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A otimização do planejamento da geração de energia elétrica é muito importante

para alcançar os custos mais baixos posśıveis, contrabalanceando da melhor forma

com a segurança da rede elétrica. São necessários altos recursos computacionais

para resolver esse problema, que é multi-estágio, estocástico, complexo e de grande

porte. Em alguns casos, o uso de paralelização torna-se imperativo. Um método

amplamente utilizado para resolver problemas de planejamento energético de longo

prazo é uma extensão da Programação Dinâmica Dual (PDD), denominada Pro-

gramação Dinâmica Dual Estocástica (PDDE), que utiliza técnicas de amostragem

para lidar com problemas da alta dimensionalidade. Neste trabalho é proposto um

esquema paralelo asśıncrono para a PDDE, que é capaz de superar o sincronismo

intŕınseco existente no método de paralelização tradicionalmente utilizado para a

PDDE, e permitindo explorar melhor os recursos paralelos. Com isso, o algoritmo

visa diminuir o tempo total da CPU para resolver o problema. Testes de consistência

e desempenho foram aplicados para avaliar a abordagem asśıncrona da PDDE e uma

variante da mesma em um problema de tamanho equivalente ao sistema brasileiro

real, onde se verificaram suas vantagens em relação ao método de paralelização

convencionalmente utilizados.
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Optimizing power generation planning is very important to achieve the lowest

possible costs while keeping an adequate trade-off with electrical network security.

High computational resources are required to solve this problem, which is a mul-

tistage, stochastic, complex and large scale problem. In some cases, the use of

parallel schemes becomes mandatory. A widely used method to solve long-term

energy planning problems is an extension of Dual Dynamic Programming (DDP)

called Stochastic Dual Dynamic Programming (SDDP) which makes use of sampling

techniques to be able to deal with high-dimensional state-spaces. In this work we

propose an asynchronous SDDP parallel scheme capable of overcoming the intrinsic

synchronism of the traditional parallel version of the SDDP method, thus allowing

to better exploit the parallel resources and decrease the overall CPU time to solve

the problem. Consistency and performance tests were applied to evaluate the pro-

posed asynchronous SDDP approach and one variant of this algorithm in a problem

equivalent to the real Brazilian system, where was verified advantages over using

the traditional parallel schema.
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Chapter 1

Introduction

Operation planning of large-scale hydrothermal systems is a very important and

complex task, which requires a calculation process involving a large number of

variables, constraints and uncertainties on a multi stage stochastic problem. In

predominantly hydro systems, as for example in Brazil and Norway, it is of utmost

importance to model the high uncertainty related to water in
ows, which aggregates

additional complexity to model and solve the problem [45] [25].

The uncertainties in mid and long term planning problems can be represented as

a scenario tree. The more complex the problem is, the more dependent it becomes

of computational resources to obtain a solution in acceptable time. Even though in

principle it could be solved as a single large optimization problem, computational

time can rapidly became prohibitive and decomposition methods like Dual Dynamic

Programming (DDP) [6] or sampling based methods as Stochastic Dual Dynamic

Programming (SDDP) [55] must be applied to better use the computational re-

sources.

As presented in [55], the SDDP method does not traverse the entire scenario tree,

but rather solves scenario samples in each iteration instead. Both DDP and SDDP

are iterative methods that perform forward and backward passes, with a convergence

criterion based on a tolerance between the di�erence in the upper and lower bounds

for the former [6] or on a con�dence interval for the latter [55]. Although asymptotic

convergence of the SDDP method is guaranteed if resampling is applied [57], the

convergence rate can be very slow, demanding too much time to reach acceptable

results. For this reason, parallelization should be used to accelerate the standard

SDDP method. However, the traditional parallel version of the SDDP algorithm

[58] has an undesirable synchronization point in every time step, thus slowing down

its parallel performance.
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1.1 Objective and contributions of this work

In order to overcome the limitation of synchronization point at every stage, this

work proposes an asynchronous SDDP algorithm that is more suitable for parallel

environments. This idea was sketched in [20] but with neither a more thorough in-

vestigation nor a substantial implementation was employed. This approach is based

on successful algorithms previously proposed in [62] and [9] for the DDP method

in deterministic and stochastic problems, respectively, with the aim to decrease the

e�ect of the synchronization point, therefore reducing CPU time and improving

scalability.

In addition, this work aims to improve the level of scalability of parallel algo-

rithms applied to the SDDP approach, by changing the parallelism paradigm. While

traditional parallel SDDP approaches divide the sub problems to processes according

to forward or backward scenarios the proposed algorithm divides the sub problems

among processes by stage. This way the work load can be divided in a more e�cient

way, not only because the communication overhead is reduced, but also because the

number of stages is usually high and using a small number of forward passes per

iteration tends to be advantageous [33]. This makes the proposed approach useful

both from the modeling and the computational point of view.

1.2 Relevance and application

Since it was �rst proposed in [55], the SDDP algorithm has been explored and

improved by many researchers in di�erent ways, as for example in [40] [57] [58] [63]

[16] [30] [10]. Therefore, improving SDDP performance may have a positive impact

in many applications presented by the scienti�c community.

In Brazil, the o�cial long/mid term planning model NEWAVE ([46] [45] [43])

uses SDDP as its main solution algorithm. In this way, improvements in the SDDP

performance allows further enhancements in the model, as for example a greater

re�nement in the system representation and constraints.

We note that this work modeled the hydrothermal planning problem in individual

hydro plants, rather than equivalent reservoirs, [47] and also applying an accurate

model of the hydro production function [19].

1.3 Arrangements

The dissertation is organized as follows:

� Chapter 2: introduces the Hydrothermal Coordination Problem, which is the

context in which the algorithm was applied.

2



� Chapter 3: explains some parallel programming concepts that are applied in

this work.

� Chapter 4: describes the Stochastic Dual Dynamic Programming approach

usually applied in the literature, as well as its traditional parallel approach.

� Chapter 5: proposes an asynchronous approach to SDDP and one variant: the

�rst one with a synchronous point at each step and the second one without

any synchronous point.

� Chapter 6: presents the numerical experiments, which comprises a direct ap-

plication to solve the HTC problem and an assessment of the algorithm con-

sistency and performance.

� Chapter 7: presents the conclusions and future work.

3



Chapter 2

Mid/Long Hydrothermal

Coordination Problem

Power generation planning comprises the determination of the best use of the gen-

eration resources. Traditionally, the problem consists in minimizing the operation

cost, which is directly associated with the fuel used for thermal generation to sat-

isfy all constraints along the planning horizon. The inclusion of hydro plants with

reservoirs in the system creates an additional level of di�culty for power operation

planning because water can be stored for further use. In addition, reservoirs can be

spatially coupled in cascade, where the operation of upstream plants impacts the

availability of water in downstream plants.

Therefore, the Hydrothermal Coordination Problem (HTC) consists of coordi-

nating the use or storage of water, to achieve the objective of minimizing the high

costs of generation of thermal plants. When controlling the stored water, some sit-

uations may occur due to uncertainty on the natural water in
ows to the reservoirs

(which is a random variable), leading to \right" or \wrong" decisions, as illustrated

in Fig. 2.1. Such situations are associated to combinations of high or low in
ows

in the future with the decisions that are taken in the present: right decisions arise

when water is stored today and low in
ows occur in the future, or when water is

stored today and high in
ows occur in the future. By contrast, wrong decisions are

those where water is not stored today and low in
ows occur in the future, or when

water is stored today and high in
ows occur in the future.

One way to represent the sequence of such decisions along time is by considering

a discrete time discretization combined with a discretization of the random variables,

resulting in a discrete scenario tree, as shown in Fig. 2.2. Each time step will be

referred to in this work as a \stage", and the uncertainty in the HTC problem is

related to the in
ows to the hydro plants.

Ideally, the HTC problem should be modeled considering as many components

and constraints as possible, thus resulting in a better representation of reality. How-

4



Figure 2.1: Water use decision.

ever, since this may lead to a computationally intractable problem, HTC is usually

split into long, mid and short term problems, each one with an emphasis on the as-

pects that are most suitable for its corresponding time discretization and planning

horizon [25] [45] [27] [21].

This work is related to the long and mid term planning problems, taking into

account in the latter a proper coupling with a cost-to-go function provided by the

former. The aim is to solve multi-stage optimization problems expressed as a linear

programs (LPs), with the objective function of minimizing system operation costs

and considering both linear constraints and convex piecewise linear approximations

of nonlinear constraints. The variables of the problem represent major hydro and

thermal plants characteristics, taking into account cascaded hydro plants along the

river basins and a single node representation of the system. The following assump-

tions are also made:

� Each stage of the planning horizon is split into three load blocks to better rep-

resent intra-stage aspects. The consideration of load blocks allows to consider

the load variation inside a stage, then improving the precision over considering

one single value as average. Moreover, this approach is computationally less

5



Figure 2.2: Scenario tree representation.

costly than increasing the number of stages by decreasing the duration of each

time step;

� to enable complete recourse for the overall multistage stochastic problem that

is decomposed into smaller subproblems, slack variables are included for all

constraints with high arti�cial costs;

� Uncertain in
ows to reservoirs are stage-wise independent.

The planning horizon contains several stages, leading to a huge scenario tree. In

order to solve this problem, the sampling based approach of dual dynamic program-

ming called stochastic dual dynamic programming (SDDP) is applied, as explained

in Chapter 4.

The following sections will describe the objective function and constraints of

the subproblem for each staget and value for the random variabless in which the
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problem is decomposed, as well as additional constraints related to variables bounds.

In the sequel each possibilitys for the values of the random variables in each stage

will be denoted as \stage scenario".

2.1 Objective function

The objective function comprises thermal generation costs plus the expected value

of future costs, associated to the subproblems of all subsequent nodes:

minimize
NLX

p=1

NTX

i =1

cti gtt;s;p
i + Qt (vt;s ) (2.1)

where:

NL = Number of load blocks;

NT = Number of thermal plants;

cti = Linear incremental cost of each thermal plant (piecewise linear costs

can be modeled by splitting the generation range in several segments);

gtt;s;p
i = Generation of thermal plant on staget,

stage scenarios and load blockp.

Function Qt (vt;s ) is the so called future cost function (FCF) for staget, which is

a lower approximation of the expected value of the future costs beyond this stage,

as a function of storages in the reservoirs. Such function is obtained by Benders

cuts generated during the course of the DDP or SDDP solution algorithms, and is

evaluated for the vector of �nal storagesvt;s in the reservoirs at the corresponding

stage and stage scenario. Some arti�cial costs are also applied for practical reasons:

slack variables with high penalty costs to allow violation of some constraints, as well

as small penalty values to avoid unnecessary spillage and water waste.

2.2 Load supply

A load supply constraint is applied to each stage, scenario and load block:

NHX

i =1

ght;s;p
i +

NTX

j =1

gtt;s;p
j + def t;s;p = dt;p p = 1; :::; NL (2.2)

where:
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NL = Number of load blocks,

NH = Number of hydro plants,

NT = Number of thermal plants,

dt;p = Demand of load blockp and staget;

ght;s;p
i = Generation of hydro plant i at staget,

stage scenarios and load blockp;

gtt;s;p
j = Generation of thermal plant j at staget,

stage scenarios and load blockp;

def t;s;p= Energy de�cit at stage t,

stage scenarios and load blockp;

dt;p = Load demand of staget and load blockp.

2.3 Water balance

Water balance constraints are applied to each hydro planti and staget, taking into

account the topological structure of upstream and downstream plants along the river

courses:

vt;s
i � vt � 1;r

i +
NLX

p=1

(qtt;s;p
i + qst;s;p

i )+

�
NLX

p=1

X

j 2 
 up
i

(qtt;s;p
j + qst;s;p

j ) = I t;s
i i = 1; :::; NH

(2.3)

where:

vt;s
i = Storage at reservoiri at the end of staget and scenarios;

vt � 1;r
i = Storage at reservoiri at the end of the ascendant noder

(in stage t � 1) of scenarios;

qtt;s;p
i = Turbined out
ow of hydro plant i at staget,

scenarios and load blockp;

qst;s;p
i = Spilled out
ow of hydro plant i staget,

stage scenarios and load blockp;

I t;s
i = Water in
ow hydro plant i at step t,

stage scenarios;


 up
i = Set of upstream hydro plants to hydro plant i .

Such constraints imply both a spatial coupling (due to variablesqtt;s;p
j and qst;s;p

j ,

related to set of upstream hydro plants 
up
i ) and a time coupling (due to variables

vt;s
i and vt � 1;r

i ) among variables and constraints of the problem formulation.
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2.4 Hydro plant production function

The generation of the hydro plants is modeled to represent water head e�ects when

transforming the turbined out
ow into electrical energy. One approach is to apply

the so-called Approximate Hydro Production Function (AHPF) proposed in [19],

which consists in a piecewise linear model that also takes into account the e�ect of

spillage. Therefore, the following inequality constraints are considered for each load

block, hydro plant, stage and stage scenario:

ght;s;p
i � 
 (k)

0;i;t + 
 (k)
v;i;t (vt � 1;r

i + vt;s
i )=2

+ 
 (k)
q;i;t qtt;s;p

i + 
 (k)
s;i;t qst;s;p

i

k = 1; :::; NCUTi ; i = 1; :::; NH ; p = 1; :::; NL

(2.4)

where:

NCUT= Number of linear aproximations for the hydro production

function of hydro plant i ,


 (k)
0;i;t = independent term of cut k, hydro plant i , and staget;


 v;i;t = term related to reservoir storage for cutk of hydro plant i ,

for staget


 (k)
q;i;t = term related to turbined out
ow for cut k of hydro plant i , for staget;


 (k)
s;i;t = term related to spillage for cut k of hydro plant i , for staget.

All 
 coe�cients to all cuts are pre-calculated before solving the problem.

2.5 Future cost function (FCF)

In order to couple the last stage to water values given by a long term model, a

so-called future cost function (FCF) is applied. It is represented by a set of linear

inequalities that provide the expected value of system operating costs in the future

(related to thermal generation and energy de�cit) as a function of the vector of

storages in the reservoirs at the end of the planning horizon.

This work considered a future cost function provided by the long term model

NEWAVE [46]. However, since the o�cial use of the NEWAVE model for the

Brazilian system considers the representation of hydro plants as equivalent reservoirs

(EER), conversion coe�cients � were used to translate the value of stored energy in

each EER into water values for the individual storage in each reservoir, as shown

below. We note that the future cost function was obtained by the NEWAVE model

with a con�guration that is spatially compatible with the study cases considered in

this work, where all hydro plants are inside one EER.
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FCF T;s � � (k)
0;T +

NEERX

j =1

� (k)
j;T E T;s

eerj

k = 1; :::; NCUTF CF ;

E T;s
eerj

=
X

i 2 
 j

� i v
T;s
i

(2.5)

where:

T = last stage of the planning horizon;

NCUTF CF = Number of cuts (linear inequalities) that compose the FCF

from the long term model;

NEER = Number of EERs;

� (k)
0;T = Constant term of cut k of the FCF;

� (k)
j;T = Coe�cient related to EER j for cut k of the FCF;

E T;s
eerj

= Energy stored in EER j , stageT and

for stage scenarios;


 j = Set of hydro plants associated to EERj ;

� i = Conversion coe�cient for hydro plant i ;

vT;s
i = Reservoir storage for hydro planti at the end of stageT and

stage scenarios;
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Chapter 3

Parallel programming

This chapter aims to explain parallel programming concepts and terms to ensure a

proper understanding and to avoid ambiguities in this text.

The purpose of parallel processing is to reduce computational time as well as to

make some programs viable to be used in practice. A parallel scheme can be made

in several ways [52], depending on computer hardware, software architecture, and

operational system. Prior to writing parallel models, these characteristics must be

considered. Some classi�cations are used to create these parallel models, such as:

how data is accessed, memory storage, and the parallelism grain size.

3.1 De�nitions

� CPU: Central Processing Unit. Consists on a group ofprocessorsthat can

contain somecores. Computers may have more than one CPU, but desktops

usually have only one CPU with multi-cores.

� Node: Node is the term used to a complete computer inside a computercluster.

� Cluster: Computer cluster is a group of computers working together to solve

a problem.

� Task: Group of instructions to be executed by processors.

� Communication: Sending of data between tasks over shared memory or net-

work connections.

� Thread: Lightweight processes instantiated and linked from a larger program.

Executes a small portion of the program and has their program counters,

instructions and even owns a part of the memory.

� Latency: Time to send data between tasks.
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� Scalability: Capacity of increasing hardware resources to the complete com-

puter architecture. It means the capacity of a parallel model to improve per-

formance as the hardware to execute the program is increased.

3.2 Model classi�cation

Parallel programming models use Flynn's taxonomy [24], which classi�es them in

two dimensions: \Instruction Stream" and \Data Stream", with two possible states:

\Single" or \Multiple". As a result, four possible combinations associated with

Processor Unit (PU) can be generated, as described below.

3.2.1 SISD - Single Instruction Single Data

During a clock cycle, only one stream of instruction is used on PU, using a single

input of data stream, Fig. 3.1. shows a single processor computer used in small

scale to speci�c purposes. As an example, Internet of Things (IoT) devices and

computers to simple activities make use of the SISD architecture.

Figure 3.1: SISD - Single Instruction Single Data scheme.

3.2.2 SIMD - Single Instruction Multiple Data

During a clock cycle, only one stream of instruction is used on PU with a multiple

data stream input (Fig. 3.2). It is considered as a computer with parallel processor
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using vectorial data processing. This con�guration is applied on common cases like

image processing, which is used by Graphic Processor Units (GPU), for example.

Figure 3.2: SIMD - Single Instruction Multiple Data scheme.

3.2.3 MISD - Multiple Instruction Single Data

The single data stream can be processed by a stream of multiple instructions on

PU during a clock cycle, as shown in Fig. 3.3. The use of this classi�cation is less

spread than others.

3.2.4 MIMD - Multiple Instruction Multiple Data

Multiple data streams can be processed by a stream of multiple instructions during

a clock cycle on a PU, as shown in Fig. 3.4. This classi�cation disseminated to most

of the current Central Processor Units (CPU).

3.3 Memory classi�cation

Memory in parallel programming can be classi�ed by Processor Unit access as fol-

lows:
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Figure 3.3: MISD - Multiple Instruction Single Data scheme.

Figure 3.4: MIMD - Multiple Instruction Multiple Data scheme.

3.3.1 Shared memory

All processors have direct access to the same global memory address, and can operate

independently accessing the same memory space and also do not need to commu-

nicate data. Moreover, when one processor changes data in memory, all processors

have access to this modi�cation. This behavior tends to improve performance since

communication is not needed, but a layer of memory access control has to be used

to prevent memory miswriting/misreading.
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There are two kinds of shared memory to be considered [71]:

UMA - Uniform Memory Access

PUs can access direct shared memory with the same latency, as shown in Fig. 3.5.

This kind of shared memory does not have good scalability because the increase in

the number of processors also increases the number of memory access requests, and

only one processor can make this access at a time.

Figure 3.5: Shared memory scheme.

When a PU has a cache memory, this architecture has to re
ect memory modi-

�cations to the cache in all PUs simultaneously.

NUMA - Non Uniform Memory Access

This kind of memory architecture has a global memory that is accessed by all PUs,

but the latency is not the same, since this access is made through an interconnection

bus that is even located in the same hardware. This scheme has a higher scalability

than UMA because memories and PUs can be inserted into the same bus.

3.3.2 Distributed memory

In this memory architecture each PU maps its own memory and does not depend

on other PUs, thus not leading to a global memory scheme as in Section 3.3.1.

A memory change does not a�ect the memory of other PUs, so communication is

required to re
ect this change (Fig. 3.6 shows this architecture scheme). There are

some similarities between this architecture and NUMA (described in Section 3.3.1),
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since both have an interconnection bus between PUs. However, in the NUMA

architecture the PUs maps memory into global memory, which does not apply to

distributed memory.

Figure 3.6: Distributed memory scheme.

This architecture has a good scalability, because an increase in the number of

PUs in the network increases the available memory, since each PU has its own

memory, and interconnection overload does not exist. However, this architecture

requires an explicit data communication among PUs.

3.3.3 Hybrid memory

Hybrid memory consists of using shared and distributed memories simultaneously,

as shown in Fig. 3.7. Shared memory is used by PUs with physically shared memory,

like current CPUs or GPUs, and distributed memory is used for communicating over

a network connection.

The scalability of this architecture is the greatest among the mentioned architec-

tures, because inserting a computer in the network is relatively easier than inserting

another PU on a computer. However, memory management is an issue, because it

must be done manually by the programmer.

Due to its high scalability and 
exibility of use, this memory architecture was

employed to all implemented algorithms, then using shared or distributed memory

as convenient. If the processing occurs in the same processor shared memory was

used, otherwise distributed memory was applied by communicating data
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Figure 3.7: Hybrid memory scheme.

3.4 Parallelism grain size

Grain size is a measure of the amount of computation running on a task [35]. Some

characteristics, like running and communication time, as well as hardware architec-

ture, are considered when classifying the granularity in di�erent levels, as described

in [35] and shown in Fig. 3.8.

Figure 3.8: Grain size level. Remade from [37]

� Instruction level: Processors' instructions can be processed in parallel. Pro-
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grammers do not usually apply this parallelism level due to hard implementa-

tion, which is usually the work of a compiler;

� Loop level: This parallelism is usually applied by SIMD machines, mainly by

vectorized machines. It can be made by compiler or programmer on MIMD

machines, where a loop is split to parallel execution. This level is considered

as �ne grain;

� Procedure level: This level consists of split procedures, or even a rewrite of

some parts to di�erent processes. It is usually made by the programmer and

requires some communication. This level is considered as medium grain;

� Sub program level: Code is split in large parts and sometimes becomes di�erent

for each process. It requires communication and is considered as medium grain

like the Procedure level, or coarse grain if source code grouped in very large

parts;

� Program level: Program level grain is the more practical level and is usually

applied to embarrassingly parallel problems. A low amount of communication

is required.

The grain size applied to this work was chosen considering aprocedure level

aiming achieving a better scalability. The �ner the grain the more is the depen-

dence on hardware architecture, which directly a�ects the scalability. Furthermore,

a coarse grain is more suited to embarrassingly parallel problems, which are not

applied to this work, since increasing the number of processors also increases the

communication. Then, a medium grain size is more suited to this work.

3.5 Evaluation of parallelism performance

A very common measure to evaluate performance on parallel programs is the speedup

and e�ciency metrics [71].

Speedup is a ratio between serial and parallel execution time, as shown in Equa-

tion (3.1):

S(p) =
Ts

Tp(p)
(3.1)

where:

p = number of processors,

Ts = serial execution time associated to the best algorithm known in the

literature,

Tp(p)= parallel execution time to p processors
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Figure 3.9: Speedup regions.

The e�ciency metric is derived from speedup and measures how scalable a par-

allel algorithm is, as shown in Equations (3.2) or (3.3):

E(p) =
Ts

Tp(p)p
(3.2)

E(p) =
S(p)

p
100% (3.3)

A speedup chart can be drawn to evaluate performance for increasing values of

p, as shown in Fig. 3.9. This chart shows three di�erent regions, whose meanings

are as follows:

� Linear speedup: if S(p) = p, which means that increasing the number of

processors to computation adds no overhead on CPU time;

� Superlinear speedup: if S(p) > p, it may happen that the serial algorithm

to which the parallel algorithm is being compared to is not the fastest one.

However, in some cases it may be due to hardware features, such as more

memory in the parallel system than in the serial system;

� Common speedup region: if S(p) < p, which is the expected speedup region,

sinceTp(p) will probably be smaller than
Ts

p
, due to communication overhead
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and idle processing time. Therefore, the most common scenario is the one

whereS(p) saturates on increasingp.

3.5.1 Amdahl 's law

In the work [2], Amdahl stated that speedup can be calculated based on a factor

f of the serial fraction of the algorithm and the number of processors, as shown in

Equation (3.4). In this computation, the problem size was �xed toTs + Tp = 1.

S(p) =
Ts

fT s + (1 � f )
Ts

p

=
p

1 + ( p � 1)f (3.4)

where:

Ts= serial time,

f = factor of only serial part of algorithm

0 � f � 1

In Equation (3.4), increasing the number of processors to in�nity leads to the

maximum value of speedup, which is:

lim
p!1

S(p) =
1
f:

(3.5)

However, Amdahl had a pessimistic view of the parallel performance, because

in his speedup calculation a constant problem size was assumed. The section below

describes a di�erent point of view.

3.5.2 Gustafson 's law

In [28], Gustafson discussed Amdahl's law and argued, using scalability concepts,

that speedup should be measured by �xing the CPU time to solve the problem

and not the problem size, as in Amdahl's law. Usually, a parallel program has a

�xed serial time due to data input and handling, and a parallel time that can be

split among the processors. Therefore, adding more processors implies on reducing

the parallel time but not the serial time, as shown in Equation (3.6). This scaled

speedup compares an equivalent serial time by taking into account the processing

time of all processors (T0
s + pT0

p) with the time considering p processors (T0
s + T0

p).

The total time was �xed in T0
s + T0

p = 1 to perform calculations.

Sscaled(p) =
T0

s + pT0
p

T0
s + T0

p
(3.6)

where:
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Sscaled(p)= scaled speedup considering a �xed time,

T0
s = �xed serial time,

T0
p = parallel time

Consideringf 0 =
T0

s

T0
s + T0

p
as the fraction of the serial part of algorithm:

Sscaled(p) = f 0+ (1 � f 0)p (3.7)

where:

Sscaled(p)= scaled speedup considering a �xed time,

f 0 = factor of only serial part of scaled algorithm

0 � f 0 � 1

We note that the serial factor f , from Amdahl's law, is di�erent from f 0 in

Gustafson's law. The �rst one considers the size of problem �xed. The second one

considers that the problem size increases when the number of processorsp is in-

creased too. Therefore,f 0 is a fraction of an increasing problem size. In Gustafson's

law the time is �xed as well as the serial part, therefore increasing the number of

processors has positive aspects to the speedup and e�ciency evaluation. This is a

more optimistic view about the speedup calculations of parallel models as compared

to Amdahl's law.

This work used a mixed point of view of Amdahl's and Gustafson's law [4],

because the number of subproblems to be solved in each SDDP iteration (which

depends on the number of forward scenarios) grows when the number of processors is

increased (like in Gustafson's point of view). The proposed algorithm does not follow

the same assumption, and can be scaled without increasing the work load, until the

number of processors is equal to the number of stages (i.e.p = T). Therefore, the

adopted serial time is related to the problem with 1 processor executed with the

SDDP algorithm.

3.6 Parallel programming models

Parallel programming models consider the computer system architecture to perform

processors and memory arrangements, and can be made by di�erent ways [18] on

more general groups:pure parallel programming, heterogeneous parallel programming

and hybrid parallel programming.

3.6.1 Pure parallels programming models

The models associated with pure parallel programming can be of two types: pure

shared or distributed memory. Shared memory models imply di�erent tasks using
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the same memory region to read or write. There are some alternatives to achieve

this: to execute the program more than once sharing the same memory region, (see

Fig. 3.10) and thread models with Portable Operating System Interface for Linux

(POSIX) and OpenMP (see Fig.3.11), using threads.

Figure 3.10: Pure parallel models: Shared memory without threads.

Figure 3.11: Pure parallel models: Shared memory with threads.

Distributed shared memory is another possibility of pure parallel programming
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model and Message Passing Interface (MPI) can be used. In this work, parallel

programming focuses on MPI communication between processes due to its high

scaling capability.

Message Passing Interface (MPI)

MPI is a message communication-based protocol used by processes to communicate

with each other. The implementation is not a language but rather a library, being

supported by several languages [29] like C, Fortran, Java, and Python.

Processes will be included in groups (called communicators) and receive an

identi�cation (called rank id) for each communicator. The initial communicator

is \MPI COMM WORLD", which contains all processes initiated by the program.

Communication among processes can be collective or point to point, depending

on what is best suited for the situation. Both forms of communication have associate

parameters: communicator, the rank id, and in some cases a tag that identi�es a

speci�c message.

Synchronism is another characteristic exploited by sending and receiving data.

Messages can be synchronous, such that all processes involved in communication

have to be at this code point to communicate with each other, or can be asyn-

chronous, when processes can send the message without the receiver being in this

code point. Asynchronous communications apply user or system bu�ered data, and

the system bu�ered depends on the MPI library implementation.

Implementations of MPI libraries have to follow the IEEE standard [3], and some

methods must exist to "point to point" and collective communications. Some exam-

ples are \MPI Send" and \MPI Reveive" to \point to point" (both to synchronous

or asynchronous communications), and \MPIBroadcast" to collective communica-

tions. These libraries can contain additional methods to improve user experience.

3.6.2 Heterogeneous parallel programming models

In 2001, NVIDIA introduced the �rst programmable GPU: GeForce3, and later, in

2003, the Siggraph/ Eurographics Graphics Hardware workshop, held in San Diego,

�rst introduced the GPGPU (General-purpose GPU) concept [41]. At this point,

programming to GPU was already possible, also allowing programmers to use all

GPU cores. Considering that, a computer that already possesses a CPU could use

a GPU as well.

NVIDIA creates a language to enable the programmer to use GPU hardware:

CUDA (Compute Uni�ed Device Architecture) [53]. This language was speci�c to

NVIDIA cards, so the community worked together to create OpenCL (Open Com-

puting Language) standards to enable the use of heterogeneous parallel programming
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with other graphic cards [38].

3.6.3 Hybrid parallel programming models

The hybrid parallel programming aims to combine di�erent models to suit problem

needs. Pure shared memory parallel models have better use of memory since they

do not have to communicate with each other, as opposed to the distributed memory

parallel model. When the problem allows combining coarse grain with a �ne grain, a

hybrid MPI+OpenMP can be used, for example. A very intensive computation and

coarse grain of problem suits to a hybrid CUDA+MPI. The survey [18] exploited

some possibles hybrid combinations.

This work could use di�erent parallel programming models, but the available

resources limited the choice. Then, a pure parallel programming model using MPI

was applied, once the available resources are restricted to nodes with a limited

number of cores and the scalability resides on increasing the number of nodes.

24



Chapter 4

Stochastic Dual Dynamic

Programming

The main objective of this chapter is to explain the Stochastic Dual Dynamic Pro-

gramming (SDDP technique) that is widely applied to solve large multistage stochas-

tic problems. We start describing a general stochastic programming problem, using

the decomposition-based dual dynamic programming (DDP) approach as a refer-

ence method to solve it, until reaching the SDDP method in particular, which is a

sampling-based extension of DDP. Later on, we discuss the SDDP tree traversing

protocol with forward and backwardpasses, that apply the Benders decomposition

technique to build piecewise linear approximation of the future cost function for

each stage. Finally, we discuss the application of parallel strategies to SDDP.

4.1 Stochastic Programming

A key point in the hydrothermal coordination problem is the representation of un-

certainties, especially stochastic in
ows to the reservoir in predominantly hydro

systems [45] [65] [25] [27].

Consider a multi-stage problem with multiple scenarios, as shown in Figure 2.2,

where both the time steps and the in
ow scenarios are discrete. The so-called \com-

plete" tree consists of all possibilities for this model. Each time step is denoted byt,

each possible in
ow on time step ass, and each combination of (t; s) de�nes a node

in the tree, to which is a subproblemSPs
t is related, with conditional probability ps

t

to the parent (previous) node of the tree. The total cost from node (t,s) until the

end of the planning horizon is described by Equation 4.1.

Time step is the discretization of smaller portion of the horizon study, and it

depends on problem being solved, i.e., long, mid and short term can use di�erent

sizes of time step. Di�erent time steps associated with there in
ow possibilities
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can be grouped forming a sub tree when algorithm is solving the problem, the

so called \stage". This work considered one time step to each stage, and to avoid

misunderstanding problems with \time step" and \step" (explained later on Chapter

5), the term \time step" was called along this work as \stage".

Cs
t = f (xs

t ) +
X

s2 
 t +1

ps
t+1 f SP s

t +1 (4.1)

where:

Cs
t = Total cost for node (t,s),

xs
t = Decision variables of the problem for node (t,s),

f (xs
t ) = Present cost function for the subproblem of node (t,s),


 t+1 = Set of all descendant subproblems of node (t; s) in stage t + 1,

ps
t+1 = Conditional probability of node ( t + 1; s), related to its parent node

in staget � 1,

f SP s
t +1

= Future cost function (or recourse function, as known in the stochastic

programming literature), for the subproblem of node (t; s)

The straightforward approach to solve this problem is to to gather the variables

and constraints related to all nodes of the scenario tree in one single problem and

solve it by a given optimization method. However, it is possible to notice that

increasingt and s may lead the size of the tree to become huge and computationally

impractical to handle. Therefore, decomposition of the problem becomes mandatory,

and one e�cient method is based on Benders decomposition [5]. Such technique was

applied by the L-shaped method [66], which decomposes the problem into one master

problem for the �rst stage and several subproblems (\slave problems") for the second

stage, one for each discrete possibility of chosen random variable. The link between

the two stages is done by adding constraints (Benders cuts) to the �rst (master)

problem, and considering the variables in second stage subproblems related to the

�rst subproblem as state variables. The values of the state variables are replaced

before solving each subproblem. An extension of this method for the multistage

setting was proposed in [6] and was labeled as \dual dynamic programming" (DDP).

4.2 Dual Dynamic Programming

Dual Dynamic Programming aims to decompose the overall problem and solve all

nodes of the tree iteratively, until the method reaches convergence by satisfying a

given stopping criterion. Each DDP iteration constructs a new linear cut for the

piecewise approximation of the cost-to-go function of each node, whose arguments

are the state variables coming from the corresponding parent node of the scenario

tree. An iteration of the tree traversing strategy of the traditional DDP approach
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consists of performing two steps:forward and backwardpasses, which are described

as follows:

� Forward passes: solve subproblems from the �rst to the last stage, obtaining

the solution for the variables of each node and sending them forward to set

the state variables of the corresponding subproblems. Figure 4.1 illustrates a

forward pass of the DDP approach.

� Backward passes: solve subproblems from the last to the �rst stage, creat-

ing Benders cuts, and sending them to be added in the subproblems of the

corresponding parent node, as shown in Figure 4.2.

Figure 4.1: DDP forward pass.

The convergence of the method occurs when the di�erence between the upper and

lower bounds for the optimal solution of the overall problem, which are computed
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Figure 4.2: DDP backward pass.

in each iteration, is below a given tolerance� , as expressed in Equation 4.2. The

lower boundZ lower is the value of the optimal solution of the root node subproblem,

which includes both present and future costs for that node. The upper boundZupper

is the sum of the present costs related to the optimal solution of all subproblems,

weighted by their corresponding probabilities [6], as in Equation 4.3.

Zupper � Z lower

Z lower
< = � (4.2)

where:

Zupper = Upper bound for the value of the optimal solution

Z lower = Lower bound for the value of the optimal solution

� = Pre-de�ned tolerance for the value of the optimal solution

Zupper =
X

t2 T

X

s2 
 t

ps
t z

s
t (4.3)
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where:

T = Number of stages


 t= Set of all subproblems of staget

ps
t = Probability of the node (t, s)

zs
t = Present cost of the subproblem related to node (t, s)

4.2.1 DDP variants regarding cut creation

The original version of the DDP approach [6] used the single-cut version on the algo-

rithm, where the information on the Benders cuts for each stage scenario is grouped

into a single recourse function for each node. The multi-cut version in [7] consists in

creating individual piecewise linear approximations for the recourse function related

to each descendant node of a given node, leading to a more re�ned approximation.

This version is more costly in terms of memory requirements and CPU time to solve

the subproblem for each node, but tends to decrease the number of DDP iterations

until convergence. Such version could be implemented as well, and its advantage

over the single-cut version may depend on the number of descendants and character-

istics of the problem. In particular, in one of the asynchronous approaches proposed

in this work, the multi-cut version may be attractive, as discussed later in section

5.1.

4.3 Stochastic Dual Dynamic Programming

One extension to DDP is a sampling-based method called SDDP, proposed in [55],

which becomes necessary for problems with a huge scenario tree, where it is im-

possible to visit all nodes. Researchers have derived several variants of the SDDP

algorithm like \Convergent Cutting-Plane and Partial-Sampling" (CUPPS, [12]),

\Abridged Nested Decomposition" (AND, [22]), and \Reduced Sampling" (ReSA,

[31]).

The SDDP algorithm also performs backward and forward passes iteratively, but

instead of traversing the whole scenario tree, it generates scenario samples (with

resampling at each iteration) until reaching a given stopping criterion, as shown in

Figure 4.3. The SDDP iteration is represented in Pseudo Code 4.1.

1 stop = false

2

3 for i terat ion

4 from 1 to maxIterat ion

5 and not stop

6 and not convergenceReached do
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7

8 reSampleScenar iosTree ()

9

10 // Forward Passes

11 for stage

12 from 1 to ( stagesLenght - 1) do

13 for scenario

14 from 1 to scenariosLenght - 1 do

15 solve (stage , scenario )

16 communicateStateVar iables (stage , scenario )

17 end

18 end

19

20 stop = stopCri ter ia ()

21

22 if not stop then

23 // Backward Passes

24 for stage

25 from stagesLenght to 2 do

26 for scenario

27 from 1 to scenariosLenght - 1 do

28 for aperture

29 from 1 to apertureLenght - 1 do

30 // Receive only if avai lable

31 receiveCuts ( stage )

32 solveAperture (stage , aperture )

33 prepareCut (stage , aperture )

34 end

35 createCut (stage , scenario )

36 communicateCuts ()

37 end

38 end

39 else

40 end

41 end

Pseudo Code 4.1: SDDP Iteration.

As in DDP, forward passes range from stage 1 toT � 1. At the end of each

forward pass, some values of the state variables are obtained where to evaluate and

build a new approximation of the FCF of the problem, in the backward pass. It is

important to note that, in the SDDP approach, the recourse function is given by

stage, rather than by node as in DDP.
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Figure 4.3: SDDP tree.

The optimal value of the solution of the �rst node is used as a lower bound to

the overall problem, and the average sum of the present costs of all nodes, taking

into account all scenario samples, is used as a sample value to obtain a statistical

approximation for the upper bound, which is valid only in the risk-neutral version

of SDDP (for risk-averse approaches, see [56] [39]).

Cut sharing is a valuable technique to improve SDDP performance [36]. When

there is a stage-wise independence among the random variables for each stage, and

also in some situations where dependency exists [36], samples must share Benders

cuts to ensure convergence [44] [49].
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4.3.1 Stopping criterion

When the SDDP algorithm was �rst presented in [55], it was stated that a con�dence

interval could be applied to Equation 4.2 to obtain a statistic stopping criterion in the

risk-neutral case, as considered in this work, since it is possible to evaluate an upper

bound based on a sample of scenarios. The work [22] �rst stated that �nite conver-

gence requires resampling through iterations, and later [40] proved an almost-sure

convergence to SDDP algorithm considering the independence of sampled random

variables. In the same direction, [57] extended such almost-sure convergence proof

for the dependent case.

Many researchers presented alternative rules to stop the SDDP algorithm: in

[33] it was presented a new version of the statistical convergence criterion based on

the proximity between upper and lower bounds. The work [63] proposed a metric

based on the stability of the lower bound that compares the lower bound of previous

iterations until a relative di�erence on its variation reaches a value below a given

tolerance forN consecutive SDDP iterations.

Another possibility is to evaluate the amount of cuts that have been built. This

approach allows a fair comparison between methods that propose di�erent num-

bers of scenarios along the forward passes [64]. The algorithm converges when a

predetermined Benders cuts is reached.

Still regarding the construction of Benders cuts, in [10] it was presented a cut

evaluation strategy as stopping criterion. The Benders cuts receive so called \bene-

�t" values, and when such bene�t is below a tolerance value, the algorithm reaches

convergence. Finally, another rule associated with iterative algorithms is the maxi-

mum number of iterations, which was the stopping criterion adopted for this work.

4.4 Traditional Parallel SDDP Strategy

Parallel programs can signi�cantly jeopardize the expected reduction in the overall

running time of a program due to communication and processor idle time. Reducing

this undesired time can be hard but is needed to successfully improve the program

running time (some experience in this topic is provided in [70].

In [14] and [58] it was presented a so-called \standard" parallel scheme strategy

applied to, in which scenario samples are solved independently, i.e., the forward

scenarios are solved separately by di�erent processes both in backward and forward

passes. Another relevant characteristic of parallel processing applied to the SDDP

algorithm is the existence of a synchronization point in each stage when samples

share their cuts.

The load balance among processes can be dynamic or static. Dynamic load bal-

32



ance was exploited in [58], consisting of sending all state variables and Benders cuts

to a so-called master node, which distributes data each iteration to all processors

executing the program. This behavior implies always resetting the linear problems

before solving and communicating data from/to master node, thus increasing pro-

cessing and waiting time. On the other hand, static load balance does not su�er

the increasing time by resetting linear problems but requires data updates before

solving. Therefore, depending on the application, both approaches can be attractive.

This work considered a static load balance because of the small number of con-

straints to be updated and a limited number of Benders cuts added through SDDP

iterations. Furthermore, the structural di�erences between the linear problems in

each processor is small. However, depending on initial reservoir values and the val-

ues of in
ows, the time to solve the subproblems for each stage scenario may vary a

lot. The static load balance implies dividing the subproblems for all nodes among

processors, and the assigned process becomes responsible for a given set of samples.

In the forward pass, each entire forward sample is solved separately by one

process. Since it sends information of state variables for the next stage in the same

sample and process, there is no extra time to communicate (Figure 4.4).

In the backward pass, even though the di�erent processes independently solve

the subproblems for all backward scenarios in the forward samples, there is a syn-

chronization point in every stage to distribute all Benders cuts among the processes

(Figure 4.5).

After forward and backward passes are performed in each SDDP iteration, the

process that is responsible for the �rst stage calculates parameters to evaluate the

stopping criterion (Section 4.3.1). In this step, depending on the adopted criterion,

some communication may be needed. If the value ofZupper is necessary, the informa-

tion from all present costs has to be sent by all processes to the process responsible

for the �rst stage [58].

Researchers have proposed later other parallel schemas: [30] relaxed the stage

dependence to communicate cuts in the backward pass among processes, bringing

some good results. The main idea was to wait a certain number of cuts to be added

before moving on, thus reducing the idle time due to communication among samples.

These assumptions heavily depend on the study case.
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Figure 4.4: SDDP parallel forward.

Figure 4.5: SDDP parallel backward.
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Chapter 5

Proposed Asynchronous

Stochastic Dual Dynamic

Programming Method

In the previous chapter, it was shown that the standard SDDP approach has an

intrinsic dependency between stages on backward and forward passes, and also a

dependency among samples in the backward pass. In order to break this stage

dependency, we propose an algorithm which independently performs the solution of

all stages and computes backward and forward passes simultaneously. The method

proposed here is an extension, to the sampling-based framework, of the successful

ideas previously proposed in [62] and [9] for the Dual Dynamic Programming (DDP)

method applied to deterministic and stochastic problems, respectively.

Instead of proceeding backward and forward passes as a standard SDDP \iter-

ation", ASDDP iterates by proceeding a so-called\step." This distinction clari�es

the main di�erence between the two methods. In the traditional SDDP approach, a

single iteration of the backward pass transmits the information from the last time

stage to the �rst stage through Benders cuts. In contrast, in the ASDDP algorithm,

the information from each stage is only transmitted to its corresponding neighbor

stages, therefore the information of the last stage, for example, arrives at the �rst

stage only several steps later (this number is equal to the length of the time horizon).

Fig. 5.1 shows an ASDDP application with only one forward sample and four

stages, each one with two backward scenarios. In each step of the ASDDP algorithm,

the subproblem for all backward scenarios and stages are solved, and then resampling

is performed for the next step. As a consequence, each step also creates a Benders

cut related to each backward scenario, which is aggregated when thesingle cut

variant of DDP is applied. It is noted that \Implicit forward passes" are formed

through the steps, starting at the end of theN th step, whenN is the number of
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stages.

Figure 5.1: ASDDP solution process.

Pseudo Code 5.1 illustrates the solution process of the ASDDP algorithm through

steps, where implicit backward (in orange) and forward (in green) passes are pro-

cessed simultaneously. The algorithm stores Benders cuts and state variables for

later communication.

Communication of state variables (Fig. 5.2) and Benders cuts (Fig. 5.3) oc-

curs between neighbor stages, besides an additional communication among di�erent

samples if more than one forward sample per step is considered. In each individual

sample, the subsequent stages receive state variables from previous stages as in a

traditional forward pass of the SDDP algorithm. Also, previous stages receive Ben-

ders cuts computed by their subsequent stages from all samples as in a traditional

SDDP backward pass.

The proposed asynchronous scheme aims to improve scalability by allowing an

increase in the number of processors, especially in the forward pass, which is limited

to the number of forward samples in the traditional SDDP algorithm.
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1 for step
2 from 1 to maxStep
3 and not stopCri ter ia () do
4 reSampleScenar iosTree ()
5
6 // Backward / Forward Passes
7 for stage
8 from stagesLenght - 1 to 1 do
9 for scenario

10 from 1 to scenariosLenght - 1 do
11 for aperture
12 from 1 to apertureLenght - 1 do
13 solveAperture (stage , aperture )
14 prepareCut (stage , aperture )
15 end
16 createCut (stage , scenario )
17 storeCuts (stage , scenario )
18 storeStateVariables (stage , scenario )
19 end
20 end
21
22 // Communicate cuts
23 // and states variables
24 communicateCuts ()
25 communicateStateVar iables ()
26 end

Pseudo Code 5.1: ASDDP Iteration
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Figure 5.2: Communication of states in the ASDDP approach.

Moreover, the method reduces the idle time among processes in the backward

pass, therefore decreasing the CPU time and increasing both e�ciency and parallel

performance, mainly when the number of backward scenarios is not high, as seen

later in the results.

The algorithm synchronizes all information among processes at the end of each

backward pass, i.e., a given process awaits both the Benders cuts and the states

calculated at the current backward pass. Pseudo Code 5.1 illustrates this behavior,

which guarantees that each process will perform the job related to each step in

the same way, no matter how many processors are used to run the program. This

behavior yields the property of reproducing the same results regardless of the number

of processors, which may be required in certain applications, such as in the o�cial

operation planning of the Brazilian HTC problem. [45] [21]

A variant of this algorithm without a synchronization point is presented at Sec-

tion 5.1. Both algorithms take into account the number of stages and scenarios to

distribute subproblems to processors. Fig. 5.4 and Fig. 5.5 exemplify a possible

division of a problem with two samples and four stages when four processors and
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Figure 5.3: Communication of Benders cuts in the ASDDP approach.

eight processors are employed, respectively.
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Figure 5.4: Division of an ASDDP parallel problems in 4 processors.

Figure 5.5: Division of an ASDDP parallel problem in 8 processors.

5.1 Variant without synchronization point

This approach, labelled as \totally" asynchronous ASDDP (or TASDDP) does not

require a full synchronization before each step, and waits for any incoming data to a

given processor to proceed to the next step. As a consequence, in this algorithm it

is not guaranteed that all processes will be performing the same step of the overall

TASSDP approach, and the results may vary according to the number of processors.

Thus, TASDDP does not have an iteration as SDDP nor a step as ASDDP. The

single cut version of DDP was implemented to this TASDDP variant, as described

in the Pseudo Code 5.2. In [30], a similar approach was proposed in the backward

iteration, such that a subproblem from a previous stage starts being solved without

receiving Benders cuts from all backward scenarios of the current stage.
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1 for step
2 from 1 to maxStep
3 and not stopCri ter ia () do
4 reSampleScenar iosTree ()
5
6 // Backward / Forward Passes
7 for stage
8 from stagesLenght - 1 to 1 do
9

10 for scenario
11 from 1 to scenariosLenght - 1 do
12 for aperture
13 from 1 to apertureLenght - 1 do
14 // Receive only if avai lable
15 receiveCuts ( stage )
16 solveAperture ( aperture )
17 prepareCut ( aperture )
18 end
19 createCut (stage , scenario )
20 sendCut (stage , scenario )
21
22 sendStateVariables (stage , scenario )
23 receiveStateVariables (stage , scenario )
24 end
25 end
26
27 // Waits only if not
28 // received above
29 waitAnyCut ( stage )
30 end

Pseudo Code 5.2: TASDDP Single cut Iteration
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1 for step
2 from 1 to maxStep
3 and not stopCri ter ia () do
4 reSampleScenar iosTree ()
5
6 // Backward / Forward Passes
7 for stage
8 from stagesLenght - 1 to 1 do
9 for scenario

10 from 1 to scenariosLenght - 1 do
11 for aperture
12 from 1 to apertureLenght - 1 do
13 // Receive only if avai lable
14 receiveCuts ( stage )
15 solveAperture (stage , aperture )
16 createCut (stage , aperture )
17 sendCut (stage , aperture )
18 end
19 end
20 sendStateVariables (stage , scenario )
21 receiveStateVariables (stage , scenario )
22 end
23
24 // Waits only if not
25 // received above
26 waitAnyCut ( stage )
27 end

Pseudo Code 5.3: TASDDP Multi cut Iteration
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Since a synchronization point is not applied to TASDDP, in this variant the multi

cut version of DDP may be attractive (see Pseudo Code 5.3) because a new cut can

be sent to the previous stage as soon as it is generated. The other operations remain

the same as in the single cut approach.

5.2 Upper bound estimation

The estimation of the upper bound proposed in [55] is based on the average costs

of all stages and scenarios obtained through a Monte Carlo simulation as shown in

Equation 5.1:

Zupper =
1
N

NX

n=1

zn (5.1)

where:

N = Number of scenarios,

zn= Total cost each n scenario

In that work, such estimation was applied to a set of �xed forward scenarios (sam-

ples). By contrast, this work applies resampling at each iteration, thus complicating

the evaluation of the upper bound, since the new samples can be more optimistic or

pessimistic on average, and therefore the upper bound value can oscillate.

The idea proposed in this work to overcome this oscillation e�ect is to store the

latest M values of system operations along forward samples to calculate a moving

average along the ASDDP iterations (Equation 5.2). As a result, in each ASDDP

iteration an incoming operation cost for a new scenario replaces the oldest one in

the list. Since the upper bound calculation occurs when an implicit forward is

completed, the �rst upper bound computation is obtained only afterT steps (see

Figure 5.1).

Z 0
upper =

1
M

MX

m=1

zm
upper (5.2)

where:

M = Number of stored upper bounds,

zm
upper = Upper bound referent to the mth item in list

Figure 5.6 illustrates the e�ect of moving average on ASDDP upper bound, and

shows the SDDP upper bound without that tool.

However, the upper bound estimation for the TASDDP method is not as easily

traceable as in ASDDP, therefore it is not used in the same way in that method. A

possible upper bound estimation which suits all three methods (SDDP, ASDDP and
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Figure 5.6: SDDP and ASDDP upper bound on resampling behavior.

TASDDP) is to perform a simulation of the policy with a large number of samples

after the forward/backward passes (maybe after eachk iterations), and to estimate

the upper bound as the average cost among them [43].

5.3 Implementation aspects

Software Engineering is an essential subject that is related with every step in software

development, since creation until deploy and future maintenance [68].

Large software frequently use the object-orientation (OO) paradigm, which is

based on the use of classes and objects. A class is a model from a real-world entity

and is composed of attributes and methods. An object is an instance of a class,

which enables di�erent combinations of attributes values. Classes can be pure or

abstracts, and in the latter case cannot be instantiated directly, but only by an

inheriting class.

The use of classes and objects allows the software to be reusable and maintain-

able, which are essential characteristics to large and long-range software. The term

\Reusable" means to improve the capability of using a class in multiple parts of the

code. Also, maintenance refers to the easiness on how to add, change, or read source

code [68] [15].

Two other software features that ensure reusability and maintainability are \cou-

pling" and \cohesion" [32] [48] [60]. Coupling de�nes the software arrangement on

connecting parts, and cohesion is the grouping of these parts by a common subject.

The base of OO is on the following concepts [59]: abstraction, inheritance, poly-

morphism, and encapsulation, which are described below:
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� abstraction means to create a model from the real-world problem;

� inheritance ensures the re-use of functions and data from another de�ned

class, improving the approximation of the model to the real-world problem.

The inherited class is called \base class" (or superclass), and the inheriting

class is called a \subclass" (Fig. 5.7).

� polymorphismis an abstraction where an object can assume di�erent behaviors

on runtime. The inheriting class overrides methods or attributes as the model

needs.

� encapsulation hides or shows class members from external access or inher-

iting classes as convenient, in order to protect parts of the code or only to

show what is relevant. \Public", \protected", and \private" are the common

encapsulation levels.

Figure 5.7: Illustration of class inheritance.

Software design patterns

Software evolves as humanity does [67], and one evidence is the development of

\design patterns". Design patterns are standard solutions to similar problems that

occur recurrently in di�erent situations and models. Besides, the use of a design
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pattern can improve the understanding of the source code by other software designers

when reading it [51].

There exists a lot of well-known design patterns [26] [51] [1], and several �elds

of knowledge use these designs [54] [34] , as electrical knowledge, [23] [61].

This work used, in particular, two design patterns: \Factory" and \Strategy",

which are explained in the next sections.

Factory design pattern

The factory design pattern [26] uses factory methods to create objects without spec-

ifying which class will be the base of the created object. A base factory class (prefer-

entially an interface) will contain methods to create objects, and subclasses that in-

herit this one will override methods to return the object. These methods, internally,

will create the objects, and the caller class will not need to call class constructors,

see Fig. 5.8 and Pseudo Code 5.4. Using the factory design pattern increases the

decoupling in software, and consequently, its maintainability and reusability.

1 IFactory factory ;

2

3 // Instance of the factory due to condit ion

4 if ( condit ion )

5 factory = ConcreteFactory1 () ;

6 else

7 factory = ConcreteFactory2 () ;

8

9 // Create an object , independent ly of factory type

10 Type1 object = factory . createObject () ;

Pseudo Code 5.4: Factory design pattern use.
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Figure 5.8: Factory design pattern.

Strategy design pattern

The strategy design pattern enables choosing a strategy behavior on run time [26].

It is strongly linked with reusability and maintainability and helps to improve source

code decoupling. Such behavior, represented by a base class (preferentially an in-

terface), is inherited by implementations, subclasses, and used by other classes that

do not know this behavior (see Fig. 5.9 and Pseudo Code 5.5 to more details).

1 IStrategy strategyObj

2

3 // Instance of the strategy due to condit ion

4 if ( condit ion )

5 strategyObj = Behavior1 ()

6 else

7 strategyObj = Behavior2 ()

8

9 // Create an object to the class using the strategy

10 ClassUsingStrategy obj

11 // Apply the strategy , independent ly of its behavior

12 obj . strategy = strategyObj

13

14 obj . doStrategy ()

Pseudo Code 5.5: Strategy design pattern use.
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Figure 5.9: Strategy design pattern.

Design patterns on work

Regardless of the method applied to solve the HTC problem (as a single Linear

problem, DDP, SDDP, and ASDDP), the variables and constraints are nearly the

same. The di�erence resides on the presence of state variables and the position

on the when verifying the stochastic value. For example, when creating the water

balance constraint, if Benders decomposition is applied then a state variable should

exist.

The phylosophy of the method is that it does not matter which variable or con-

straint is in the problem, so a factory design pattern suits this situation. When

a method creates the individual problems, it iterates over a list of variables and

constraints factories. Thus, this design allows using the solution method with any

problem. Fig. 5.10 shows some examples of possibles variable and constraints fac-

tories applied to the HTC problem.

Moreover, in the solution method, strategy patterns were applied in di�erent

contexts such as: the overall problem and on backward/forward passes (see Fig.

5.11), in which a pre solve strategy was applied before solving any subproblem

(to update constraints, for example), a post solve strategy applied after solving

any subproblem (to store state variables, for example), and a store strategy to put

variables and dual solutions at the end of the solution.
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Figure 5.10: Variable and constraint factories examples.

Figure 5.11: Solution methods strategies examples.
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