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Métodos convencionais de estimação da direção de chegada de fontes sonoras são
capazes de gerar estimativas precisas em aplicações com apenas uma fonte. No con-
texto de ruído de trânsito, cada veículo possui pelo menos duas importantes fontes
sonoras, associadas aos pneus dos eixos dianteiro e traseiro. Uma extensão de mé-
todos de estimação da direção de chegada de fontes sonoras a partir de um conjunto
de dois microfones é proposta neste trabalho, de modo a lidar com múltiplas fontes.
O método proposto é divido em duas etapas: na primeira, um dos algoritmos de
estimação da direção de chegada convencionais é usado para gerar uma matriz de
atrasos; na segunda, a matriz de atrasos é tratada, utilizando-se técnicas de pro-
cessamento de imagens, e em seguida usada como entrada para um algoritmo de
ajuste de curvas. Quatro métodos são testados para a geração da matriz de atra-
sos: Generalized Cross-Correlation (GCC), Interaural Time Difference (ITD), Least
Mean Square (LMS) e Eigenvalue Decomposition (EVD). Duas curvas são obtidas
como resultado da segunda etapa, representando as diferenças de tempo de chegada
estimadas dos sons emitidos pelos pneus do carro nos dois microfones ao longo do
tempo. Além das direções de chegada das duas fontes sonoras principais, estimativas
da velocidade e da distância entre os eixos dos carros podem ser obtidas a partir das
duas curvas. Medições do som emitido durante a passagem individual de carros de
quatro modelos em diferentes velocidades são utilizadas para testar o desempenho
do sistema. Os resultados experimentais indicam que, com as modificações introdu-
zidas na segunda etapa, o sistema foi capaz de estimar a distância entre os eixos dos
carros com erro médio de 26 cm usando o algoritmo GCC, e de estimar a velocidade
com erro médio de 10.01 km/h usando o algoritmo LMS.
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Conventional methods for the direction of arrival estimation of sound sources are
capable of generating accurate estimates in applications with only one source. In
the context of traffic noise, each vehicle has at least two important sound sources,
associated with the tires on the front and rear axles. An extension of methods for
the direction of arrival estimation of sound sources from a set of two microphones
is proposed in this work, in order to deal with multiple sources. The proposed
method is divided into two stages: in the first, one of the traditional arrival direction
estimation algorithms is used to generate the delay matrix; in the second, the delay
matrix is treated, using image processing techniques, and then used as an input
to a curve fitting algorithm. Four methods are tested for generating the delay
matrix: Generalized Cross-Correlation (GCC), Interaural Time Difference (ITD),
Least Mean Square (LMS) and Eigenvalue Decomposition (EVD). Two curves are
obtained as a result of the second stage, representing the time difference of arrival
estimated of the sounds emitted by the car tires on the two microphones over time.
In addition to the directions of arrival of the two main sound sources, estimates of
the speed and distance between the axles of the cars can be obtained from the two
curves. Measurements of the sound emitted during the individual passage of cars of
four models at different speeds are used to test the performance of the system. The
experimental results indicate that, with the modifications introduced in the second
stage, the system was able to estimate the distance between the axles of the cars
with an average error of 26 cm using the GCC algorithm, and to estimate the speed
with an average error of 10.01 km/h using the LMS algorithm.
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Chapter 1

Introduction

Serious annoyances, sleep disorders and an increased risk of cardiovascular disease
are related to the harmful effects of noise exposure on people’s quality of life and
health [1]. Road traffic is identified by many studies as the main source of environ-
mental noise [2–8], which the World Health Organization (WHO) has declared as a
public health problem. A large part of the world population lives in cities, where
traffic noise is more intense, being continuously exposed to noise and its serious
consequences. Strategies for assessing traffic noise are therefore of great interest to
the scientific community and the general public.

Noise mapping was declared as a common noise assessment method in the Eu-
ropean Directive 2002/49/EC, known as the Environmental Noise Directive (END)
[9]. Noise maps provide a graphical representation of a noise indicator, defined in
the END as a physical scale to describe environmental noise and its harmful effects.
However, the relationship between noise indicators and human perception is not
intuitive. This problem is aggravated because, in addition to people with technical
knowledge, such as architects, urban planners and engineers, noise maps generally
need to be evaluated by non-specialists, such as decision makers, politicians and the
general public. In this context, auralization stands out as a more intuitive noise
assessment strategy, in which a virtual acoustic environment is generated, providing
the listener with an immersive experience.

The auralization systems are based on three main modules responsible for the
generation, transmission and reproduction of sound, respectively [10]. The first mod-
ule provides the “dry” input signal obtained by anechoic recordings [11] or synthesis
[12]. Sound transmission introduces effects accumulated by the sound signal in the
path between the source and the receiver. Finally, sound reproduction adds other
effects to simulate the desired listening experience. In the context of the auralization
of traffic noise, road vehicles stand as important sources of disturbance and must be
well represented in the sound generation module. Therefore, an accurate simulation
of traffic noise depends on knowledge of the characteristics of the vehicle’s sound
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sources.
It would be impractical or impossible to accommodate a moving car inside an

anechoic chamber to measure its emission characteristics or record the sound emitted
by the vehicle in several directions. For this reason, synthesis strategies have been
employed to model urban noise sources in previous implementations of auralization
systems [13–15]. Another strategy is to acquire vehicle sound emissions, among
other sound sources, and select only vehicle emissions by applying signal processing
techniques to filter, both in time and space, the recorded audio data. From the
filtered data, it is possible to infer spectral characteristics of the signal, which can
be used to synthesize the vehicle noise emissions. Therefore, it is necessary to know
the vehicle’s position, or at least its direction, to perform spatial filtering and obtain
the desired sound.

A simple configuration for the location of acoustic sources is defined by a pair of
microphones that record emissions from a sound source. Each microphone receives
the signal from the source delayed in a slightly different amount, and this time
difference indicates which direction the original signal came from. Direction of
arrival (DOA) estimators are often used in speech applications [16]. Researches
on speaker tracking usually deal with highly reverberated environments and non-
overlapping dominant sources. On the other hand, the present work addresses the
problem of vehicle sound tracking, where reverberation is not an important issue and
the sound source of interest is composed of several contributions that overlap in time
and frequency. In addition, vehicle tracking differs from speaker tracking as the first
cannot always be approached as a point source, depending on the distance between
the car and the microphone array. Car noise emission is actually a combination of
several noise sources associated with different elements of the vehicle. The main
sources are the tires, the engine and the exhaust system, where the former are
dominant for vehicle speeds above 30 km/h [17]. Therefore, instead of tracking the
vehicle as a whole, we propose to track tire noise, which has been shown to be
dominant in most pass-by recordings [18–20]. In addition, the contributions of the
front and rear tires are tracked separately, by modifying the conventional direction
of arrival estimation algorithms, designed for single sound sources.

Four methods for estimating the direction of arrival are investigated in this work
[16] for application in the context of the location of vehicle sound sources in urban
environments. The first method uses a traditional correlation approach to deal
with the problem, calculating a modified (or “generalized") cross-correlation function
between two recordings. The second method explores the physical constraints of the
microphone array to test all possible directions of arrival and select the most suitable
one. The two final methods use adaptive filters as an effort to model the impulse
response of the channel between sources and microphones. All four algorithms are
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based on the estimation of the delay difference between the microphone signals,
known as time difference of arrival (TDOA). These techniques are robust for speaker
tracking in reverberating environments and in a scenario where there is only one
active voice at a time [16].

An extension, common to all four methods, is proposed to deal with the two
dominant sources observed in emissions from two-axle vehicles. This extension is
necessary due to the significant difference between tracking vehicles instead of speak-
ers. In this work, we use a sequence of time difference of arrival estimates, calculated
by one of the original methods, and ignore the final step, in which a dominant source
is assumed and a single direction of arrival (DOA) estimate per frame is calculated.
Instead, image processing and curve fitting optimization techniques are applied to
obtain the TDOA estimates. A sequence of delay estimations, calculated by one the
conventional DOA method, for the entire duration of the car passage is taken into
account simultaneously, being interpreted as an image rather than examined frame
by frame. A dynamic model of a single vehicle pass-by is combined with the geomet-
ric characteristics of the experimental setup to obtain a model for the TDOA curves.
Two curves are fitted to the data points, corresponding to the TDOA estimates over
time for the sounds coming from the two axles’ directions.

Moreover, given the TDOAmodel used to adjust the two curves, the optimization
of their parameters translates into computing estimates for the vehicle speed and
the wheelbase. Several studies have been published on acoustic velocity estimates
[18, 21–23] and wheelbase estimates [19, 21] in the last two decades. In [22], for
example, a direct maximum likelihood approach is proposed for speed estimation.
By calling it a “direct" approach, the authors emphasize the difference with respect
to the conventional approach of analyzing short-term cross-correlations. The direct
approach resulted in more accurate and robust estimates. Similarly, we propose
to replace the short-time maximum value assessments by an optimization which
accounts for all time frames simultaneously.

Publications on acoustic vehicle tracking are hardly found in the literature. In
[18], the vehicle is modeled as a bi-modal sound source, in order to account for
both axles, and the generalized cross-correlation method associated with particle
filtering is used. This approach resulted in more accurate estimates of the speed
and wheelbase, compared to an approach that uses uni-modal source modeling. In a
later work [19], a methodology for choosing an appropriate distance between sensors
was investigated in order to optimize the estimates obtained from [18]. In these
works, the tracking problem of road vehicle was addressed, but, as far as we know,
tracking vehicle axles separately has not been addressed before.

The purpose of this work is to present a method to estimate the time difference
of arrival of vehicular two-source sounds in a two-microphone array. In addition,
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we intend to compare four conventional direction of arrival estimation algorithms
that can be as part of the proposed system, indicating which ones are suitable for
vehicle noise applications. The proposed method consists of two main stages: in
the first, conventional direction of arrival estimators are implemented and one of
them is chosen to compute a delay matrix; in the second, image filtering followed
by curve fitting optimization are applied to the delay matrix, resulting in direction
of arrival estimates for the sounds coming from the front and rear axles’ tires. In
other words, the first stage applies strategies found in the literature to generate a
matrix with intensities related to TDOA values along the time, in which the elements
corresponding to the delays of the dominant source signals are emphasized; the
second stage is responsible for searching the TDOA matrix for the values associated
with two sources, corresponding to an extension of the original methods that consider
only one source. The delay estimation performed by the proposed system applies to
sound emissions of two-axle cars in which tire noise is the main sound source. Noise
measurements from four different passenger car models, passing through an array
of two microphones at different speeds, are used as input data for the validation of
the proposed method.

The algorithms employed in this work for the estimation of the direction of
arrival of one-source signals are presented in Chapter 2, and the proposed two-
source extension is presented in Chapter 3. Chapter 4 contains a description of the
experimental tests carried out to validate the proposed method, as well as the results
for the directions of arrival, speed and wheelbase estimates. The conclusion of this
work and proposal for future work are presented in Chapter 5.
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Chapter 2

Direction of Arrival Estimation

Four direction of arrival estimators, based on signal delay between two microphones,
are presented next. The acoustic scenario described in Fig. 2.1 is used throughout
this chapter.

Two microphones are placed d meters apart from each other and receive the
signal emitted by a sound source. Each microphone receives source signal at slightly
different instants and the microphone signals can be modeled as

{
x1(t) = s(t) + v1(t)

x2(t) = s(t− τ0) + v2(t),

(2.1a)

(2.1b)

where s(t) is the source signal and v1(t), v2(t) are the noise components. In other
words, the signal at the furthest microphone is modeled as a delayed version of the
signal at the closest one, plus noise. Furthest and closest refer here to the distance
between source and both microphones.

Assuming free-field conditions, direction of arrival might be estimated from delay
τ0 between sensor signals, as indicated by

φ = arccos
(c · τ0

d

)
, (2.2)

where c is the speed of sound and φ is the azimuth angle.

2.1 Generalized Cross-Correlation Method

One strategy for direction of arrival estimation lies in using the Generalized Cross-
Correlation (GCC) method [16, 24]. Cross-correlation function embodies an idea of
similarity between signals, which is expressed as a function of the delay τ between
them. Thus, for two nearly identical signals that differ only by a time delay τ0,
cross-correlation function reaches its maximum value when the applied lag τ equals
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0

Source

τ0

d

φ

Figure 2.1: Two-microphone setup for delay τ0 and direction of arrival φ estimation.

the actual delay τ0.
As in [16], GCC function is estimated in frequency domain using cross-power

spectrum. Discrete-time representation of sensor signals of (2.1) are given, respec-
tively, by {

x1(nT ) = s(nT ) + v1(nT )

x2(nT ) = s(T (n− τ0/T )) + v2(nT ),

(2.3a)

(2.3b)

with sampling period T .
A frequency-domain representation, obtained by applying Fourier Transform in

Eqs. (2.3), is {
X1(ejΩ) = S(ejΩ) + V1(ejΩ)

X2(ejΩ) = S(ejΩ)e−jΩ
τ0
T + V2(ejΩ).

(2.4a)

(2.4b)

Cross-power spectrum is defined as

Sx1x2(Ω) = E
[
X1(ejΩ)X∗2 (ejΩ)

]
= Sss(Ω)ejΩ

τ0
T , (2.5)

where E [.] is the expected value operator and Sss(Ω) is the source signal power
spectrum. However, since each random process represented by a microphone signal
is observed for a single realization, during a limited period of time, Sx1x2(Ω) cannot
be computed from (2.5) and needs to be estimated. Assuming that x1(n) and x2(n)

are ergodic processes, the expected value operation in (2.5) is replaced by a time
average, which must be taken in small intervals in order to guarantee stationarity.
Thus, power spectrum estimation is carried out over windowed signal frames, as it

6



follows:

Ŝx1x2(m, k) = αŜx1x2(m− 1, k) + (1− α)X1(m, k)X∗2 (m, k), (2.6)

where m is the frame index, k the discrete frequency index and X1(m, k) and
X2(m, k) are Discrete Fourier Transform (DFT) representations of windowed mi-
crophone signals. Exponential weighting coefficient α is typically set between 0.7

and 0.8.
Generalized cross-correlation function is defined as

Rx1x2(n) =
1

2π

π∫
−π

ψ12(ejΩ)Sx1x2(Ω)ejΩndΩ, (2.7)

and the only difference between the expression above and the regular, well-known,
cross-correlation is the weighting function ψ12(ejΩ). If ψ12(ejΩ) = 1, (2.7) be-
comes the inverse Fourier Transform of cross-power spectrum, as in classical cross-
correlation definition [25]. An interpretation for the weighting function is presented
in [24], where term ψ12(ejΩ) is introduced to the correlation equation by means of
a pre-filtering operation, applied to the input signals in order to enhance correla-
tion peaks. the Phase Transform (PHAT) weighting function, used in the present
implementation, is defined as

ψ12(ejΩ) =
1

|Sx1x2(Ω)|
. (2.8)

In practice, generalized cross-correlation (2.7) is obtained using inverse DFT
(IDFT) of cross-power spectrum estimate (2.6), thus

R̂x1x2(m,n) =
1

N

N−1∑
k=0

Ŝx1x2(m, k)∣∣∣Ŝx1x2(m, k)
∣∣∣ej 2πN nk, n = 0, 1, ..., N − 1, (2.9)

for discrete frequency index k, frame index m and frame length N .
Finally, delay difference between microphones 1 and 2 is estimated from

R̂x1x2(m,n) for each frame m, as it follows

τ0m

T
≈ n0m = arg max

n
R̂x1x2(m,n). (2.10)

2.2 Interaural Time Difference Method

Interaural difference, or the delay difference of a sound between the ears, is used by
humans and other animals as a tool for identifying sound sources location. Similarly,
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time difference of arrival between the two microphone signals is used in ITD (Inter-
aural Time Difference) method for the same purpose. Main idea here is to generate
a set of all possible delay differences between microphones and then search within
this set to identify the actual delay. Assuming that both signals differ only by a
time delay, the search is conducted by introducing artificial delays to the original
signals and checking the similarity between these delayed versions of original signals.
Time delay of arrival is estimated as the artificial delay responsible for making both
signals to coincide.

Azimuth range φ ∈ [0, π] is divided into I equally separated sectors, where I
must be an odd number. Each angle of arrival corresponds to a time delay, as
indicated in (2.2), and a TDOA set is generated by

τi =
d

2c
sin

(
i− 1

I − 1
π − π

2

)
, i = 1, 2, ..., I, (2.11)

where d is the distance between microphones and c is the sound propagation speed.
The algorithm is implemented in frequency domain, where delays τi defined in (2.11)
correspond to phase factors

pk(i) = e−j
2π
N
kfsτi , k = 0, 1, ...,

N

2
, i = 1, 2, ..., I, (2.12)

with sampling frequency fs = 1/T .
The Discrete Fourier Transform of signals, X1(m, k) and X2(m, k), are computed

for each framem and multiplied by the generated phase factors. Phase-shifted DFTs
are then compared for each frequency bin k, as shown in Figure 2.2. Only vertically
aligned pairs are compared and, as a result of array geometry, all possible phase
differences are covered in this way.

Comparison is carried out in the coincidence detection box, illustrated in Figure
2.2, by means of the squared difference of delayed signals

∆i(m, k) = |pk(i)X1(m, k)− pk(I − i− 1)X2(m, k)|2, i = 1, 2, ..., I (2.13)

which is minimized with respect to the index i, resulting in

iotm(m, k) = arg min
i

∆i(m, k), k = 0, 1, ...,
N

2
. (2.14)

Optimum index iotm indicates which among the artificial delays pk(i) generated the
most similar delayed signals. Time delay estimate is given by the delay correspond-
ing to the optimum index, or τ(m, k)|i=iotm(m,k).

A histogram averaging strategy is introduced in order to handle phase ambiguity
and fluctuations in delay estimates over frequency. Optimum indices iotm(m, k) are
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pk(1) pk(2) pk(
I+1

2
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pk(I) pk(I − 1) pk(
I+1

2
) pk(2) pk(1)

Figure 2.2: ITD system schematic.

accumulated in a histogram map Pk(τi,m), which is updated for each new evaluated
frame. Map Pk(τi,m) contains information from current frame m and exponentially
weighted past frames, as indicated

Pk(τi,m) = αPk(τi,m− 1) + δ(i− iotm(m, k)),


i = 1, 2, ..., I

k = 0, 1, ...,
N

2

m = 0, 1, 2, ...

, (2.15)

where δ(.) is the Kronecker delta function1 and τi is defined in (2.11). Forgetting
factor α is chosen between 0.85 and 0.95. Average delay estimate is obtained by
summing Pk(τi,m) over frequency bins

Psum(τi,m) =

N
2∑

k=0

Pk(τi,m), (2.16)

and checking which delay corresponds to maximum histogram sum

τ(m) = arg max
τi

Psum(τi,m). (2.17)

2.3 Least Mean Square Method

An adaptive method is now presented as an alternative, assuming that microphone
signals are simply delayed versions of the source signal, i.e., plane wave propagation
in free field. Delay estimation in this approach is obtained by modeling the impulse

1δ(x) equals 1 for x = 0 and 0 otherwise.
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responses between source and microphones.
In Least Mean Square (LMS) algorithm [26], one of the two sensor signals is

filtered by a finite impulse response (FIR) system and the result is compared to the
remaining signal, as depicted in Figure 2.3. This comparison results in error signal
e(n), which is fed back to the adaptive filter. Filter coefficients are updated in the
sense of minimizing the error according to a normalized version of LMS algorithm
[27, 28], given by

w(n+ 1) = w(n) +
µ

‖x2(n)‖2 e(n)x2(n), (2.18)

where µ is the step size. After adaption, filter coefficients w(n) would ideally all be
zero, except for the sample corresponding to delay τ0.

Delay
∆

Adaptive
Filter

Peak
Detector

x1(n)

x2(n)

x1(n−∆)

+

−

w(n)

e(n)

τ̂(n)

Figure 2.3: Adaptive LMS algorithm schematic.

The FIR system of length L is implemented in frequency domain. Signal samples
are grouped into frames of length N = 2L and filter coefficients are held constant
while each frame is being processed. Overlap-save method is used towards imple-
menting linear convolution operation, which is required for filtering signal x2(n).

Filter coefficients are updated at each frame m according to the following equa-
tions:

X2(m, k) =
N−1∑
n=0

x2(mL+ n)e−j
2π
N
nk, k = 0, 1, ..., N − 1 (2.19)

y(m,n) =
1

N

N−1∑
k=0

W (m, k)X2(m, k)ej
2π
N
nk, n = 0, 1, ..., N − 1 (2.20)

ẽ(m,n) =

0, n = 0, 1, ..., L− 1

x1(mL+ n−∆)− y(m,n), n = L,L+ 1, ..., N − 1
(2.21)
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E(m, k) =
N−1∑
n=0

ẽ(m,n)e−j
2π
N
nk, k = 0, 1, ..., N − 1 (2.22)

Sx2x2(m, k) = αSx2x2(m− 1, k) + (1− α)|X2(m, k)|2, k = 0, 1, ..., N − 1 (2.23)

W (m+ 1, k) = W (m, k) +
µ

Sx2x2(m, k) + ε
X∗2 (m, k)E(m, k),

k = 0, 1, ..., N − 1. (2.24)

The ideal scenario of one single non-zero filter coefficient is not possible, given
the finite model used for channel impulse response nad, also, the wave propagation
effects which are not considered in the model. However, one coefficient should still
dominate over the others. Delay estimates are thus obtained by maximizing filter
coefficients for each frame.

2.4 Eigenvalue Decomposition Method

The second adaptive algorithm performs delay estimation using an adaptive eigen-
value decomposition of a covariance matrix. First, the channel between the source
and each microphone is modeled as a linear and time invariant system, with impulse
responses h1(n) and h2(n), as depicted using dashed lines in Figure 2.4.

h1(n)

h2(n)

h2(n)

h1(n)

s(n)

x1(n)

x2(n)

e(n) ≡ 0+

−

Figure 2.4: Left: Signal model, in dashed lines. Right: impulse response estimator,
in solid lines.

Filtering each microphone signal by the opposite impulse response, as indicated
in Figure 2.4, results in the following relation:

x1(n) ∗ h2(n) = h1(n) ∗ s(n) ∗ h2(n) = h1(n) ∗ x2(n), (2.25)

where associative and commutative properties of linear convolution were employed.
Equation 2.25 enables formulating an eigenvalue problem, as shown next.

First, (2.25) is written in vector notation

xT1 (n)h2(n)− xT2 (n)h1(n) = 0, (2.26)

11



which is achieved by modeling impulse responses h1(n) and h2(n) as length L FIR
filters and grouping all data into the following L× 1 vectors

xi =


xi(n)

xi(n− 1)
...

xi(n− L+ 1)

 and hi =


hi(0)

hi(1)
...

hi(L− 1)

 , (2.27)

i = 1, 2. Furthermore, extended 2L× 1 vectors are defined by stacking up the L× 1

vectors defined in (2.27)

x(n) =

[
xT1 (n)

xT2 (n)

]
, u =

[
hT2

−hT1

]
. (2.28)

Now, replacing (2.28) into (2.26) results in

xT (n)u = 0. (2.29)

Covariances matrix Rxx(n) = E
{
x(n)xT (n)

}
is introduced by first multiplying

(2.29) on the left by x(n) and then applying the expected value operator, which
leads to

Rxx(n)u = 0. (2.30)

Vector u in (2.30) might be interpreted as the eigenvector of covariances matrix
Rxx(n) associated with eigenvalue 0. Therefore, computing vector u, which is the
same as computing vectors h1 and h2, depends on finding one eigenvector of the
covariances matrix. As demonstrated in [29], the eigenvector of Rxx(n) correspond-
ing to eigenvalue 0 can be obtained by minimizing function uTRxxu subject to the
constraint uTu = 1.

An adaptive algorithm is used for implementing the required minimization. The
error signal indicated in Fig. 2.4, obtained using (2.26), is given by

e(n) = uT (n)x(n) (2.31)

and should ideally be zero. Cost function

J(n) =
1

2
E
{
e2(n)

}
=

1

2
uT (n)Rxx(n)u(n) (2.32)

can be minimized by an adaptive gradient descent approach. Gradient descent
update rule is given by

u(n+ 1) = u(n)− µRxx(n)u(n), (2.33)
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where Rxx(n)u(n) is the cost function gradient with respect to vector u. The
constraint uTu = 1 is taken into account by enforcing updated vector u(n+1) to be
normalized. Thus, defining v(n) = u(n)−µRxx(n)u(n) and applying normalization,
(2.33) becomes

u(n+ 1) =
v(n)√

vT (n)v(n)
. (2.34)

The algorithm is implemented in frequency domain, following a similar structure
as the fast LMS algorithm (see equations (2.19) - (2.24)). Filter coefficients are
updated according to the following equations:

Xi(m, k) =
N−1∑
n=0

xi(mL+ n)e−j
2π
N
nk, i = 1, 2, k = 0, 1, ..., N − 1 (2.35)

e(m,n) =
1

N

N−1∑
k=0

[U1(m, k)X1(m, k) + U2(m, k)X2(m, k)] ej
2π
N
nk,

n = 0, 1, ..., N − 1 (2.36)

ẽ(m,n) =

0, n = 0, 1, ..., L− 1

e(m,n), n = L,L+ 1, ..., N − 1
(2.37)

E(m, k) =
N−1∑
n=0

ẽ(m,n)e−j
2π
N
nk, k = 0, 1, ..., N − 1 (2.38)

Sxixi(m, k) = αSxixi(m− 1, k) + (1− α)|Xi(m, k)|2,

i = 1, 2, k = 0, 1, ..., N − 1 (2.39)

Ui(m+ 1, k) = Ui(m, k)− µ

Sxixi(m, k) + ε
X∗i (m, k)E(m, k),

i = 1, 2, k = 0, 1, ..., N − 1. (2.40)

Here, a full description of vector u and impulse responses h1 and h2 is not
required, since the objective is simply to estimate the delay between signals. This
is achieved by calculating the difference between negative and positive peaks in u,
associated with the peaks in h1 and h2 respectively (see (2.28)). The strategy to
calculate the difference between opposite peaks is based on conveniently initializing
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vector u, as follows:

ui(0) =


0, 0 ≤ i ≤

⌊
L
2

⌋
− 1

1, i =
⌊
L
2

⌋
0,

⌊
L
2

⌋
+ 1 ≤ i ≤ 2L− 1

. (2.41)

Therefore, u is initialized with all zeros except for the central element of its first half.
This is equivalent to initializing the impulse responses as −h1(0) = [0 0 . . . 0 . . . 0]T

and h2(0) = [0 0 . . . 1 . . . 0 0]T . One positive peak stays fixed in the middle of
vector u first half, associated with the direct path in h2, while a negative peak
evolves in the second half, associated to the direct path in −h1. Delay estimate is
finally obtained by calculating the difference in the position of positive and negative
peaks.
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Chapter 3

Extension: Two-Axle Vehicle
Tracking

A strategy for taking into consideration both dominant sources observed in car
pass-by recordings is presented in this chapter. The proposed system is based on
extending single-source DOA estimators by appending further processing stages and
thus adapting them for traffic noise applications.

Before getting into the extension details, let us illustrate the consequences of us-
ing original DOA estimators for car noise emissions. Grayscale images on the back-
ground of Fig. 3.1 represent, on the vertical axis, the generalized cross-correlation
function for GCC, the histogram map for ITD, and the evolution of filter coefficients
for LMS and EVD methods. The horizontal axis represents sequential time frames
in all four images. These different functions generate quite similar images, in which
two distinguishable peak regions are visible. Tire noise dominates car emissions for
most typical car speeds and the two visible regions are associated with the noise
emitted by front and rear tires. This assumption regarding the dominant sources
is supported by the results in [19]. A pair of loudspeakers was attached to vehicle
wheels during pass-by experiments carried out in the referred work and the calcu-
lated cross-correlation function presented a similar pattern as observed in Fig. 3.1.
When the original algorithms are used, which assume a single sound source and com-
pute only one TDOA estimate per frame, the delay estimates results, represented by
a blue line in Fig. 3.2, are obtained. The dominant sound source alternates between
the front and rear axles during car pass-by, and so does the estimate.

An extended system is proposed as a solution to the noisy and inaccurate esti-
mates delivered by traditional DOA estimators in car noise applications. The extra
processing stage is indicated in Fig. 3.3 named as “Two-source Extension" and,
as depicted, it is appended to one of the single-source estimators represented in
“Single-source Estimation" block. Despite exhibiting distinct approaches and imple-
mentations, all four single-source estimators share a few essential similarities which
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Figure 3.1: Images generated using (a) GCC, (b) ITD, (c) LMS and (d) EVD
algorithms.
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Figure 3.2: Time delay estimated by original algorithms: (a) GCC, (b) ITD, (c)
LMS and (d) EVD.

are exploited here, in order to make them interchangeable in the proposed system.
All of them use two sensor signals as input and, besides, all four keep track of se-
quential TDOA estimations by accumulating short-time calculations into a matrix
of dimension D ×M , where D is the number of discrete values used to represent the
delay and M is the number of time frames. Thus, “Single-source Estimation" stage
might be interpreted as a “black box” in which a 2-channel audio recording enters
and a D ×M matrix comes out. Whether this matrix used to represent a cross-
correlation function, a histogram map or the evolution of filter coefficients inside the
black box, it is nothing more than a generic matrix A ∈ RD×M for the remaining
system.

Delay matrix A is a critical piece of our system, as it provides information about
how likely each delay is to represent the actual time delay of arrival. The amount of
noisy data in A and the sharpness of its peaks depend on the chosen DOA estimator
and on the parameters used to set it, such as window length, forgetting factor and
adaption step size. Algorithms sensitivity to these parameters was investigated in
a previous work [30]. If DOA estimators fail in calculating matrix A, the post-
processing performed in the extension is also fated to fail and to produce inaccurate
TDOA estimates.

Original estimators deliver a single DOA estimated curve as output, obtained by
accumulating maximum value evaluations for each time frame, as illustrated in Fig.
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Figure 3.3: Schematic diagram of the proposed two-source TDOA estimation system.

3.2. Single-source estimates are ignored by the extended system and replaced by
the two stages indicated in the diagram: pre-processing and curve fitting. Matrix A

is first treated as an image and processed for noise removal. Next, pixels from this
filtered image are used as input data for curve fitting. Besides data points, curve
fitting algorithm must be fed with a curve model. A rough TDOA model is derived
in agreement to pass-by dynamic and geometric characteristics, as shown in Section
3.1. Moreover, stages comprised in “Two-source Extension" block are explained in
Sections 3.2 and 3.3.

3.1 Curve Model

Time difference of arrival evolution is predicted by calculating sound path difference
between the source and two microphones separated by a distance d.

x

y

z

Sensors

O

z
l′

l Source
v

a

b

φ

Figure 3.4: Pass-by 3D representation. Height z measured between the floor and
the center of the array. Distance l between the source and one of the microphones.

A three-dimensional pass-by model is pictured in Fig. 3.4, from which is possible
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to extract distance l between the source and one of the sensors. Source is assumed to
lie in z = 0 plane, thus it is assumed to be at pavement level, while the microphone
array belongs to y = 0 plane. The following calculations are performed considering
two microphones at the same x-coordinate, although a similar derivation might be
carried for other configurations. Distance b, between y = 0 plane and the line
containing the vehicle path, height z, measured from the floor to the array center,
and vehicle speed v, assumed to be constant, represent the known, measurable and
time-invariant data. A pass-by snapshot for an arbitrary time instant is represented
in Fig. 3.4, but the reader should keep in mind that a and l are changing over time,
as indicated in the following time dependent equations.

Vehicle velocity, besides a constant magnitude, is assumed to have its direction
parallel to x-axis, or, in other words v = vx. Moreover, velocity orientation is
assumed to be the same as x-axis orientation and thus magnitude vx = |vx| is used
throughout the text. This simplification results in no loss in generality since a speed
in the opposite direction might be represented by reversing vx sign. Doppler effect
is neglected in this derivation as the sound speed is assumed to be much larger than
the car speed. Horizontal component of the source position, a(t), is calculated by

a(t) = (t− t0) vx (3.1)

where t0 represents the instant in which the vehicle crosses y-axis. Distances in Fig.
3.4 are equated by straightforward trigonometric relations

l′
2
(t) = b2 + a2(t) (3.2)

l2(t) = z2 + l′
2
(t) (3.3)

and, replacing (3.2) in (3.3):

l2(t) = z2 + b2 + a2(t). (3.4)

Equation (3.4) computes the distance between the source and a sensor located in
the array center, where x = 0. Thus, the distance to a sensor located at x = −d/2
and x = +d/2 is, respectively

l21(t) = z2 + b2 + (a(t)− d/2)2 (3.5)

l22(t) = z2 + b2 + (a(t) + d/2)2. (3.6)
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Time delay of arrival is finally calculated by

τ =
l2(t)− l1(t)

vx

τ =

√
z2 + b2 + (a(t) + d/2)2

vx
−
√
z2 + b2 + (a(t)− d/2)2

vx
(3.7)

When vx > 0 and the vehicle moves along x-axis positive direction, a(t) is nega-
tive for t < t0 (see (3.1)), resulting in l1(t) > l2(t) (Eqs. (3.5) and (3.6)). In other
words, TDOA is negative (τ < 0) while the source approaches the array, and it
is positive (τ > 0) while the source moves away from the array, passing through
zero delay when the vehicle is exactly in front of the array. This behavior can be
observed in Fig. 3.5, where the theoretical curve (3.7) is plotted for vx = 60 km/h

and t0 ≈ 1.5 s.
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Figure 3.5: TDOA model for a vehicle moving at 60 km/h.

3.2 Data pre-processing

Data scaling and noise reduction are implemented in order to prepare data for curve
fitting. The system is required to work regardless of which TDOA estimator is
used. All single-source estimators deliver a frame by frame estimate obtained by
maximizing matrixA columns. However, distinct strategies are used by each method
in order to generate matrix A and, as a result, data values might be at different
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scales depending on the chosen algorithm. Data must then be scaled as soon as it
enters the extension block. Besides adjusting the range of values to be handled by
the algorithm, data normalization allows the two-dimensional data structure to be
treated as a digital image representation, with values within grayscale range. This
image will later be processed by image filters.

Due to sound attenuation with increasing distance, relevant audio data concen-
trates around t = t0, when source-receiver distance is minimum and the signal-to-
noise ratio is maximum. Data scaling is thus followed by data cropping, which is
intended to discard irrelevant portions of audio data, acquired when the vehicle was
far away from the microphones. A 3 s data window is selected around the sample
corresponding to t = t0, and the remainder is ignored.

In a real scenario, interfering noise generated by other sources, rather than the
vehicle, might corrupt the recordings. Depending on the interfering noise intensity,
spectral content and position, such interference might severely degrade curve fitting
performance. For this reason, input data is filtered as an attempt to reduce noise.

First, grayscale image is converted to binary by use of a threshold value, se-
lected based on empirical tests. Distinct threshold values are obtained for each
DOA estimator, which is consequence of pixel distribution differences in generated
images. Histogram plots in Fig. 3.6, calculated for Fig. 3.1 images, illustrate pix-
els distribution over grayscale level for each estimator. Low standard deviation is
observed in GCC- and LMS-generated images, corroborating the distinguishable
peaks in Figures 3.1a and 3.1c. In addition, the high standard deviation observed
in ITD histogram plot matches the smooth transitions in 3.1b. A suitable threshold
value choice is therefore highly relevant. Binary images generated using the same
algorithm (GCC) and different threshold values are depicted in Fig. 3.7. A trade-
off between removing noise and keeping enough relevant data is observed. Similar
results would be observed on images generated by the other algorithms.

Next, morphological opening (dilatation followed by erosion) [31] is performed
on the binary image using a squared structuring element. Opening is applied in
order to remove undesired foreground pixels, represented by dark pixels in Fig. 3.1.
This helps filling “silent" regions on the image with zeros and therefore removing
noise.

Typical results from the mentioned image processing steps might be observed in
Fig. 3.8, in which a GCC-generated image is used as example. First, a grayscale
image obtained after data normalization and cropping is illustrated in Fig. 3.8a.
This image is then converted to the binary image in Fig. 3.8b using a threshold
value of 0.1. Next, morphological opening is applied, resulting in Fig.3.8c image,
from which most noisy pixels were eliminated.

If the image processing steps described above are successful, at this point the
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Figure 3.6: Histogram plots of images generated using (a) GCC, (b) ITD, (c) LMS
and (d) EVD.

image should display two distinguishable curves which indicate the presence of two
dominant noise sources. Time-shift between curves is equivalent to the average
wheelbase in passenger cars and is assumed to be result of the noise emitted by
vehicle front and rear axles.

Curve fitting optimization requires data points and a model to fit the data.
Assuming identical front and rear tires, the noise emitted by each axle should, ideally,
differ only by a delay. The same model is thus used to model sound emissions from
both axles. Data points, on the other hand, must be selected from the filtered image
and assigned to one of the car axles. Thus, before curve fitting, data selection is
performed by separating data points from image A into two vectors, one for each
car axle. For each column in the binary image, line indices holding non-zero data
values are stored in a vector, from which the mean value is calculated. The mean
value of all columns gathered in sequence results in a mean curve of non-zero-data
indices, indicated by the red line in Fig. 3.8d. This mean curve is used as border
line for separating data into two vectors. All data lying on the left (or above) of the
mean curve is assigned to the left curve, as represented in blue in Fig. 3.8e. The left
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Figure 3.7: Binary images generated using GCC algorithm and different threshold
values: (a) 0.025, (b) 0.1 and (c) 0.25.

curve appears ahead in time and is therefore associated with the front-axle emission.
Similarly, data lying on the right (or below) of the mean curve is associated with
the rear-axle emission and displayed in orange in 3.8e. These two data vectors,
corresponding to the left and right curves, are delivered to the curve fitting stage.

Tracing one mean curve to separate data carries the assumption of two dominant
sources being present in the audio data, and thus of two axles being present in the
vehicle. The idea could be extended to more axles by iteratively computing mean
curves for the subdivided spaces, until the number of axles in the vehicle is reached.
This would allow thw system to be applied for heavier vehicles, which also play a
relevant role in traffic noise.

3.3 Curve fitting

Curve fitting algorithm must be provided with (a) a TDOA curve model, (b) two
selected data vectors, and (c) a initial value for curve parameters. Items (a) and (b)
are obtained as indicated in Sections 3.1 and 3.2, respectively. Unknown variables
in (3.7) are instant t0, distance b and speed vx . These curve parameters can be
initialized using measured data, if there is any available, or random values. Instant
t0 corresponds to the time when the vehicle is in front of the microphone array,
and therefore the signal energy at the receivers is maximum. Thus, an estimate
t̂0 is calculated based on the maximum energy level and used for initialization.
Signal Power Spectral Density (PSD) is computed and summed over frequency bins.
The instant corresponding to the higher summed PSD is defined as t̂0 and used to
initialize curve parameter t0.

Given the nonlinear TDOA curve model (see 3.7), curve fitting is performed
using trust-region algorithm for nonlinear optimization [32–35]. Moreover, spurious
data might withstand pre-processing and appear as outliers in selected data. This is
specially harmful given the known sensitivity of least-squares algorithms to outliers.
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Figure 3.8: Pre-processing and curve fitting steps. (a) Grayscale image. (b) Binary
image. (c) morphological opening output. (d) Mean curve in red. (e) Separated
data and (f) fitted curves.

In this regard, a robust least-squares approach is preferred over the traditional one.
Cost function is iteratively re-weighted using bisquare weights [36, 37].

Curve fitting results in optimized values for model parameters, which minimize
the squared error between fitted curve and data points. Speed, as one of the model
variables of (3.7), is directly estimated by this optimization. Curves corresponding to
front and rear axles are fitted independently and the estimated parameters, including
speed, might be slightly different for each axle. For simplicity, speed estimate is
defined as the average between both optimized values. Wheelbase, conversely, is
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estimated as the distance between the fitted curves. This distance is evaluated for
delay τ = 0, when the midpoint between axles is exactly in front of the microphone
array. A typical result for the adjusted curves is observed in Fig. 3.8f. Data points
are maintained in this figure, in lighter colors, and adjusted curved are pictured in
blue and orange dark solid lines, for front and rear axles respectively.
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Chapter 4

Experimental Results

Experimental tests were carried out for validating the proposed system and evaluat-
ing its performance. A comparison between DOA estimators is performed in order
to indicate which could be used in traffic noise applications. Details regarding data
acquisition and test results are also presented next.

Pass-by noise measurements are registered by two microphones 0.25 m apart.
The linear array formed by these two sensors is placed with its axis parallel to both
the ground and the vehicle path. The top view of this setup is illustrated in Fig.
4.1.

Microphones

Figure 4.1: Relative positioning of array and vehicle path.

Four passenger cars were used in the experiment trials, as detailed in Table 4.1,
as well as three different drivers. Each trial consisted in one car passing by the mi-
crophone array at a constant speed of around 30, 50, 60 or 70 km/h, or accelerating.
Vehicle speed was tracked by a GPS equipped device placed inside the vehicle. Pre-
vious experiments had indicated that tire noise prevails over other noise sources in
constant speed pass-by tests, hence speeding up tests were carried out as an attempt
of observing other noise sources. Pass-by trials took place in a quiet location at the
Brazilian National Institute of Metrology (INMETRO), resulting in low background
noise level composed mainly by birds and wind. Moreover, video recordings were
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captured by a cell phone camera fixed at the array center. Later, these recordings
were analyzed in order to extract estimates for distance b, between car and array,
which might be used for initializing parameters in curve fitting optimization.

Table 4.1: Vehicles used in pass-by tests

Car ID Car Model Transmission Wheelbase (m)
1 Volkswagen Gol 1.0 Manual 2.47
2 Jeep Renegade 1.8 Automatic 2.57
3 Mitsubishi ASX 2.0 Automatic 2.67
4 Hyundai Creta 1.6 Automatic 2.59

Multi-source localization is often approached using array processing techniques
[38–41], with arrays that might scale up to hundreds of elements [42, 43]. These
methods might deliver good estimations, but they require a complex and costly
implementation, not to mention the higher computational cost resulted from using
many input signals. A two-microphone setup is proposed here as a simpler and
cheaper alternative to the large-array approach. The inner distance of 0.25 m be-
tween sensors has shown to result in images with the sharpest peaks among sensor
distance options in [44].

A subset of 23 out of the total 28 pass-by recordings is selected to be used in
the following tests. Selection criteria is based on vehicle speed, which is assumed
constant in the proposed system, and therefore only constant speed pass-by trials
are selected. Information regarding each of the 23 selected audio tests is presented
in Table 4.2. This table contains the car identification and speed in each test, and
whether the gear was shifted up as the car speed increased or a low gear was imposed.
Three parameters are chosen for evaluating the proposed method: a visual analysis
of how delay estimates fit matrix A peaks, and error analysis of both wheelbase and
speed estimates.

As mentioned previously, curve fitting optimization requires parameter initializa-
tion. Instant t0 is initialized using maximum energy based estimate t̂0, as discussed
in Section 3.3. For the tests carried out here, there is measured data available that
could be used to initialize remaining parameters b and vx. However, the proposed
system is intended to work even when there is no prior knowledge regarding vehi-
cle speed and distance, and thus initialization uses random values from a normal
distribution.

Implementing the proposed method also requires setting the parameters used
by each of the four direction of arrival estimators. The values used in the present
implementation, indicated in Table 4.3, were empirically chosen based on the delay
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Table 4.2: Pass-by tests characteristics: identification number, car speed for t = t0,
car model identification and whether the gear was shifted according to the car speed
or fixed at a low gear.

Test ID Speed (km/h) Car ID Gear Shifts
1 25 3 Free
2 28 4 Free
3 30 2 Fixed at 2nd gear
4 30 2 Fixed at 2nd gear
5 30 3 Free
6 30 4 Free
7 31 1 Free
8 31 2 Fixed at 1st gear
9 37 1 Free
10 46 4 Free
11 47 1 Free
12 47 4 Free
13 49 3 Free
14 49 3 Free
15 51 2 Free
16 54 2 Free
17 59 1 Free
18 60 4 Free
19 61 2 Free
20 63 4 Free
21 64 3 Free
22 66 2 Free
23 70 3 Free

matrices obtained for the pass-by audio recordings. There is no guarantee, however,
that these values are optimum for this application. Window size N ′ is scaled ac-
cording to the expected car speed by setting a maximum displacement of the vehicle
between two consecutive blocks (without overlapping). More details on the selec-
tion of these parameters and their influence on the delay estimation can be found
in [16, 30].

4.1 Speed Estimation

Speed estimates obtained using the four single-source estimators are displayed in Fig.
4.2, along with GPS-measured values. Test results were sorted in ascending order
of the measured speed values for visualization purposes. This visualization choice
highlights how speed estimation performance degrades when vehicle speed increases.
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Table 4.3: Delay estimation parameters

Method Parameters

GCC

Hamming # Window function
N = N ′ # Window length
NOV = 75% # Overlap between consecutive windows
α = 0.7 # Forgetting factor
OV = 4 # Oversampling factor
th = 0.10 # Threshold

ITD

Hamming # Window function
N = 4N ′ # Window length
NOV = 87.5% # Overlap between consecutive windows
I = 180 # Number of azimuth angle sectors
th = 0.25 # Threshold

LMS

Rectangular # Window function
N = N ′/2 # Window length
NOV = 50% # Overlap between consecutive windows
µ = 0.25 # Adaptive step size
th = 0.15 # Threshold

EVD

Rectangular # Window function
N = N ′/2 # Window length
NOV = 50% # Overlap between consecutive windows
µ = 0.25 # Adaptive step size
th = 0.25 # Threshold

This behavior might be observed for all methods but it is especially evident for ITD.
The absolute speed estimation error for each method is displayed in Table 4.4.

Table 4.4: Speed average absolute error, in km/h, for all estimators and different
speed ranges.

Speed range GCC ITD LMS EVD
All 10.82 17.08 10.01 11.36

≤ 50 km/h 6.13 10.26 6.81 8.30
> 50 km/h 18.11 27.68 11.23 16.04

If all 23 pass-by tests are considered, LMS presents the smallest estimation error,
followed closely by GCC. Instead, if only low speed tests are considered (below
50 km/h), all estimators deliver lower absolute errors. In this scenario, LMS and
GCC still provide the smallest errors, but GCC error is slightly smaller. Finally,
taking into account speeds above 50 km/h, absolute error increases for all methods,
in especial for ITD. However, the lowest error is now observed for LMS, followed by
EVD. This analysis thus suggests a superior performance of adaptive methods for
higher vehicle speeds. Adaptive methods require less assumptions regarding sound

28



propagation, as they are based on modeling the propagation channel, and this might
cause the performance difference. On the other hand, ITD poor speed estimation
performance for all speed ranges is a result of ITD-generated images showing no
sharp peaks, as already observed on histogram plots (see Fig. 3.6).

29



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Test ID

0

10

20

30

40

50

60

70

S
p

e
e

d
 (

k
m

/h
)

GCC

Real

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Test ID

0

10

20

30

40

50

60

70

S
p

e
e

d
 (

k
m

/h
)

ITD

Real

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Test ID

0

10

20

30

40

50

60

70

S
p

e
e

d
 (

k
m

/h
)

LMS

Real

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Test ID

0

10

20

30

40

50

60

70

S
p

e
e

d
 (

k
m

/h
)

AEVD

Real

(d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Test ID

0

10

20

30

40

50

60

70

S
p

e
e

d
 (

k
m

/h
)

GCC ITD LMS AEVD Real

(e)

Figure 4.2: Speed estimates obtained by curve fitting using (a) GCC, (b) ITD, (c)
LMS and (d) EVD generated data. All estimators compared in (e).

30



Another similarity observed for all estimators is a tendency to underestimate
the vehicle speed. One possible reason is the simplistic model used for TDOA,
which apparently is not able to accurately describe the expected delay behavior.
Time delay estimate for Test 23, which resulted in the higher speed estimation error
for LMS, is presented in Fig. 4.3. Despite the large estimation error, curves are
well adjusted to image peaks corresponding to the delays of the vehicle axles. This
result indicates the error is not caused by the fitting optimization, but by the chosen
theoretical model.

LMS Algorithm. Speed 70 km/h. Car 3.
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Figure 4.3: Tracking results for the highest-speed-error test obtained with LMS
estimator.

4.2 Wheelbase Estimation

Wheelbase estimation results are presented in Fig. 4.4 along with real values, for the
experiments in ascending speed order. The reference wheelbase values provided by
the manufactures can be found in Table 4.1. Regardless of speed, average wheelbase
estimation error is higher when ITD is used as single-source delay estimator, as
indicated in Table 4.5. The lowest average error is obtained using GCC, when
all speed values or only speed values below 50 km/h are considered, and LMS, for
speed values above 50 km/h. Wheelbase estimation results obtained using GCC are
comparable to the ones in [19]. Our system delivered an estimation error lower than
30 cm in 78% of the cases, while Marmaroli et al. [19] approach, in a slightly better
performance, did the same in 86% of the cases.
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Table 4.5: Wheelbase average absolute error, in meters, for all estimators at different
speed ranges.

Speed range GCC ITD LMS EVD
All 0.26 1.04 0.38 0.81

≤ 50 km/h 0.30 1.10 0.55 0.98
> 50 km/h 0.20 0.96 0.12 0.55

Wheelbase estimation error is, on average, higher for lower speeds than for higher
speeds, as it can be observed for all estimators in Table 4.5. Therefore, wheelbase
estimation assumes an opposite behavior with respect to increasing vehicle speed
to the one observed for speed estimation. There is no agreement in the literature
concerning the speed above which tire noise prevails over other vehicular sound
sources, ranging from values between 30 km/h and 50 km/h[17, 21, 45]. However,
other noise sources clearly become less relevant for higher speed values. In this
light, and given that the wheelbase estimation performed here depends on localizing
vehicle wheels, the larger estimation error obtained for lower speeds is consistent
with the higher difficulty level in distinguishing tire noise emissions from the noise
emitted by other vehicle components.
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Figure 4.4: Wheelbase estimates obtained by curve fitting using (a) GCC, (b) ITD,
(c) LMS and (d) EVD generated data. All methods compared in (e).
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Let us now focus on GCC and LMS estimation results, which delivered the
lowest estimation errors for wheelbase and speed. Wheelbase estimates for Tests 3

and 8 stand out in Figures 4.4a and 4.4c, whose absolute errors are far from the
average. Besides the low vehicle speeds, of around 30 km/h, these two tests share
further similarities which helps explaining the high estimation error. A same vehicle,
identified as Car 2 in Table 4.1, was recorded in both audio files used as input to
Test 3 and 8. Although Car 2 was recorded in several other trials, many of which
resulted in low estimation errors, in these two specific pass-by trials the vehicle
was conducted in a different manner. Vehicle 2 was forced to travel in low gear
during pass-by trials 3 and 8, which forced the vehicle engine into a high revolutions
per minute (RPM) operation. Engine speed affects engine noise emissions [15] and
forcing higher RPMs might cause engine noise to increase its relevance in comparison
to tire noise. As mentioned before, the proposed delay estimation system assumes
tire noise as dominant sound sources and, if this condition fails to be true, the
estimation will also fail.

4.3 Performance Comparison

Estimation error analysis provides a basis of comparison between the direction of
arrival estimators tested in this work. The estimators were evaluated concerning
the estimated speed and wheelbase values and for different vehicle speed ranges: all
speeds, low speeds (below 50 km/h) and high speeds (above 50 km/h). The methods
which delivered the lowest estimation errors in each of these scenarios are indicated
in Fig. 4.5.

All
Speeds

Low
Speeds

High
Speeds

Speed
Estimation LMS GCC LMS

Wheelbase
Estimation GCC GCC LMS

Figure 4.5: Best performing algorithms for each evaluated scenario.

The estimators GCC and LMS display a similar performance as each of them
presents the lowest estimation error for half of the evaluated scenarios. However,
these six possible scenarios should not be given the same relevance in evaluating the
proposed system. The main objective of the present work is to estimate the time

34



delay of arrival of the sound emitted by vehicle tires and this should be taken into
account for deciding the best algorithm.

Speed estimate is a model parameter optimized during curve fitting and it influ-
ences the slope of the delay curves. However, speed estimation has presented high
errors even when delay estimates were well adjusted to data (see Fig. 4.3), indicating
the delay model does not accurately describe the actual delay behavior. Estimated
speed values are thus not reliable for representing the system performance.

Wheelbase estimate, on the other hand, is computed based on the distance be-
tween the adjusted curves for τ = 0, when the curves cross the horizontal axis.
Thus, accurate delay estimation implies in accurate wheelbase estimation. The in-
verse statement is not true, since a pair of delay curves might cross τ = 0 axis with
the same time distance with infinite different slopes. This would be the equivalent,
for example, to the delay estimates of a same vehicle traveling at distinct speeds.
Nevertheless, wheelbase estimation has shown to be better than speed estimation as
indicator for the system performance with respect to time delay of arrival estimation.

Wheelbase estimation error is defined as decision criteria for choosing the best
direction of arrival estimator. The results summarized in Fig. 4.5 indicate GCC
algorithm is the most suitable method to be used in car noise applications.

Time delay of arrival estimation results for all tests and estimators can be found
in Appendix A. Adjusted curve results corroborate the assumed correlation between
wheelbase and time delay estimation. Similarly to wheelbase estimation, GCC and
LMS display the best results, ITD sub estimates the distance between axles and
AEVD delivers unstable estimates.

35



Chapter 5

Conclusion

An extended direction of arrival estimation system was proposed in this work, by
introducing post-processing stages to the traditional one-source direction of arrival
methods. This modification aimed to adapt the estimators to be used in applica-
tions with multiple sources. In the traffic noise scenario, which is the focus of this
dissertation, the original methods fail to provide accurate estimates of the directions
of arrival of the main sound sources. The system developed in this work uses the
signals of a two-microphone array as inputs and provides time-difference of arrival
estimates for the two dominant sources, associated with the vehicle’s front and rear
tires.

The system consisted in two main blocks. First, a conventional estimator is used
to produce a delay matrix, which indicates, for each time frame, delay values with
the greatest potential to represent the actual delay between the signals; second,
the delay matrix is processed by image filters and the filtered data is used to feed
a curve fitting algorithm. The optimization of the curve fit takes into account two
dominant sources, separating the data received into two vectors, one for each source.
Only vehicles with two axles were considered, and an extension to more axles can
be achieved by modifying the approach used to select the data that fits each curve.

Four direction of arrival estimators were tested to compose the system, namely:
the Generalized Cross-Correlation (GCC), Interaural Time Difference (ITD), Least
Mean Square (LMS) and Eigenvalue Decomposition (EVD), where the last two are
adaptive methods based on channel estimation. The vehicle speed and wheelbase
estimates were compared to the actual measured values, revealing that the GCC and
LMS were the most appropriate choices among the tested algorithms. The vehicle’s
wheelbase was estimated with an average error as low as 26 cm, obtained by the
GCC, and the speed was estimated with a minimum average error of 10.01 km/h,
using the LMS. However, the wheelbase estimate proved to be more suitable to be
used as an evaluation criterion than the speed estimate, and thus it was concluded
that the Generalized Cross-Correlation was the best algorithm to be used in the
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vehicle noise TDOA estimates.
Results were promising, given that a simple array of only 2 microphones was re-

quired to implement the system. This method is an alternative to the complex array
strategies, often found in the literature as a solution for handling multiple sources.
Regarding a similar approach found in the literature [19], our system presented a
comparable, but slightly worse in estimating the wheelbase.

Regardless of the chosen algorithm, speed estimation performance was better
when the vehicle speed was low (below 50 km/h), as opposed to the wheelbase es-
timation, which presented more accurate results for higher speeds (above 50 km/h).
In addition to the vehicle speed, the engine’s operating regime also influenced the
performance of the estimator. Engine noise becomes more relevant when the engine
speed is higher, and this can prevent tire noise from dominating car noise emissions,
as has been assumed. If the engine noise exceeds or corresponds to the tire noise,
the proposed system cannot track the position of the tires or estimate the wheelbase
of the vehicle. Given that tracking the axles is the main objective of this work,
instead of estimating the speed of the vehicle, the system performance is optimum
when the vehicle speed is at least 50 km/h and the engine speed is low.

Improvements to the system can be achieved by modifying either the first or
second main processing block. In the first block, extra direction of arrival estimators
can be tested to improve the calculation of the delay matrix. The modular structure
of the system makes it possible to easily replace the estimator without major changes
in the rest of the system.

In the second block, a great improvement to the system would be achieved by
automating the selection of the threshold value. An adequate choice of this param-
eter is crucial to provide sufficient relevant data for the curve fitting algorithm and,
therefore, greatly influences its result. Empirical optimization, as performed here,
is subject to imprecision and is impractical if new estimators need to be tested.
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Appendix A

Adjusted Curves

Adjusted curves corresponding to the time delay of arrival estimates for all tests and
all four estimators are displayed in Figures A.1-A.3. For spacing limits, results are
divided into three figures and each figure is divided into four columns and at most 8

rows. Images generated using GCC, ITD, LMS and EVD are placed in the first to
fourth columns, respectively. Numbers on the left margin inform tests identification
in the same order as in Figures 4.2 and 4.4. Each individual result is represented
by a square in which matrix A and both fitted curves are displayed. Matrix A is
represented by grayscale pixels and TDOA adjusted curves are depicted as blue solid
lines. Axles are omitted from individual results for spacing issues, but similarly to
Fig. 4.3, time is represented in the horizontal axis and delay in the vertical axis.

Wheelbase estimate is calculated based on the distance between each pair of
fitted curves. These two estimations, of wheelbase and time delay of arrival, are
thus expected to be correlated. In agreement to the wheelbase estimates in Fig. 4.4,
GCC and LMS display similar results, with well adjusted curves for the majority of
tests. One exception is observed for Test 8, displayed on the 8th row of Fig. A.1, in
which fitted curves are estimated too close together and a separation between them is
hardly visible. As highlighted during wheelbase estimation analysis, Test 8 generated
exceptionally high estimation error given the special manner in which the vehicle
was conducted, and observing the adjusted curves for Test 8 helps elucidating such
high error. This behavior, of little or even no distance between adjusted curves, is
observed in nearly all ITD results, which explains the low average wheelbase estimate
(around 1.5 m) obtained using this estimator. Lastly, EVD results are unstable, as
already suggested by the bumpy estimates in Figures 4.2 and 4.4. Adjusted curves
obtained using EVD might be equivalent to the ones obtained using GCC and LMS
for some tests (e.g.: Test 1, 2, 6, 11-20, 22, 23), or similar to ITD results for other
(e.g.: Test 3, 4, 5, 8, 9).
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Figure A.1: Tests 1-8 in rows. Estimators in columns: (a) GCC, (b) ITD, (c) LMS
and (d) EVD. Adjusted curves as solid blue lines and matrix A as grayscale pixels.
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Figure A.2: Tests 9-16 in rows. Estimators in columns: (a) GCC, (b) ITD, (c) LMS
and (d) EVD. Adjusted curves as solid blue lines and matrix A as grayscale pixels.
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Figure A.3: Tests 17-23 in rows. Estimators in columns: (a) GCC, (b) ITD, (c)
LMS and (d) EVD. Adjusted curves as solid blue lines and matrix A as grayscale
pixels.
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