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AUTÔMATO TEMPORIZADO COM SAÍDAS E TRANSIÇÕES
CONDICIONAIS: MODELAGEM, IDENTIFICAÇÃO E DETECÇÃO DE
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Neste trabalho, um método para detecção de falhas de Sistemas a Eventos Dis-
cretos (SED) baseado em um modelo temporizado chamado Autômato Temporizado
com Saídas e Transições Condicionais (ATSTC), obtido por identificação, é apre-
sentado. O ATSTC é uma extensão de um modelo não-temporizado recentemente
proposto na literatura, chamado Autômato Determinístico com Saídas e Transições
Condicionais (ADSTC). Diferentemente do ADSTC, no qual apenas o comporta-
mento lógico do SED é considerado, o ATSTC leva em consideração informação
sobre o tempo em que os eventos são observados, e, por esse motivo, pode ser uti-
lizado para a detecção de falhas que não podem ser detectadas através do uso de
modelos não-temporizados, como falhas que levam o detector de falhas a estados de
bloqueio. O ATSTC representa o comportamento livre de falhas do sistema, e uma
falha é detectada quando o comportamento observado é diferente daquele previsto
pelo modelo, considerando tanto informação lógica quanto temporal. Além do pro-
cedimento de identificação necessário à obtenção do modelo ATSTC, o algoritmo
para detecção de falhas também é apresentado. Um exemplo prático é utilizado
para ilustrar os resultados do método proposto.
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In this work, a method for fault detection of Discrete-Event Systems (DES) based
on a timed model called Timed Automaton with Outputs and Conditional Transi-
tions (TAOCT), obtained by identification, is presented. The TAOCT is an exten-
sion of an untimed model recently proposed in the literature, called Deterministic
Automaton with Outputs and Conditional Transitions (DAOCT). Differently from
the DAOCT, where only the logical behavior of the DES is considered, the TAOCT
takes into account information about the time that the events are observed, and,
for this reason, it can be used for the detection of faults that cannot be detected by
using untimed models, such as faults that lead the fault detector to deadlocks. The
TAOCT represents the fault-free system behavior, and a fault is detected when the
observed behavior is different from the one predicted by the model, considering both
logical and timing information. In addition to the identification procedure required
to obtain the TAOCT model, the algorithm for fault detection is also presented. A
practical example is used to illustrate the results of the proposed method.
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Chapter 1

Introduction

In the past years, interest in the domain of fault diagnosis of Discrete-Event Systems
(DES) has increased. Since the introduction of the concept of fault diagnosis and
diagnosability analysis of DES in SAMPATH et al. [1], several methods have been
proposed in the literature for fault diagnosis of untimed DES [2–6], and of timed
DES [7–11]. These methods provide a theoretical framework for the study of fault
diagnosis of DES. However, their application to complex real systems, such as in-
dustrial plants, is a difficult task since these methods rely on an accurate model of
the system, including its post-fault behavior.

In general, the modeling of a real-world system is very laborious and time con-
suming, since, depending on its size and complexity, it is very difficult to take into
account all possible behaviors of the system in the model. This problem is ampli-
fied when the post-fault behavior is considered, since there may exist unpredictable
consequences to a fault occurrence. In addition, the modeling process requires en-
gineers that know the plant behavior, and are familiar with discrete-event modeling
techniques. All these problems restrict the application of methods based on the
complete system model to small systems, where the fault-free and faulty behaviors
can be completely known.

In order to overcome the modeling difficulties that arise due to the aforemen-
tioned problems, some solutions based on system identification were presented using
Petri net models [12–18]. However, most of these works do not address the problem
of fault diagnosis. An identification method suitable for fault diagnosis is presented
in CABASINO et al. [17], but only the faulty behavior is obtained by identifica-
tion, and complete knowledge of the fault-free behavior of the system is required.
In DOTOLI et al. [14], even though complete knowledge of the fault-free behavior
of the system is not required, partial knowledge about the model is assumed, e.g.,
it is necessary to provide an upper bound on the number of places in the net. In
DOTOLI et al. [16], knowledge about the faulty behavior is not required, and the
problem of identifying the unobservable behavior of a DES is addressed. However,

1



in DOTOLI et al. [16], the fault-free system structure and dynamics are assumed to
be known.

In the Petri net identification methods proposed in the literature with the ob-
jective of fault detection, it is supposed that the system structure or dynamics
are completely or partially known, which makes this formalism suitable for model-
ing these systems. However, when no previous knowledge of the system is given,
then automata become a suitable formalism for identification due to its more basic
structure. In addition, generating an automatic fault detection method for systems
modeled by automata is simpler than for systems modeled by Petri nets. Since, in
this work, we assume that no previous knowledge about the system is available, then
we have focused on the identification of automaton models.

Fault detection techniques based on an identified automaton model of the system
have been proposed in the literature [19–22]. In these works, the two main ideas
are: (i) to automate the process of obtaining the fault-free model of the system by
using identification; and (ii) when a fault has been detected through a discrepancy
between the system behavior and the model, to use a technique based on residuals
for fault localization [22, 23].

A model for the identification of closed-loop industrial DES, called Non-
Deterministic Autonomous Automaton with Outputs (NDAAO), is presented in
KLEIN et al. [19]. The identification procedure is based on the acquisition of binary
signals exchanged between the Programmable Logic Controller (PLC) and the plant.
These signals correspond to sensor readings (inputs to the controller) and actuator
commands (outputs of the controller), as shown in Figure 1.1. The NDAAO is iden-
tified from observed fault-free paths of the system, composed of sequences of vectors
whose entries are the values of the binary input and output signals of the controller.
These sequences form the input data of the identification procedure. With a view to
obtaining a compact model, loops are introduced in the identified NDAAO, leading
to the generation of sequences that have not been observed during the identification
process. These sequences form the exceeding language generated by the identified
model, and can be associated with non-detectable faults.

In MOREIRA and LESAGE [21], a different automaton model, called Determin-
istic Automaton with Outputs and Conditional Transitions (DAOCT), is proposed.
Conditions for the transposition of the transitions associated with the observed
fault-free paths used in the identification procedure are added to the model by using
a path estimation function. The use of the path estimation function reduces the
exceeding language generated by the model in comparison with the NDAAO, and,
consequently, it reduces the number of non-detectable faults. In MOREIRA and
LESAGE [22], an algorithm for fault diagnosis using the DAOCT model proposed
in MOREIRA and LESAGE [21] is presented. In DE SOUZA et al. [24], a hierar-
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Plant

Actuators Sensors

Controller input signals
output signals

Figure 1.1: Closed-loop system showing the signals exchanged between plant and
controller.

chical model using the DAOCT is introduced as a way of making it easier to obtain
the fault-free model of the system, which is possible due to the path information
embedded in the structure of the DAOCT model.

It is important to remark that some faults cannot be detected by using untimed
models. For instance, faults that prevent the system from generating events, leading
the fault detector to a deadlock, cannot be detected from the logical behavior of the
system. In addition, in some cases, timing information of event occurrences can be
used to distinguish behaviors of the system, improving the capability of detecting
faults.

In the context of time Petri net identified models, some interesting results have
been reported in the literature. In BASILE et al. [25], information about the timing
of event occurrences is added as a way of speeding up the optimization method used
for computing a time Petri net model for the system. This method is based on the
solution of a mixed integer linear programming problem. The major drawback of
the method presented in BASILE et al. [25] is that it requires the knowledge of
the number of places and transitions in the net, as well as the timing for the firing
of each transition. Thus, the timing behavior is not determined by identification,
which prevents its application to complex industrial systems for which, in general,
this kind of information is not available.

In BASILE et al. [26], it is assumed that a time Petri net model for the nominal
behavior of the system is available, and models for the faulty behaviors are identified
using the discrepancies between the observed and nominal behaviors of the system.
In BASILE et al. [27], a time Petri net that models the complete system, and that
can be used for fault detection, is identified. In BASILE et al. [26] and BASILE
et al. [27], the adopted strategy for computing the identified model is based on the
solution of a mixed integer linear programming problem, as in BASILE et al. [25].

A timed automaton obtained by identification is used in SUPAVATANAKUL
et al. [28] in a fault diagnosis scheme, where the measured data on which the identi-
fication model is built is based on the quantization of continuous signals, and not on
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discrete binary signals. Fault isolation is addressed in SUPAVATANAKUL et al. [28]
by computing identified models for the faulty behavior of the system, for every fault
that must be diagnosed. In this case, fault isolation is restricted only to the previ-
ously considered faults. Another drawback of this approach is the fact that data for
describing the system faulty behaviors is, in general, not available in practice.

The NDAAO model presented in KLEIN et al. [19] is extended in SCHNEIDER
[29] to consider timing information, and timing constraints in the form of guards
are added to each transition. Each transition has a guard that is defined as a single
timing interval, and the guard pre-condition is satisfied when the event occurs in this
interval. This model, called Timed Autonomous Automaton with Outputs (TAAO),
is capable of detecting faults if the system reaches a deadlock. The determination
of the time guards associated with each transition must be carried out in such a
way that the total numbers of non-detectable faults and false alarms are minimized
in a fault monitoring scheme. In DAS and HOLLOWAY [30], the accepted time
delays associated with a transition are determined using observations of the fault-
free system. However, this method assumes that the delays are normally distributed
for a given transition, which restricts its application to systems where this hypothesis
holds. The method for determining the time guards for the TAAO, on the other
hand, is based on a method that does not rely on an a-priori known distribution
and is suited for dealing with asymmetry in time values [31]. Both in DAS and
HOLLOWAY [30] and SCHNEIDER et al. [31], the aim is to handle disturbances
in timing behavior during accepted system operation (which may lead the fault
detector to issue a false alarm), while ensuring that all faults are effectively detected.
A trade-off between non-detectable faults and false alarms is then required so that
fault detection can be properly performed.

In this work, a new timed model for DES identification with the aim of fault
detection is presented. The new model, called Timed Automaton with Outputs and
Conditional Transitions (TAOCT), is an extension of the DAOCT model in which
timing information is added to the transitions in the form of guards for the transpo-
sition of the transitions. Since the TAOCT is based on the DAOCT, it inherits the
same advantages of the underlying DAOCT model in terms of exceeding language
reduction in comparison with the TAAO model, which is based on the NDAAO. In
addition, differently from the TAAO model, the procedure to define the guards of
the transitions of the TAOCT is capable of distinguishing different timing intervals
associated with the same transition. More specifically, a guard can be defined either
as a single timing interval or as a disjoint union of several timing intervals. Thus,
more accurate guards can be defined, increasing the number of detectable faults in
comparison with the TAAO model. In addition, the timing information can also be
used to refine the path estimate carried out by the path estimation function of the
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underlying DAOCT, reducing the number of non-detectable faults. It is important
to remark that, as in the TAAO, deadlocks caused by faults can also be detected by
using the TAOCT.

Most of the results presented in this work are based on DE SOUZA et al. [32]
and DE SOUZA et al. [33]. A formal introduction to the TAOCT is provided in
both these works, and a more thorough discussion of the fault detection strategy is
presented in DE SOUZA et al. [33].

This work is organized as follows. In Chapter 2, preliminary concepts are pre-
sented. In this chapter, a brief introduction to languages and automata is followed
by the presentation of a timed model and some related concepts. The DAOCT is
also presented in Chapter 2, given that the TAOCT and the procedure to obtain it
are largely based on results obtained for the DAOCT model.

In Chapter 3, the TAOCT model is formally introduced and the identification
procedure, with all the steps required to compute it, is presented. Some didactic
examples are also shown in order to illustrate the modeling process.

In Chapter, 4, the scheme for fault detection using the TAOCT is introduced.
The algorithm for performing fault detection is presented and the different faulty
scenarios where the fault is detected using the TAOCT thanks to its timing structure
are discussed.

In Chapter 5, a practical example is presented in order to illustrate the applica-
tion of the proposed method to a real system: a didactic manufacturing plant of the
Laboratory of Control and Automation (LCA), located at the Federal University of
Rio de Janeiro (UFRJ). We describe in this chapter the procedure of computing the
TAOCT model for this system and discuss some interesting results concerning fault
detection.

The concluding remarks are presented in Chapter 6.
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Chapter 2

Theoretical background

In this chapter, an overview of some useful concepts is presented. Sections 2.1, 2.2
and 2.3 provide an introduction to some basic topics in DES theory, and then in
Section 2.4 these concepts are extended to a timed framework. This chapter ends
in Section 2.5 with the presentation of the DAOCT model, on which the TAOCT is
based.

2.1 Discrete-event systems

For continuous-variable systems, the evolution of the model can be expressed in the
form of differential equations, in the case of continuous-time systems, or difference
equations, in the case of discrete-time systems. The solutions to these equations
allow to determine the state of the model at any given time instant, from any initial
state. In the case of continuous systems, the state space is continuous. For example,
it could be the set of real values R. Since the transitions from one state to another
are driven by the passage of time (both for continuous- and discrete-time systems),
it is said that these systems are time-driven [34].

However, the formalism used for continuous-variable systems is not suited for the
mathematical description of DES. In fact, in a discrete-event model, the state space
is a discrete set, and the transitions between states of the model are instantaneous
and are executed asynchronously in certain time instants. These transitions are
triggered by event occurrences, which are responsible for the evolution of a discrete-
event system. Thus, the dynamics of the system, instead of being driven by the
passage of time, are driven by the occurrence of asynchronous events. For this
reason, DES are said to be event-driven. For example, in the particular case of an
industrial setup, a command being sent to an actuator or a system variable reaching
a specific value can both be modeled as events, and upon their occurrence the system
transitions instantaneously to another state belonging to the state space, remaining
in the same state until the occurrence of another event at a later time instant.
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Hence, DES satisfy the following two properties [34]:

1. The state space is a discrete set.

2. The state transition mechanism is event-driven.

According to CASSANDRAS and LAFORTUNE [34], DES may be informally
defined in the following manner:

Definition 2.1 A discrete-event system is a discrete-state, event-driven system,
that is, its state evolution depends entirely on the occurrence of asynchronous discrete
events over time. �

It often suffices to model a discrete-event system by the orderings of events that
it can execute, which describe the logical behavior of the system. In Sections 2.2
and 2.3, two mathematical representations of the logical behavior are introduced:
languages and automata.

However, in some cases, it may be interesting to take into account the timing
behavior of the system in the model. Then, instead of simply considering orderings
of events, the times at which the events take place must also be included. A simple
timed model is introduced and briefly discussed in Section 2.4.

2.2 Languages

Let Σ denote the set of events of a discrete-event system. Sequences can be formed
by selecting events from Σ. A sequence that has no events is called the empty
sequence, denoted as ε. The length of a sequence of events s is the number of
events contained in it, including multiple occurrences, and is denoted as ‖s‖. By
convention, the length of the empty sequence is equal to zero [34]. A language is
then defined as follows [34].

Definition 2.2 A language defined over an event set Σ is a set of finite-length
sequences formed from events in Σ. �

Examples of languages are given in the sequel [34].

Example 2.1 Let Σ = {a, b, c} be a set of events. Then, it is possible to define
languages L1, L2 e L3 in the following manner:

L1 = {ε, a, abb},
L2 = {all sequences of length 3 starting with event a},
L3 = {all sequences of finite length starting with event a}.

�
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The operation that allows the construction of sequences from events of a set Σ

is called concatenation. The concatenation of two sequences u and v forms a new
sequence uv with the events in u followed by the events in v in the same order.
Empty sequence ε is the neutral element of concatenation: uε = εu = u for any
sequence u.

Let Σ? be the set formed of all possible finite sequences constructed with events
from Σ, including ε. This operation is called Kleene-closure [34]. For example, if
Σ = {a, b, c}, then we have that

Σ? = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, ...}.

Note that all languages that can be formed with the elements of Σ are subsets
of Σ?.

Consider now a sequence s that can be written as s = tuv. The following
definitions can be made:

• t is called a prefix of s,

• u is called a subsequence of s,

• v is called a suffix of s.

Since languages are subsets of Σ?, some operations from set theory, such as
union, intersection, difference and complement with respect to Σ? are also valid for
languages. In addition to all these operations, several other operations specific to
languages can also be defined [34]. One of these operations, called prefix-closure, is
defined as follows.

Definition 2.3 Let L ⊆ Σ∗. Then, the prefix-closure of L, denoted as L, is given
by:

L := {s ∈ Σ? : (∃t ∈ Σ?)[st ∈ L]}.

�

The prefix-closure of L contains all prefixes of all sequences of L. Language L is
said to be prefix-closed if L = L, i.e., if every prefix of a sequence in L also belongs
to L.

An example of prefix-closure is given as follows [34].

Example 2.2 Let Σ = {a, b, c} and consider two languages L1 = {ε, a, abb} and
L2 = {c}. Then, the prefix-closure of L1 and L2 are given by L1 = {ε, a, ab, abb}
and L2 = {ε, c}, respectively. �

8



2.3 Automata

Languages describe the behavior of a discrete-event system by listing all possible
sequences of events generated by the system. However, it is not always convenient
to work with this way of modeling system behavior, and thus more appropriate
formalisms, with more compact structures, must be used in order to model the
behavior of DES more conveniently.

In this section, a common and particularly useful formalism, known as automa-
ton, is presented. The main concepts related to automata are briefly discussed and
it will be seen that they provide a compact description of the logical behavior of
DES [34]. Firstly, we present the formal definition of a deterministic automaton
[34].

Definition 2.4 A deterministic automaton, denoted as G, is a 5-tuple

G = (X,Σ, f, x0, Xm),

where:

• X is the set of states;

• Σ is the finite set of events;

• f : X × Σ→ X is the transition function;

• x0 is the initial state.

• Xm ⊆ X is the set of marked states. �

With respect to the transition function, f(x, σ) = y means that there is a tran-
sition labeled by event σ ∈ Σ from state x ∈ X to state y ∈ X. Such transition
is represented by the triple (x, σ, y). We consider that function f may be partially
defined on its domain.

Active event function Γ : X → 2Σ is defined as follows: Γ(x) := {σ ∈ Σ :

f(x, σ)!}, where the symbol ‘!’ denotes ‘is defined’. In words, Γ(x) returns the set
of events that label some transition from state x in the automaton. These events
are said to be feasible at state x.

The set of marked statesXm is usually formed of the states of the automaton that
have some special meaning, which may correspond, for instance, to the successful
completion of a given task.

Initially, automaton G is at state x0. Upon the occurrence of some event
σ ∈ Γ(x0), the model transitions to the state given by f(x0, σ). This process then
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Figure 2.1: State transition diagram for the automaton of Example 2.3.

continues according to the events that are feasible at each state in the model. Con-
sider the following example, where a graphical representation of an automaton is
shown in the form of a state transition diagram [34].

Example 2.3 Consider the state transition diagram represented in Figure 2.1. In
this case, X = {x, y, z}, Σ = {a, b, g}, initial state x0 is state x and Xm = {x, z}.
The states given by the transition function f for each element in X × Σ where f is
defined are given by: f(x, a) = x, f(x, g) = z, f(y, a) = x, f(y, b) = y, f(z, a) = y,
f(z, b) = z and f(z, g) = y. �

The domain of the transition function can be extended in order to consider
sequences of events instead of single events [34]. The extended transition function
f : X × Σ? → X is recursively defined as follows.

f(x, ε) := x

f(x, sσ) := f(f(x, s), σ) for s ∈ Σ? and σ ∈ Σ.

For the rest of this work, only the extended version of the transition function is
considered.

The language generated by an automaton G = (X,Σ, f, x0, Xm) is defined as
follows [34].

L(G) := {s ∈ Σ? : f(x0, s)!}.

Thus, the language generated by an automaton is the set containing all possible
sequences of events that may occur in the automaton starting at its initial state.
An example illustrating the concept of generated language is presented in Example
2.4.

Example 2.4 Consider the automaton G represented in Figure 2.2. In this case,
we have that X = {0, 1} and Σ = {a, b}. Note that all events in Σ are feasible in
any state of G. Thus, from the initial state, any sequence formed with elements in
Σ can be generated. Therefore, L(G) = Σ?. �

10
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Figure 2.2: State transition diagram of the automaton of Example 2.4.

2.4 Timed Automaton with Timing Intervals

Even though the deterministic automaton presented in Definition 2.4 is capable of
modeling the behavior of DES in terms of the generated sequences of events, in
many cases it is also necessary to consider the time in which the events take place.
With this in mind, a timed DES model is formally introduced in this section. This
model is called Timed Automaton with Timing Intervals (TATI) and it is defined
as follows [34].

Definition 2.5 (Timed Automaton with Timing Intervals) A timed au-
tomaton with timing intervals is the six-tuple

TATI = (X,Σ, f, cg, guard, x0),

where

• X is the set of states;

• Σ is the finite set of events;

• f : X × Σ? → X is the transition function;

• cg is the global clock with value cg(t) ∈ R+, t ∈ R+;

• guard : X × Σ → A is the guard function, where A is the set of admissible
timing intervals for the global clock cg;

• x0 ∈ X is the initial state of the system. �

Note that, differently from Definition 2.4, the set of marked states is not defined
for the TATI. The reason for this is simply that, in this work, marked states are not
relevant in this timed model. Therefore, they are not included in the definition of
the TATI.

A timed automaton with timing intervals is an automaton to which a global
clock cg is added. Thus, timed sequences are generated by the TATI. Function
guard : X × Σ→ A specifies the timing conditions that need to be satisfied on the
global clock for the transition to occur, and A are the admissible clock constraints
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defined as timing intervals. It is important to remark that guard(x, σ) is defined if,
and only if, f(x, σ) is defined. In the TATI, the global clock is reset to zero each
time an event occurs. Let t′ denote the time that a state x ∈ X is reached in the
timed automaton, and let τ denote the time that has elapsed after reaching state
x. Then, transition (x, σ, x′), where x′ = f(x, σ), is executed in the TATI if event σ
occurs at time t′ + τ , and τ ∈ guard(x, σ).

The TATI is a simplified version of the timed automaton with guards [35]. Later
on, a similar formalism is used to add timing information to the proposed identifi-
cation model.

A timed event σt is a pair (σ, τ), with σ ∈ Σ and τ ∈ R+. The set of all possible
timed events, considering the events in Σ, is given by Σt := Σ× R+. The set of all
sequences formed of elements σt ∈ Σt, including the empty sequence ε, is denoted
by Σ?

t . Note that sequences of timed events are concatenated exactly in the same
way described in Section 2.2 for untimed events.

In general, in the literature, timed sequences consider an absolute time that spec-
ifies when the event has occurred with respect to the beginning of the sequence exe-
cution, and not with respect to the sojourn time of each state of the path. However,
the same information is contained in both types of timed sequences, since it is always
possible to obtain a timed sequence with respect to the beginning of the process, from
the timed sequence considering time durations st, and vice-versa. In this work, the
latter approach is adopted. Hence, a timed sequence (σ1, τ1)(σ2, τ2) . . . (σl, τl) ∈ Σ?

t is
said to be generated by the timed automaton if there exist states x1, x2, . . . , xl ∈ X
such that xi+1 = f(xi, σi+1) and τi+1 ∈ guard(xi, σi+1), for i = 0, . . . , l − 1.

Similarly to the concept of prefix-closure presented for untimed languages in
Definition 2.3, given a timed language Lt ⊆ Σ?

t , the prefix-closure of Lt is given by
Lt = {wt ∈ Σ?

t : (∃zt ∈ Σ?
t )[wtzt ∈ Lt]}.

2.5 Deterministic Automaton with Outputs and

Conditional Transitions

Let us consider the closed-loop system depicted in Figure 1.1, and assume that the
controller has mi binary input signals, ih, for h = 1, . . . ,mi, and mo binary output
signals, oh, for h = 1, . . . ,mo. Let vector

u(t1) =
[
i1(t1) . . . imi

(t1) o1(t1) . . . omo(t1)
]T

denote the observation of the controller signals at time instant t1. Thus, vector u(t1)

represents the I/O vector of the system at a given time instant t1. As the system
evolves, the I/O vector of the system may change due to changes in sensor readings
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or actuator commands. Let us consider that there is a change in at least one of the
variables of u. Then, at the time instant immediately after this change, t2, a new
vector u(t2) is observed. This leads to the following definition.

Definition 2.6 An event of the identified model is any observed instantaneous
change in one or more signals of the I/O vector u. �

Note that in Definition 2.6, it is possible for an event to be defined as the change
of more than one I/O signal, since multiple signals may change their values during
the same scan cycle of the PLC.

The I/O vector of the system u(tj), j ∈ N, is simply represented by uj. Thus, the
transition from one vector of controller signals u1 to another vector u2 is represented
by the transition (u1, σ, u2), with σ denoting the event associated with the changes
in signals from u1 to u2. If a sequence of l vectors of controller signals, and the
corresponding changes in these signals, is observed, we have an observed path of the
system pu = (u1, σ1, u2, σ2, . . . , σl−1, ul)

1.
Let us consider that the observed paths of the system are denoted as pui =

(ui,1, σi,1, ui,2, σi,2, . . . , σi,l′i−1, ui,l′i), for i = 1, . . . , r, where r is the number of observed
paths, and l′i is the number of vertexes of each path pui . Associated with each path
pui there is a sequence si = ψ(pui) = σi,1σi,2 . . . σi,l′i−1, where ψ : Pu → Σ? with
Pu = {pu1 , . . . , pur}. The following assumptions regarding the observed paths are
considered in KLEIN et al. [19], ROTH et al. [20], MOREIRA and LESAGE [21]
and MOREIRA and LESAGE [22].

A1. The system has a unique initial state, whose corresponding I/O vector is
denoted by u0, and all observed paths start at the initial state of the system, with
the same I/O vector u0.

A2. The complete sequence of events associated with a path pui is not a prefix
of the sequence of events of another path puz , ∀i, z ∈ {1, 2, . . . , r} such that i 6= z.

AssumptionA1 states that the first I/O vector is the same for all observed paths.
This I/O vector may correspond to the beginning of a production cycle, in the case
of an industrial system.

It is important to remark that Assumption A2 holds true in several cases, since
each observed path is associated with a system task, and, in a large number of
applications, the execution of a sequence of events associated with a system task
is not a prefix of another sequence of events associated with other possible task
executed by the system.

1The ‘u’ in pu refers to ‘untimed’, so that the notation for these paths is distinct from the one
used for the timed paths introduced in Chapter 3.
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The following definition of the language observed by the system can be stated[21]:

LObs :=
r⋃
i=1

{si}. (2.1)

Let LOrig denote the unknown original fault-free language generated by the sys-
tem. It is usually not possible to observe, in finite time, all sequences that belong
to LOrig. Thus, it can only be assured that LObs ⊆ LOrig.

The objective of system identification is to find a model that simulates the ob-
served fault-free behavior described by LObs. Thus, the language generated by the
identified model, LIden, must satisfy LObs ⊆ LIden. In other words, the behavior
of the system during identification (LObs) must be a part of the identified behavior
(represented by LIden), in which case it is said that the identified model simulates
the observed system behavior.

After obtaining the identified model that simulates the fault-free behavior, it
can be used for fault detection by comparing the observed events generated by
the closed-loop system with the behavior of the identified model. If the observed
behavior is different from the predicted behavior, the fault is detected.

Two other languages of interest can be defined [21]:

• LExc := LIden\LOrig;

• LOrigNI := LOrig\LIden.

As previously stated, only a part of the language generated by the identified
model LIden actually corresponds to the observed fault-free behavior of the system.
The rest of language LIden may contain sequences that belong to the language gen-
erated by the system LOrig even though they have not been observed. The sequences
that are generated by the identified model and that are not part of the fault-free be-
havior of the system form the exceeding language LExc. These sequences belonging
to LExc arise due to loops introduced in the identified automaton model.

Since the fault detection strategy relies on the comparison between the sequences
that are observed from the system and those that are generated by the model, if a
fault leads to an observed sequence that does not belong to LOrig but is generated by
the model, then the fault is not detected. Thus, LExc is formed of faulty sequences
that cannot be detected. Language LOrigNI , on the other hand, is formed of the
sequences that are part of the fault-free behavior of the system but are not generated
by the obtained model. It can be seen that the sequences in LOrigNI are interpreted
by the fault detector as being faulty, even though they are actually part of the
original fault-free behavior. In this case, a false alarm is raised by the detector. In
order to ensure that fault detection is properly performed, both LExc and LOrigNI
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LOrig LIden

LObsLOrigNI LExc

Figure 2.3: Diagram showing the relations between sets LObs, LOrig, LIden, LOrigNI
and LExc.

must be reduced. Figure 2.3 shows the relations between LObs, LOrig, LIden, LOrigNI
and LExc.

As shown in KLEIN et al. [19], if a sufficiently large number of controller vectors
are observed, then there exists a number n0 ∈ N such that L≤n0

Orig\L≤n0

Obs ≈ ∅, where
L≤n0

Orig (resp. L≤n0

Obs ) denotes the subset of LOrig (resp. LObs) formed of all paths
with length less than or equal to n0. Since LObs ⊆ LOrig and LObs ⊆ LIden, then
L≤n0

Orig\L≤n0

Obs ≈ ∅ implies that L≤n0

OrigNI ≈ ∅, where L≤n0

OrigNI is the subset of LOrigNI
formed of all sequences of length up to n0. In order to reduce the occurrence of false
alarms, it is assumed in this work that L≤n0

OrigNI = ∅. This implies that all sequences
of length up to n0 have been observed, or, equivalently, that all paths of length less
than or equal to n0 + 1 have been observed during the identification procedure. It
is important to remark that, even if this assumption does not hold, fault detection
can still be performed, but with a higher risk of raising false alarms.

In the sequel, the definition of a property called k-completeness is presented [21].
Before stating this definition, let us define function Sub : Σ? → 2Σ? as Sub(s) :=

{w ∈ Σ? : (∃t, v ∈ Σ?)[s = twv]}. Function Sub(s) returns the set of subsequences
of sequence s. Let us also define the language formed of all observed subsequences
of events of length n as

LnS,Obs := {s ∈ Σ? : (‖s‖ = n)[∃i ∈ {1, 2, . . . , r}, s ∈ Sub(ψ(pui))]}.

The definition of k-completeness is given as follows [21].

Definition 2.7 A model is said to be k-complete if for all n ≤ k, LnS,Obs = LnS,Iden,
where LnS,Iden is the set formed of all subsequences of events of the identified model
of length n. �

In MOREIRA and LESAGE [21], an automaton model suitable for fault de-
tection, called Deterministic Automaton with Outputs and Conditional Transitions
(DAOCT), is proposed. The DAOCT is obtained from the observed paths pui ,
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i = 1, . . . , r, and a free parameter k. In order to do so, modified paths pkui are
computed from paths pui such that the vertexes of pkui are sequences of I/O vectors
of length at most equal to k. The expression for pkui is given by:

pkui = (yi,1, σi,1, yi,2, σi,2, . . . , σi,l′i−1
, yi,l′i), (2.2)

where

yi,j =

{
(ui,j−k+1, . . . , ui,j), if k ≤ j ≤ l′i

(ui,1, . . . , ui,j), if j < k
. (2.3)

Note that the sequence of events of pkui is equal to the sequence of events of path
pui . Thus, the only difference between pui and pkui is that each vertex of pkui is now
associated with a sequence of vectors instead of a single I/O vector , if k > 1. The
role of the parameter k is to memorize in each vertex of path pkui the occurrence
of the last sequence of I/O vectors of length k. It can be seen that each vertex
also stores the last k − 1 events, as stated in the following lemma, presented in
MOREIRA and LESAGE [21].

Lemma 2.1 Each vertex yi,j of path pkui stores the last k−1 events occurred in path
pkui, if j ≥ k, and the last j − 1 events, if j < k. �

It is important to remark that, if k = 1, then pkui = pui , i = 1, . . . , r. The
computation of modified paths is illustrated in the following example.

Example 2.5 Consider a system with three controller signals and assume that the
following paths have been observed during the identification procedure:

pu1 =


 1

0

0

, a,
 1

1

0

, b,
 0

1

1

, c,
 0

0

0

, d,
 0

0

1

, e,
 1

0

0




pu2 =


 1

0

0

, g,
 0

0

0

, h,
 1

1

0

, b,
 0

1

1

, c,
 0

0

0

, d,
 0

0

1

, j,
 0

1

1

, l,
 1

0

0




pu3 =


 1

0

0

, g,
 0

0

0

, h,
 1

1

0

, b,
 0

1

1

, i,
 1

1

1

,m,
 0

0

0

, d,
 0

0

1

, e,
 1

0

0




Each event corresponds to different combinations of rising or falling edges of
controller signals. The rising and falling edge of the d-th element of the I/O vector
are denoted as ↑d and ↓d, respectively. Thus, for instance, a =↑2 and h =↑1.↑2. By
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choosing k = 2, the following modified paths are computed:

p2
u1

=


 1

0

0

 , a,
 1 1

0 1

0 0

 , b,
 1 0

1 1

0 1

 , c,
 0 0

1 0

1 0

 , d,
 0 0

0 0

0 1

 , e,
 0 1

0 0

1 0


 ,

p2
u2

=


 1

0

0

 , g,
 1 0

0 0

0 0

 , h,
 0 1

0 1

0 0

 , b,
 1 0

1 1

0 1

 , c,
 0 0

1 0

1 0

 , d,
 0 0

0 0

0 1

 ,

j,

 0 0

0 1

1 1

 , l,
 0 1

1 0

1 0


 ,

p2
u3

=


 1

0

0

 , g,
 1 0

0 0

0 0

 , h,
 0 1

0 1

0 0

 , b,
 1 0

1 1

0 1

 , i,
 0 1

1 1

1 1

 ,m,
 1 0

1 0

1 0

 ,

d,

 0 0

0 0

0 1

 , e,
 0 1

0 0

1 0


 .

�

The formal definition of a DAOCT is stated in the sequel [21].

Definition 2.8 A Deterministic Automaton with Outputs and Conditional Transi-
tions (DAOCT) is the nine-tuple:

DAOCT = (X,Σ,Ω, f, λ, R, θu, x0, Xf ),

where X is the set of states, Σ is the set of events, Ω ⊂ Nmi+mo
1 is the set of I/O

vectors, f : X × Σ? → X is the deterministic transition function, λ : X → Ω is the
state output function, R = {1, 2, . . . , r} is the set of path indexes, θu : X × Σ→ 2R

is the path estimation function, x0 is the initial state, and Xf is the set of final
states. �

Function λ associates each state x ∈ X with output λ(x), corresponding to the
last recorded I/O vector. This is why “Automaton with Outputs” is part of the name
of the DAOCT model. Since the transition function f is deterministic (an event can
only lead to one state) and there is only one initial state x0, the DAOCT model is
deterministic. The path estimation function θu introduces additional conditions for
the transposition of a transition, justifying the name “Conditional Transitions”.
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Each transition x′ = f(x, σ) of automaton DAOCT has a corresponding set
θu(x, σ) of indexes that is associated with the paths pui that contain transition
(x, σ, x′). Function θu is used in the DAOCT evolution rule to provide a path
estimator, such that if the paths associated with a transition are not coherent with
the paths of the observed sequence of events, then the transition is not enabled. This
fact is clearly presented in the definition of the language generated by the DAOCT.
In order to present this definition, it is first necessary to extend the domain of
function θu to consider the execution of sequences of events, obtaining the extended
path estimation function θu,e : X × Σ? → 2R, defined recursively as:

θu,e(x, ε) = R,

θu,e(x, sσ) =

{
θu,e(x, s) ∩ θu(x′, σ), where x′ = f(x, s), if f(x, sσ)!

undefined, otherwise.

The language generated by the DAOCT is given by

L(DAOCT) := {s ∈ Σ? : f(x0, s)! ∧ θu,e(x0, s) 6= ∅}. (2.4)

Note that a sequence of events s ∈ Σ? is only feasible in the DAOCT if f(x0, s)

is defined and there is at least one path in the path estimate after the occurrence of
s, represented by condition θu,e(x0, s) 6= ∅.

In MOREIRA and LESAGE [21], an algorithm for computing a DAOCT model
from the modified paths pkui , i = 1, . . . , r, is introduced. In the sequel, the DAOCT
models obtained from the observed paths in Example 2.5 by using this algorithm
are shown.

Example 2.6 Consider the observed paths from Example 2.5. After applying the
DAOCT identification algorithm [21], for k = 1 and k = 2, the automata shown
in Figure 2.4 are obtained. The double circles denote the states that belong to set
Xf . Each transition (x, σ, x′) is labeled by its corresponding event σ and by the path
estimation θu(x, σ). �

By analyzing Figure 2.4, it is easy to see the impact of the choice of the parameter
k on the resulting model. Indeed, for the case where k = 2, apart from the initial
state, each state in the automaton is associated both with the last observed I/O
vector and the one that preceded it. Consequently, the obtained model has more
states in comparison with the case where k = 1, where each state is associated with
a single I/O vector. As shown in Figure 2.4a, the DAOCT obtained with k = 1 has
6 states, which is the same number of different I/O vectors that were observed. On
the other hand, the DAOCT obtained with k = 2 contains as many states as there
are different vertexes in the modified paths p2

ui
, i = 1, 2, 3 (see Example 2.5).
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(b) k = 2.

Figure 2.4: DAOCT models obtained in Example 2.6 for k = 1 and k = 2.

Note that, for k = 1, even though there are less states, some cycles are present in
the automaton. As a result, the language generated by the model contains sequences
that have not been observed and thus are not part of the fault-free system behavior.
Therefore, these cycles increase the size of the exceeding language. It is possible to
see how this happens by analyzing the automaton shown in Figure 2.4a. Note that
the sequence ghbl can be executed by the automaton even without being recorded
in any observed path. Hence, this sequence is associated with a fault that would
not be detected in a fault detection scheme using this DAOCT model. However, by
choosing k = 2, the resulting automaton does not have any cycles, as it can be seen
in Figure 2.4b. In this case, the sequence ghbl can no longer be executed by the
model, and thus a fault causing the occurrence of this sequence would be detected
in a fault detection scheme using this model.

In MOREIRA and LESAGE [21], some important properties of the DAOCT
model are presented and proven. These properties are listed as follows.

P1. LObs ⊆ L(DAOCT);

P2. For a given value of k, the identified DAOCT is k-complete, i.e.,
LnS(DAOCT) = LnS,Obs, for all n ≤ k;
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P3. If the identified DAOCT does not have cyclic paths for a given value of k,
then LExc = ∅.

Property P1 states that the observed language LObs is a subset of the identified
language generated by the DAOCT. In other words, the DAOCT model simulates
the observed fault-free behavior of the system. Properties P1 and P2 show that
the DAOCT model is suitable for fault detection, since, in addition to simulating
the observed language, any subsequence of length k belongs to the DAOCT model
if, and only if, it has been observed. This means that the approximation of the
observed language given by the identified model can be made more accurate by
increasing the value of k.

By increasing k, the number of cycles is reduced as a consequence of the higher
number of states that are created (see Example 2.6). If the value of k is increased
to the point where the DAOCT model becomes acyclic, then, according to Property
P3, the exceeding language generated by the model is the empty set. It can be seen
in Figure 2.4 that the increase in the value of k from 1 to 2 eliminates all cycles that
are present in the automaton obtained with k = 1 in Example 2.6. Thus, according
to P3, LExc = ∅ in this example, if k = 2.

It is important to remark that there is a trade-off to be found between the size and
accuracy of the identified model. Indeed, by increasing k, the exceeding language
is reduced and the model becomes more accurate, improving its fault detection
capability. On the other hand, in this case, the number of states is higher, resulting
in a more complex model. Some guidelines for the choice of the parameter k are
provided in KLEIN et al. [19].

In the worst-case scenario in terms of model growth, the number of states in the
DAOCT is equal to the sum of the lengths of all observed paths pui , i = 1, . . . , r,
used in the identification procedure. In this case, |X| =

∑r
i=1 l

′
i, which can be

obtained by making k ≥ maxi∈{1,...,r} l
′
i.
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Chapter 3

Timed Automaton with Outputs and
Conditional Transitions

In this chapter, the identified timed model is formally introduced and the procedure
which is carried out in order to compute the model is presented.

3.1 Observation of the fault-free system behavior

The identification procedure for obtaining the proposed timed identified model is
based on the procedure used in Section 2.5 to obtain the DAOCT model. The main
difference is that, now, the time delays associated with each event occurrence must
also be recorded during identification.

In Section 2.5, uj denotes the I/O vector reached by the system at a time instant
tj, j ∈ N. Then, the I/O vector remains unchanged until the occurrence of event σj,
leading to a new I/O vector uj+1. Now, let us also define the sojourn time τj as the
time during which the I/O vector remained equal to uj, i.e., τj = tj+1 − tj. Then,
when the observed I/O vector changes from uj to uj+1, we say that timed transition
(uj, σj, τj, uj+1) is observed. A finite sequence of such transitions constitutes an
observed timed path p = (u1, σ1, τ1, u2, σ2, τ2, ..., ul−1, σl−1, τl−1, ul) executed by the
system. If the timing information is removed from (uj, σj, τj, uj+1), then untimed
transition (uj, σj, uj+1) is obtained. If all timing information is removed from timed
path p, we obtain the untimed path pu = (u1, σ1, u2, σ2, . . . , ul−1, σl−1, ul). The
length of a timed path is defined to be equal to the length of its associated untimed
path.

In order to reduce the number of false alarms, as in Section 2.5, it is assumed
that the system has been observed for a sufficiently long time such that all different
untimed paths of length up to a given number n0 ∈ N have been observed.

Assume that ν timed paths (not necessarily distinct) have been observed, where
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each timed path is denoted by

pq =
(
uq,1, σq,1, τq,1, uq,2, σq,2, τq,2, ..., uq,lq−1, σq,lq−1, τq,lq−1, uq,lq

)
, (3.1)

where q ∈ {1, ..., ν}, uq,j ∈ Ω for j = 1, ..., lq, and σq,j ∈ Σ and τj,q ∈ R+ for
j = 1, ..., lq − 1. Then, the observed timed sequence sqt associated with each path
pq is given by sqt = (σq,1, τq,1)(σq,2, τq,2)...(σq,lq−1, τq,lq−1). Thus, the observed timed
language Lt,Obs is defined as follows:

Lt,Obs :=
ν⋃
q=1

{sqt}. (3.2)

Let P denote the set formed of all observed timed paths pq, for q = 1, . . . , ν, and
let P be partitioned as P = P1∪̇P2∪̇ . . . ∪̇Pr, r ≤ ν, such that all paths that form
Pi are logically equivalent to each other, i.e., there is a unique untimed path pui =

(ui,1, σi,1, ui,2, σi,2, ..., ui,l′i−1, σi,l′i−1, ui,l′i), associated with each set Pi, for i = 1, . . . , r.
The time-interval paths are defined as follows:

p′i =
(
ui,1, σi,1, Ii,1, ..., ui,l′i−1, σi,l′i−1, Ii,l′i−1, ui,l′i

)
, (3.3)

for every i ∈ {1, . . . , r}. The logical behavior of p′i is given by the untimed path pui
associated with Pi. The timing behavior associated with path p′i is modeled by sets
Ii,j, j = 1, . . . , l′i − 1, which represent the possible time values for the occurrence of
events of each one of the transitions of pui , obtained from the observed timed paths
of Pi. It is assumed that each untimed path, representing a possible logical behavior
of the system, has been observed a number of times sufficient to capture the timing
information regarding event occurrences. The process of building the sets Ii,j from
the timed paths in Pi is explained in Section 3.3. It is important to remark that the
TAOCT model is computed from the time-interval paths p′i, i = 1, . . . , r, identified
from the timed paths pq ∈ P generated by the system. The set of time-interval
paths is denoted as P ′ := {p′1, p′2, . . . , p′r}.

3.2 Presentation of the model

The timed model proposed in this work for the identification of DES is presented
in the sequel. The model is based on the Timed Automaton with Timing Intervals
presented in Definition 2.5, and also on the DAOCT model presented in Definition
2.8.

Definition 3.1 The Timed Automaton with Outputs and Conditional Transitions
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is a ten-tuple:
TAOCT = (X,Σ, f, cg,Ω, λ, R, g, x0, Xf ),

where

• X is the finite set of states;

• Σ is the finite set of events;

• f : X × Σ? → X is the transition function;

• cg is the global clock, with value cg(t) ∈ R+, t ∈ R+;

• Ω ⊆ Nmi+mo
1 is the set of outputs;

• λ : X → Ω is the state output function;

• R = {1, 2, ..., r} is the set of time-interval path indexes;

• g : X × Σ×R→ C is the guard function;

• x0 ∈ X is the initial state;

• Xf ⊆ X is the set of final states. �

The set of admissible constraints C is formed of all sets I ⊂ R+. As in the TATI,
presented in Definition 2.5, in the TAOCT a unique global clock cg is used, and it
is reset every time a transition is executed. Function g(x, σ, i) specifies a subset of
R+ to which the clock value cg(t) must belong so that transition (x, σ, x′), where
x′ = f(x, σ), associated with path p′i, can occur. The output function λ is the same
presented in the DAOCT model, and associates an I/O vector with each state x ∈ X
of the model.

Differently from the DAOCT, where the path estimation function θu is defined
in the model, in the TAOCT the path estimation function θ : X × Σ × R+ → 2R

can be defined using the guard function g as follows:

θ(x, σ, τ) = {i ∈ R : τ ∈ g(x, σ, i)}. (3.4)

Function θ(x, σ, τ) provides the path estimate when the current state is x, and
event σ occurs at clock value cg(t) = τ . If f(x, σ) is not defined for a given path p′i,
then g(x, σ, i) is, by convention, the empty set, and i /∈ θ(x, σ, τ) for any value of τ .
Moreover, if f(x, σ) is defined, but the observed time τ does not belong to g(x, σ, i),
then i 6∈ θ(x, σ, τ).

Function φ : Σ?
t → Σ? removes the timing information from a timed sequence in

Σ?
t , obtaining its equivalent untimed sequence, i.e., for any st = (σ1, τ1) . . . (σl, τl) ∈

Σ?
t , then φ(st) = σ1 . . . σl ∈ Σ?. By convention, φ(ε) := ε.

23



0 1 2 3
σ1

1,[5, 10]
2,[1, 7] ∪ [12, 20]

σ4

2,[20, 30]

σ2

1,[10, 20]

σ3

1,[40, 60]

σ5

1,[5, 10] ∪ [25, 40]

Figure 3.1: TAOCT model of Example 3.1.

The extended path estimation function θe : X ×Σ?
t → 2R is defined, recursively,

as follows: θe(x, ε) = R, and for any sequence st(σ, τ) ∈ Σ?
t , where st ∈ Σ?

t and
(σ, τ) ∈ Σt,

θe(x, st(σ, τ)) =


θe(x, st) ∩ θ(x′, σ, τ), where

x′ = f(x, φ(st)), if f(x, φ(st)σ)!

∅, otherwise.

The timed language generated by the TAOCT model is given by:

Lt,Iden := {st ∈ Σ?
t : θe(x0, st) 6= ∅} . (3.5)

In the sequel, an example of a TAOCT model is presented, and it is discussed
how timed event sequences can be generated by the model.

Example 3.1 Consider the TAOCT shown in Figure 3.1. Each circle represents
a state x ∈ X, where X = {0, 1, 2, 3}, and the directed arcs represent the tran-
sitions. A transition from state x to x′ is labeled with an event σ ∈ Σ, where
Σ = {σ1, σ2, σ3, σ4, σ5}. In addition, a label of the form i, I attached to a transition
from x to x′ indicates that there is a guard g(x, σ, i) = I defined for that transition.
In this example, the set of time-interval path indexes is given by R = {1, 2}, which
means that the TAOCT model has been computed from two observed time-interval
paths p′i, i = 1, 2. The initial state is given by x0 = 0, and the set of final states is
Xf = {3}, represented in Figure 3.1 with a double circle.

Suppose that one wants to verify if the timed sequence st = (σ1, 6)(σ2, 14)(σ3, 56)

can be executed by the model. It can be verified that θe(0, (σ1, 6)) = {1, 2}, since
6 ∈ g(0, σ1, 1) = [5, 10], and 6 ∈ g(0, σ1, 2) = [1, 7] ∪ [12, 20]. In addition,
θe(0, (σ1, 6)(σ2, 14)) = θe(0, (σ1, 6)) ∩ θ(1, σ2, 14) = {1}, since 14 ∈ g(1, σ2, 1) =

[10, 20], and θe(0, (σ1, 6)(σ2, 14)(σ3, 56)) = θe(0, (σ1, 6)(σ2, 14))∩ θ(2, σ3, 56) = {1},
since 56 ∈ g(2, σ3, 1) = [40, 60]. Thus, θe(0, st) = {1} and, according to Equation
(3.5), st ∈ Lt,Iden.

Consider now sequence s′t = (σ1, 15)(σ4, 14). Then, θe(0, (σ1, 15)(σ4, 14)) =

θe(0, (σ1, 15)) ∩ θ(1, σ4, 14). Since, θe(0, (σ1, 15)) = {2}, and θ(1, σ4, 14) = ∅, then
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Figure 3.2: Scheme of the identification procedure.

θe(0, s
′
t) = ∅. Thus, according to Equation (3.5), s′t 6∈ Lt,Iden. �

Sections 3.3 and 3.4 show the steps that are necessary to compute the TAOCT
model. In Figure 3.2, the complete scheme of the identification procedure with three
steps is depicted. It can be seen from Figure 3.2 that the input data for identification
is set P = {p1, p2, . . . , pν}, containing all observed fault-free timed paths, and the
output is the TAOCT that models the system fault-free behavior.

3.3 Computation of the time-interval paths

In order to compute the time-interval paths p′i, i = 1, . . . , r, it is necessary to obtain
the sets Ii,j corresponding to the transitions of p′i, associated with the time values
that the transitions of paths pq ∈ Pi have been observed.

Let Ti,j := {τq,j ∈ R+ : (q ∈ {1, . . . , ν})∧(pq ∈ Pi)} be the set formed of the time
values τq,j that are observed in the j-th transition of the timed paths pq ∈ Pi. It is
possible that the values in Ti,j are arranged on the real axis in such a way that some
values in a subset of Ti,j are closer to each other in comparison with the other values
in Ti,j. Each such subset forms a cluster of time values, and each cluster corresponds
to a different observed timing behavior for that transition. Thus, different timing
behaviors can be identified by applying a clustering method to the values in Ti,j.

Several clustering algorithms have been proposed in the literature [36–39]. In
the sequel, two different methods are proposed for obtaining the clusters of time
values in each Ti,j. The first one is based on a clustering method called Nearest
Neighbors Method, and the second one is inspired by a classical tool in the field of
unsupervised learning: the K-Means clustering method.

3.3.1 The Nearest Neighbors Method

This method is based on the Nearest Neighbors Method [37] for obtaining the clusters
of Ti,j. In this method, when adapted to the one-dimensional case, two successive
values belong to the same cluster if the distance between them is less than or equal
to a user specified threshold ζ. If the distance between them is greater than ζ, then
they are assigned to different clusters.
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Note that an uncertainty δ ∈ R+ must be considered for defining the value of
ζ to take into account possible errors in measuring the time values of the event
occurrences, caused, for example, by the scan cycle of the controller. Due to this
uncertainty, the threshold ζ must be chosen so that ζ > 2δ.

After applying the Nearest Neighbors Method to Ti,j, set S = {S1 . . . , SK} is
obtained, such that S1∪̇S2∪̇ . . . ∪̇SK = Ti,j. Each set Sh ∈ S corresponds to a differ-
ent cluster in Ti,j, representing a distinct timing behavior associated with the j-th
transition of time-interval path p′i. Set Ii,j is then given by the following expression:

Ii,j =
K⋃
h=1

[max{0,minSh − δ},maxSh + δ].

Note that set Ii,j is a disjoint union of intervals, where each interval corresponds
to a cluster Sh. Each interval is extended by δ on both ends in order to reduce the
number of false alarms that may be raised due to disturbances in time measure-
ments. Since only non-negative values are allowed in Ii,j, if the minimum value of a
cluster is less than δ (i.e., minSh − δ < 0), then the lower endpoint of the interval
corresponding to this cluster is set to zero.

For the choice of the threshold ζ, the following considerations must be taken into
account. Let ζ be chosen to be a large value such that two distinct timing behaviors
of time-interval transition (ui,j, σi,j, Ii,j, ui,j+1) of path p′i are merged into a single
cluster, i.e., Ii,j is formed of a single time interval. In this case, if a fault in the
system causes the transition to occur between the two distinct timing behaviors,
then the fault is not detected, since this time value belongs to Ii,j, which means
that it is included in the fault-free model. On the other hand, if time-interval
transition (ui,j, σi,j, Ii,j, ui,j+1) of path p′i has a unique timing behavior, but ζ is
chosen to be a small value and the number of observations of the transition is small,
then it is possible that several clusters are formed instead of a single cluster. As
a consequence, Ii,j is formed of several time intervals, and a false alarm is raised
every time transition (ui,j, σi,j, ui,j+1) is observed between the time intervals of Ii,j.
Thus, for the correct computation of the clusters associated with Ii,j, ζ must be a
small value greater than 2δ, and the system must be observed for a sufficiently long
time such that there are enough observations of each transition of p′i to adequately
represent its distinct timing behaviors. It is worth noting that in the ideal case
where infinite observations of the same transition are recorded, the distance that
separates two successive values in the same cluster would drop to zero. Thus, it
is reasonable to choose a small value for ζ, provided that a large amount of data
recorded during identification is available. Nevertheless, if false alarms are raised
during system operation, the model can still be improved by increasing the value of
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ζ for the computation of each Ii,j.
It is important to remark that the clustering procedure must be performed for

the determination of each set Ii,j from set Ti,j, for every time-interval path p′i, i ∈
{1, . . . , r}.

In the sequel, an example of the formation of a time-interval path from observed
timed paths is presented.

Example 3.2 Suppose that paths of the following form have been observed 200 times
during the identification process:

p =


 1

0

0

 , a, τ1,

 1

1

0

 , b, τ2,

 0

1

0

 , c, τ3,

 0

0

0


 .

Assume that: (i) the time values τ1 for each observed path are normally distributed,
and that the mean and standard deviation of this distribution are equal to 60ms and
5ms, respectively; (ii) the time values τ2 follow a mixture distribution of three normal
curves, where the means of each curve are given by 20ms, 200ms and 600ms, and
the standard deviations are given by 2.5ms, 10ms and 30ms, respectively; and (iii)
the values of τ3 were sampled from a mixture distribution of two normal curves, with
means given by 310ms and 1000ms, and the standard deviation is equal to 50ms for
both curves. In Figure 3.3, the distributions of values for τ1, τ2, and τ3 are shown.
In this example, the time-interval path p′1 is obtained from the observed paths. By
selecting ζ = 50ms (since this value seems like a good choice given the parameters of
the time distributions) in the Nearest Neighbors Method and considering δ = 20ms,
the following single time-interval path is obtained:

p′1 =


 1

0

0

, a, I1,1,

 1

1

0

, b, I1,2,

 0

1

0

, c, I1,3,

 0

0

0


 ,

where I1,1 = [25.3, 95.2], I1,2 = [0, 47.7] ∪ [148.8, 246.4] ∪ [505.2, 705.9] and I1,3 =

[165.9, 481.3] ∪ [818.9, 1133.6]. The minimum and maximum time values in Figure
3.3a are 45.3ms and 115.2ms, respectively. Since the difference between two con-
secutive values in the distribution for τ1 is always lower than 50ms, then set I1,1 is
determined as the single interval [45.3− δ, 115.2 + δ], given that 45.3− δ > 0. Sets
I1,2 and I1,3 are obtained in a similar fashion, with the difference being that, in these
sets, there are consecutive values which are more than 50ms apart, leading to the
formation of clusters. �

In the sequel, an alternative approach for obtaining sets Ii,j is proposed. The
main difference of this method with respect to the Nearest Neighbors Method is
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Figure 3.3: Histograms showing the distributions of time values presented in Exam-
ple 3.3.

that a user-specified threshold for cluster separation does not need to be provided,
which means that it is not necessary to have any previous knowledge about the time
dynamics of the system under study.
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3.3.2 Clustering method based on K-Means

A classical method used for clustering is the K-Means method [36, 38]. The K-Means
algorithm can be summarized by the following steps [38].

Step 1. Choose K cluster centers to coincide with K randomly defined points
inside the region containing all the points;

Step 2. Assign each point to the cluster defined by the closest cluster center;

Step 3. Recompute the cluster centers using the points that are currently as-
signed to each cluster;

Step 4. If there has been no (or minimal) reassignment of points to other clusters,
then stop algorithm. Otherwise, go to Step 2.

In order to apply the K-Means algorithm, it is necessary to provide the desired
number of clusters K, which can be a problem when the number of clusters which
best fits the time values for each observed transition is not known in advance. Hence,
estimation of K is required prior to applying the K-Means method to the time
values associated with a given observed transition. Some methods are proposed in
the literature for estimating the number of clusters K [39, 40]. In the sequel, an
adaptation of the method presented in PHAM et al. [39] is proposed for the case of
one-dimensional data, i.e., where the values to be clustered lie on the real axis.

After applying the K-Means algorithm to Ti,j, K clusters Sh ⊆ Ti,j, h = 1, . . . , K,
are obtained. Let τhv , v ∈ {1, 2, . . . , |Sh|}, denote a time value in cluster Sh, and τhavg
denote the average value of all τhv ∈ Sh. Then, the total distortion is defined as:

dK :=
K∑
h=1

|Sh|∑
v=1

(τhv − τhavg)2,

Note that the total distortion decreases monotonically with increasing values of
K, since the rise in the number of cluster centers reduces the distances between a
center and the points in the same cluster, which decreases the contribution of each
cluster to the value of dK .

Let parameter Kmax ∈ N\{0} be the user-specified predefined maximum number
of clusters, the choice of which will be explained later on. Based on a similar
definition presented in PHAM et al. [39], we introduce a measure given by the
evaluating function E : {1, 2, . . . , Kmax} → [0, 1], calculated as follows:

E(K) :=

{
1, if K = 1
dK
dK−1

, if 1 < K ≤ Kmax

.
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Function E(K) measures the relative decrease in the total distortion dK by in-
creasing the number of clusters from K−1 to K. A significant decrease in the value
of dK with respect to dK−1, which results in a low value for E(K), suggests that
K is a good estimation for the number of clusters in the data [39]. Here, a similar
strategy is adopted in order to determine the number of clusters K.

The proposed clustering procedure can be described as follows. There are three
parameters that must be defined:

• the maximum number of desired clusters Kmax ≥ 1, which is assumed to be
much lower than the total number of values to be clustered (for any transition);

• the free parameter ξ ∈ [0, 1];

• the uncertainty δ ∈ R+.

At first, if Kmax > 1, we determine the value K ′ ∈ {2, 3, . . . , Kmax} for which the
total distortion is minimized and call this value K∗. If E(K∗) is greater than the free
parameter ξ, it means that the points are already relatively grouped together and
the decrease in the total distortion is not expressive enough to justify the formation
of clusters. In this scenario, as well as in the case where Kmax = 1, let us define a
variable S̃ and make S̃ = {Ti,j}. On the other hand, if E(K∗) ≤ ξ and Kmax > 1,
then the K-Means method is applied to the input set Ti,j specifyingK∗ as the desired
number of clusters, resulting in set S ′ = {S ′1, . . . , S ′K∗} ⊆ 2Ti,j , with each S ′h ∈ S ′
being a different cluster, and S ′h′ ∩ S ′h′′ = ∅, for all S ′h′ , S ′h′′ ∈ S ′ such that h′ 6= h′′.
The uncertainty δ can be considered in order to take into account possible errors in
measuring the time occurrence of the events, as discussed in the case of the Nearest
Neighbors Method. In this case, if the distance between any two clusters falls under
2δ, then these two clusters that were previously obtained are merged, given that the
uncertainty introduced by the scan cycle does not justify the separation of clusters.
The resulting set after performing the merge operations is then S̃ = {S̃1, . . . , S̃K},
with 1 ≤ K ≤ K∗. This expression for S̃ also holds in the case where E(K∗) > ξ,
by making K = 1 and S̃1 = Ti,j. Set Ii,j is then given by the following expression:

Ii,j =
K⋃
h=1

[max{0,min S̃h − δ},max S̃h + δ]. (3.6)

The value of the number of clusters K must be bounded by Kmax << min{|Ti,j| :
i ∈ {1, . . . , r} and j = 1, . . . , l′i − 1} so that the algorithm does not search for high
numbers of clusters, since it could give clusters that are too specialized, with few val-
ues assigned to each cluster. Moreover, for higher values of Kmax, the computational
cost of the cluster function can increase substantially, given that it is necessary to
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apply the K-Means algorithm for every K ∈ {1, . . . , Kmax} in the process of find-
ing the best estimate for the number of clusters. This is a problem that must be
considered, especially in the case where computational resources are limited.

The role of the parameter ξ is to allow the formation of clusters only if the
decrease in the total distortion is significant. If ξ is too low, then cluster formation
does not occur and all time values associated with a given transition are assigned
to the same cluster. As a result, for that transition, any observed timing that
falls between the endpoints of that cluster is considered to be part of the fault-free
behavior. If, in the real system, more than one cluster are required to adequately
model the timing behavior for that transition, then more fault occurrences will be
missed by the detector, since a fault may cause the timing of the transition to fall
between two clusters that were supposed to be formed. If, on the other hand, the
chosen value of ξ is too high, then the tendency is that clusters are formed when,
in reality, the time values are already relatively well packed together. In this case,
even if no fault has occurred, there is a risk that the timing of a transition may fall
between two clusters that should not have been formed. Thus, the detector would
raise a false alarm, as a consequence of the clusters being overfitted. Therefore,
the choice of the parameters Kmax and ξ must be made considering the trade-off
between missed detection of faults and the risk of false alarms raised by the fault
detector.

In the sequel, we present an example of the formation of a time-interval path
from observed timed paths using the clustering approach based on the K-Means
Method.

Example 3.3 Let us consider the same observed paths that were presented in Exam-
ple 3.2. In this example, we wish to obtain the time-interval paths from the observed
paths using the clustering method based on the K-Means procedure. As in Example
3.2, since the logical sequence of events are shared by all observed paths, there is
only one time-interval path with the same event sequence. By selecting Kmax = 5,
ξ = 0.2 and δ = 20ms, the single time-interval path is given by:

p′1 =


 1

0

0

, a, I1,1,

 1

1

0

, b, I1,2,

 0

1

0

, c, I1,3,

 0

0

0


 ,

where I1,1 = [25.3, 95.2], I1,2 = [0, 47.7] ∪ [148.8, 246.4] ∪ [505.2, 705.9] and I1,3 =

[165.9, 481.3] ∪ [818.9, 1133.6]. These sets were obtained by analyzing the evolution
of function E(K) from K = 1 up to K = Kmax = 5, which can be seen in Figure
3.4. Note that this result is identical to the one obtained with the Nearest Neighbors
Method (see Example 3.2), since the number of clusters in each transition is lower
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than Kmax. The following remarks can be made:

• In Figure 3.4a, we can see that, even though E(K) reaches its minimum at
K = 2, its value is approximately 0.4, which is higher than the chosen value
for ξ, which is 0.2. For this reason, only one cluster has been found to fit the
distribution of time values shown in Figure 3.3a.

• In Figure 3.4b, the minimum of E(K) is found at K = 3. It is interesting
to notice, however, that E(2) is close to the minimum. This reflects the fact
that the distribution of time values can almost be seen as being composed of two
clusters, which is justified by the closer proximity of the first two clusters (from
left to right in Figure 3.3b) in comparison with the third one. This mirrors
the result provided by the method, given that, since E(2) is slightly higher than
E(3), then K = 2 is almost as good a choice as K = 3. In fact, three clusters
can be easily identified by a visual inspection of Figure 3.3b, which means that
the method indeed seems to provide the best estimate for the number of clusters.

• Since the decrease in the value of E(K) from K = 1 to K = 2 is sharp enough
to fall below the value of ξ (see Figure 3.4c), two clusters are identified in the
distribution shown in Figure 3.3c. This matches the behavior of the points in
Figure 3.3c, where two distinct clusters of data can be easily spotted. �

3.4 Computation of the TAOCT model

It is assumed in this section that the sets Ii,j of the time-interval paths p′i, i ∈
{1, . . . , r} have been determined by using one of the methods that are presented in
Section 3.3.

In Section 2.5, the introduction of the free parameter k allows to obtain a model
satisfying Properties P2 and P3. Since the TAOCT is based on the DAOCT model
presented in Section 2.5, the same strategy can be used to obtain a parameterized
model for identification. As a result, the TAOCT inherits Properties P2 and P3
from its underlying DAOCT. Therefore, as far as its logical behavior is concerned,
the obtained TAOCT model is k-complete (see Definition 2.7) and the absence of
cycles for a given k implies that the exceeding language generated by the model is
the empty set. The choice of k must be made by considering the trade-off between
complexity and accuracy of the identified model, as explained in Section 2.5.

The same steps for the computation of the DAOCT model are considered here,
where the first step is the computation of timed modified paths p′ki , according to the
free parameter k, as follows:

p′ki =
(
yi,1, σi,1, Ii,1, ..., yi,l′i−1, σi,l′i−1, Ii,l′i−1, yi,l′i

)
, (3.7)
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Figure 3.4: Values of E(K), for K = 1, . . . , Kmax, for each set of time values corre-
sponding to τ1, τ2 and τ3, presented in Example 3.3.

where

yi,j =

{
(ui,j−k+1, ..., ui,j), if k ≤ j ≤ l′i

(ui,1, ..., ui,j), if j < k
.

Define set Ωk as the set formed of all yi,j, j = 1, . . . , l′i, i = 1, . . . , r. Let ŷi,j
denote the last element of yi,j. Then, ŷi,j := ui,j, for j = 1, . . . , l′i, i = 1, . . . , r. The
set of timed modified paths is denoted as P ′k := {p′k1 , p′k2 , . . . , p′kr }.
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Before introducing the procedure to construct the TAOCT from the observed
data, define function λ̃ : X → Ωk, which provides a bijective correspondence between
a state x ∈ X of the model and a symbol y ∈ Ωk. This function will be used in the
procedure for constructing the TAOCT model from the set of fault-free modified
paths p′ki , described in Algorithm 3.1.

Since the TAOCT model is based on the DAOCT, Algorithm 3.1 is based on the
algorithm for computing the DAOCT model presented in MOREIRA and LESAGE
[21]. At the beginning of Algorithm 3.1, the initial state x0 is created, and λ̃(x0) and
λ(x0) receive y1,1 and ŷ1,1, respectively, such that the output of the initial state is
equal to the first I/O vector of the observed paths pq ∈ P , used for the computation
of the modified time-interval paths p′ki , for i = 1, . . . , r. In line 3, the set of states
X, the set of outputs Ω, and the set of final states Xf are initialized. In addition,
the set of time-interval path indexes R is specified. In line 4, the set of events Σ is
defined as the set containing all observed events, considering every transition in each
observed fault-free time-interval path p′i, for i = 1, . . . , r. In line 5, guard function
g is initialized for state x0 by assigning the empty set for every observed event in Σ

and every path index in R. In the inner for-loop, from lines 7 to 21, every vertex yi,j
of the modified time-interval path p′ki is visited. Each time a vertex is visited, the
corresponding state x ∈ X is found. Then, it is checked if there is a state x′ that
has already been created and that corresponds to the next vertex yi,j+1. If such a
state does not exist, then a new state is created in the if-block that starts in line 9,
and set X is updated accordingly. In lines 12 to 14, vertex yi,j+1 is associated to the
newly created state x′, and its output symbol, given by the last element of yi,j+1,
is added to Ω. Similarly to what is done in line 5 for the initial state x0, in line 15
the empty set is assigned to the guard function for state x′ and every pair (σ, i) in
Σ × R, ensuring that the guard function is completely defined on its domain. In
line 18, the transition from the current state x to the next state x′ through event
σi,j is defined in the transition function f . Differently from g, function f may be
partially defined on its domain. In line 19, the guard function g(x, σi,j, i) is updated
by aggregating set Ii,j to g(x, σi,j, i). Finally, in line 20, it is tested if the next vertex
yi,j+1 is the last one of path p′ki . If this is the case, then next state x′ is added to
the set of final states Xf .

Language Lt,Iden, generated by the TAOCT model obtained using Algorithm 3.1,
and whose expression is given by Equation (3.5), simulates the timed sequences of
the paths used in the identification procedure, as stated in the sequel.

Theorem 3.1 Suppose that the language Lt,Iden generated by the TAOCT model,
whose expression is given by Equation (3.5), is obtained using Algorithm 3.1. Then:

Lt,Obs ⊆ Lt,Iden.
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Algorithm 3.1: TAOCT identification
Input: Modified time-interval paths p′ki , i = 1, ..., r
Output: TAOCT = (X,Σ, f, cg,Ω, λ, R, g, x0, Xf )

1 Create initial state x0

2 λ(x0)← ŷ1,1 and λ̃(x0)← y1,1

3 X ← {x0}, Ω← {ŷ1,1}, R← {1, ..., r}, and Xf ← ∅
4 Σ← ⋃

i∈R{σi,j : j = 1, . . . , l′i − 1}
5 g(x0, σ, i)← ∅, ∀(σ, i) ∈ Σ×R
6 for i = 1 to r do
7 for j = 1 to l′i − 1 do
8 Find state x ∈ X such that λ̃(x) = yi,j
9 if λ̃(x′) 6= yi,j+1 ∀x′ ∈ X then

10 Create state x′
11 X ← X ∪ {x′}
12 λ̃(x′)← yi,j+1

13 λ(x′)← ŷi,j+1

14 Ω← Ω ∪ {λ(x′)}
15 g(x′, σ, i′)← ∅, ∀(σ, i′) ∈ Σ×R
16 else
17 Find x′ ∈ X such that λ̃(x′) = yi,j+1

18 f(x, σi,j)← x′

19 g(x, σi,j, i)← g(x, σi,j, i) ∪ Ii,j
20 if j = l′i − 1 then
21 Xf ← Xf ∪ {x′}

Proof. Consider a timed event sequence wt ∈ Lt,Obs, which, according to
Equation (3.2), is the prefix of a timed sequence associated with some observed
timed path pq, whose expression is given by Equation (3.1). Since pq ∈ Pi,
for some i ∈ {1, . . . , r}, then its corresponding modified time-interval path p′ki ,
given by Equation (3.7), has the same untimed sequence as pq, and pq is such
that τq,j ∈ Ii,j, for j = 1, ..., ‖wt‖. Since λ̃(x0) = ŷi,1 (as a consequence of As-
sumption A1), Algorithm 3.1 ensures that: (i) there exist states xj, such that
f(xj, σi,j) = xj+1, j = 1, ..., ‖wt‖, starting at the initial state x0 (line 18); and (ii)

τq,j ∈ Ii,j ⊆ g(xj, σi,j, i), j = 1, ..., ‖wt‖, according to line 19. Hence, according to
Equation (3.4), i ∈ θ(xj, σi,j, τq,j), j = 1, ..., ‖wt‖, which implies that i ∈ θe(x0, wt),
and, consequently, θe(x0, wt) 6= ∅. Thus, from Equation (3.5), wt ∈ Lt,Iden. There-
fore, Lt,Obs ⊆ Lt,Iden. �

Let LObs and Lun denote the languages formed of the untimed sequences of
events obtained from all timed sequences of Lt,Obs and Lt,Iden, respectively, i.e.,
LObs := {φ(st) ∈ Σ? : st ∈ Lt,Obs} and Lun := {φ(st) ∈ Σ? : st ∈ Lt,Iden}. Then, the
following result can be stated.
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Corollary 3.1 LObs ⊆ Lun.

Proof. The proof is straightforward from Theorem 3.1. �
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Chapter 4

Fault detection scheme

The fault detector proposed in this chapter is inspired by the one presented in
MOREIRA and LESAGE [22] based on the DAOCT model. Thus, as long as a
sequence of timed events st, whose corresponding untimed behavior su = φ(st)

belongs to LObs, is executed by the system, the fault detector observes the events,
and plays the model following the behavior of st. If sequence st is compatible with
one of the time-interval paths p′i, then, after sequence st has been observed, the
model is reinitialized and a new sequence can be played by the fault detector. The
sequence of events that is played by the fault detector without reinitializing the
model is called a model run. Thus, the fault detector must evaluate if the current
model run can be executed by the TAOCT model. If the model is unable to execute
the observed sequence of events, or if the occurrence of an expected event does not
occur within a feasible time interval, then a fault is detected.

In Figure 4.1, the scheme for fault detection based on the TAOCT model is
presented. The idea behind this scheme is that, during system operation, the current
I/O vector of controller signals is read in real-time by the fault detector. Then, if the
observed behavior of the system is different from what is predicted by the TAOCT
model, the fault that caused the unexpected behavior is detected.

In MOREIRA and LESAGE [22], the minimum number of event observations,

Discrete-Event Controller

TAOCT model

Discrepancy?

Fault-free behavior

Fault detected

Model prediction

No

Yes

Observed
timed event

Figure 4.1: Fault detection scheme based on the TAOCT model.
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denoted here as µui , such that each fault-free path can be distinguished from the
other fault-free paths, is used in the fault detection scheme. Similarly, here the
minimum number of event observations of p′i such that p′i can be distinguished from
any other path p′z, i 6= z, i, z ∈ R, denoted as µi, is used in the fault detection
scheme. However, due to the fact that the timing behavior of the TAOCT is also
considered, the value of µi may be different from the value of µui , obtained for the
underlying DAOCT model, for each i ∈ R. Consider, for example, that R = {1, 2},
and that both paths p′1 and p′2 start with the same event, i.e., σ1,1 = σ2,1. Since p′1
and p′2 have the same first event, then they are logically equivalent considering only
the first event occurrence, which means that certainly both µu1 and µu2 are greater
than one by considering only the logical behavior. However, if I1,1\I2,1 6= ∅, then
it is possible to distinguish path p′1 from p′2 upon the occurrence of the first event.
In order to do so, the first event must be observed with a time value belonging to
I1,1\I2,1. In this case, µ1 = 1. Note that, if I2,1 ⊂ I1,1, then it is impossible to
distinguish p′2 from p′1 upon the first event occurrence. Thus, µ2 > 1. The value of
µi, for i = 1, . . . , r, can be formally defined as follows:

µi= min{j ∈ {1, . . . , l′i − 1} : (@z ∈ R \ {i})
[(σi,v = σz,v)∧(Ii,v\Iz,v = ∅), v=1, . . . , j]}. (4.1)

It is important to remark that it is always possible to compute µi, i = 1, . . . , r,
since, according to Assumption A2, none of the untimed paths pui , associated with
p′i, has an associated sequence of events that is a prefix of the sequence of events of
another untimed path puz , associated with p′z, where i 6= z, for i, z ∈ R.

In the definition of a viable event given in MOREIRA and LESAGE [22], four
conditions are presented in order to verify if an observed event indicates the oc-
currence of a fault. In the sequel, a viable timed event is defined by adapting the
definition of viable event to the context of the TAOCT model.

Definition 4.1 Let st ∈ Σ?
t be a model run such that x = f(x0, φ(st)). Then,

(σ, τ) ∈ Σt is said to be a viable timed event in state x ∈ X of the TAOCT model if
it satisfies the following conditions:

C1. σ ∈ Γ(x);

C2. θe(x0, st(σ, τ)) 6= ∅;

C3. If |θe(x0, st)| > 1 and θe(x0, st(σ, τ)) = {i}, then ‖st(σ, τ)‖ ≥ µi;

C4. If ‖st(σ, τ)‖ = l′i − 1, for i ∈ θe(x0, st(σ, τ)), then λ̃(x′) = yi,l′i, where
x′ = f(x, σ), or there exists j ∈ θe(x0, st(σ, τ)) such that ‖st(σ, τ)‖ < l′j − 1. �
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If Conditions C1 and C2 are verified, then st(σ, τ) ∈ Lt,Iden. If Condition C3 is
violated, then path p′i has been wrongly identified before the minimum number of
timed event occurrences µi, given by Equation (4.1). Finally, if Condition C4 is not
true, then the length of the observed trace st(σ, τ) is equal to the maximum length
among all sequences of the estimated paths in θe(x0, st(σ, τ)), without reaching the
final vertex of any of these paths, which implies that a fault has occurred.

Algorithm 4.1 describes the procedure for performing fault detection using the
identified TAOCT model. The basic idea is to detect the occurrence of a fault if
the observed timed event is not viable, according to Definition 4.1, or a deadlock is
reached. Let us define sets V := {(i, yi,l′i) : i ∈ R} and N := {(i, µi) : i ∈ R}, which
are used in the algorithm. Verification of Conditions C1-C4 is carried out for the
TAOCT in a similar way as for the underlying DAOCT presented in MOREIRA
and LESAGE [22]. The main difference between Algorithm 4.1 and the algorithm
proposed in MOREIRA and LESAGE [22] is the use of the path estimation function
θe that takes into account the information about the time that an event is observed,
τ , for determining which time-interval paths are possibly being executed by the
system. Since θe uses both the logical and the timing behaviors of the system,
then its estimation is improved with respect to the estimation provided by the path
estimation function presented in Section 2.5, which uses only the logical behavior.
Thus, the number of faults that can be detected by using the TAOCT is always
greater than or equal to the number of faults that can be detected by using the
underlying DAOCT.

There are three faulty scenarios for which a fault can be detected by using the
TAOCT instead of the underlying DAOCT model, namely:

1. faults that lead the system to a deadlock;

2. faults that cause the occurrence of a feasible event σ at a time instant τ that
does not belong to any set defined by the guard conditions g(x, σ, i), for all
i ∈ R;

3. faults that cause the occurrence of a feasible event σ at a time instant τ
that satisfies a guard condition, but leads the path estimation function to
θe(x0, st) = ∅.

In order to detect the first type of fault, the global clock cg is reset in line 5
every time a transition is transposed in the TAOCT. Then, cg is used to detect a
deadlock in lines 7 to 11, by verifying if an event is observed in a time smaller than
or equal to the maximum time τmax allowed for the occurrence of an event in the
current state xc. If an event is not observed within τmax time units, then the fault
is detected. The second and third types of faults can be detected by verifying if the
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observed timed sequence can be generated by the model, since, in both cases, even
though f(x0, φ(st)) is defined, θe(x0, st) = ∅, i.e., the observed timed sequence is not
in Lt,Iden.

In line 13, it is checked if Condition C1 is violated, in which case the fault is
detected in line 14. In lines 15 to 17, Condition C2 is verified and, if it does not
hold, the fault is detected. In lines 18 to 21, Condition C3 is tested and the fault is
detected if this condition is violated. In lines 22 to 25 of Algorithm 4.1, the TAOCT
is reinitialized every time a cyclical fault-free path, with behavior compatible with
a time-interval path p′i, i ∈ {1, . . . , r}, is executed by the system. In lines 26 to 30,
it is verified if the final vertex of a non-cyclical observed path is reached, in which
case no event should be observed anymore. In this case, in line 28 the path estimate
is made equal to the empty set, in line 29 the value of τmax is set to infinity, and the
algorithm returns to line 5. Then, if an event is observed, the fault is detected in
lines 13 and 14, since Condition C1 is violated. In line 31, Condition C4 is tested
and, if it is violated, the fault is detected in line 32. If the end of the path that is
being executed by the system has not been reached yet, then the path estimation
function and the state of the model are updated in lines 33 to 37, and the algorithm
returns to line 4.

The concept of reinitializability is introduced in MOREIRA and LESAGE [22]
to present a condition for ensuring that the model can always be reinitialized after
the completion of some fault-free path. This condition is restated for the TAOCT
model as follows.

Definition 4.2 Let st denote an observed sequence of timed events compatible with
path p′i, i.e., i ∈ θe(x0, st) and ‖st‖ = l′i − 1, for some i ∈ R. Then, the TAOCT
is said to be reinitializable if there does not exist s′t ∈ {st} of length ‖s′t‖ = l′z − 1,
where z ∈ θe(x0, s

′
t) and l′z < l′i, such that x′ = f(x0, φ(s′t)), and λ̃(x′) = yz,l′z . �

In order to clarify the meaning of the concept of reinitializability, let us consider
that a path p′i is executed by the system and let st be the sequence of observed
timed events associated with p′i. If the condition presented in Definition 4.2 does
not hold, then there exists a sequence of timed events s′t ∈ {st}, such that a state
x′ = f(x0, φ(s′t)), with λ̃(x′) = yz,lz is reached. Since ‖s′t‖ = l′z − 1, then according
to lines 24 and 25 of Algorithm 4.1, the model is either reinitialized or stopped
after the observation of s′t, and in this case path p′i is not necessarily played in the
model. Thus, if the condition for reinitializability presented in Definition 4.2 is not
satisfied, then Algorithm 4.1 cannot be used for fault detection, since it is not guar-
anteed that the model will be reinitialized after playing a fault-free path associated
with p′i. Sufficient conditions and a method for verifying the reinitializability of a
DAOCT model are presented in MOREIRA and LESAGE [22]. These conditions
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Algorithm 4.1: Fault detection algorithm
Input: Identified TAOCT model, λ̃, V , N
Output: Fault detection

1 Define the current state of the model xc ← x0

2 Define the current path estimate θe,c ← R
3 Define the counter of event observations η ← 0
4 τmax ← sup

⋃
i∈R
⋃
σ′∈Γ(xc) g(xc, σ

′, i)

5 Reset the global clock cg
6 while cg ≤ τmax do
7 Check the occurrence of an event σ
8 if σ is detected then
9 τ ← cg(t)

10 Go to line 12

11 Detect the fault and stop the algorithm
12 η ← η + 1
13 if σ 6∈ Γ(xc) then
14 Detect the fault and stop the algorithm

15 θe,n ← θe,c ∩ θ(xc, σ, τ)
16 if θe,n = ∅ then
17 Detect the fault and stop the algorithm

18 if |θe,n| = 1 ∧ |θe,c| > 1 then
19 Find the pair (i, µi) ∈ N such that θe,n = {i}
20 if µi > η then
21 Detect the fault and stop the algorithm

22 Define state xn ← f(xc, σ)
23 Define set Λ← {l′i : i ∈ θe,n}
24 if there exists l′i ∈ Λ s.t. η = l′i − 1, λ̃(xn) = yi,l′i, and ui,l′i = ui,1 then
25 Go to line 1

26 if there exists l′i ∈ Λ s.t. η = l′i − 1, λ̃(xn) = yi,l′i, and ui,l′i 6= ui,1 then
27 xc ← xn
28 θe,c ← ∅
29 τmax ←∞
30 Go to line 5

31 if maxl′j∈Λ l
′
j = η + 1 then

32 Detect the fault and stop the algorithm

33 θ′e,n ← {i ∈ θe,n : l′i = η + 1}
34 θe,n ← θe,n \ θ′e,n
35 xc ← xn
36 θe,c ← θe,n
37 Go to line 4
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Figure 4.2: TAOCT model of Example 4.1.

and verification method remain valid for the TAOCT, since they are still valid for
the underlying DAOCT model.

In the following example, the three situations in which a fault can be detected
using the TAOCT, and not using the underlying DAOCT model, are illustrated.

Example 4.1 Consider the following time-interval paths p′1 and p′2:

p′1 =


 1

0

0

, a, I1,1,

 1

1

0

, b, I1,2,

 0

1

0

, c, I1,3,

 0

0

0


 ,

where I1,1 = [25.3, 95.2], I1,2 = [0, 47.7] ∪ [148.8, 246.4] ∪ [505.2, 705.9] and I1,3 =

[165.9, 481.3] ∪ [818.9, 1133.6], and

p′2 =


 1

0

0

, b, I2,1,

 0

0

0

, a, I2,2,

 0

1

0

, c, I2,3,

 0

0

0




with I2,1 = [200, 215], I2,2 = [90, 110] and I2,3 = [590, 620].
The TAOCT obtained by applying Algorithm 3.1, for k = 1, is shown in Figure

4.2. The set of states of the TAOCT is X = {0, 1, 2, 3}. Label σ,I on each transition
from a state x ∈ X means that a guard g(x, σ, i) = I is defined. The final states Xf

are represented by double circles as in Section 2.5.
A fault that leads the fault detector to a deadlock (first type of fault) would be

detected using Algorithm 4.1 if, for instance, after the occurrence of sequence s′′t =

(a, 60)(b, 200), no event is observed at state 2 after the maximum time τmax = 1133.6

seconds has elapsed.
Suppose now that sequence s′t = (a, 60)(b, 200)(c, 100) ∈ Σ?

t is observed, i.e.,
event c is observed in state 2 after 100 seconds. In this case, although c is feasible
in state 2, since 100 6∈ I1,3, then a fault is detected using Algorithm 4.1. As the time
value 100 does not belong to any guard defined in this transition, the detected fault
is of the second type. Note that this fault would not be detected if the underlying
DAOCT were used.
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Suppose that during system operation timed sequence st =

(a, 60)(b, 200)(c, 600) ∈ Σ?
t is observed. Thus, since event a is feasible in

state 0, and a occurs at time instant 60 ∈ I1,1, then (a, 60) ∈ Lt,Iden, and
the path estimation function is θe(0, (a, 60)) = {1}. After the occurrence of
event b, no fault is detected since b is feasible in state 1, 200 ∈ I1,2, and
θe(0, (a, 60)(b, 200)) = θe(0, (a, 60))∩ θ(1, b, 200) = {1} ∩ {1} = {1}. However, after
the occurrence of event c after 600 seconds in state 2, the fault is detected, since,
although c is feasible in state 2, time instant 600 6∈ I1,3 and θ(2, c, 600) = {2}. Thus,
θe(0, (a, 60)(b, 200)(c, 600)) = θe(0, (a, 60)(b, 200)) ∩ θ(2, c, 600) = {1} ∩ {2} = ∅.
It is important to remark that the fault would not be detected in this example if
the underlying DAOCT model were used, since transition (2, c, 3) belongs to the
untimed paths associated with p′1 and p′2. Note that the last event observation is
consistent with a path that is not one of the estimated paths. Hence, this is a fault
of the third type. �

It is important to remark that all faults that can be detected using only the
logical behavior of the system, modeled by the underlying DAOCT, can also be
detected using the TAOCT model. Thus, there is an improvement in the fault
detection capability using this timed model.
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Chapter 5

Fault detection of a sorting unit
system

5.1 Closed-loop system behavior

The identification method for obtaining the TAOCT is illustrated using the sorting
unit system presented in Figure 5.1. Three different types of pieces are sorted in the
system: white plastic pieces (WP), black plastic pieces (BP), and metallic pieces
(M). Each type of piece is pushed to one of the three slides shown on the bottom of
Figure 5.1, such that pieces of type WP are pushed to the right slide, pieces of type
M are pushed to the slide in the middle, and pieces of type BP are pushed to the
left slide.

On the right of Figure 5.1, there is a stack magazine where the pieces can be
stored in any order. In the sorting process, the pieces at the bottom of the stack
magazine are placed onto the conveyor belt by a pneumatic pusher. Then, the
conveyor belt is turned on, and the piece is moved in the direction of two sensors in
order to determine its type. An inductive sensor detects metallic pieces (type M),
and an optical sensor detects metallic (type M) and white plastic pieces (type WP).
If a black plastic piece (type BP) is on the conveyor, then none of these two sensors
is capable of detecting it. The optical sensor is located close to the inductive sensor,
such that metallic pieces are detected by both sensors almost at the same time.

It is also important to remark that there is a photoelectric sensor next to each
sorting pusher on the conveyor. When a piece is detected by the photoelectric sensor
next to the pusher that should remove it from the conveyor, the conveyor is stopped
and the pusher is extended. Then, the pusher is retracted and a new piece can be
placed on the conveyor by the pusher of the stack magazine.

The sorting pushers are denoted as SPleft, SPcenter and SPright, for the left, center
and right sorting pusher of Figure 5.1, respectively. The magazine pusher is denoted
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Figure 5.1: Sorting unit system of the practical example.

as MagP. The sorting unit system has 13 sensors and 6 actuator signals. Thus, the
controller has 19 input and output signals. Table 5.1 gives the position number d of
each controller signal in the I/O vector, along with their description.

The initial state of all observed paths is defined as the I/O vector corresponding
to the case where the conveyor belt is turned off, and all pushers are retracted.

5.2 TAOCT model computation

During the identification process, 2294 timed paths with lengths ranging from 6 to
14 I/O vectors were observed, corresponding to two hours and fifty three minutes
of observation of the controller signals. A total of 12 logically distinguishable paths
were obtained. As there are only three types of pieces, only three different logically
distinguishable sequences would be expected. However, it has been observed that,
since the inductive and optical sensors are very close to each other, the order of
sensor readings (rising and falling edges) may change for different sorting cycles of
metallic pieces, increasing the number of paths.

In this practical example, the Nearest Neighbors Method, presented in Section
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Table 5.1: Table containing the description of each I/O signal.

d Description of the I/O signal
1 Sensor indicating the extension of MagP
2 Sensor indicating the retraction of MagP
3 Sensor indicating the extension of SPleft
4 Sensor indicating the retraction of SPleft
5 Sensor indicating the extension of SPcenter
6 Sensor indicating the retraction of SPcenter
7 Sensor indicating the extension of SPright
8 Sensor indicating the retraction of SPright
9 Optical sensor
10 Inductive sensor
11 Photoelectric sensor of SPleft
12 Photoelectric sensor of SPcenter
13 Photoelectric sensor of SPright
14 Command to activate SPleft
15 Command to activate SPcenter
16 Command to activate SPright
17 Command to extend MagP
18 Command to retract MagP
19 Command to activate the conveyor belt

3.3.1, has been selected for the computation of the sets Ii,j of the time-interval
paths. The threshold ζ = 80ms has been chosen, since we consider that this value
is consistent with the dynamics of each transition. The uncertainty δ has been
considered to be 1ms, which is equal to the measured scan cycle.

After obtaining the time-interval paths p′i, the TAOCT model is computed fol-
lowing the steps of Algorithm 3.1. The identified TAOCT for k = 1 is depicted in
Figure 5.2. In this case, the identified TAOCT has 26 states and 38 transitions. In
Figure 5.2, the guards are not presented due to lack of space. The events of the
TAOCT are rising and falling edges of the elements of the I/O controller vector,
which are represented by ↑d and ↓d, respectively, where d is the position of the
signal in the I/O vector. It is important to remark that, according to Definition 2.6,
an event can be formed of more than one rising or falling edge of controller signals.

The programming code for computing the TAOCT model was implemented using
Python 3.7 on a computer Intel Core i5 with 2.4GHz and 4GB RAM. The time
required for computing the time-interval paths from the fault-free observed timed
paths was 424ms. The most time-consuming operations are those related to the
formation of clusters, which are carried out for every transition of every observed
path. The time required for the computation of the TAOCT model was only 2.4ms.
Thus, the overall time for the computation of the TAOCT model, including the
computation of the time-interval paths p′i, is approximately 426ms.
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Figure 5.2: TAOCT model obtained for the practical example.

Table 5.2: Computation time of time-interval paths using the clustering method
based on K-Means, for each value of Kmax.

Kmax Time for computing the time-interval paths [s]
1 0.506
2 27.4
3 36.2
4 44.7
5 54.5
6 63.1
7 72.6
8 85.8

It is worth noting that the use of the clustering method based on K-Means for
computing the time-interval paths has proven to be much more resource-expensive
than the use of the Nearest Neighbors Method. Table 5.2 shows the times required
to obtain the time-interval paths by choosing different values for Kmax. The selected
parameters of the clustering procedure were ξ = 0.2 and δ = 1ms.

It can be seen in Table 5.2 that when the Kmax is chosen to be equal to one,
meaning that no clusters are to be formed, the computation time is similar to the one
observed using the Nearest Neighbors Method. However, for Kmax ≥ 2, the method
based on K-Means takes many seconds to compute the time-interval paths. The
reason for this loss in performance is that the K-Means must be performed for every
value of K ∈ {1, 2, . . . , Kmax}, which significantly impacts the computation time.
Thus, even though the method based on K-Means does not require any knowledge
about the dynamics of the transitions, the cost of applying this method may be very
high for large systems.
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5.3 Fault detection based on the TAOCT model

In the sequel, three faulty scenarios for which the fault can be detected thanks to
the timing information added to the TAOCT model are presented.

In the first scenario, consider that, after a piece is placed on the conveyor belt
by pusher MagP, the pusher stuck extended and cannot be retracted. The path
associated with this behavior is p = (x0, ↑17, x1, ↓2, x2, ↑1. ↓17. ↑18, x3). In this case,
the system deadlocks, since the conveyor belt is turned on only after the retraction
of the pusher is detected (↑2), which never occurs. This fault cannot be detected by
using the DAOCT model, but can be detected by using the TAOCT model, since
the falling edge of the sensor that indicates that MagP is extended (↓1) must occur
before the maximum time of the guard g(x3, ↓1, 1) = [87, 161]. Thus, when the
elapsed time is greater than 161 milliseconds, the occurrence of a fault is detected.

To illustrate the second faulty scenario, consider a fault in the speed controller
of the conveyor that makes it work faster than expected. Consider, for instance,
that after a BP piece is placed on the conveyor belt, and the conveyor is turned
on (↑19), which corresponds to state x5 of the TAOCT, it reaches the photoelectric
sensor next to the first sorting pusher (↑13) in a time smaller than the minimum
time of the guard g(x5, ↑13, 4) = [4058, 4146]. Thus, the fault detector is able to
indicate that some fault has occurred. It is important to remark that, since ↑13 is
coherent with the logical behavior of the system, then the detection system based
on the underlying DAOCT model would not be capable of detecting this fault.

The third faulty scenario can be illustrated by the following example. Consider
all observed paths associated with BP or M pieces, and consider that the piece is
in front of the photoelectric sensor next to the right sorting pusher, i.e., the rising
edge of the photoelectric sensor (↑13) has been observed, which corresponds to state
x8 of Figure 5.2. By analyzing the time elapsed between ↑13 and ↓13, two distinct
sets of time values can be defined according to the type of piece, as shown in Figure
5.3. This occurs because metallic pieces are detected for a longer time than plastic
pieces by the photoelectric sensor due to their brightness. Consider now a fault
that causes both the optical and inductive sensors to fail at the same time. In this
case, a piece of type M would lead to the same logical behavior as a BP piece,
making such a fault non-detectable by the diagnosis system based on the underlying
DAOCT model. However, as shown in Figure 5.3, it is possible to distinguish the
types of pieces by using the guards associated with the timed paths. While a BP
piece would take some time in the interval g(x8, ↓13, 4) = [915, 937], a metallic piece
would take some value in the interval [1035, 1052] milliseconds, which corresponds
to the union of all guards defined in state x8, for event ↓13, and the timed paths
associated with metallic pieces. Thus, if a metallic piece is on the conveyor belt,
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Figure 5.3: Histogram showing the observed times elapsed between the rising edge
and falling edge of the photoelectric sensor next to the first sorting pusher (BP in
black and M in grey) in the observed timed paths.

and the fault occurs, the time elapsed between the rising and falling edges of the
photoelectric sensor will be compatible with the guard condition associated with
metallic pieces, and non-compatible with the guard condition of black plastic pieces.
Since the logical behavior is not coherent with the timing behavior, the detector
determines that a fault has occurred in the system.

Remark 5.1 In the practical example shown in this chapter, it has been assumed
that the fault detector is implemented in the same PLC that was used in the iden-
tification procedure. By doing so, it is easier to ensure that the fault detector runs
properly, since the scan cycle is the same for both the detector and the system. How-
ever, for many applications, it may be more convenient to implement the detector
on a different device, such as a computer running the fault detector algorithm writ-
ten in a programming language such as Python or C. In the case where a different
device is used, attention must be paid to issues that may cause the detector to work
in an unexpected way. For instance, if the scan cycle of the exterior device is slower
than the scan cycle of the PLC, then there is a chance that the detector will miss
some event observations, in which case the model no longer tracks the behavior of
the system. �
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Chapter 6

Conclusions

In this work, a new timed model for the identification of DES with the aim of fault
detection is proposed. In this model, called Timed Automaton with Outputs and
Conditional Transitions (TAOCT), timing information regarding the occurrence of
events is added in the form of guards to the transitions. The identification procedure
for obtaining the TAOCT is thoroughly developed, from the observation of the fault-
free behavior of the system until the computation of the model.

In the identification process, time-interval paths are defined by considering sets
of time values associated with each transition of the path. The computation of these
sets is carried out through the use of a clustering procedure, and each one of the
obtained clusters of time values corresponds to a different timing behavior associated
with that transition. Two methods that are based on clustering procedures found in
the literature are proposed with the aim of computing the required clusters: one is
based on the Nearest Neighbors Method and the other one is based on the K-Means
clustering method. Examples illustrating the use of both methods are presented
and discussed. The separation of the observed timed values in clusters improves
the accuracy of the guards defined in the TAOCT in comparison with other timed
models in the literature, which usually deal only with guards represented as single
intervals.

After the presentation of the identification procedure, the algorithm for comput-
ing the TAOCT model is proposed. It is shown that the identified model obtained
with this algorithm simulates the observed fault-free behavior of the system, which
is an important property for an identified model meant to be used for fault detection
purposes.

The algorithm for fault detection using the identified TAOCT model has also
been proposed, and the different scenarios in which a fault can be detected thanks
to the timing information added to the TAOCT are presented. In fact, a refinement
of the path estimation can be carried out using the timing information, and thus
faults that cannot be detected by using untimed models can be detected by using
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the TAOCT.
The proposed method has been applied in a practical example, where the fault-

free behavior of a didactic manufacturing plant is observed and the recorded data
is used to obtain the TAOCT model. The practical use of the computed model in
a fault detection scheme has proven to be successful in detecting faults that would
not have been detected by using other identified models.

An important improvement of this work making the presented approach more
suitable for an industrial environment would be the proposal of a mechanism al-
lowing the identified model to be constantly updated while the system is running.
For example, if the occurrence of a false alarm is detected, then its corresponding
sequence can be added to the observed behavior and the model could be recomputed
taking into account the newly added information. Alternatively, if the occurrence
of a fault is missed by the detector, then one or more parameters used for identifi-
cation (k, ζ, Kmax, etc.) could be changed accordingly, as a way of improving the
identified fault-free model. The implementation of an automated procedure through
which the model is updated, using artificial intelligence for instance, would be a very
interesting option for further research and certainly a leap forward in the industrial
application of the results presented in this work.

For industrial purposes, it would also be essential to expand the ideas developed
in this work to include the possibility of executing several system paths concurrently
in the model. Indeed, in the practical example presented in Chapter 5, only one path
is executed by the system at any given time, since the pieces are processed one at a
time, with the next piece only arriving once the current cycle is complete. Allowing
the possibility of concurrent paths is very important, since they often occur in real
industrial systems. In the practical example of Chapter 5, it would be possible to
address the case where a piece is introduced in the system before the completion of
the production cycle corresponding to the piece that came before.

Another possible direction for future research could be to generalize the TAOCT
model to the case where the passage from one discrete state of the model to another
one may also depend on the evolution of multiple continuous variables. Indeed, in
the case of the TAOCT, the only continuous variable on which the discrete behavior
depends is the global clock. However, the inclusion of other variables such as tem-
perature or pressure may also be envisioned as a way of refining even further the path
estimation function and improving fault detection in systems where measurements
of such variables are available.
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