single problem and

solve it by a given optimization method. However, it is possible to notice that

increasing t and s may lead the size of the tree to become huge and computationally

impractical to handle. Therefore, decomposition of the problem becomes mandatory,

and one efficient method is based on Benders decomposition [5]. Such technique was

applied by the L-shaped method [66], which decomposes the problem into one master

problem for the first stage and several subproblems (“slave problems”) for the second

stage, one for each discrete possibility of chosen random variable. The link between

the two stages is done by adding constraints (Benders cuts) to the first (master)

problem, and considering the variables in second stage subproblems related to the

first subproblem as state variables. The values of the state variables are replaced

before solving each subproblem. An extension of this method for the multistage

setting was proposed in [6] and was labeled as “dual dynamic programming” (DDP).

4.2 Dual Dynamic Programming

Dual Dynamic Programming aims to decompose the overall problem and solve all

nodes of the tree iteratively, until the method reaches convergence by satisfying a

given stopping criterion. Each DDP iteration constructs a new linear cut for the

piecewise approximation of the cost-to-go function of each node, whose arguments

are the state variables coming from the corresponding parent node of the scenario

tree. An iteration of the tree traversing strategy of the traditional DDP approach
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consists of performing two steps: forward and backward passes, which are described

as follows:

• Forward passes: solve subproblems from the first to the last stage, obtaining

the solution for the variables of each node and sending them forward to set

the state variables of the corresponding subproblems. Figure 4.1 illustrates a

forward pass of the DDP approach.

• Backward passes: solve subproblems from the last to the first stage, creat-

ing Benders cuts, and sending them to be added in the subproblems of the

corresponding parent node, as shown in Figure 4.2.

Figure 4.1: DDP forward pass.

The convergence of the method occurs when the difference between the upper and

lower bounds for the optimal solution of the overall problem, which are computed
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Figure 4.2: DDP backward pass.

in each iteration, is below a given tolerance δ, as expressed in Equation 4.2. The

lower bound Zlower is the value of the optimal solution of the root node subproblem,

which includes both present and future costs for that node. The upper bound Zupper

is the sum of the present costs related to the optimal solution of all subproblems,

weighted by their corresponding probabilities [6], as in Equation 4.3.

Zupper − Zlower

Zlower

<= δ (4.2)

where:

Zupper= Upper bound for the value of the optimal solution

Zlower= Lower bound for the value of the optimal solution

δ = Pre-defined tolerance for the value of the optimal solution

Zupper =
∑
t∈T

∑
s∈Ωt

pstz
s
t (4.3)
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where:

T = Number of stages

Ωt= Set of all subproblems of stage t

pst = Probability of the node (t, s)

zst = Present cost of the subproblem related to node (t, s)

4.2.1 DDP variants regarding cut creation

The original version of the DDP approach [6] used the single-cut version on the algo-

rithm, where the information on the Benders cuts for each stage scenario is grouped

into a single recourse function for each node. The multi-cut version in [7] consists in

creating individual piecewise linear approximations for the recourse function related

to each descendant node of a given node, leading to a more refined approximation.

This version is more costly in terms of memory requirements and CPU time to solve

the subproblem for each node, but tends to decrease the number of DDP iterations

until convergence. Such version could be implemented as well, and its advantage

over the single-cut version may depend on the number of descendants and character-

istics of the problem. In particular, in one of the asynchronous approaches proposed

in this work, the multi-cut version may be attractive, as discussed later in section

5.1.

4.3 Stochastic Dual Dynamic Programming

One extension to DDP is a sampling-based method called SDDP, proposed in [55],

which becomes necessary for problems with a huge scenario tree, where it is im-

possible to visit all nodes. Researchers have derived several variants of the SDDP

algorithm like “Convergent Cutting-Plane and Partial-Sampling” (CUPPS, [12]),

“Abridged Nested Decomposition” (AND, [22]), and “Reduced Sampling” (ReSA,

[31]).

The SDDP algorithm also performs backward and forward passes iteratively, but

instead of traversing the whole scenario tree, it generates scenario samples (with

resampling at each iteration) until reaching a given stopping criterion, as shown in

Figure 4.3. The SDDP iteration is represented in Pseudo Code 4.1.

1 stop = false

2

3 for iteration

4 from 1 to maxIteration

5 and not stop

6 and not convergenceReached do
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7

8 reSampleScenariosTree ()

9

10 // Forward Passes

11 for stage

12 from 1 to (stagesLenght - 1) do

13 for scenario

14 from 1 to scenariosLenght - 1 do

15 solve(stage ,scenario)

16 communicateStateVariables(stage ,scenario)

17 end

18 end

19

20 stop = stopCriteria ()

21

22 if not stop then

23 // Backward Passes

24 for stage

25 from stagesLenght to 2 do

26 for scenario

27 from 1 to scenariosLenght - 1 do

28 for aperture

29 from 1 to apertureLenght - 1 do

30 // Receive only if available

31 receiveCuts(stage)

32 solveAperture(stage ,aperture)

33 prepareCut(stage ,aperture)

34 end

35 createCut(stage ,scenario)

36 communicateCuts ()

37 end

38 end

39 else

40 end

41 end

Pseudo Code 4.1: SDDP Iteration.

As in DDP, forward passes range from stage 1 to T − 1. At the end of each

forward pass, some values of the state variables are obtained where to evaluate and

build a new approximation of the FCF of the problem, in the backward pass. It is

important to note that, in the SDDP approach, the recourse function is given by

stage, rather than by node as in DDP.
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Figure 4.3: SDDP tree.

The optimal value of the solution of the first node is used as a lower bound to

the overall problem, and the average sum of the present costs of all nodes, taking

into account all scenario samples, is used as a sample value to obtain a statistical

approximation for the upper bound, which is valid only in the risk-neutral version

of SDDP (for risk-averse approaches, see [56] [39]).

Cut sharing is a valuable technique to improve SDDP performance [36]. When

there is a stage-wise independence among the random variables for each stage, and

also in some situations where dependency exists [36], samples must share Benders

cuts to ensure convergence [44] [49].
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4.3.1 Stopping criterion

When the SDDP algorithm was first presented in [55], it was stated that a confidence

interval could be applied to Equation 4.2 to obtain a statistic stopping criterion in the

risk-neutral case, as considered in this work, since it is possible to evaluate an upper

bound based on a sample of scenarios. The work [22] first stated that finite conver-

gence requires resampling through iterations, and later [40] proved an almost-sure

convergence to SDDP algorithm considering the independence of sampled random

variables. In the same direction, [57] extended such almost-sure convergence proof

for the dependent case.

Many researchers presented alternative rules to stop the SDDP algorithm: in

[33] it was presented a new version of the statistical convergence criterion based on

the proximity between upper and lower bounds. The work [63] proposed a metric

based on the stability of the lower bound that compares the lower bound of previous

iterations until a relative difference on its variation reaches a value below a given

tolerance for N consecutive SDDP iterations.

Another possibility is to evaluate the amount of cuts that have been built. This

approach allows a fair comparison between methods that propose different num-

bers of scenarios along the forward passes [64]. The algorithm converges when a

predetermined Benders cuts is reached.

Still regarding the construction of Benders cuts, in [10] it was presented a cut

evaluation strategy as stopping criterion. The Benders cuts receive so called “bene-

fit” values, and when such benefit is below a tolerance value, the algorithm reaches

convergence. Finally, another rule associated with iterative algorithms is the maxi-

mum number of iterations, which was the stopping criterion adopted for this work.

4.4 Traditional Parallel SDDP Strategy

Parallel programs can significantly jeopardize the expected reduction in the overall

running time of a program due to communication and processor idle time. Reducing

this undesired time can be hard but is needed to successfully improve the program

running time (some experience in this topic is provided in [70].

In [14] and [58] it was presented a so-called “standard” parallel scheme strategy

applied to, in which scenario samples are solved independently, i.e., the forward

scenarios are solved separately by different processes both in backward and forward

passes. Another relevant characteristic of parallel processing applied to the SDDP

algorithm is the existence of a synchronization point in each stage when samples

share their cuts.

The load balance among processes can be dynamic or static. Dynamic load bal-
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ance was exploited in [58], consisting of sending all state variables and Benders cuts

to a so-called master node, which distributes data each iteration to all processors

executing the program. This behavior implies always resetting the linear problems

before solving and communicating data from/to master node, thus increasing pro-

cessing and waiting time. On the other hand, static load balance does not suffer

the increasing time by resetting linear problems but requires data updates before

solving. Therefore, depending on the application, both approaches can be attractive.

This work considered a static load balance because of the small number of con-

straints to be updated and a limited number of Benders cuts added through SDDP

iterations. Furthermore, the structural differences between the linear problems in

each processor is small. However, depending on initial reservoir values and the val-

ues of inflows, the time to solve the subproblems for each stage scenario may vary a

lot. The static load balance implies dividing the subproblems for all nodes among

processors, and the assigned process becomes responsible for a given set of samples.

In the forward pass, each entire forward sample is solved separately by one

process. Since it sends information of state variables for the next stage in the same

sample and process, there is no extra time to communicate (Figure 4.4).

In the backward pass, even though the different processes independently solve

the subproblems for all backward scenarios in the forward samples, there is a syn-

chronization point in every stage to distribute all Benders cuts among the processes

(Figure 4.5).

After forward and backward passes are performed in each SDDP iteration, the

process that is responsible for the first stage calculates parameters to evaluate the

stopping criterion (Section 4.3.1). In this step, depending on the adopted criterion,

some communication may be needed. If the value of Zupper is necessary, the informa-

tion from all present costs has to be sent by all processes to the process responsible

for the first stage [58].

Researchers have proposed later other parallel schemas: [30] relaxed the stage

dependence to communicate cuts in the backward pass among processes, bringing

some good results. The main idea was to wait a certain number of cuts to be added

before moving on, thus reducing the idle time due to communication among samples.

These assumptions heavily depend on the study case.
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Figure 4.4: SDDP parallel forward.

Figure 4.5: SDDP parallel backward.
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Chapter 5

Proposed Asynchronous

Stochastic Dual Dynamic

Programming Method

In the previous chapter, it was shown that the standard SDDP approach has an

intrinsic dependency between stages on backward and forward passes, and also a

dependency among samples in the backward pass. In order to break this stage

dependency, we propose an algorithm which independently performs the solution of

all stages and computes backward and forward passes simultaneously. The method

proposed here is an extension, to the sampling-based framework, of the successful

ideas previously proposed in [62] and [9] for the Dual Dynamic Programming (DDP)

method applied to deterministic and stochastic problems, respectively.

Instead of proceeding backward and forward passes as a standard SDDP “iter-

ation”, ASDDP iterates by proceeding a so-called“step.” This distinction clarifies

the main difference between the two methods. In the traditional SDDP approach, a

single iteration of the backward pass transmits the information from the last time

stage to the first stage through Benders cuts. In contrast, in the ASDDP algorithm,

the information from each stage is only transmitted to its corresponding neighbor

stages, therefore the information of the last stage, for example, arrives at the first

stage only several steps later (this number is equal to the length of the time horizon).

Fig. 5.1 shows an ASDDP application with only one forward sample and four

stages, each one with two backward scenarios. In each step of the ASDDP algorithm,

the subproblem for all backward scenarios and stages are solved, and then resampling

is performed for the next step. As a consequence, each step also creates a Benders

cut related to each backward scenario, which is aggregated when the single cut

variant of DDP is applied. It is noted that “Implicit forward passes” are formed

through the steps, starting at the end of the N th step, when N is the number of
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stages.

Figure 5.1: ASDDP solution process.

Pseudo Code 5.1 illustrates the solution process of the ASDDP algorithm through

steps, where implicit backward (in orange) and forward (in green) passes are pro-

cessed simultaneously. The algorithm stores Benders cuts and state variables for

later communication.

Communication of state variables (Fig. 5.2) and Benders cuts (Fig. 5.3) oc-

curs between neighbor stages, besides an additional communication among different

samples if more than one forward sample per step is considered. In each individual

sample, the subsequent stages receive state variables from previous stages as in a

traditional forward pass of the SDDP algorithm. Also, previous stages receive Ben-

ders cuts computed by their subsequent stages from all samples as in a traditional

SDDP backward pass.

The proposed asynchronous scheme aims to improve scalability by allowing an

increase in the number of processors, especially in the forward pass, which is limited

to the number of forward samples in the traditional SDDP algorithm.
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1 for step

2 from 1 to maxStep

3 and not stopCriteria () do

4 reSampleScenariosTree ()

5
6 // Backward/Forward Passes

7 for stage

8 from stagesLenght - 1 to 1 do

9 for scenario

10 from 1 to scenariosLenght - 1 do

11 for aperture

12 from 1 to apertureLenght - 1 do

13 solveAperture(stage ,aperture)

14 prepareCut(stage ,aperture)

15 end

16 createCut(stage ,scenario)

17 storeCuts(stage ,scenario)

18 storeStateVariables(stage ,scenario)

19 end

20 end

21
22 // Communicate cuts

23 //and states variables

24 communicateCuts ()

25 communicateStateVariables ()

26 end

Pseudo Code 5.1: ASDDP Iteration
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Figure 5.2: Communication of states in the ASDDP approach.

Moreover, the method reduces the idle time among processes in the backward

pass, therefore decreasing the CPU time and increasing both efficiency and parallel

performance, mainly when the number of backward scenarios is not high, as seen

later in the results.

The algorithm synchronizes all information among processes at the end of each

backward pass, i.e., a given process awaits both the Benders cuts and the states

calculated at the current backward pass. Pseudo Code 5.1 illustrates this behavior,

which guarantees that each process will perform the job related to each step in

the same way, no matter how many processors are used to run the program. This

behavior yields the property of reproducing the same results regardless of the number

of processors, which may be required in certain applications, such as in the official

operation planning of the Brazilian HTC problem. [45] [21]

A variant of this algorithm without a synchronization point is presented at Sec-

tion 5.1. Both algorithms take into account the number of stages and scenarios to

distribute subproblems to processors. Fig. 5.4 and Fig. 5.5 exemplify a possible

division of a problem with two samples and four stages when four processors and
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Figure 5.3: Communication of Benders cuts in the ASDDP approach.

eight processors are employed, respectively.
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Figure 5.4: Division of an ASDDP parallel problems in 4 processors.

Figure 5.5: Division of an ASDDP parallel problem in 8 processors.

5.1 Variant without synchronization point

This approach, labelled as “totally” asynchronous ASDDP (or TASDDP) does not

require a full synchronization before each step, and waits for any incoming data to a

given processor to proceed to the next step. As a consequence, in this algorithm it

is not guaranteed that all processes will be performing the same step of the overall

TASSDP approach, and the results may vary according to the number of processors.

Thus, TASDDP does not have an iteration as SDDP nor a step as ASDDP. The

single cut version of DDP was implemented to this TASDDP variant, as described

in the Pseudo Code 5.2. In [30], a similar approach was proposed in the backward

iteration, such that a subproblem from a previous stage starts being solved without

receiving Benders cuts from all backward scenarios of the current stage.
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1 for step

2 from 1 to maxStep

3 and not stopCriteria () do

4 reSampleScenariosTree ()

5
6 // Backward/Forward Passes

7 for stage

8 from stagesLenght - 1 to 1 do

9
10 for scenario

11 from 1 to scenariosLenght - 1 do

12 for aperture

13 from 1 to apertureLenght - 1 do

14 // Receive only if available

15 receiveCuts(stage)

16 solveAperture(aperture)

17 prepareCut(aperture)

18 end

19 createCut(stage ,scenario)

20 sendCut(stage ,scenario)

21
22 sendStateVariables(stage ,scenario)

23 receiveStateVariables(stage ,scenario)

24 end

25 end

26
27 //Waits only if not

28 // received above

29 waitAnyCut(stage)

30 end

Pseudo Code 5.2: TASDDP Single cut Iteration
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1 for step

2 from 1 to maxStep

3 and not stopCriteria () do

4 reSampleScenariosTree ()

5
6 // Backward/Forward Passes

7 for stage

8 from stagesLenght - 1 to 1 do

9 for scenario

10 from 1 to scenariosLenght - 1 do

11 for aperture

12 from 1 to apertureLenght - 1 do

13 // Receive only if available

14 receiveCuts(stage)

15 solveAperture(stage ,aperture)

16 createCut(stage ,aperture)

17 sendCut(stage ,aperture)

18 end

19 end

20 sendStateVariables(stage ,scenario)

21 receiveStateVariables(stage ,scenario)

22 end

23
24 //Waits only if not

25 // received above

26 waitAnyCut(stage)

27 end

Pseudo Code 5.3: TASDDP Multi cut Iteration
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Since a synchronization point is not applied to TASDDP, in this variant the multi

cut version of DDP may be attractive (see Pseudo Code 5.3) because a new cut can

be sent to the previous stage as soon as it is generated. The other operations remain

the same as in the single cut approach.

5.2 Upper bound estimation

The estimation of the upper bound proposed in [55] is based on the average costs

of all stages and scenarios obtained through a Monte Carlo simulation as shown in

Equation 5.1:

Zupper =
1

N

N∑
n=1

zn (5.1)

where:

N= Number of scenarios,

zn= Total cost each n scenario

In that work, such estimation was applied to a set of fixed forward scenarios (sam-

ples). By contrast, this work applies resampling at each iteration, thus complicating

the evaluation of the upper bound, since the new samples can be more optimistic or

pessimistic on average, and therefore the upper bound value can oscillate.

The idea proposed in this work to overcome this oscillation effect is to store the

latest M values of system operations along forward samples to calculate a moving

average along the ASDDP iterations (Equation 5.2). As a result, in each ASDDP

iteration an incoming operation cost for a new scenario replaces the oldest one in

the list. Since the upper bound calculation occurs when an implicit forward is

completed, the first upper bound computation is obtained only after T steps (see

Figure 5.1).

Z ′upper =
1

M

M∑
m=1

zmupper (5.2)

where:

M = Number of stored upper bounds,

zmupper= Upper bound referent to the mth item in list

Figure 5.6 illustrates the effect of moving average on ASDDP upper bound, and

shows the SDDP upper bound without that tool.

However, the upper bound estimation for the TASDDP method is not as easily

traceable as in ASDDP, therefore it is not used in the same way in that method. A

possible upper bound estimation which suits all three methods (SDDP, ASDDP and
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Figure 5.6: SDDP and ASDDP upper bound on resampling behavior.

TASDDP) is to perform a simulation of the policy with a large number of samples

after the forward/backward passes (maybe after each k iterations), and to estimate

the upper bound as the average cost among them [43].

5.3 Implementation aspects

Software Engineering is an essential subject that is related with every step in software

development, since creation until deploy and future maintenance [68].

Large software frequently use the object-orientation (OO) paradigm, which is

based on the use of classes and objects. A class is a model from a real-world entity

and is composed of attributes and methods. An object is an instance of a class,

which enables different combinations of attributes values. Classes can be pure or

abstracts, and in the latter case cannot be instantiated directly, but only by an

inheriting class.

The use of classes and objects allows the software to be reusable and maintain-

able, which are essential characteristics to large and long-range software. The term

“Reusable” means to improve the capability of using a class in multiple parts of the

code. Also, maintenance refers to the easiness on how to add, change, or read source

code [68] [15].

Two other software features that ensure reusability and maintainability are “cou-

pling” and “cohesion” [32] [48] [60]. Coupling defines the software arrangement on

connecting parts, and cohesion is the grouping of these parts by a common subject.

The base of OO is on the following concepts [59]: abstraction, inheritance, poly-

morphism, and encapsulation, which are described below:
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• abstraction means to create a model from the real-world problem;

• inheritance ensures the re-use of functions and data from another defined

class, improving the approximation of the model to the real-world problem.

The inherited class is called “base class” (or superclass), and the inheriting

class is called a “subclass” (Fig. 5.7).

• polymorphism is an abstraction where an object can assume different behaviors

on runtime. The inheriting class overrides methods or attributes as the model

needs.

• encapsulation hides or shows class members from external access or inher-

iting classes as convenient, in order to protect parts of the code or only to

show what is relevant. “Public”, “protected”, and “private” are the common

encapsulation levels.

BaseClass

Attribute1

Attribute2

doSomething()

SubClass1

Attribute3

doSomething1()

SubClass2

Attribute4

doSomething2()

Figure 5.7: Illustration of class inheritance.

Software design patterns

Software evolves as humanity does [67], and one evidence is the development of

“design patterns”. Design patterns are standard solutions to similar problems that

occur recurrently in different situations and models. Besides, the use of a design
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pattern can improve the understanding of the source code by other software designers

when reading it [51].

There exists a lot of well-known design patterns [26] [51] [1], and several fields

of knowledge use these designs [54] [34] , as electrical knowledge, [23] [61].

This work used, in particular, two design patterns: “Factory” and “Strategy”,

which are explained in the next sections.

Factory design pattern

The factory design pattern [26] uses factory methods to create objects without spec-

ifying which class will be the base of the created object. A base factory class (prefer-

entially an interface) will contain methods to create objects, and subclasses that in-

herit this one will override methods to return the object. These methods, internally,

will create the objects, and the caller class will not need to call class constructors,

see Fig. 5.8 and Pseudo Code 5.4. Using the factory design pattern increases the

decoupling in software, and consequently, its maintainability and reusability.

1 IFactory factory;

2

3 // Instance of the factory due to condition

4 if(condition)

5 factory = ConcreteFactory1 ();

6 else

7 factory = ConcreteFactory2 ();

8

9 // Create an object , independently of factory type

10 Type1 object = factory.createObject ();

Pseudo Code 5.4: Factory design pattern use.
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<<Interface>>
IFactory

+ createObject (): Type1
+ createOtherObject (Param2,Param3): Type2

ConcreteFactory1

+ field1: type

+ createObject (): Type1
+ createOtherObject (Param2,Param3): Type2

ConcreteFactory2

+ field2: type

+ createObject (): Type1
+ createOtherObject (Param2,Param3): Type2

Figure 5.8: Factory design pattern.

Strategy design pattern

The strategy design pattern enables choosing a strategy behavior on run time [26].

It is strongly linked with reusability and maintainability and helps to improve source

code decoupling. Such behavior, represented by a base class (preferentially an in-

terface), is inherited by implementations, subclasses, and used by other classes that

do not know this behavior (see Fig. 5.9 and Pseudo Code 5.5 to more details).

1 IStrategy strategyObj

2

3 // Instance of the strategy due to condition

4 if(condition)

5 strategyObj= Behavior1 ()

6 else

7 strategyObj= Behavior2 ()

8

9 // Create an object to the class using the strategy

10 ClassUsingStrategy obj

11 //Apply the strategy , independently of its behavior

12 obj.strategy = strategyObj

13

14 obj.doStrategy ()

Pseudo Code 5.5: Strategy design pattern use.
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<<Interface>>
IStrategy

+ doSomething (Context): void

Behavior1

+ field1: type

+ doSomething (Context): void

Behavior2

+ field2: type

+ doSomething (Context): void

ClassUsingStrategy

+ strategy : IStrategy

+ doStrategy(): void

Figure 5.9: Strategy design pattern.

Design patterns on work

Regardless of the method applied to solve the HTC problem (as a single Linear

problem, DDP, SDDP, and ASDDP), the variables and constraints are nearly the

same. The difference resides on the presence of state variables and the position

on the when verifying the stochastic value. For example, when creating the water

balance constraint, if Benders decomposition is applied then a state variable should

exist.

The phylosophy of the method is that it does not matter which variable or con-

straint is in the problem, so a factory design pattern suits this situation. When

a method creates the individual problems, it iterates over a list of variables and

constraints factories. Thus, this design allows using the solution method with any

problem. Fig. 5.10 shows some examples of possibles variable and constraints fac-

tories applied to the HTC problem.

Moreover, in the solution method, strategy patterns were applied in different

contexts such as: the overall problem and on backward/forward passes (see Fig.

5.11), in which a pre solve strategy was applied before solving any subproblem

(to update constraints, for example), a post solve strategy applied after solving

any subproblem (to store state variables, for example), and a store strategy to put

variables and dual solutions at the end of the solution.
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<<Interface>>
IVariableFactory

+ createVariables(Context): list<Variable>

ThermalPlantVariableFactory

+ thermalPlant: ThermalPlant

+ createVariables(Context): list<Variable>

HydroPlantVariableFactory

+ hydroPlant: HydroPlant

+ createVariables(Context): list<Variable>

Method

+ variableFactoryList: list<IVariableFactory>
+ constraintFactoryList: list<IConstraintFactory>

+ createSubProblem(): void

<<Interface>>
IConstraintFactory

+ createConstraints(Context): list<Constraint>

LoadSupplyConstraintFactory

+ createConstraints(Context): list<Constraint>

HydroBalanceConstraintFactory

+ createConstraints(Context): list<Constraint>

Figure 5.10: Variable and constraint factories examples.

Method

+ preSolveList: list<IPreSolveStrategy>
+ postSolveList: list<IPostSolveStrategy>
+ storeList: list<IStoreStrategy>

+ iterate(): void

<<Interface>>
IPreSolveStrategy

+ preSolve(Context): void

PreSolveReservoirStrategy

+ preSolve(Context): void

PreSolveInflowStrategy

+ preSolve(Context): void

<<Interface>>
IPostSolveStrategy

+ postSolve(Context): void

PostSolveReservoirStrategy

+ postSolve(Context): void

<<Interface>>
IStoreStrategy

+ store(Context): void

StoreHydroPlantVariablesStrategy

+ store(Context): void

StoreThermalPlantVariablesStrategy

+ store(Context): void

Figure 5.11: Solution methods strategies examples.
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Chapter 6

Numerical Results

In order to assess the performance of the proposed ASDDP and TASDDP methods,

different sets of tests for the mid and long terms hydrothermal coordination problems

were applied to these algorithms, as well as to the traditional SDDP algorithm.

The first test aims to provide a consistency analysis, using a small study case

whose solution can be found by solving the overall multi-stage stochastic optimiza-

tion problem as a single linear program, therefore validating the implementation of

the stochastic programming methods applied or proposed in this work.

The second analysis consists in a performance evaluation test, where the lower

bound (LB) and average operation cost (AOC) were tracked over time to make a

proper comparison among the methods. In these tests the amount of used cores was

varied, the CPU time along the iteration/steps of the traditional parallel SDDP and

the proposed methods were measured, and the objective values reached by methods

were compared.

Finally, a sensitivity analysis of the results was presented, regarding the values of

some execution parameters and changes in the hydro inflows data in order to assess

the robustness of the methods.

6.1 Hardware and software specifications

The language used to develop the source code was C++ with large use of boost

library [8]. To solve linear problems the linear programming solver package Clp

COIN-OR [13] was used. The communication between processes used the MPICH

library (version 2) [50].

Since the software was created from scratch, all mentioned methods (DDP,

SDDP, ASDDP and TASDDP) were implemented using the same computational

features and sharing as much as possible the same classes, in order to guarantee

a fair comparison of their performances. Moreover, all implementations using se-

rial and parallel processing. The source codes were included to the context of the
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“Libs” project, from CEPEL (Centro de Pesquisas de Energia Eletrica), whose aim

is to unify all official programs in a single object-oriented software, written in C++

language.

The implemented SDDP algorithm can be improved by using sophisticated tech-

niques well known in literature, such as cut selection [16] and a more efficient parallel

schema as presented in [58]. Also, since the ASDDP and and TASDDP algorithms

can be improved as well in both cited aspects to SDDP, we believe that the compari-

son was fair enough to show the result differences between the presented algorithms.

The implemented SDDP, ASDDP and TASDDP algorithms used as reservoir

storage values at the end of the backward passes (for the next time step) one of the

results of the backward scenario for the current time step, selected randomly. This

value was also used to calculate the forward passes on SDDP.

Deficit cost was not implemented, and to simulate it was inserted a thermal plant

with a cost much higher than all others resources.

The tests were performed on a cluster of computers with the following configura-

tion: CentOS Linux release 7.1.1503 operating system, 12 cores, 24 threads - AMD

Opteron(TM) Processor 6238 1,530 GHZ and 98GB RAM Memory.

6.2 Study cases

As mentioned previously, the SDDP, ASDDP and TASDDP algorithms were com-

pared using two different stochastic HTC problems, in order to trace their behavior

on mid and large scenario trees. Both problems have the same power system con-

figuration, with 46 thermal plants and 84 hydro plants, 44 of which have reservoirs

with regularization capacity.

The small study case contains 7 stages with 2 inflow possibilities each, leading

to a total number of 64 scenarios at the end of the horizon [9], which allows the

application of the DDP solving strategy, in order to traverse the entire scenario tree

and to be able to obtain the value of the optimal solution for comparison purposes.

All tests considered the single cut variant for those methods.

The mid case extends the smaller case to 24 stages with 5 inflow possibilities

each. Such a large scenario tree is more suitable for the sampling-based SDDP-

related methods.

Finally, in the long term case the scenario tree is extended to 120 stages with

20 inflow possibilities each, leading to a huge final number of scenarios, which can-

not be handled by deterministic-like solving strategies such as DDP and forces the

application of the sampling-based SDDP method.
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6.3 Consistency test

The main purpose of this test is to validate the correctness of the implementation

of the methods and to show that they are able to reach the optimal value of the

stochastic program. Initially, the small case was solved as a single LP and the

optimal solution was obtained. Then, the SDDP, ASDDP and TASDDP methods

were applied with a single processor and one forward sample in each iteration/step

with resampling, until the (already known) optimal value was reached.

Figure 6.1 shows the evolution of the lower bounds of SDDP, ASDDP and TAS-

DDP algorithms over time. The horizontal line represents the optimal solution

obtained by solving the problem as a single LP. Since all algorithms have reached

the optimal value, we conclude that the methods have been implemented properly.

Figure 6.1: Consistency test.
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6.4 Performance evaluation tests

The performance evaluation tests aim to analyze the behavior of lower bound and the

average operation cost of the traditional parallel SDDP and the proposed ASDDP

and TASDDDP methods. The tests varied the number of processors as well as

number of samples accordingly, as explained later.

In order to test the parallel processing scalability, the well known speedup and

efficiency metrics were used. Since neither Amdahl’s [2] nor Gustafson’s [28] (Section

3.5) points of view suits the problem, an intermediate criterion was adopted. The

problem size is the same to all runs, but the work load is modified when the number

of processors is increased. Due to the nature of the SDDP method, for this algorithm

the number of samples is directly linked to the number of processors, therefore the

work load increases when the number of processors increases. For the ASDDP and

TASDDP methods, it is not necessary to increase the number of samples, since a

same sample can be divided among several processors, each one solving different

stages. Therefore, the speedup and efficiency were calculated with the following

metrics: to calculate speedup a chosen algorithm is used as reference for the serial

time Ts to be compared with the parallel time Tp for P processors, by the relation

Speedup = Ts/Tp; the efficiency metric is set as Efficiency = Speedup/P .

Some alternatives could be employed for the serial time Ts to compare the SDDP,

ASDDP and TASDDP methods: (i) each algorithm itself with a number of samples

equivalent to the parallel processing run with P processors; (ii) the serial run of the

SDDP method with P processors; (iii) the best serial run among all methods, using

only one sample. The last choice was used to allow a fair comparison among the

methods, since the other two could lead to very high super linear speedups, because

the number of subproblems to be solved enlarges with increment of P .

6.4.1 Mid/Short term problem

The mid term case contains 24 stages and the same characteristics listed in section

6.2. This case was executed with 1, 2, 4, 12, 24, 48 and 96 processors to evaluate

speedup and efficiency. The number of forward samples was chosen to maximize the

use of processors, thus allowing a fair comparison. Therefore, it was made equal to

the number of processors in the SDDP algorithm, and for the ASDDP or TASDDP

approaches we selected the number of samples that best suits the amount of available

processors, thus solving one subproblem for each processor. Due to the variation

of the solution time of each subproblem, the CPU time of the TASDDP method

presents a higher sensitivity to the number of samples.

Figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 show the evolution of lower bound and

the average operation cost over time.
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Figure 6.2: Evaluation of lower bound and the average operation cost over time for
the mid term case with 1 processor.

Figure 6.3: Evaluation of lower bound and the average operation cost over time for
the mid term case with 2 processors.

According to the evaluation charts, the TASDDP method was the first to stabilize

the lower bound value over time when using parallel environments, and this effect

is due to its asynchronous nature. In the same parallel environment the TASDDP

method is followed by the ASDDP method.

All charts with the average operation cost shows an oscillation both to SDDP

and ASDDP methods, as expected. This behavior occurs because resampling can

select forward scenarios that are better or worse than the previous ones. ASDDP

oscillates less than than SDDP, due to the moving average applied to the average

operation cost computation.

An empirical value for the lower bound was adopted to calculate speedup and
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Figure 6.4: Evaluation of lower bound and the average operation cost over time for
the mid term case with 4 processors.

Figure 6.5: Evaluation of lower bound and the average operation cost over time for
the mid term case with 12 processors.

efficient of the mid term case, which was based on a value that was reached by all

executed cases. Figures 6.9 and 6.10 show the speedup and efficiency, respectively,

where it can be seen that the proposed ASDDP and TASDDP methods remain with

a good scalability until reaching 96 processors.

Figure 6.2 shows the lower bound and the average operation cost for all methods

with 1 processor. Although the lower bound stabilizes in close values for all methods,

the average operation cost from SDDP is far better than the others. This is expected,

since an explicit forward pass is performed by SDDP since its first iteration, thus

the initial storages in the reservoirs for each stage are always sound, which does not

occur in the first T − 1 iterations of the ASDDP and TASDDP methods.
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Figure 6.6: Evaluation of lower bound and the average operation cost over time for
the mid term case with 24 processors.

Figure 6.7: Evaluation of lower bound and the average operation cost over time for
the mid term case with 48 processors.

Figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 show that lower bound and the average

operation cost of the ASDDP method improve as the number of processors is in-

creased, taking advantage of a better scalability, mainly in the TASDDP approach.

By contrast, the time of SDDP grows with an increasing number of processors, due

to the fact that work load is directly linked to it, i.e., the number of subproblems

to be solved in each SDDP iteration grows with the number of processors. In other

words, the conceptual advantages of increasing the number of forward scenarios in

the SDDP method (as more processors are employed) do not pay off the increase in

the CPU time due to the larger amount of work load in each iteration.
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Figure 6.8: Evaluation of lower bound and the average operation cost over time for
the mid term case with 96 processors.

Figure 6.9: Speedup of mid term case with log2 scale.
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Figure 6.10: Efficiency of mid term case with log2 scale.
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6.4.2 Larger case: long term planning problem

The long term test case was applied with 1, 2, 4, 12, 30, 60, 120 and 240 proces-

sors. We did not concern in applying a proper stopping criterion because the main

objective was to compare the evolution of the algorithms along time. Since we did

not know in advance the value of the optimal solution, it was assessed after the test

cases were executed, by examining the evaluation charts. The number of forward

samples for the SDDP algorithm was again set equal to the number of processors,

whereas for the ASDDP and TASDDP methods it was set to one, since the number

of processors is usually lower than the number of stages of this test case. For the

run with 240 processors we applied 2 forward samples.

Figure 6.11: Evaluation of lower bound and the average operation cost over time for
the long term case with 1 processor.

As in the mid term case, Figure 6.11 shows that the SDDP average operation

cost stabilizes faster than the others algorithms for the serial run (1 processor)

and the lower bound stabilizes faster than ASDDP and slower than TASDDP. This

is explained by the fact that, in principle, the asynchronous algorithms are more

suitable only under parallel processing environments, and TASDDP with 1 processor

is exactly the same as in SDDP. Figures 6.12 and 6.13 shows ASDDP improving and

SDDP losing performance, and TASDDP becoming faster. Later, Figures 6.14, 6.15,

6.16, 6.17 and 6.18 present the opposite behavior, as the ASDDP and TASDDP lower

bound stabilizes faster than SDDP. This behaviour is observed in both long term

and mid term test cases.

Figures 6.19 and 6.20 show that the proposed ASDDP and TASDDP methods

remains with a good scalability until reaching 120 processors.
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Figure 6.12: Evaluation of lower bound and the average operation cost over time for
the long term case with 2 processors.

Figure 6.13: Evaluation of lower bound and the average operation cost over time for
the long term case with 4 processors.
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Figure 6.14: Evaluation of lower bound and the average operation cost over time for
the long term case with 12 processors.

Figure 6.15: Evaluation of lower bound and the average operation cost over time for
the long term case with 30 processors.
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Figure 6.16: Evaluation of lower bound and the average operation cost over time for
long term case with 60 processors.

Figure 6.17: Evaluation of lower bound and the average operation cost over time for
long term case with 120 processors.
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Figure 6.18: Evaluation of lower bound and the average operation cost over time for
long term case with 240 processors.

Figure 6.19: Speedup of long term case with log2 scale.
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Figure 6.20: Efficiency of long term case with log2 scale.
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6.5 Sensitivity analysis

Some aspects of the tree structure (number of backward scenarios) and input data

(hydro inflows to the hydro plants) were modified in order to better evaluate the

algorithms behavior.

6.5.1 Modifying the number of backward scenarios

Both mid and long terms test cases were modified regarding the number of backward

scenarios: for the mid term case this was changed from 5 to 2 and 10 at each stage

and for the long term case we reduced from 20 to 2 and 10. The number of processors

to execute the problem takes into account the number of stages: 24 processors for

the mid term case and 120 processors for the long-term case.

Figure 6.21: Evaluation of lower bound and the average operation cost over time for
the mid term problem with 2 backward scenarios per stage and 24 processors.

Figures 6.21 and 6.22 show simulations with 2 and 10 backward scenarios for each

stage, respectively. It can be seen that these simulations have the same behavior as

the ones shown in Section 6.4 with 5 backward scenarios per stage.

Figures 6.23 and 6.24 show the same analysis for 2 and 10 backward scenarios

of each stage for the long term case, where also the same behavior as in Section 6.4

(for the the case with 20 backward scenarios) is observed.
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Figure 6.22: Evaluation of lower bound and the average operation cost over time for
the mid term problem with 10 backward scenarios per stage and 24 processors.

Figure 6.23: Evaluation of lower bound and the average operation cost over time for
the long term problem with 2 backward scenarios per stage and 120 processors.
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Figure 6.24: Evaluation of lower bound and the average operation cost over time for
the long term problem with 10 backward scenarios per stage and 120 processors.
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6.5.2 Modifying the number of forward scenarios

Since in the traditional parallel SDDP method the increase in the number of pro-

cessors forces an increase in the number of forward scenarios, and the method was

compared to the proposed ASDDP and TASDDP methods with the same number

of processors (thus also forcing an increase in the number of forward samples for

the other methods when the number of processors is greater than T ), the results

of this analysis have already been presented in Section 6.4. It can be noted that

SDDP improves the convergence rate over iterations with the inclusion of new for-

ward samples, but the time is also affected, as well as the algorithm performance.

As expected, the convergence rate also improves on adding new forward samples for

the ASDDP and and TASDDP methods, mostly for TASDDP, which does not need

to wait all incoming data and thus has some gain with the inclusion of new Benders

cuts.

6.5.3 Modification of inflow scenarios

All tests presented previously were executed forcing a set of very low inflow scenarios

to evaluate the performance of the algorithms under more critical situations. In this

session we asses the impact of inflow variability in the algorithms by modifying the

inflow data, as explained below.

Long Term Average - percentage

It is common to use historical inflows as a reference to generate possible scenarios

to the problem. One known measure is the so-called “long term average”, which we

refer to in the sequel as MLT, according to its Portuguese term “Média de Longo

Termo”. This is the average value for each month, taken from a large number of

past years (since 1931 for most plants).

One possible variation is to consider, for example, empirical values in a range

of 20% around the MLT. In this case we obtained the results shown in Figure 6.25

for the mid term case and in Figure 6.26 for the long term case. There are some

differences in this behaviour as compared to the ones shown in Section 6.4: as

expected, the inflows scenarios are better in this test, and both lower bound and

the average operation cost reach stability earlier as compared to the previous test

case with a critical situation, in all run tests to both mid and long term cases.

All algorithms perform better but the relative time between SDDP and proposed

algorithms (ASDDP and TASDDP) to reach this stability decreases. It seems that

the algorithms performance is very sensitive to changes in the inflow scenarios.
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Figure 6.25: Sensitivity analysis for the mid term problem with 5 backward scenarios
per stage and a variation of 20% around the MLT inflows.

Figure 6.26: Sensitivity analysis for the long term problem with 20 backward sce-
narios per stage and a variation of 20% around the MLT inflows.

Long Term Average with log normal distribution

Another variation considered a more realistic case, using a log normal distribution

[11] fitting parameters with MLT data [69]. The results are shown in Figure 6.27

for the mid term case and in Figure 6.28 for the long term case.

This test showed that there is a slight difference between using log normal dis-

tribution and using a range around 20% of MLT to model the hydro inflows. The

average operation cost seems more difficult to stabilize, and lower bound stabilizes

almost at same time for both mid and long term cases.
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Figure 6.27: Sensitivity analysis for the mid term problem with 5 backward scenarios
per stage and a log-normal distribution with average values equal to the MLT inflows.

Figure 6.28: Sensitivity analysis for the long term problem with 20 backward sce-
narios per stage and a log-normal distribution with average values equal to the MLT
inflows.
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Chapter 7

Conclusions

The power generation planning is a difficult task due both to the modeling aspects of

the large-scale stochastic programming problem and the difficult to solve it, mainly

because of the large uncertainty in the natural inflows to the hydro plants. Even

though in principle such optimization problem could be solved by its equivalent

deterministic formulation, the problem can quickly become intractable, with a pro-

hibitive increase in the computational time. This limitation can be overcome by ap-

plying decomposition methods like Dual Dynamic Programming (DDP) or sampling-

based methods as Stochastic Dual Dynamic Programming (SDDP) to make better

use of the computational resources.

This work proposes an asynchronous version of the SDDP algorithm that aims

to overcome the drawback of the existing synchronization point between stages in

the traditional parallel implementation of this method, with an application for the

long term hydrothermal coordination (HTC) problem.

The proposed asynchronous SDDP approach performs backward and forward

passes simultaneously and iterates by the so-called “steps” rather than full iterations,

as described in Chapter 5. The work describes the proposed SDDP asynchronous

approach called as Asynchronous Stochastic Dual Dynamic Programming algorithm

(ASDDP) with a synchronization point between steps, and a variant called Totally

Asynchronous ASDDP algorithm (TASDDP) that does not perform a full synchro-

nization. ASDDP solves all subprobblems related to the forward and backward pass

at each step for each stage and then communicates Benders cuts and state variables

to the neighborhood stages. By contrast, the TASDDP variant proceeds to the next

step as soon as a new cut from the subsequent stage or a new state variable from the

previous stage has arrived. The results show that both approaches were capable of

reducing the computational time to reach lower and upper bounds similar to those

obtained with the traditional SDDP method, and have a high scalability regarding

the number of processors that are employed.

In addition, the implementation of this work was made under an object-oriented
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(OO) approach, to improve maintainability and reusability of the source code. The

OO paradigm enables to reuse the same code regardless of the strategy applied

to solve the problem. i.e.., whether a single Linear Problem for the equivalent-

deterministic formulation, DDP, SDDP, or both variants of the proposed ASDDP

approach is used, without the need to make specific treatments for each different

method.

Considering the parallel programming implementation, other parallel models can

be explored to improve scalability and better use of existing resources. A hybrid

model using OpenMP and MPI [17] could be used to improve the memory use of

cores on same node.

The performance of the proposed algorithms can still be improved in the future by

including some features already presented in the literature, such as (i) the inclusion

of a cut selection or elimination strategy [16], (ii) or the use of a multi-cut approach

to build the Benders cut, in order to evaluate its impact in the convergence rate.

Besides, tests with a more complex system are important to investigate whether

the nice properties of the algorithm are maintained for different problem size and

data. In addition, alternative upper bound estimation techniques can be employed

to verify the quality of the operating policy [64].

Finally, in relation with the HTC problem itself, some improvements should be

tested too. Due to the variation on the results by modifying the hydro inflows data,

one could also assess the impact of the solving strategy when the hydrological trend

is taken into account as additional state variables, as has already been considered in

a number of works that employ the traditional SDDP parallel strategy, [42], or even

more accurate representations of the stochastic process regarding the water inflows.

72



Bibliography

[1] ALEXANDRESCU, A., 2001, Modern C++ Design: Generic Programming

and Design Patterns Applied. Addison-Wesley Professional. ISBN:

0201704315.

[2] AMDAHL, G. M., 1967, “Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities”. In: Proceedings of the April 18-20,

1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pp. 483–

485, New York, NY, USA, april. ACM.

[3] ANON, 1993, “MPI: A message passing interface”, Proceedings of the Su-

percomputing Conference, pp. 878–883. doi: <10.1109/SUPERC.1993.

1263546>.

[4] AVELEDA, A. D. A., 2003, ”Utilização de sistemas de alto desempenho no

processamento de sinais na análise de problemas de vibrações induzidas
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