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Para garantir uma operação confiável em sistemas a eventos discretos, diversos

trabalhos na literatura propõem a implementação de diagnosticadores com o obje-

tivo de detectar e isolar eventos de falha não observáveis após a ocorrência de um

número limitado de eventos. A eficiência do método de diagnóstico pode ser men-

surada pelo atraso para o diagnóstico, definido como o maior número de eventos

que ocorreram após a falha até a sua detecção. A principal desvantagem na imple-

mentação do diagnosticador proposto na literatura é que seu conjunto de estados

pode ser muito grande, exigindo que uma quantidade de memória demasiadamente

grande seja implementada em sistemas complexos. Neste trabalho, propomos um

algoritmo para computar um diagnosticador reduzido determińıstico, que preserve

tanto a diagnosticabilidade da linguagem do sistema quanto o mesmo atraso para o

diagnóstico que o diagnosticador original. Além disso, mostramos que a estratégia

de redução proposta pode levar a um diagnosticador reduzido com menos estados

do que utilizamos outras estratégias propostas na literatura.
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In order to ensure the reliable operation of Discrete-Event Systems, several works

in the literature propose the implementation of diagnosers with the view to detecting

and isolating unobservable fault events within a bounded number of event occur-

rences. The efficiency of the diagnosis method can be measured by the delay of

diagnosis, defined as the largest number of event occurrences after the fault until its

detection. The main drawback of implementing the diagnoser proposed in the liter-

ature is that its state set can be very large, requiring a great amount of memory to

be implemented in complex systems. In this work, we propose an algorithm for the

computation of a deterministic reduced diagnoser, that preserves the diagnosability

of the system language and the same diagnosis delay than the original diagnoser.

We show that the proposed reduction strategy can lead to a reduced diagnoser with

fewer states than by using other strategies proposed in the literature.
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Chapter 1

Introduction

In order to ensure the reliable operation of industrial automation systems, it is

necessary to efficiently diagnose the occurrence of faults, i.e., to detect and isolate

the fault that has occurred before it damages the system components or cause risk

to operators. If the system can be abstracted as a Discrete-Event System (DES),

that is, its state set is discrete and the transition between states is event-driven,

then the fault can be modeled as an event that must be identified by the diagnosis

system. In this case, the delay of diagnosis, defined as the largest number of event

occurrences that the system may execute after the fault until its detection [3–5], can

be used to determine the efficiency of the diagnosis method.

In [6], a diagnoser is constructed to detect and isolate unobservable fault events,

and the property of diagnosability, which is related with the capability of identifying

the fault occurrence within a bounded number of event occurrences, is introduced.

Diagnosers can be used to verify the diagnosability of the system and for online

diagnosis. The main drawback of implementing directly the diagnoser proposed in

[6] is that, since it is constructed based on an observer, then its state set grows, in the

worst-case, exponentially with the number of states of the system model. Although,

in [7], it is shown that in the average-case the diagnoser grows polynomially with

the number of system states, i.e., it can still have a large number of states, requiring

a large amount of memory to be implemented in complex systems. Thus, it is

desirable to reduce the size of the diagnoser for implementation, preserving the

diagnosability of the system and the delay for diagnosis. In order to do so, it is

necessary that the language of the reduced diagnoser simulates the original language

of the diagnoser. In general, however, the reduction of states of an automaton

leads to a larger language in comparison with the original one. This is due to the

generation of an exceeding language by the introduction of new cycles in the reduced

automaton.

Over the years, the deterministic finite automaton (DFA) minimization problem

has been addressed for several purposes, as presented in [8], [2], [9] and [10]. In [9],
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the minimization of a DFA is based on finding the states of the automaton that

are equivalent in the sense that they can be merged without changing the marked

language of the system. Concerning the diagnoser reduction problem, one of the

most relevant works in the literature is [8], which presents a state-based approach

for online fault diagnosis.

Other reduction approaches have been addressed in the literature, most notably,

in the supervisor control theory [1, 2, 11]. In [1], the reduction process is based on

finding control covers, that are sets formed of sets of states that behave consistently

regarding their control actions, i.e., for any pair of states of a subset of a control

cover, all events that are enabled by one of the states cannot be disabled by the

other. The limitation of the method proposed in [1] is that, in some cases, the

determinization of the automaton, or even a reduction of the supervisor, cannot be

guaranteed. To overcome this problem, [2] introduced the concept of control con-

gruence, which is a special case of control cover. If the subsets that form the control

cover are pairwise disjoint, then the control cover is called a control congruence. The

determinism of the reduced supervisor is guaranteed using the control congruence,

but not the computation of the minimal supervisor, which is shown in [2] to be an

NP -hard problem.

Recently, in [10], a procedure is introduced to reduce the number of states of an

automaton while preserving some properties of interest. Their approach is based on

finding a reduction cover, which is an extension of the concept of control cover [12].

In order to do this, the algorithm proposed in [2] is adapted to compute a reduction

partition that is necessary to compute the reduction cover. The algorithms presented

in [2] and [10] for the computation of covers are dependent on an ordering of the

states of the automaton that must be reduced. However, this ordering of states is

not exploited in [2] and [10] to find a reduced automaton with a smaller number of

states.

In this work, we propose an algorithm for the computation of a deterministic

reduced diagnoser, that preserves the diagnosability of the system language, and that

has the same diagnosis delay than the original diagnoser. As in [2] and [10], the sets

of merged states of the reduced diagnoser are disjoint. At each step of the algorithm

for computing the reduced diagnoser, states are selected to be merged according

to a criterion that takes into account the possibility of merging other states of the

diagnoser in the next step of the reduction procedure. In other words, differently

from the other methods presented in the literature, the proposed method does not

depend on the ordering of states previously given as an input of the algorithm. An

example is used throughout the text to illustrate the application of the method,

and to show that the proposed reduction strategy can lead to a reduced diagnoser

with fewer states than the diagnoser obtained by considering the same criterion used

2



in [2] and [10], while maintaining the diagnoser deterministic, differently from the

method proposed in [1] to reduce supervisors.

The present work is organized as follows. Chapter 2 is a brief review over the

theory of discrete-event systems (DES), that are necessary to full understanding of

the concept of fault diagnosis. Also in Chapter 2, necessary and sufficient conditions

for fault diagnosis using the diagnoser automaton are presented. In Chapter 3 are

presented the basic fundamentals of supervisory control theory. In Chapter 4 is

developed the main scope of this work, where the method of diagnoser reduction

is presented. Finally, in Chapter 5, we draw conclusions and suggestions of future

works.
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Chapter 2

Discrete-Event Systems and Fault

Diagnosis

In this chapter, we present the necessary background on Discrete Event Systems

(DES), and on failure diagnosis of DES. The theoretical foundations of DES pre-

sented in this chapter are based on [13]. The structure of the chapter is as follows. In

Section 2.1, the main formalisms for DES are presented. In Section 2.2, we present

the concept of a given language for a DES. In Section 2.3, the automata theory is

described. Finally, the main concepts associated with fault diagnosis are presented

in Section 2.4.

2.1 Discrete-Event Systems

As presented in [13], discrete-event systems (DES) are dynamical systems, whose

state-spaces are discrete sets that normally depend of the occurrency of asynchronous

discrete-events over time. Starting with this definition, we can immediately identi-

ficate two important characteristics of DES: they have discrete state variables and

they are driven by events.

The state is described by a discrete set, for instance: numerical values belong-

ing to the set N or Z ({0, 1, 2, ...}), symbolical values ({open, closed, stuck}). On

the other hand, the events can be defined by instantaneous occurrences that make

transitions on the states of the system. In other words, the events can be related to

a specific action (e.g. press a button, activate a switch), a spontaneous occurrence

(e.g. break of a mechanical piece, an alarm activation, the turning off of a heater),

or the result of conditions already predicted (e.g. the level of a tank getting on a

determined value).

The system behavior in the DES framework is driven by sequences of events.

All possible sequences of the events that can be generated by a given DES describe

4



the language of this system, which is defined over a set of events (alphabet) of the

system. A review over the concept of a given language will be made in the next

section to clarify this idea.

2.2 Languages

Before we introduce the definition of a language, some remarks need to be made.

The first one is the set of events of a DES, represented by Σ, is an alphabet supposed

to be finite.

The behavior of a DES can be described in terms of event sequences. Those

sequences are interpreted like “words” of a language. Thus, the language generated

by a given DES is the set of all of the event sequences with finite length, or words,

generated by the system. Then, since we have the knowledge of the language gener-

ated by the system and its initial state, we can describe the future behavior of the

system. With that in mind, we can say that the language is kind of a mathematical

formalism that models and describes the behavior of a DES. Next, we formally the

concept of language.

Definition 2.1 (Language) A language defined over an event set Σ is a set of se-

quences with finite length formed of events in Σ.

In order to make important definitions and examples, some symbols must be

presented. The symbol σ will be used to represent a generic event, as well as ∅ will

be the empty language and ε the empty sequence. For a sequence s defined over Σ,

its length can be represented by |s|. By definition, |ε| = 0. In addition, σ ∈ s means

that event σ belongs to a sequence s.

The language of a DES belongs to the set of all the sequences of finite length

that are formed by elements of Σ, including the empty sequence ε. This set is called

the Kleene-closure of Σ, denoted as Σ∗. In particular, ∅, Σ and Σ∗ are considered

event sets. Moreover, we can say that 2Σ is the power set of Σ or, in other words,

the set that contains all the subsets of Σ.

Example 2.1 Let Σ = {a, b, c} be a set of events. For instance, we may define the

languages:

• L1 = {ε, a, b, c, ab, ac, bc, abc};

• L2 = {a, bb, abbc, aaabcc};

• L3 = {the set of sequences that contains ab}.
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The usual set operations, such as union, intersection, difference and complement

with respect to Σ∗, are applicable to languages since languages are sets. In additon,

there are other operations, like concatenation and Kleene-closure, which are formally

defined as follows.

Definition 2.2 (Concatenation) Let La, Lb ⊆ Σ∗. Then, the concatenation LaLb is

defined as:

LaLb = {s ∈ Σ∗ : (s = sasb), (sa ∈ La) and (sb ∈ Lb)} .

A sequence s is in LaLb if it is formed by the concatenation of a sequence sa ∈ La
and sb ∈ Lb.

Definition 2.3 (Kleene-closure) Consider L ⊆ Σ∗. Then, the Kleene-closure of L,

denoted by L∗, can be defined as:

L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ LLLL . . .

The elements of L∗ are composed by the concatenation of the elements of L,

including the empty sequence ε. The Kleene-closure is idempotent, namely, (L∗)∗ =

L∗.

Definition 2.4 (Prefix-closure) The prefix-closure of a language L consists of all

prefixes of all traces in L. A sequence t ∈ Σ∗ is prefix of a sequence s ∈ Σ∗ if there

exists a sequence v ∈ Σ∗ such that tv = s. Then, both s and ε are prefixes of s. The

prefix-closure of L, denoted as L, can be formally defined as:

L = {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]} .

L is said to be prefix-closed if L = L. Therefore, language L is prefix-closed if

all prefixes of every sequence in L are also an element of L.

Example 2.2 Consider Σ = {a, b, c} and languages L1 = {ε, a, aab} and L2 = {c}
defined over Σ. Note that L1 and L2 are not prefixed-closed, since aa /∈ L1 and

ε /∈ L2. Thus, the prefix-closures of L1 and L2 are, respectively, L1 = {ε, a, aa, aab}
and L2 = {ε, c}.

Definition 2.5 (Post-language) Consider L ⊆ Σ∗. Then, the post-language of L

after s, denoted by L/s, is defined as:

L/s = {t ∈ Σ∗ : st ∈ L} .

6



This definition allows us to conclude that L/s = ∅ if s /∈ L.

Another type of operation perfomed on sequences and languages is the natural

projection, or simply projection, denoted by P , and is defined as follows.

Definition 2.6 (Projection) Let Σs and Σl be event sets such that Σs ⊂ Σl and σ

any event. Then, we can define the projection of a sequence as:

P : Σ∗l → Σ∗s,

with the following properties:

(i) P (ε) := ε;

(ii) P (σ) :=

{
σ, if σ ∈ Σs

ε, if σ ∈ Σl \ Σs

;

(iii) P (sσ) := P (s)P (σ) for s ∈ Σ∗l , σ ∈ Σl.

According to Definition 2.6, the projection operation takes a sequence and

‘erases’ events on Σl that does not belong to Σs.

The projection P and its inverse P−1 can be extended to languages simply ap-

plying them to all the event sequences on that language.

Thus, for L ⊆ Σ∗l , we have:

P (L) := {t ∈ Σ∗s : (∃s ∈ L)[P (s) = t]} .

For Ls ⊆ Σ∗s, we can define its inverse as:

P−1(Ls) := {s ∈ Σ∗l : (∃t ∈ Ls)[P (s) = t]} .

In order to illustrate the concepts of this subsection, consider the following ex-

ample.

Example 2.3 Let us consider again the set of events Σ = {a, b, c}, and languages

L1 = {ε, a, aab} and L2 = {ε, c}. Since L1 = {ε, a, aa, aab} and L2 = {ε, c}, then

L1 6= L1 and L2 = L2. Consequently, L1 is not prefix-closed, but L2 is prefix-closed.

In addition, note that:

L∗1 = {ε, a, aab, aa, aaab, aaba, . . .}
L∗2 = {ε, c, cc, ccc, . . .}

L1L2 = {ε, a, aab, c, ac, aac, aabc}
L1/a = {ε, ab}
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If we now define projection P : Σ∗ → Σ∗s such that Σs = {b, c}, then:

P (abc) = {bc}
P−1(ε) = {a}∗

P−1(bc) = {a}∗{b}{a}∗{c}{a}∗

P (L1) = {ε, b}
P−1(L2) = {{a}∗, {a}∗{c}{a}∗}

To some practical issues, the use of languages can be considerably complex.

In this work, we use automata as framework for representing and manipulating

languages. For this reason, next section will present a brief review of automata

theory.

2.3 Automata

An automaton is a device that is capable of representing a language according to well-

defined rules [13]. In the following, we formally define a deterministic automaton.

Definition 2.7 (Deterministic automata) A deterministic automata, denoted by G,

is a five-tuple

G = (X,Σ, f, x0, Xm),

where:

• X is the set of states of the automata;

• Σ is the finite set of events associated with G;

• f : X × Σ∗ → X is the state transition function of the states;

• x0 is the initial state of the system;

• Xm ⊆ X is the set of marked states;

The transition function f(x, σ) = y means that there is a transition rotulated by

event σ from state x to state y; generally, f is a partial function in its own domain.

Let ΓG : X → 2Σ be the feasible event function, where ΓG(x) is the set of events

that are feasible in state x ∈ X.

The dynamic behavior represented by automaton G works as follows. It starts

in the initial state x0 and due to an ocurrence of an event e ∈ Γ(x0) ⊆ Σ, the

automaton makes the transition to the state f(x0, σ) ∈ X. The process continues

based on the transitions which f is defined.
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A common way to represent an automaton is through the state transition dia-

gram. The states are represented by circles, marked states by two concentric circles

and the transitions by oriented arcs. States are marked when it is necessary to at-

tach a special meaning to them, for instance, the end of a task. The next example

illustrates the state transition diagram.

Example 2.4 Let G be an automaton which its state transition diagram is depicted

in Figure 2.1. Based on the diagram, we have:

• X = {0, 1, 2, 3, 4, 5, 6};

• Σ = {a, b, c};

• The state transition function of G is given by f (0, a) = 1, f (1, b) = 3,

f (1, c) = 2, f (3, a) = 3, f (3, b) = 4, f (4, a) = 5, f (5, c) = 4 and f (6, a) = 4;

• The feasible event sets of each state are given by ΓG(0) = {a}, ΓG(1) = {c, b},
ΓG(2) = ∅, ΓG(3) = {a, b}, ΓG(4) = {a}, ΓG(5) = {c} and ΓG(6) = {a};

• The initial state of G is x0 = 0;

• The set of marked states of G is Xm = {2}.

0 1

2

3 4

5

6

a b b

a

c

a

c a

Figure 2.1: State transition diagram of automaton G.

From Example 2.4, it is clear that automata can represent a subset of sequences

of Σ∗ or, in other words, a language over the alphabet Σ. Thus, we can define two

languages: the generated and marked languages. These notions will be presented in

next section.
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2.3.1 Generated and Marked Languages

The language generated by an automaton G, denoted by L(G), is the set formed

by all the event sequences that can be defined starting in the initial state. The

language marked by G, denoted by Lm(G), contains all event sequences that takes

the initial state of the automaton to a marked state. We can define the generated

and the marked languages as follows.

Definition 2.8 (Generated language) Since f is a partial function, then the lan-

guage generated by G, denoted as L(G) = L, can be defined as

L = {s ∈ Σ∗ : f(x0, s)!} ,

where f(x0, s)! means that f(x0, s) is defined.

Note that L(G) is, by definition, prefix-closed, since a path is only possible if

all the correspondent prefixes are also possibles. Furthermore, it is possible that

the events defined in Σ do not belong to the state transition diagram of G and,

therefore, do not belong to L(G) as well.

Definition 2.9 (Marked language) The language marked by G = (X,Σ, f, x0, Xm),

denoted by Lm(G) is defined as

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm} .

Note that Lm(G) will always be a subset of L(G), since Lm(G) is composed by

all the s sequences such that f(x0, s) ∈ Xm. As Lm(G) is not necessarily prefix-

closed, not all the states of X need to be marked. When an automaton does not

have states, it is said that it generates and marks the empty set.

In the next section, we present some operations that can be applied to automata.

2.3.2 Operations on Automata

In order to analyze DES modeled by automata we first need to define the set of

operations capable of modifying properly the state transition diagram set of an

automaton.

Next, we present an operation that change a single automaton, called unary

operation: accessibility or accessible part. It will also be presented the product and

the parallel compositions, which are fundamental to obtain the fault diagnosers.
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Accessible Part

With the definitions of L(G) and Lm(G), one may notice that we can erase all the

states of G that are not accessible or reachable, starting from x0, by some sequence

in L(G), without affecting not only the generated language of G, but also its marked

language. When we remove a state, we also remove all transitions linked to that

state.

Definition 2.10 (Accessible part) Let G = (X,Σ, f, x0, Xm) be an automaton. The

accessible part or accessibility of G, denoted by Ac(G), is defined as

Ac(G) = (Xac,Σ, fac, x0, Xac,m),

where:

(i) Xac = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]};

(ii) Xac,m = Xm ∩Xac;

(iii) fac = f |Xac×Σ→Xac.

The item (iii) means that we are restricting f to the smaller domain of the

accessible states Xac. Note that the event set of Ac(G) remains equal to G, even if

some event of the set does not be in the states transition diagram of Ac(G). Thus,

the operation Ac does not changes L(G) and Lm(G).

Example 2.5 Let us consider again automaton G depicted in Figure 2.1. Note that

state 6 is the only state not accessible from initial state 0. Thus, we must remove

state 6 and all its transitions to obtain Ac(G), depicted in Figure 2.2.

0 1

2

3 4

5

a b b

a

c c a

Figure 2.2: Accessible part of G or Ac(G).
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Product Composition

The product composition, denoted by ×, is a composition of two automata that

allows the occurrence of events that are common to both. The following definition

describe this operation mathematically [13].

Definition 2.11 (Product composition) Consider the automata

G1 = (X1,Σ1, f1, x0,1, Xm1)

G2 = (X2,Σ2, f2, x0,2, Xm2).

The product composition between G1 and G2 will be given by the automaton

G1 ×G2 := Ac(X1 ×X2,Σ1 × Σ2, f, (x0,1, x0,2), Xm1 ×Xm2),

where:

(i) f((x1, x2), σ) :=

{
(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2)

undefined, otherwise
;

(ii) Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2) is the feasible event function of G1 ×G2.

Considering the right side of the definition of G1 ×G2, it can be noted that we

are only interested in the accessible part of the automaton. In other words, an event

only occurs in G1 × G2 if it occurs in both G1 and G2. In the product operation,

the transitions of two automata should always be synchronized in a common event.

Then, we can say that both generated and marked languages by the product G1×G2

can be given by:

L(G1 ×G2) = L(G1) ∩ L(G2),

Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2).

Parallel Composition

As stated in [13], the more commonly used method in building complete models of

systems starting from individual components is made by parallel composition (or

synchronous) of automata, where each automaton represents a local component (or

subsystem) of the global system. Therefore, the definition of parallel composition is

made as follows.

Definition 2.12 (Parallel composition) Let G1 and G2 be two automata. Then,

the parallel composition between G1 = (X1,Σ1, f1, x0,1, Xm1) and G2 =

(X2,Σ2, f2, x0,2, Xm2), denoted by G1‖G2, is defined as:

G1‖G2 = Ac(X1 ×X2,Σ1 ∪ Σ2, f1‖2, (x0,1, x0,2), Xm1 ×Xm2),

12



where f1‖2((x1, x2), σ) = (f1(x1, σ), f2(x2, σ)), if σ ∈ ΓG1(x1) ∩ ΓG2(x2), and

ΓGi : Xi → 2Σi, i = 1, 2, f1‖2((x1, x2), σ) = (f1(x1, σ), x2), if σ ∈ ΓG1(x1)\Σ2,

f1‖2((x1, x2), σ) = (x1, f2(x2, σ)), if σ ∈ ΓG2(x2)\Σ1, or, undefined, otherwise.

It can be noted that a common event from the automata G1 and G2 can only

occur when both are in states whose active event sets have this event as an element.

Private events (the ones belonging to Σ1 \ Σ2 or to Σ2 \ Σ1) are not subject to

limitations, being able to execution as long as possible. Therefore, the parallel

composition synchronizes only common events to both G1 and G2.

In order to define the generated and marked languages of automaton G1‖G2, it

is possible to use Definition 2.6, rewriting it as follows:

Pi : (Σ1 ∪ Σ2)∗ → Σ∗i for i = 1, 2.

Considering the use of projections, we now can obtain the resulting languages of

the parallel composition between G1 and G2:

L(G1‖G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)],

Lm(G1‖G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)].

Example 2.6 Let G1 and G2 be automata depicted in Figures 2.3(a) and 2.3(b),

respectively, where Σ1 = {a, c} and Σ2 = {a, b, c}. The product and parallel composi-

tions between those automata are depicted in Figures 2.4(a) and 2.4(b), respectively.

0 1
a b

0
a

c

1 2

c

(a) Automaton G1. (b) Automaton G2.

Figure 2.3: Automata G1 and G2 of Example 2.6.

a ba

c

0, 0 1, 1 0, 0 1, 1 1, 2

(a) G1 ×G2. (b) G1‖G2.

Figure 2.4: Product and parallel compositions between G1 and G2 of Example 2.6.
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2.3.3 Nondeterministic Automata

A nondeterministic automaton, denoted by G, is a five-tuple G = (X,Σ ∪
{ε}, fnd, x0, Xm), where the elements of G have the same interpretation as in the

deterministic automaton G, with the exception that the transition function can be

nondeterministic,

fnd : X × Σ ∪ {ε} → 2X ,

and the initial state can be defined as a set x0 ⊆ X.

In order to define the language generated by G, it is necessary to extend the

domain of fnd to X ×Σ∗, obtaining the extended transition function f end. Let εR(x)

denote the ε-reach of a state x, i.e., the set of states reached from x by following

transitions labeled with ε, including state x. The ε-reach can be extended to a set

of states B ⊆ X as

εR(B) = ∪x∈BεR(x).

The extended nondeterministic transition function f end : X × Σ∗ → 2X , can

be defined recursively as f end(x, ε) = εR(x), and f end(x, sσ) = εR[{z : z ∈
fnd(y, σ) for some state y ∈ f end(x, s)}]. Thus, the language generated by G can

be defined as

L(G) = {s ∈ Σ∗ : (∃x ∈ x0)[f end(x, s) is defined]}.

And the language marked by G can be defined as

Lm(G) = {s ∈ Σ∗ : (∃x ∈ x0)[f end(x, s) ∩Xm 6= ∅]}.

In this work, the marked language and transitions labeled with ε will not be nec-

essary when computing nondeterministic automata. Therefore, they will be omitted.

In order to illustrate the nondeterministic automaton, consider the following

example.

Example 2.7 Consider the nondeterministic automaton, G, depicted in Figure 2.5,

where x0 = {0}. Note that the transition function assumes values in 2X , for x ∈
X, for instance, fnd(1, b) = {2, 3}. This configuration suggests uncertainty in the

dynamic evolution of the system, considering that, when the system is in state 1 and

event b occurs, it is not possible to be sure if the system has moved either to state 2

or 3.

14
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3

c
b

a b

c

Figure 2.5: Nondeterministic automaton G of Example 2.7.

2.3.4 Partially-Observed DES Modeled by Deterministic

Automata

When exist some events in a given DES whose occurrence cannot be seen by an

outside observer, it is said that the system is a partially-observed DES. It is said

that an event is observable if its occurrence can be observed by an external agent

(like a sensor) and communicated to the system observer. Otherwise, the event is

unobservable. The cause of an unobservation can be due to the absence of a sensor to

record the occurrence of the event, or to the fact that the event occurred at a remote

location, where its occurrence could not be verified. Therefore, it is necessary to

make a state estimation when the analysis of the behavior of the system is concerned.

To this end, we can make the following suppositions:

• Σ = Σo∪̇Σuo is the set of all events of a partially-observed DES;

• Σo is the set of observable events of the system;

• Σuo is the set of unobservable events of the system;

The representation of a unobservable event in a given state transition diagram

of an automaton is made with a dashed line on the correspondent oriented arc.

Unless indicated otherwise in the automaton, the event will be considered observable.

The corresponding automaton G that models the partially-observed DES will be

deterministic, and if it has unobservable events, it is said that G is a partially-

observed automaton.

In order to define the observer automaton of G, denoted by Obs(G), we need first

to introduce the unobservable reach of a state. The unobservable reach of a state x,

UR(x), generates the set of states that are reachable from x after the execution of

a sequence of unobservable events in Σuo. Thus,

UR(x) = {y ∈ X : (∃t ∈ Σ∗uo) [(f(x, t) = y)]} .
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The unobservable reach can be extended to a set os states A ∈ 2X as:

UR(A) =
⋃
x∈A

UR(x).

Then, the observer of G, Obs(G), can be defined as follows:

Obs(G) = (Xobs,Σo, fobs, x0obs , Xmobs),

where Xobs ⊆ 2X , x0obs = UR(x0), Xmobs = {xobs ∈ Xobs : xobs ∩ Xm 6=
∅}, and for all xobs ∈ Xobs, ΓGobs(xobs) =

⋃
x∈xobs ΓG(x) ∩ Σo, fobs(xobs, σ) =⋃

(x∈xobs)∧(f(x,σ)!) UR (f(x, σ)), if σ ∈ ΓGobs(xobs), or undefined, otherwise. Consid-

ering that diagnosers do not have marked states, Xm and Xmobs will be omitted in

this work when computing Obs(G). The following algorithm computes Obs(G) [13].

Algorithm 2.1: Construction of automaton Obs(G)

Input: Automaton G = (X,Σ, f, x0), and set Σo

Output: Automaton Obs(G) = (Xobs,Σo, fobs, x0obs)

1 Set Σuo = Σ \ Σo

2 Define x0obs = UR(x0)
3 Set Xobs = {x0obs}
4 Set X̃obs = Xobs

5 X̂obs ← X̃obs

6 X̃obs ← ∅
7 for A ∈ X̂obs do
8 ΓGobs(A) =

(⋃
x∈A Γ(x)

)
∩ Σo

9 for σ ∈ ΓGobs(A) do
10 fobs(A, σ) = UR ({x ∈ X : (∀y ∈ B)[x = f(y, σ)]})
11 X̃obs ← X̃obs ∪ fobs(A, σ)

12 Xobs ← Xobs ∪ X̃obs

13 Repeat Steps 5 to 12 until the entire accessible part of Obs(G) has been
obtained

All sequences of L(G) that does not include unobservable events form the gen-

erated language observed by automaton G. This language can be obtained through

the projection operation, Po, where Po : Σ∗ → Σ∗o. Thus, L(Obs(G)) = Po[L(G)].

The following example illustrates the construction of observers.

Example 2.8 Let G be the automaton depicted in Figure 2.6 and suppose that event

d is unobservable, i.e., Σ = {a, b, c, d}, where Σo = {a, b, c} and Σuo = {d}. Then,

according to Algorithm 2.1, we can construct the observer of G, Obs(G), depicted in

Figure 2.7. When event a occurs, the system moves to state 1, but it can reach state

3 through unobservable transition d, leading Obs(G) to reach state {1, 3}. When
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event b occurs in state {1, 3}, the system moves to state 2, considering that both

states, 1 and 3, reaches state 2 through event b. Then, if event a occurs in state 2,

the system moves to state 1, but it can also reach state 3 again considering that d is

an unobservable event. Finally, if event c occurs in state 2, the system remains at

the state.

0 1 2

3

b
d

a

b

c

a

Figure 2.6: Automaton G of Example 2.8.

{1, 3}0 2
a a

b

c

Figure 2.7: Obs(G) of Example 2.8.

In the next section we present the formal definition of fault diagnosis of a DES,

and the conditions for diagnosability of a language.

2.4 Fault Diagnosis

The main objective in the process of detection and fault diagnosis is to identify the

cause of poor system functioning. In order to diagnose faults in a system, we first

need to define the concept of diagnosability of a DES, which is presented in the

following section.

2.4.1 Diagnosability of DES

In [6], the property of the system language related with the capability of diagnosing

the occurrence of the fault event σf , called diagnosability, is presented. To define

formally this property, in [6] the following assumptions are considered: (i) language

L is live, i.e., Γ(xi) 6= ∅ for all xi ∈ X, and (ii) the plant automaton G does not

contain cyclic paths formed with unobservable events only. In this work, we make

the same assumptions presented in [6].
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Before we do the proper definition of the concept of diagnosability, it is necessary

to define the fault-free behavior of G with respect to Σf = {σf}, which is presented

as follows.

Definition 2.13 (Fault-free behavior) Let L(G) = L be the language generated by

automaton G and LN the prefix-closed language formed by all the sequences of L

that does not have any fault event from the set Σf . Then, the fault-free behavior of

the system given by G, with respect to Σf = {σf}, will be modeled by subautomaton

of G, GN , that generates language LN .

Then, the formal definition of the diagnosability of L can be stated as follows

[6].

Definition 2.14 (Diagnosability) Let L be the live and prefix-closed language gen-

erated by the system, and LN ⊂ L be the fault-free language of L. Let Po : Σ∗ → Σ∗o

be a projection operation. Then, L is said to be diagnosable with respect to projection

Po and Σf , if

(∃z ∈ N) (∀s ∈ L \ LN) (∀st ∈ L \ LN , |t| ≥ z)

⇒
(
∀ω ∈ P−1

o (Po(st)) ∩ L, ω ∈ L \ LN
)
.

According to Definition 2.14, L is not diagnosable with respect to Po and Σf if,

and only if, there exists an arbitrarily long length faulty sequence st with the same

observation than a fault-free sequence ω in LN , i.e., Po(st) = Po(ω).

If L is diagnosable with respect to Po and Σf , then it is possible to define the

delay bound for diagnosis, denoted as z∗, as the minimum value of z that satisfies

the diagnosability condition of Definition 2.14.

In the following section, we define the diagnoser automaton.

2.4.2 Diagnoser Automaton

In [6], a diagnoser automaton is proposed to perform online diagnosis and to verify

the system diagnosability. In order to do so, it is first defined a label automaton Al =

(Xl,Σf , fl, x0,l), depicted in Figure 2.8, where Xl = {N, Y } , x0,l = {N} , fl(N, σf ) =

Y , and fl(Y, σf ) = Y . The label Y indicates the occurrence of the fault event σf ,

and the label N means that the fault has not occurred.

Then, the diagnoser automaton is given by

Gd = Obs(Gl) = (Xd,Σo, fd, x0d), (2.1)

where Gl = G‖Al. From Equation 2.1, it can be noted that L(Gd) = Po(L(G‖Al)) =

Po(L(G)), and Σo is the set of observable events of G.
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Note that the states of Gd have the following form xd = {(x1, l1), . . . , (xn, ln)},
where xi ∈ X and li ∈ {Y,N}, for i = 1, . . . , n. If label li = Y for i = 1, . . . , n, then

xd is said to be a positive state. On the other hand, if li = N for i = 1, . . . , n, xd is

said to be a negative state. Finally, if there exists li = Y and lj = N , i 6= j, xd is

said to be an uncertain state.

The set of states of the diagnoser automaton can be partitioned as Xd =

XY ∪̇XN ∪̇XNY , where XY is the set formed of all positive states of Gd, XN is the

set formed of all negative states of Gd, and XNY is the set formed of all uncertain

states of Gd.

N Y
σf

σf

Figure 2.8: Label automaton Al.

When the diagnoser is in a positive state, it is certain that a fault has occurred.

On the other hand, if the diagnoser is in a negative state, the fault does not occurred.

However, if the diagnoser is in a uncertain state, it is not sure if the fault event

occurred or not. Then, the existance of a cycle formed only with uncertain states,

where the diagnoser can remain forever, will be impossible for it to diagnose the fault

occurrence. On the other hand, if it is possible for the diagnoser leaves this uncertain

states cycle, then this cycle is not indeterminate. Considering this distinct situations,

in order to verify the system diagnosability using a diagnoser, it is necessary to search

for indeterminate cycles in Gd [6]. In the sequel we present the definitions of path,

cycles and indeterminate cycles.

Definition 2.15 A path in G is a sequence (x1, σ1, x2, . . . , σn−1, xn), where xi ∈ X,

σi ∈ Σ, and xi+1 = f(xi, σi), i = 1, 2, . . . , n − 1, and the path is said to be cyclic if

x1 = xn.

Definition 2.16 (Cycle) A cycle of G is the set formed of the states of a cyclic

path (xk, σ1, xk+1, σ2, ..., σl, xk+l), where xk+l = xk.

Definition 2.17 (Indeterminate Cycle) An indeterminate cycle of Gd is a set{
xd1 , xd2 , ..., xdp

}
⊆ Xd formed of uncertain states, satisfying the following con-

ditions:

(i)
{
xd1 , xd2 , ..., xdp

}
forms a cycle in Gd.
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(ii) ∃(xkll , Y ), (x̃rll , N) ∈ xdl, with xkll not necessarily distinct from x̃rll , l =

1, 2, ..., p, kl = 1, 2, ...,ml, and rl = 1, 2, ..., m̃l, such that the states {xkll },
l = 1, 2, ..., p, kl = 1, 2, ...,ml, and {x̃rll }, l = 1, 2, ..., p, kl = 1, 2, ...,ml, can be

rearranged to form cycles in G.

Example 2.9 Consider the system modeled by automaton G, shown in Figure 2.9,

where Σ = {a, b, c, σu, σf}, Σo = {a, b, c} and Σuo = {σu, σf}. Automaton Gl =

G‖Al and diagnoser automaton Gd = Obs(Gl) are depicted, respectively, in Figures

2.10 and 2.11. Note that state {6N, 5Y } is an uncertain state, and fd({6N, 5Y }, b) =

{6N, 5Y }, then uncertain state {6N, 5Y } forms a cycle in Gd. Moreover, associated

with components {6N} and {5Y } of {6N, 5Y }, exist in G, respectively, two cycles

formed by states 6 and 5. Thus, {6N, 5Y } forms an indeterminate cycle in Gd.

1 2

4

3

6

5

a
σu

σf

c

c

b

b

Figure 2.9: Automaton G of Example 2.9.

1N 2N
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c
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b

b

Figure 2.10: Automaton Gl = G||Al of Example 2.9.

2N, 4N, 3Y1N 6N, 5Y
a c

b

Figure 2.11: Diagnoser automaton Gd = Obs(G||Al) of Example 2.9.

According to Definition 2.17, a necessary and sufficient condition for language

diagnosability, based on the construction of diagnoser automaton Gd, can be stated

as follows.
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Theorem 2.1 [6] Language L, generated by automaton G, is diagnosable with re-

spect to projection Po and Σf = {σf} if, and only if, Gd does not have indeterminate

cycles.

The following example illustrates the construction of Gd and the verification of

the diagnosability of language L.

Example 2.10 Consider the system modeled by automaton G, shown in Figure

2.12, where Σ = {a, b, d, g, t, σf}, Σo = {a, b, d, g, t} and Σuo = Σf = {σf}.
Suppose that we want to verify if the language of the system L is diagnosable

with respect to Po and σf . In order to do so, we need to compute the diag-

noser automaton Gd. First, we compute automaton Gl = G‖Al, whose diagram

is depicted in Figure 2.13. Then, diagnoser automaton Gd = Obs(Gl), depicted

in Figure 2.14, can be computed. Examining Gd, it can be noted that its state

set is formed with two negative states ({11N} and {12N}); five uncertain states

({1N, 2Y }, {7N, 8Y, 3Y }, {11N, 9Y, 4Y }, {12N, 10Y, 5Y } and {11N, 3Y }); and three

positive states ({4Y }, {5Y } and {6Y }). Since Gd does not have indeterminate cy-

cles, L is diagnosable with respect to Po and Σf = {σf}.

1

2

7

8

11

σf

σf

3 4 5 6

9 10

12

a b g t

b

a

b g

d

b g

d

Figure 2.12: Automaton G of Example 2.10.

If L is diagnosable with respect to Po and Σf , then it is possible to define the

delay bound for diagnosis, denoted as z∗, as the minimum value of z that satisfies

the diagnosability condition of Definition 2.14. The following example illustrates

the concept of delay bound for diagnosis.

Example 2.11 Consider diagnoser Gd from Example 2.10. While the system re-

ports to the diagnoser the sequence abgd, the diagnoser is still uncertain if the fault
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Figure 2.13: Automaton Gl = G||Al of Example 2.10.
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Figure 2.14: Diagnoser automaton Gd = Obs(G||Al) of Example 2.10.

occurred or not. If sequence abgt occurs, the system is in state 6 and diagnoser is

certain that a fault occurred, which means z1 = 4. If sequence abgdb occurs, the sys-

tem is in state 4 and diagnoser is certain that a fault occurred, which means z2 = 5.

Finally, if sequence abgdg occurs, then the system is in state 5 and diagnoser is

certain that a fault occurred, which means z3 = 5. Then, the minimum value of z

that satisfies the diagnosability condition of Definition 2.14 is z1 = 4.

In next chapter we present a brief resume of supervisory control theory, and the

methods for supervisor reduction.
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Chapter 3

Supervisor Reduction for DES

The idea of supervisory control in the modeling of a DES first appeared in [14], being

expressed in terms of observation and disabling of controllable events, carried out by

a minimally restrictive supervisor on a plant. This supervisor is, roughly speaking,

a feedback control capable of changing the behavior of a DES. The uncontrolled

behavior of this DES can be modeled by an automaton, whose language usually

contains sequences of events that violate certain specifications (or conditions) that

are imposed on the system. When this occurs, it is necessary to restrict the behavior

of the DES to a subset of this language through the use of feedback control. Then,

the supervisor can enable or disable events (usually not all events) in such a way

that this restriction is possible.

Modifying the behavior of system modeled by automaton G means, in practice,

to restrict language L(G) to some subset of it (namely the specification), represented

by an automaton H. In order to do so, we must build S (supervisor), capable of

making this change. However, attempts to apply the supervisory control theory

(SCT) to industrial problems have encountered some barriers as state explosion

[15]. One way of dealing with these problems is to reduce the size of the supervisor,

maintaining the controllability property [1, 2]. In this chapter we will review the

basic concepts of SCT and present algorithms to supervisory reduction proposed in

the literature, which can be adapted to handle the diagnoser reduction problem.

Although both diagnosers and supervisors are automata that, when reduced,

some property of interest must be maintained, there is a fundamental difference

considering each case: diagnosers do not have marked states; therefore, the problem

concerning the marked language of the automaton is applied only to supervisors,

not diagnosers. This suggests a reduced diagnoser is simpler to obtain.

This chapter is organized as follows: in Section 3.1, we present the definition

for the behavior of a controlled DES under full observation, where both controllable

and uncontrollable events are observable; also, the definition of controllability of

a language is presented. In Section 3.2, we explain the algorithms for supervisor
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reduction proposed in [2] and [1], with some examples of their applications.

3.1 Controlled DES Under Full Observation

Let L be the language that models the behavior of a given DES, defined over the

same event set Σ, where L = L is the set of all event sequences the DES can

generate. Without loss of generality, let us suppose that L(G) = L, and consider that

G = (X,Σ, f, x0, Xm) is the automaton that models this DES. Similarly consider

the specification automaton H, whose language L(H) = La ⊆ L contains only

the desired sequences of G, excluding the sequences whose occurrence we want to

restrict. Therefore, we can say that La is a sublanguage of L.

Then, we can formulate the supervisory control problem as follows: given an

automaton G, obtain the supervisor S that interacts with G under a feedback con-

trol system, depicted in Figure 3.1. In the design of feedback system, we ensure

that automaton S/G (S controlling G) will generate language L(S/G) = La ⊆ L.

Automaton S/G is actually the specification automaton H.

S

G

sS(s)

Figure 3.1: Feedback supervisory control structure where S/G.

Formally, a supervisor S is a function of the language generated L by G, whose

image is the power set of events Σ, and can be defined as:

S : L → 2Σ

s → S(s),

where the active event set ΓN [f(x0, s)] that G can execute in the state f(x0, s) is

given by:

ΓN [f(x0, s)] = Γ[f(x0, s)] ∩ S(s).

Thus, G is not capable of execute the event in the state f(x0, s) if this event

does not belong to S(s). In other words, the supervisor S is the control law, while

the set S(s) is the control action generated by this law for a given sequence s.

Therefore, the language generated and marked by the controlled system (denoted

by S/G) can be defined as follows.
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Definition 3.1 (Language generated and marked by S/G) The language generated

by S/G can be recursively defined as

(i) ε ∈ L(S/G);

(ii) sσ ∈ L(S/G)⇔ (s ∈ L(S/G)) ∧ (sσ ∈ L(G)) ∧ (σ ∈ S(s)).

The language marked by S/G is defined as

Lm(S/G) := L(S/G) ∩ Lm(G).

According to Definition 3.1, it can be noted that the language L(S/G) is prefix-

closed.

The solution of the supervisory control problem when there are not uncontrol-

lable and unobservable events always exists and it is relatively simple to obtain.

However, in practical systems, there is no guarantee that all events of a system

are in fact controllable. Therefore, the event set Σ of the automaton G has to be

partitioned in two disjoint subsets as follows:

Σ = Σc∪̇Σuc,

where

i) Σc is the controllable events set, i.e., the events that can be disabled by S;

ii) Σuc is the uncontrollable event set, i.e., the events that can not be disabled by

S.

The representation of a controllable event in a given state transition diagram of

an automaton is made with a single trace on the correspondent oriented arc. Unless

indicated otherwise in the automaton, the event will be considered uncontrollable.

Then, considering this partition on Σ, a supervisor S will be called admissible if

(∀s ∈ L(G),Σuc ∩ Γ[f(x0, s)] ⊆ S(s)) .

The supervisor S will be admissible if cannot disable uncontrollable active events.

In this work, only admissibe supervisors will be considered.

To assure the synthesis of an admissible supervisor S, we have to consider the

possibility that some uncontrollable events must be disabled during the processo in

obtaining the specification H. Then, a necessary and sufficient condition has to be

presented that guarantee the existance of the supervisor S. This condition derives

from the concept of controllability, that will be defined in the following subsection.
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3.1.1 Controllability of a Language

Consider a DES modeled by an automaton G controlled by a supervisor S, where

all events executed by G are observable by S. Then, the formal definition of con-

trollability is presented as follows.

Definition 3.2 (Controllability) Let K and L the languages defined over an event

set Σ = Σc∪̇Σuc, where K ⊆ L and L = L. Then, K will be controllable with respect

to L and Σuc if, and only if

KΣuc ∩ L ⊆ K.

For all sequences s ∈ K and an uncontrollable event σuc ∈ Σuc, if sσuc ∈ L, then

also sσuc ∈ K. According to Definition 3.2, controllability is a prefix-closed property

of a language, i.e., K will be controllable if, and only if, K is also controllable.

Moreover, although controllability is not preserved under intersection, it is preserved

under union. In other words, if two languages K1 and K2 are controllable, then

K1 ∪K2 is also controllable.

The existence of a supervisor whose language is controllable is conditioned to

the concept of controllability. Considering this, it is necessary to verify the control-

lability of a language, which can be stated by the following theorem.

Theorem 3.1 (Controllabiliy theorem [13]) Consider a DES described by automa-

ton G = (X,Σ, f, x0, Xm), where Σuc ⊆ Σ and L(G) = L = L. Let K be the

specification of the language such that K ⊆ L, being K 6= ∅. Then, exists a supervi-

sor S, such that L(S/G) = K if, and only if

KΣuc ∩ L ⊆ K.

Thus, for K to be controllable with respect to L and Σuc all undesirable sequences

must be part of the specification.

In order to illustrate the concept of controllability, consider the following exam-

ple.

Example 3.1 Let G and H be two automata depicted in Figures 3.2 and 3.3, re-

spectively, where Σ = {a, b, c} , L = L(G) = {abc, acb} and K = L(H) = {acb}.
Also, let Σuc = {b}. In state 2, the supervisor must disable event b so only event c

could occur, in order to satisfy the specification. However, event b is uncontrollable,

which makes this impossible to occur. Therefore, it is said that K (and also K) is

not controllable with respect to L and Σuc. On the other hand, if Σuc = {c}, the

system will be controllable.
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Figure 3.2: Automaton G of Example 3.1.
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Figure 3.3: Automaton H of Example 3.1.

Supremal Controllable Sublanguage

When the specification language K is uncontrollable, one of the alternatives is to

find the “largest” sublanguage of K that is controllable, where “largest” concerns

inclusion of sets. This language is called supremal controllable sublanguage of K,

denoted by K↑C .

According to [16], the controllability property is closed under set union, i.e.,

there exists a unique largest controllable language K↑C such that K↑C ⊆ K. In

other words, if languages Ki, i = 1, 2, . . . , n, are controllable with respect to L(G)

and Σuc, then the language K1 ∪K2 ∪ . . . ∪Kn is also controllable. Then, it can be

concluded that the supremal controllable sublanguage of a given language K always

exists. The following properties of this supremal controllable sublanguage hold [13]:

(i) In the worst case, K↑C = ∅; (ii) If K is controllable, then K↑C = K; (iii) If K

is prefix-closed, then so is K↑C .

The following example illustrates the concept of K↑C .

Example 3.2 Consider the two automata, G and H, depicted in Figures 3.4 and

3.5, respectively, where Σ = {a, b, c} and Σuc = {a}. Let L = L(G) and K = Lm(H).

Then,

K = {abc, acb, cba}.

Note that K is not controllable, considering that contains as a prefix event c, which

can be extended in L by the uncontrollable event a, and ca /∈ K. Thus, we need to

remove from K all sequences that contain event c as a prefix. After removing those

sequences from K, we obtain

K1 = {abc, acb},

which is controllable. Then, K↑C = K1.
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Figure 3.4: Automaton G of Example 3.2.
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Figure 3.5: Automaton H of Example 3.2.

In order to apply the supervisor reduction algorithms proposed in [1] and [2] in

diagnosers, the marked states of supervisors will be omitted. In next section, we

present these algorithms.

3.2 Supervisor Reduction Methods

Considering that supervisors normally contain some redundant information that can

be easily inferred from the structure of the plant, it seemed natural to conceive the

possibility that the construction of a minimal (or at least with fewer states than

the original) could be made. In [11], the authors stated that the construction of

a minimal supervisor is time-exponential with respect to the state size of a given

supervisor. It was shown in [2] that this problem is, in fact, NP -hard. Then, in [1]

is proposed a heuristic polynomial-time algorithm for supervisor reduction, based

on the concept of control covers. This method is presented in the next section.

3.2.1 Reduction Based on Control Covers

The supervisor reduction problem in [1] can be resumed as follows: given a supervisor

S = (XS,Σ, fS, xS0 , X
S
m) for a specification H on a plant G = (X,Σ, f, x0, Xm), we
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want to find a supervisor S ′ with fewer states than S and that is control equivalent

to S, i.e., the language of the supervisory control of S is equivalent to the language

of the supervisory control of S ′. Therefore, such an automaton S ′ is called a reduced

supervisor.

In order to compute the control cover, the following definitions were proposed in

[1].

Definition 3.3 (Eligible event set) The set of eligible events at any state x ∈ X is

defined as

Elig(G, x) := {σ ∈ Σ|f(x, σ)!}.

Definition 3.4 (Cover) A cover of a supervisor S is defined to be a family {Xi ⊆
XS : i ∈ I} of the subsets of the state set of S with the following properties:

1. (∀i ∈ I), Xi 6= ∅

2. (∀i, j ∈ I), i 6= j ⇒ Xi * Xj

3. for a subset Im ⊆ I: XS
m = ∪i∈ImXi → XS − XS

m = ∪i∈I−ImXi, where I is

some arbitrary index set.

According to Definition 3.4, a cover of a set XS is a family of subsets of XS

whose union is XS. Also, the elements of a cover of S inherit the marking structure

of S.

Definition 3.5 (Deterministic cover) A cover of S is defined to be deterministic if

[
(∀i, j ∈ I) (∀σ ∈ Σ) (∃x, y ∈ Xi) |fS(x, σ) ∈ Xj and fS(y, σ)!⇒ fS(y, σ) ∈ Xj

]
.

where fS is the transition function of S.

According to Definition 3.5, a cover is deterministic if no two states of any

element of the cover make transitions to different elements of the cover under the

same event.

Definition 3.6 (Disabled set) Let x1 ∈ XS be any state of S. Let X ′(x1) ⊆ X be a

subset of states of the plant defined as follows:

X ′(x1) = {x ∈ X : (x, x1) ∈ XG‖S}.

Then, the set of disabled events at x1 is defined as

Disabled(x1) := {σ ∈ Σc : (∃ ∈ X ′(x1))[σ ∈ Elig(G, x)− Elig(S, x1)]}.
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The set Disabled(x1) is formed of the events that are disabled in the plant at a

state x ∈ X such that (x, x1) ∈ XG‖S.

Definition 3.7 (Control cover) Any two states x1, x2 ∈ XS are defined to be control

consistent if Disabled(x1) = Disabled(x2). A cover of S is defined to be control

consistent if

(∀i ∈ I)(∀x1, x2 ∈ Xi)[x1 and x2 are control consistent].

If a cover C of S is deterministic and control consistent, then C is called a control

cover.

Before we present the application of the method proposed in [1], some definitions

are necessary.

Definition 3.8 (Ineligible event set) Let x ∈ XS. Then, the set of ineligible events

at x is defined as

Ineligible(x) := Σc − (Elig(S, x) ∪Disabled(x)).

The set Ineligible(x) is formed of the events that are not physically possible at x.

The difference between the disabled set and ineligible set is that the later is the

set of events that are physically impossible to occur in a given state of plant G due

to the nature of the system.

Example 3.3 Let G be an automaton that represents a plant to be controlled, de-

picted in Figure 3.6, and S be a supervisor controlling G, depicted in Figure 3.7.

Consider that Σ = {a, b, c, d, g, t}, where Σc = {a, b, d, g, t} and Σuc = {c}. Accord-

ing to Definition 3.3, the eligible event set for state 1 is {g, t}. Note that state 1 in

S does not disable any event in G, and the events a, b, d are ineligible to occur in this

state, according to Definition 3.8. Also note that states 4 and 5 in S disable event

d in G. Then, the ineligible events set of states 4 and 5 are, respectively, {a, b, g, t}
and {b, g, t}. Table 3.1 shows the disabled and the ineligible state sets for all states

of S.

According to Definition 3.5, a possible deterministic cover for S is the set C =

{{1, 4, 5}, {2, 3, 6}}, where does not exist two states in any of the subsets {1, 4, 5}
and {2, 3, 6} that make transitions to different elements of the cover under the same

event.

Definition 3.9 (Control compatible) Any two states x1, x2 ∈ XS are defined to be

control compatible if

Disabled(x1) ⊆ Disabled(x2) ∪ Ineligible(x2), and
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Figure 3.6: Plant G of Example 3.4.
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Figure 3.7: Supervisor S of Example 3.4.

Table 3.1: Disabled and ineligible state sets for all states of S of Example 3.4.

State Disabled Events Ineligible Events
1 ∅ {a, b, d}
2 ∅ {a, d, g, t}
3 ∅ {a, b, g}
4 {d} {a, b, g, t}
5 {d} {b, g, t}
6 ∅ {a, b, g}

Disabled(x2) ⊆ Disabled(x1) ∪ Ineligible(x1).

Definition 3.10 (Marking compatible) Any two states x1, x2 ∈ XS are defined to

be marking compatible if

(∀x ∈ XS
m)[((x, x1), (x,2 ) ∈ XG‖S)⇒ (x1 ∈ XS

m ↔ x2 ∈ XS
m)].

Definition 3.11 (Compatible states) Any two states x1, x2 ∈ XS are defined to be

compatible if they are control and marking compatible. Otherwise, the two states are

defined to be incompatible. For any x ∈ XS, the sets of compatible and incompatible

states are defined as

Compatible(x) := {y ∈ XS : x and y are compatible}

Incompatible(x) := {y ∈ XS : x and y are not compatible}.
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Definition 3.12 (Mergeable states) Any two states x1, x2 ∈ XS are defined to be

mergeable if they are compatible and

(∀σ ∈ Σ)[fS(x1, σ) and fS(x2, σ) are compatible].

For any x ∈ XS, the set of mergeable states is defined as

Mergeable(x) := {y ∈ XS : x and y are mergeable}.

According to Definitions 3.11 and 3.12, it can be noted that two states will be

considered mergeable if they are compatible, and their transitions functions under

the action of the same events lead to also compatible states. Thus, the cover com-

puted where its elements are mutually mergeable states will be deterministic if the

original transition structure of the supervisor is respected.

In [1], three algorithms were developed in order to compute the control cover

and merge states in the supervisor. The first one is to compute the merge-

able state sets for each pair of events, according to Definition 3.12, and is called

findMergeableStateSets. Thus, it is necessary to find all the compatible and incom-

patible pairs in order to compute the mergeable set. The algorithm starts creating

a list for each pair (x, y) that is reached for another pair through the execution

of the same event. Then, the next step is to cross all the pairs (x, y) such that

y ∈ Incompatible(x). The “crossing” operation means that the pair crossed is not

mergeable and, therefore, will not compose the desired control cover. Next, the

algorithm checks if there are any pair of states that reaches a crossed pair, and then

cross this pair. In other words, for all σ ∈ Σ and (w, z) ∈ XS such that fS(w, σ) = x

and fS(z, σ) = y or vice-versa: if (x, y) is crossed, then the pair (w, z) will also be

crossed. This occurs recursively until all pairs on the list of each pair crossed are

also crossed. The other pairs that were not crossed in this procedure are added to

Mergeable(x), which is the set of states that can be mergeable with state x. The

algorithm ends when the mergeable set is obtained for all states in XS.

The second algorithm, called findMaximalMutuallyMergeableSet, begins by com-

puting an element XS
i0

that contains the initial state of S. Consider that α is an

event eligible to occur at any state belonging to XS
i0

; then, to guarantee that the

computed cover is deterministic, it is necessary to ensure that fS(XS
i0
, α) is a sub-

set of some element of the cover. Otherwise, the algorithm computes an element

that contains it. The main procedure of this algorithm takes as input a set whose

elements are pairwise mergeable, and the output XS
i is also a set such that all its

elements are pairwise mergeable. This maximal element, XS
i , will form an element

of the control cover if it is not a subset of any existing element. Therefore, the

criterion of merging states in [1] can be stated: the maximal mutually mergeable
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state set, where all its elements are pairwise mergeable, is put on the control cover

C and is automatically merged in order to form the reduced supervisor S ′. It can

be noted that this procedure always starts computing the set Xi0 , where the initial

state of S is the first element of this set. Thus, if this set is the maximal mutually

mergeable set, it can be inferred that the reduced supervisor depends of the choice

of the initial state of S.

The last and third algorithm, called findControlCover, puts exactly this maximal

element XS
i as the first state set (not necessarily containing the initial state of S)

of the cover. Then, it computes the maximal element considering the other states

that were not added to XS
i , and adds the result to C. The algorithm ends when all

the states forms maximal elements in the resulting control cover, and the reduced

supervisor is obtained by the merging of the elements that forms each subset of the

control cover.

The following example illustrates the supervisor reduction method proposed in

[1].

Example 3.4 Let us consider again automaton G from Example 3.3 that repre-

sents a plant to be controlled, depicted in Figure 3.6, and S be a supervisor con-

trolling G that we want to reduce, depicted in Figure 3.7. Consider again that

Σ = {a, b, c, d, g, t}, where Σc = {a, b, d, g, t} and Σuc = {c}. Then, the Table 3.1

that shows the disabled and the ineligible state sets for all states of S obtained in

Example 3.3 can be computed.

Note that event d is eligible to occur in state 3, but it is disabled in state 4. Then,

states 3 and 4 are incompatible. Also note that event d is disabled in state 5. Thus,

states 3 and 5 are incompatible. From Table 3.1, we can compute the compatible

state sets for each state, shown in Table 3.2.

Table 3.2: Compatible states of Example 3.4.

State Compatible States
1 {1, 2, 3, 4, 5, 6}
2 {1, 2, 3, 4, 5, 6}
3 {1, 2, 3, 6}
4 {1, 2, 4, 5}
5 {1, 2, 4, 5}
6 {1, 2, 3, 6}

According to Table 3.2 of compatible state sets, we now compute the first algo-

rithm, findMergeableStateSets. The algorithm starts with initial state 1, and does

the following checks and crossing:

• (fS(1, t), fS(3, t)) = (3, 4). Since states 3 and 4 are not compatible, then (1, 3)

is crossed;
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• (fS(1, t), fS(6, t)) = (3, 4). Since states 3 and 4 are not compatible, then (1, 6)

is crossed;

Since there are no more pair of compatible states that execute the same event,

the algorithm ends and the mergeable states are computed. The result is shown in

Table 3.3.

Table 3.3: Mergeable states of Example 3.4.

State Mergeable States
1 1,2,4,5
2 1,2,3,4,5,6
3 2,3,6
4 1,2,4,5
5 1,2,4,5
6 2,3,6

Now, the algorithm findControlCover starts, where the first step is to com-

pute the algorithm findMaximalMutuallyMergeableSet. This algorithm starts with

initial state 1: XS
i0

:= findMaximalMutuallyMergeableSet({1}). Since all ele-

ments of Mergeable(1) are pairwise mergeable, the output is XS
i0

= Mergeable(1) =

{1, 2, 4, 5}. The events eligible at XS
i0

are: {a, b, c, g, t}. Then, the algorithm tests

the transitions for all eligible events at XS
i0

, obtaining the following:

• fS(XS
i0
, a) = {6};

• fS(XS
i0
, b) = {3};

• fS(XS
i0
, c) = {5};

• fS(XS
i0
, g) = {2};

• fS(XS
i0
, t) = {3};

When fS(XS
i0
, σ) is a state (or set of states) that are in XS

i0
, the algorithm contin-

ues without any new merges. This is the case for fS(XS
i0
, c) = {5} and fS(XS

i0
, g) =

{2}. Then it is tested the output for findMaximalMutuallyMergeableSet({3})
whose result is:

findMaximalMutuallyMergeableSet({3}) = {2, 3, 6}

Note that for state, 2, 3 and 6, we have fS(XS
i1
, d) = {2, 3}, which is an element

of set {2, 3, 6}. Then, {2, 3, 6} is added to C. Since there are no more states reached

with the same σ from {2, 3, 6}, the iteration for XS
i1

ends. After this iteration, the

algorithm discovers that no new states are generated.
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Then, the algorithm findControlCover simply puts the sets formed in the previous

algorithm on C:

C = {{1, 2, 4, 5}, {2, 3, 6}} .

Thus, the supervisor induced by C, S ′, is depicted in Figure 3.8.

{1, 2, 4, 5}

c, g

c, d, t a, b, g, t

{2, 3, 6}

b, d

Figure 3.8: Reduced supervisor S ′ of Example 3.4.

Note that the reduced supervisor S ′ of Figure 3.8 is nondeterministic. Therefore,

in the following section, the method for supervisor reduction proposed in [2] is pre-

sented, where the concept of control congruence is introduced in order to guarantee

that the reduced supervisor is deterministic.

3.2.2 Reduction Based on Control Congruence

As addressed in [2], the optimal solution for the supervisory control problem is

obtained by the supremal controllable sublanguage, represented by the supremal

supervisor, which has state size of order the product of state sizes of the plant

and specification transition structures. Therefore, the state size reduction of the

supremal supervisor can be possible without affecting controlled behavior. The

definition of a cover in [2] is less restrictive than that of [11], showing that a cover

is necessary as well as sufficient for supervisor reduction. Thus, the authors in [2]

developed the concept of control congruence, which is a special case of a control

cover, providing a polynomial-time reduction algorithm.

In this section, consider that the DES to be controlled is modelled as a discrete

transition structure G = (X,Σ, f, x0, Xm) and S = (XS,Σ, fS, xS0 , X
S
m) is a supremal

supervisor. Let E : XS → 2Σ denote the enabled event set at state x ∈ XS, with

x 7→ E(x) := {σ ∈ Σ|fS(x, σ)!}.
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Also, let D : XS → 2Σ denote the disabled event set at state x ∈ XS, with

x 7→ D(x) := {σ ∈ Σ|fS(x, σ)! and (∃s ∈ Σ∗)[fS(xS0 , s) = x and f(x0, sσ)!]}.

Concerning the marked behavior of S, let M : XS → {true, false} and T :

XS → {true, false}, with

x 7→M(x) := {true, if x ∈ XS
m},

x 7→ T (x) := {true, if (∃s ∈ Σ∗)fS(xS0 , s) = x and f(x0, s) ∈ Xm}.

Let also R ⊆ XS × XS be the binary relation such that for a pair x, x′ ∈ XS,

(x, x′) ∈ R if, and only if:

C1. E(x) ∩D(x′) = E(x′) ∩D(x) = ∅.

C2. T (x) = T (x′)⇒M(x) = M(x′).

Condition C1 says that for a pair of states (x, x′) ∈ R, the associated en-

able/disable control actions should be consistent, i.e., no event is enabled at x but

disabled at x′. Condition C2 requires that states (x, x′) ∈ R be consistently marked

either true or false in S if they are reachable by some sequences s, s′ in Lm(G), or

else if neither is reachable by sequences in Lm(G).

The definition of control congruence is presented as follows.

Definition 3.13 (Control congruence [2]) A cover C = {XS
i ⊆ XS|i ∈ I} of XS,

where I is an index set, is a control cover on S if

1. (∀i ∈ I)XS
i 6= ∅ ∧ (∀x, x′ ∈ XS

i )(x, x′) ∈ R

2. (∀i ∈ I)(∀σ ∈ Σ)(∃j ∈ I)[(∀x ∈ XS
i )ξ(x, σ)!⇒ ξ(x, σ) ∈ XS

j ]

The subsets XS
i are the cells of C. Then, a control cover C is a control congruence

if C is a partition on XS, namely the XS
i are pairwise disjoint.

Note that condition C1 also requires that each cell of C must be nonempty, and

that each pair of states in the same cell should belong to R, i.e., both associated

control action and marked status should be consistent. This is the same condition

stated for the computation of control cover in Section 3.2.1. Then, condition C2

states that for each XS
i ∈ C and each σ ∈ Σ, the set of states that can be reached

from any state in XS
i by the next transition executing event σ is covered by some

XS
j ∈ C. It can be inferred that in the cells of a control cover a state can belong to

more than one cell XS
i , but this ambiguity is solved by the analysis of the enabled

restriction E to the cell XS
i of the cover, maintaing the pairwise disjointness.
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Therefore, the algorithm called Reduction Algorithm (RA), proposed in [2], com-

putes a control congruence as follows. First a control congruence C on S is created,

initially set to be a set of one state of XS. Also, a list on XS ×XS, starting with

the emptyset, is created. This is a list of state pairs that are waiting to be merged,

i.e., if all subsequent tests for mergeability return true, then each state pair will be

merged in the same cell of the control congruence that is formed by RA. Consider

that the initial state of S is x1. The main procedure starts by testing the initial

state with the next one by following the order of the states previously given from S.

Then, if two states x1, x2 ∈ XS satisfy (x1, x2) ∈ R, i.e., if the pair (x1, x2) satisfies

both conditions C1 and C2, the algorithm checks mergeability in the following with

a subroutine procedure: for all σ ∈ Σ, where fS(x1, σ)! and fS(x2, σ)!, it is verified

if (fS(x1, σ), fS(x2, σ)) ∈ R. If (fS(x1, σ), fS(x2, σ)) /∈ R, then x1 and x2 will not

be merged on S. On the other hand, if (fS(x1, σ), fS(x2, σ)) ∈ R, then x1 and x2

will be merged on S, forming the cell {x1, x2} of the control congruence C.

If (x1, x2) /∈ R, then the algorithm returns false, and the pair (x1, x2) is not

merged, i.e., no state-merge occurs on S. This procedure repeats until a pair satisfies

both conditions C1 and C2, and the subroutine to check mergeability is computed.

After this, the algorithm tests the mergeability between x1 and next state of S,

x3. Suppose now that x1 and x2 were merged on S. Then, it is checked if state x3

satisfies x1, x3 ∈ R and x2, x3 ∈ R. If one of them holds not true, then no state

is merged on S. On the other hand, if both holds true, the subroutine procedure

is computed for all σ ∈ Σ, where fS(x1, σ)!, fS(x2, σ)! and fS(x3, σ)!, it is checked

if (fS(x1, σ), fS(x3, σ)) ∈ R and if (fS(x2, σ), fS(x3, σ)) ∈ R. If one of them holds

not true, there is no state merging on S. On the other hand, if both holds true,

then state x3 is merged on S with state x1 and x2, i.e., x3 is added to cell {x1, x2}
of C, forming the cell {x1, x2, x3}.

This procedure ends when all the pairs that are merged are added to control

congruence C, and the pairwise disjointness is guaranteed.

The following example illustrates the supervisor reduction method proposed in

[2].

Example 3.5 Let us consider again the plant automaton G and supervisor S con-

trolling G, depicted in Figures 3.6 and 3.7, respectively. Note that S is in fact a

supremal supervisor. Consider also that D(4) = D(5) = {d}, and D(1) = D(2) =

D(3) = D(6) = ∅. Then, the algorithm starts testing the mergeability between initial

state 1 and the next state considering the previous order given by S. Thus, the first

pair tested for mergeability is (1, 2). It is clear that (1, 2) ∈ R. Since there are no

σ ∈ Σ such that fS(1, σ)! and fS(2, σ)!, then states 1 and 2 are merged on S, and

(1, 2) is added to C.
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Now, the algorithm continues, and checks that (1, 3) ∈ R. Thus, the algorithm

checks that fS(1, t) = 3 and fS(3, t) = 4, and tests if (3, 4) ∈ R. Clearly (3, 4) /∈ R,

and then no states are merged on S. The next pair tested is (1, 4), and (1, 4) ∈ R.

Since there are no events in common between states 1 and 4, the algorithm now tests

state 4 with the other state in the cell {1, 2} of the cover. Clearly, (2, 4) ∈ R, and

then state 4 is added to cell {1, 2}, generating the cell {1, 2, 4}. The same procedure

is done with state 5, where clearly the following holds true: (1, 5) ∈ R, (2, 5) ∈ R and

(4, 5) ∈ R. Thus, the state 5 is added to cell {1, 2, 4}, generating the cell {1, 2, 4, 5}.
The last test for state 1 is with state 6, where (1, 6) ∈ R. Thus, the algorithm checks

that fS(1, t) = 3 and fS(6, t) = 4, and tests if (3, 4) ∈ R. Clearly (3, 4) /∈ R, and

then no states are merged on S. Therefore, the last remaining test is for pair (3, 6).

Note that (3, 6) ∈ R, but fS(3, d) = 2 and fS(6, d) = 3. Since 2 is already in a cell

where state 3 cannot be added, the merge (3, 6) violates the pairwise disjointness of

control congruence, and then states 3 and 6 are not merged. Therefore, the cells {3}
and {6} are added to C, and the control congruence is formed:

C = {{1, 2, 4, 5}, {3}, {6}} .

Finally, the induced supervisor, S ′, has its states formed for each cell of the cover

C. The reduced supervisor S ′ is depicted in Figure 3.9.

{1, 2, 4, 5}

{3}

{6}

c, g

c, d, t b, t

d

t

a

Figure 3.9: Reduced supervisor S ′ of Example 3.5.

Note that the reduced supervisor for Example 3.4 has two states, but is non-

deterministic, while in Example 3.5 the reduced supervisor has three states, and is

deterministic. Although the results are satisfactory in terms of complexity reduc-

tion (the original S had six states), remains open if it is possible to obtain a smaller

deterministic supervisor than the one depicted in Figure 3.9. In next chapter, we

present an algorithm for diagnoser reduction and apply it to a diagnoser with sim-

ilar construction to the supervisor S from the examples of this section, in order to

compare the efficiency of methods.
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Chapter 4

Diagnoser Reduction Method

An efficient diagnoser is the one with the less delay of diagnosis as possible, so

that the fault can be diagnosed without causing considerable impact on the system.

There is a drawback of implementing the diagnoser proposed in the literature, which

concerns its state set that can be very large, requiring a great amount of memory

to be implemented in complex systems. Then, a reduced diagnoser is desirable for

greater economy of implementation, as long as the diagnosis delay is the same as the

original diagnoser. In this chapter, we propose an algorithm to reduce diagnosers,

in order to maintain the diagnosability of language and diagnosis delay.

Consider that language L of an automaton G that models a given DES is diag-

nosable with respect to Po and Σf . In this case, the diagnoser proposed in [6] can be

constructed for online diagnosis. Since the diagnoser is based on the computation

of an observer automaton, then, in the worst-case, its state set can grow exponen-

tially with the number of states of the plant G. However, in average, the size of the

diagnoser does not grow exponentially with the number of system states, but it can

still be a large number for complex and large systems [7].

In this chapter we propose an algorithm for reducing the diagnoser Gd such that

the diagnosability of L and the delay for diagnosis are both preserved. The structure

of the chapter is as follows. In Section 4.1, the first step in order to reduce a diagnoser

is presented. In Section 4.2, we present what is in fact the procedure of state merging.

In Section 4.3, we compute, for each state of diagnoser, the set of states that cannot

be merged with that state. In Section 4.4, the computation of a deterministic

diagnoser is presented, considering our desire to implement deterministic reduced

diagnosers. In Section 4.5 we compute the mergeable states set for each pair of

states. In Section 4.6 we present the algorithm for diagnoser reduction, with an

example of its application.
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4.1 First Step in Diagnoser Reduction

The first step for reducing the diagnoser is to merge all positive states of Gd

into a single state, denoted as F , generating a new diagnoser automaton G′d =

(X ′d,Σo, f
′
d, x
′
0d

), where X ′d is the set formed of singletons of all elements of XN ∪
XNY ∪ {F}, i.e., X ′d = {{xd} : xd ∈ XN ∪XNY ∪ {F}}, f ′d({xd}, σ) = {fd(xd, σ)}, if

fd(xd, σ) ∈ XN ∪XNY , f ′d({xd}, σ) = {F}, if fd(xd, σ) ∈ XY , and f ′d({F}, σ) = {F},
for all σ ∈ Σo, and x′0d = {x0d}. This state merging is possible since the knowledge

of the system state after the fault detection is unnecessary for the diagnosis decision

and for the computation of the diagnosis delay. In the sequel, we present an example

to illustrate the computation of G′d.

Example 4.1 Consider the system modeled by automaton G, shown in Figure 4.1,

where Σ = {a, b, c, d, t, σf}, Σo = {a, b, c, d, t} and Σuo = Σf = {σf}, and suppose

that we want to verify if the language of the system L is diagnosable with respect to

Po and σf . In order to do so, the diagnoser automaton Gd, depicted in Figure 4.2,

can be computed. Since Gd does not have indeterminate cycles, then L is diagnosable

with respect to Po and σf .

The positive states of Gd are {7Y } and {8Y }. Then, we can merge {7Y } and

{8Y } into a single state, denoted as {F}, generating the diagnoser automaton G′d,

shown in Figure 4.3. Note that a self-loop is introduced in state {F} labeled with all

observable events.

1

2 3 4

7

5 6

8

g
t

b

d

d

ac, t c

tσf

c d

d

Figure 4.1: Automaton G of Example 4.1.

In the first step of the diagnoser reduction only positive states are merged. How-

ever, in some cases, it is possible to reduce G′d, obtaining a new diagnoser automaton

Gr
d = (Xr

d ,Σo, f
r
d , x

r
0d

), by merging also negative and uncertain states of G′d. In next

section, we present the procedure of state merging.

4.2 Procedure of State Merging

After merging positive states into a single state labeled F , it is possible to reduce

even more the original diagnoser. The method proposed in this work consists in
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Figure 4.2: Automaton Gd of Example 4.1.
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Figure 4.3: Automaton G′d of Example 4.1.

the merge of negative and uncertain states. Thus, in this section we present an

algorithm for merging two states of a given diagnoser.

In Algorithm 4.1, we compute automaton G′′d obtained after merging two states x

and y of an automaton Ĝd into a single state x∪y. It is important to remark that all

reduced diagnosers computed in this work are obtained from merging states of the

original diagnoser G′d. Thus, since each state of G′d is a singleton formed of a state of

Gd or F , then a state x′′d ∈ X ′′d of G′′d has the following form x′′d = {xd1 , xd2 , . . . , xdη},
where {xdi} ∈ X ′d.

Note that, in Algorithm 4.1, Ĝd and G′′d are considered nondeterministic au-

tomata, i.e., f̂d : X̂d × Σo → 2X̂d and f ′′d : X ′′d × Σo → 2X
′′
d . However, Algorithm 4.1

can also be used if Ĝd is deterministic by considering the codomain of f̂d equal to

the set of all singletons formed with the elements of X̂d.

Theorem 4.1 L(G′d) ⊆ L(G′′d).

Proof. Let Gp = (Xp,Σ, fp, x0) depicted in Figure 4.4 be an automaton

that models a given DES, where Σ = {σ1, σ2, σ3, . . . , σn−2, σn−1, σn}. The

proof of this theorem is straightforward by construction of G′p. Note that

L(Gp) = {σ1σ3σ5 . . . σn−1σn, σ2σ4σ6 . . . σn−2σn}. Let us consider, without loss of

generality, the operation of merging states x1, x2 ∈ Xp. Automaton G′p, de-

picted in Figure 4.5, is the automaton generated after merging states x1, x2.

Note that when we merge states x1, x2 the past behavior of x1 and x2 con-

verges to the same state (x1, x2). As a consequence, new sequences are cre-

ated, for instance: σ1σ4σ6 . . . σn−2σn. Also note that the sequences of L(Gp),

σ1σ3σ5 . . . σn−1σn and σ2σ4σ6 . . . σn−2σn, belongs to L(G′p). Thus, L(G′p) =
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Algorithm 4.1: MERGE(Ĝd,x,y)

Input: Ĝd = (X̂d,Σo, f̂d, x̂0d), x, y ∈ X̂d

Output: G′′d = (X ′′d ,Σo, f
′′
d , x

′′
0d

)

1 X ′′d = (X̂d \ {x, y}) ∪ {x ∪ y}
2 if x̂0d ∈ {x, y} then
3 x′′0d ← x ∪ y
4 else
5 x′′0d ← x̂0d

6 Let xy = x ∪ y. Define transition function f ′′d , for all σ ∈ Σo, as:

(i) f ′′d (xy, σ) = f̂d(x, σ) ∪ f̂d(y, σ), if
(
f̂d(x, σ) ∪ f̂d(y, σ)

)
∩ {x, y} 6= ∅

(ii) f ′′d (xy, σ) = {xy} ∪ (f̂d(x, σ) \ {x, y}) ∪ (f̂d(y, σ) \ {x, y}), if

f̂d(x, σ) ∩ {x, y} 6= ∅ or f̂d(y, σ) ∩ {x, y} 6= ∅

(iii) f ′′d (z, σ) = f̂d(z, σ), for all z ∈ X̂d \ {x, y}, if f̂d(z, σ) ∩ {x, y} = ∅

(iv) f ′′d (z, σ) = {xy} ∪ (f̂d(z, σ) \ {x, y}), for all z ∈ X̂d \ {x, y}, if

f̂d(z, σ) ∩ {x, y} 6= ∅

{σ1σ3σ5 . . . σn−1σn, σ1σ4σ6 . . . σn−2σn, σ2σ3σ5 . . . σn−1σn, σ2σ4σ6 . . . σn−2σn}. Clearly,

L(Gp) ⊆ L(G′p), which completes the proof. �
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Figure 4.4: Automaton Gp.
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Figure 4.5: Automaton G′p.

According to Theorem 4.1, the language generated by G′′d, obtained by merging

states of G′d, contains the language generated by G′d. This language growth must not
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alter the diagnosability of the fault event σf , and cannot change the delay bound

for diagnosis. In order to do so, the following property must hold.

Property 4.1

(i) For all s ∈ L\LN , such that Po(s) /∈ Po(LN), we have that f ′′d (x′′0d , Po(s)) =

{{F}}.

(ii) For all ω ∈ LN , f ′′d (x′′0d , Po(ω)) ∩ {{F}} = ∅.

Property 4.1 (i) guarantees that all faulty sequences s ∈ L \ LN , that can be

diagnosed by Gd, are also diagnosed using G′′d and with the same delay. In addition,

Property 4.1 (ii) avoids the generation of false positives.

In order to obtain G′′d, only negative and uncertain states of G′d are merged. Thus,

it is necessary to define which states of G′d can be merged to guarantee Property

4.1.

Definition 4.1 States x, y ∈ X ′d \ {{F}} are said to be contradictory if there ex-

ists σ ∈ Σo such that f ′d(x, σ) = {F}, and f ′d(y, σ) ⊂ XN ∪ XNY , or vice-versa.

Otherwise, states x and y are said to be noncontradictory.

Note, according to Definition 4.1, that x is noncontradictory with itself, for all

x ∈ X ′d \ {{F}}.
The next theorem presents a necessary condition for guaranteeing that G′′d sat-

isfies Property 1.

Theorem 4.2 If Property 4.1 holds, then contradictory states of G′d are not merged

to obtain G′′d.

Proof. Let us consider, without loss of generality, two contradictory states

x, y ∈ X ′d \ {{F}}, i.e., there exists σ ∈ Σo such that f ′d(x, σ) = {F} and

f ′d(y, σ) ⊂ XN ∪ XNY . Let s̃ ∈ L be the sequence with the greatest length

such that f ′d(x0d , Po(s̃)) = x. Thus, according to the computation of G′d, we

have that s = s̃σ ∈ L \ LN and Po(s) /∈ Po(LN). If states x and y are

merged, forming a unique state xy = x ∪ y, then, according to line 6 of Algo-

rithm 4.1, f ′′d (x′′0d , Po(s̃)) = {xy}, and f ′′d (x′′0d , Po(s̃)σ) = {f ′d(x, σ)} ∪ {f ′d(y, σ)}, if

f ′d(y, σ) /∈ {x, y}, or f ′′d (x′′0d , Po(s̃)σ) = {f ′d(x, σ)} ∪ {xy}, if f ′d(y, σ) ∈ {x, y}. Thus,

since by assumption f ′d(y, σ) ⊂ XN∪XNY , G′′d is uncertain about the fault occurrence

after the observation of Po(s̃)σ, Property 4.1 is violated. �

Note that not merging contradictory states is only a necessary condition to satisfy

Property 4.1, i.e., it is possible that merging noncontradictory states also violates

Property 4.1. For example, when there exists a sequence of events s ∈ Σ∗o of length
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greater than one such that f ′d(x, s) = {F} and f ′d(y, s) ⊂ XN ∪XNY or vice-versa,

and x and y are merged, then Property 4.1 does not hold. This leads to the following

definition.

Definition 4.2 States x, y ∈ X ′d \ {{F}} are said to be possibly mergeable if there

does not exist a sequence of events s ∈ Σ∗o such that f ′d(x, s) = {F} and f ′d(y, s) ⊂
XN ∪XNY , or vice-versa.

Theorem 4.3 Two states x, y ∈ X ′d \ {{F}} can be merged to form G′′d satisfying

Property 1, only if x, y are possibly mergeable.

Proof: Let us consider, without loss of generality, four states x, y, w, z ∈ X ′d \
{{F}} such that x, y are noncontradictory states, i.e., there exists σ ∈ Σo such that

f ′d(x, σ) ⊂ XN ∪XNY and f ′d(y, σ) ⊂ XN ∪XNY , and w, z are contradictory states,

i.e., there exists σ′ ∈ Σo such that f ′d(w, σ
′) = {F} and f ′d(z, σ

′) ⊂ XN ∪ XNY .

Consider also that f ′d(x, σ) = w and f ′d(y, σ) = z.

Let s̃ ∈ L be the sequence with the greatest length such that f ′d(x0d , Po(s̃)σ) = w

Thus, according to the computation of G′d, we have that s = s̃σσ′ ∈ L \ LN
and Po(s) /∈ Po(LN). If states x and y are merged, forming a unique state

xy = x ∪ y, then, according to line 6 of Algorithm 4.1, f ′′d (x′′0d , Po(s̃)) = {w},
and f ′′d (x′′0d , Po(s̃)σ

′) = w and, at the same time, f ′′d (x′′0d , Po(s̃)σ
′) = z, which leads

us to conclude that G′′d is nondeterministic. Thus, since by assumption f ′d(z, σ) ⊂
XN ∪XNY , there exists a sequence of events s ∈ Σ∗o such that f ′d(x, s) = {F} and

f ′d(y, s) ⊂ XN ∪XNY , and G′′d is uncertain about the fault ocurrence after the obser-

vation of Po(s̃)σ
′, violating Property 4.1. Therefore, x, y cannot be merged to form

G′′d satisfying Property 4.1 and, consequently, are not possibly mergeable. �

Note that the condition presented in Theorem 4.3 is also only necessary, since

in Definition 4.2 it is not taken into account the exceeding language that can be

generated after merging x and y. This case is illustrated in the following example.

Example 4.2 Consider the system modeled by automaton G, shown in Figure 4.6,

where Σ = {a, b, c, d, σf}, Σo = {a, b, c, d} and Σuo = Σf = {σf}, and its diagnoser

G′d depicted in Figure 4.7. According to Definition 4.2, it is possible to verify that

states {3N} and {4N, 6Y } are possibly mergeable. If we compute G′′d by merging

these two states, we obtain the automaton depicted in Figure 4.8. Note that now

the observed sequence s = ca leads to both states {2N} and {F}, which shows that

the fault is no longer detected after the observation of sequence s′ = abcca as in

G′d. Therefore, although {3N} and {4N, 6Y } are possibly mergeable, they cannot be

merged without affecting the diagnosability of the system language.
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Figure 4.6: Automaton G of Example 4.2.
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Figure 4.7: Automaton G′d of Example 4.2.

4.3 Computation of Not Mergeable States

In previous section, we defined that the diagnoser reduction procedure is made

through merging two states, but stated that two contradictory states could not be

merged. Then, it is necessary to identify, for each state, the set of states that cannot

be merged with this state.

In Algorithm 4.2 we present a method for computing all pairs of states of au-

tomaton G′d that are certainly not mergeable according to Definition 4.2. The pairs

of states that are certainly not mergeable are stored in set Mnot. This algorithm is

presented as follows.

Note, according to Definition 4.2, that contradictory states are not mergeable.

Thus, in line 2 of Algorithm 4.2, C is added to Mnot. In addition, note that if a pair

of states (w, z) leads, after the occurrence of an event σo ∈ Σo, to a non-mergeable

pair of states, then (w, z) is also non-mergeable. Thus, in lines 7 and 8, these states

are added to Mnot. A first in, first out queue Q is used in Algorithm 4.2, where

head[Q], Enqueue(Q, (w, z)), and Dequeue(Q), denote, respectively, the procedures
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a, b, c, d

d
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b
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c d

a

{3N}, {4N, 6Y }

c

Figure 4.8: Nondeterministic automaton G′′d of Example 4.2.
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Algorithm 4.2: NOT MERGEABLE(G′d)

Input: G′d = (X ′d,Σo, f
′
d, x
′
0d

)
Output: Set Mnot formed of all pairs of states that are not mergeable

1 C := {(x, y) ∈ X ′d \ {{F}} ×X ′d \ {{F}} : x, y are contradictory}
2 Mnot ← C
3 Flag all pairs of Mnot

4 Form a first in, first out queue Q with the pairs of states of C in any order
5 while Q 6= ∅ do
6 (x, y)← head[Q]
7 for each (w, z) ∈ X ′d \ {{F}} ×X ′d \ {{F}} not flagged such that there

exists σ ∈ Σo satisfying f ′d(w, σ) = x and f ′d(z, σ) = y do
8 Mnot ←Mnot ∪ {(w, z)}
9 Flag (w, z)

10 Enqueue(Q, (w, z))

11 Dequeue(Q)

for obtaining the first element of Q, adding (w, z) to the end of Q, and removing

the first element of Q.

Since each pair of states is flagged only once in Algorithm 4.2, then each pair

is enqueued and dequeued only once. Thus, the complexity of Algorithm 4.2 is

O(|X ′d|2), which is associated with the number of pairs of states of G′d.

Example 4.3 Consider diagnoser G′d depicted in Figure 4.3, where Σ =

{a, b, c, d, t, σf}, Σo = {a, b, c, d, t} and Σuo = Σf = {σf}, and suppose we want

to compute all pairs of states of G′d that are not mergeable according to Definition

4.2. Thus, we need to compute Mnot using Algorithm 4.2. In line 1 of Algorithm

4.2, we form set C of all pairs of contradictory states of G′d according to Definition

4.1:

C = {({3N}, {4N, 7Y }), ({3N}, {5N, 8Y }), ({4N, 7Y }, {6N}), ({5N, 8Y }, {6N})}.

In line 2, C is added to Mnot, and, in line 4, a first in, first out queue Q is formed

with the pairs of states of C. After that, the main procedure in the while loop of

line 5 begins. If it is not possible to reach a pair of states (x, y) in Mnot from a

pair of states (w, z) after the occurrence of an event σ ∈ Σo, then (x, y) is removed

from Q. Otherwise, the pair (w, z) is added to Mnot. Let us consider that the

first element of queue Q is ({3N}, {4N, 7Y }). From Figure 4.3, it can be seen

that pair ({3N}, {4N, 7Y }) is reached by pair ({1N}, {6N}) with event t. Thus,

({1N}, {6N}) is added to Mnot, but ({3N}, {4N, 7Y }) is not removed from Q, since

this state is also reached from another pair of states. The algorithm continues and

finds that pair ({3N}, {4N, 7Y }) is reached by pair ({1N}, {3N}) with event t. Thus,
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({1N}, {3N}) is also added to Mnot. Since there does not exist another pair of states

that reaches state ({3N}, {4N, 7Y }), then it is removed from Q. The algorithm

continues until Q becomes empty. Then, the set Mnot obtained is

Mnot ={({1N}, {3N}), ({1N}, {6N}), ({3N}, {4N, 7Y }), ({3N}, {5N, 8Y }),
({4N, 7Y }, {6N}), ({5N, 8Y }, {6N})}.

In next section, we present an algorithm for computation of a deterministic

diagnoser. In this work we only compute deterministic diagnosers.

4.4 Computation of Deterministic Diagnoser

It is important to remark that the diagnoser automaton is, in general, deterministic

since the objective is to track the observed sequence of events generated by the

plant and, from the reached states of the diagnoser, identifies the fault occurrence.

Thus, two possibilities for obtaining the deterministic reduced diagnoser Gr
d are

possible: (i) to merge states of G′d obtaining possibly a nondeterministic automaton,

and then to determinize it; or (ii) to merge states of G′d in such a way that the

reduced automaton is already deterministic. Since the determinization may lead to

an exponential growth of the deterministic automaton with respect to the number

of states of the nondeterministic one, then we adopt approach (ii) to obtain directly

a deterministic automaton Gr
d.

In Algorithm 4.3, we present a method to compute a deterministic diagnoser G′′d
obtained after merging two states x, y ∈ X̂d of an automaton Ĝd. In order to do so,

Algorithm 4.1 is executed until the transition function f̃d becomes deterministic, i.e.,

only one state is possible to be reached after the occurrence of a feasible event. Thus,

G′′d obtained using Algorithm 4.3 is deterministic. Another important characteristic

of G′′d is that, as in [2] and [10], its state set X ′d is formed of pairwise disjoint sets.

Algorithm 4.3: DET MERGE(Ĝd, x, y)

Input: Ĝd = (X̂d,Σo, f̂d, x̂0d), and x, y ∈ X̂d

Output: G′′d = (X ′′d ,Σo, f
′′
d , x

′′
0d

)

1 G̃d ← MERGE(Ĝd, x, y)

2 while ∃w ∈ X̃d such that |f̃d(w, σ)| > 1, for σ ∈ Σo do

3 G̃d ← MERGE(G̃d, x̃, ỹ), where x̃, ỹ ∈ f̃d(w, σ)

4 Ĝd ← G̃d

The complexity of merging states is O(|X̂d|×|Σ|), and in the worst case the while

loop in algorithm 4.3 merge pair of states until there is only one state, i.e., there
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will be |X̂d| − 1 merges. Thus, the complexity of Algorithm 4.3 is O(|X̂d|2 × |Σ|).
Note that, in order to guarantee the determinism of automaton, after merging

two states x, y, it is necessary to merge all pairs of states that are reachable from x

and y after the occurrence of the same observable sequence. Thus, it is possible that

the state merging of two possibly mergeable states x, y leads to the state merging

of two not mergeable states, which shows that x, y cannot be merged. In addition,

it is possible that merging two states (x, y), forces the state merging of another pair

of states that contains x or y. Let us consider, without loss of generality, that the

state reached from (x, y) after the occurrence of an observable event, is (x, z). In

this case, in order to guarantee the determinism, it is necessary to merge the three

states x, y, and z into a single one. In order to do so, all pairs of states formed with

x, y, and z must be mergeable. Since the condition of Theorem 4.3 to guarantee

Property 4.1 is only necessary, we need to state a necessary and sufficient condition

for verifying Property 4.1. Let MS(x, y) denote the set formed of the sets of states

of G′d that must be merged to guarantee the determinism of the reduced diagnoser,

after merging states x, y ∈ X ′d \ {{F}}. Then, the following necessary and sufficient

condition to guarantee that states x, y ∈ X ′d are mergeable can be stated.

Theorem 4.4 States x, y ∈ X ′d are mergeable if, and only if, F /∈ M for all M ∈
MS(x, y).

Proof: (⇒) Let G′′d be the deterministic diagnoser obtained by merging states x, y

of G′d according to Algorithm 4.3. According to the construction of G′′d, it can be seen

that if s ∈ L(G′d) is such that f ′d(x
′
0d
, s) = x′d, then x′d ⊆ x′′d, where x′′d = f ′′d (x′′0d , s).

Thus, if F /∈ M , for all M ∈ MS(x, y), then all faulty sequences that leads G′d to

{F}, also leads G′′d to state {F}, i.e., all faulty sequences that can be diagnosed

using G′d can also be diagnosed using G′′d. Using the same reasoning it can be seen

that all fault-free sequences do not lead G′′d to state {F}, which shows that G′′d does

not raise false alarms.

(⇐) Let us suppose now that F ∈ M , where M ∈ MS(x, y). Then, there

exists a state xd ∈ XN ∪ XNY , such that xd ∈ M . According to the construction

of G′′d, there are different sequences s1, s2 ∈ L(G′d), such that f ′d(x
′
0d
, s1) = {xd}

and f ′d(x
′
0d
, s2) = {F}. Thus, if state M of G′′d is reached, we are uncertain about

which sequence s1 or s2 has occurred, and, consequently, we are uncertain about the

occurrence of the fault event. Thus, the diagnosis of the fault event, if possible, will

be delayed if sequence s2 is observed. �

In next section, we present the algorithm for computing the set MS(x, y) for

each pair of states of diagnoser.
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4.5 Computation of Mergeable States Set

Considering that we desire a deterministic reduced diagnoser, it is necessary to

guarantee the pairwise disjointness between each state set at each step of the merg-

ing procedure. Then, in Algorithm 4.4, we present a method to compute all sets

MS(x, y), formed only of sets of mergeable states of a deterministic automaton Ĝd,

obtained after merging states x, y ∈ X̂d. The sets MS(x, y) are stored in a list

ML. Thus, if x, y are not mergeable then MS(x, y) is not added to list ML. Since,

in Algorithm 4.4, the necessary condition presented in Theorem 4.3 is used with-

out computing the complete automaton G′′d obtained using Algorithm 4.3, then the

computational cost for computing MS(x, y) can be reduced.

In Algorithm 4.4, in lines 8 and 9, the states (w, z) reached from state (x, y)

are computed, and the mergeability of w, z is tested in lines 10 to 12 using the

necessary condition provided in Theorem 4.3. Note that this condition can be easily

verified, and, if it does not hold true, then x, y is not mergeable and the algorithm

can continue checking the mergeability of another pair of states. If (w, z) is possibly

mergeable, in line 14, it is verified if there exists in MS(x, y) a set of states with at

least one element equal to w or z. If this set does not exist, then, in line 15, (w, z) is

added to MS(x, y). On the other hand, if there is a set M ∈MS(x, y) such that w

or z belongs to M , then, in lines 17 to 26, it is verified if it is possible to replace M

with the new merged set in MS(x, y). In order to do so, all pairs of states formed

with one element from {w, z} and the other from M must be possibly mergeable.

Finally, in lines 29 and 30, the necessary and sufficient condition of Theorem 4.4 is

verified, and if (x, y) are mergeable, then [(x, y),MS(x, y)] is added to list ML.

Since, at each run of the while loop of Algorithm 4.4, pairs of states are verified

for each pair of states (x, y) ∈ X̂d × X̂d, then the computational complexity of

Algorithm 4.4 is O(|X̂d|4 × |Σ|).

Example 4.4 Consider the plant automaton G depicted in Figure 4.1, and its di-

agnoser G′d, depicted in Figure 4.3, whose set of contradictory states Mnot has been

computed in Example 4.3. In order to obtain the list of mergeable states ML, it is

necessary to compute MS(x, y) for each pair of states (x, y) ∈ (X ′d × X ′d) \Mnot,

according to Algorithm 4.4. In line 4, the first pair (x, y) is added to MS(x, y) and

in line 5 a first in-first out queue Q is formed with pair (x, y). In line 6 the while

loop begins.

Consider that the first state in Q is ({1N}, {2N}). Note that pair ({1N}, {2N})
does not reach any pair of states of G′d with the same event. Since ({1N}, {2N}) is

mergeable, then set ({1N}, {2N}) is added to MS({1N}, {2N}).

Let ({3N}, {6N}) be the next state added to Q in line 5. Then, pair

({2N}, {3N}) that is reached from ({3N}, {6N}) with event d is computed in line
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Algorithm 4.4: COMPUTE MS(Ĝd)

Input: Ĝd = (X̂d,Σo, f̂d, x̂0d)
Output: List ML where each element is of the form [(x, y),MS(x, y)]

1 M̂not ← NOT MERGEABLE(Ĝd)
2 ML← NULL

3 for each pair of states (x, y) ∈ (X̂d × X̂d) \ M̂not do
4 MS(x, y)← {{x, y}}
5 Form a first in-first out Q with pair (x, y)
6 while Q 6= ∅ do
7 (x, y)← head[Q]
8 for each σ ∈ ΓĜd(x) ∩ ΓĜd(y) do

9 (w, z)← (f̂d(x, σ), f̂d(y, σ))

10 if (w, z) ∈ M̂not then
11 MS(x, y)← ∅
12 go to line 2

13 else
14 if @M ∈MS(x, y) such that {w, z} ∩M 6= ∅ then
15 MS(x, y)←MS(x, y) ∪ {{w, z}}
16 else

17 M̂ ← ∅
18 for each set M ∈MS(x, y) such that {w, z} ∩M 6= ∅ do
19 U = {(u, v) : u ∈ {w, z} and v ∈M}
20 if U ∩ M̂not 6= ∅ then
21 MS(x, y)← ∅
22 go to line 2

23 else

24 M̂ ← M̂ ∪M
25 MS(x, y)←MS(x, y) \M

26 MS(x, y)←MS(x, y) ∪ {M̂ ∪ {w, z}}

27 Enqueue(Q, (w, z))

28 Dequeue(Q)

29 if @M ∈MS(x, y) such that F ∈M then
30 Add [(x, y),MS(x, y)] to list ML
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9, and the mergeability of ({2N}, {3N}) is tested in line 10. Since ({2N}, {3N}) /∈
Mnot, then, it is verified in line 14 if {{2N}, {3N}} ∩ {{3N}, {6N}} = ∅. Since

{{2N}, {3N}} ∩ {{3N}, {6N}} 6= ∅, then, in line 19, set U = {({2N}, {6N})}
is formed, and in line 20 it is verified if ({2N}, {6N}) is not mergeable.

Since ({2N}, {6N}) is mergeable, then set {{2N}, {3N}, {6N}} is added to

MS({3N}, {6N}).

Algorithm 4.4 continues until all mergeable pairs x, y whose merging leads to

a deterministic diagnoser are added to ML. MS(x, y) for each pair of mergeable

states are presented in the sequel.

MS({1N}, {2N}) ={{1N}, {2N}},
MS({1N}, {4N, 7Y }) = {{{1N}, {4N, 7Y }}} ,
MS({1N}, {5N, 8Y }) = {{{1N}, {5N, 8Y }}} ,

MS({2N}, {3N}) = {{2N}, {3N}} ,
MS({2N}, {4N, 7Y }) = {{{2N}, {4N, 7Y }}} ,
MS({2N}, {5N, 8Y }) = {{{2N}, {5N, 8Y }}} ,

MS({2N}, {6N}) ={{2N}, {6N}},
MS({3N}, {6N}) ={{2N}, {3N}, {6N}},

MS({4N, 7Y }, {5N, 8Y }) = {{{4N, 7Y }, {5N, 8Y }}} .

After merging a pair of states x, y ∈ X ′d of G′d, all state merging defined in

MS(x, y) must be performed. Then, a new automaton G′′d is computed. Thus, as

shown in Theorem 4.1, L(G′d) ⊆ L(G′′d), it is possible that two states x′′, y′′ ∈ X ′′d
are not mergeable even if all pairs of states formed with one element from x′′ and

the other element from y′′ are mergeable, as illustrated in the following example.

Example 4.5 Consider the system modeled by automaton G, shown in Figure 4.9,

where Σ = {a, b, c, σf}, Σo = {a, b, c} and Σuo = Σf = {σf}. First, we compute

diagnoser automaton Gd, depicted in Figure 4.10. Since Gd does not have indeter-

minate cycles, then L is diagnosable with respect to Po and σf . In this case, state

{6Y } is the unique positive state of Gd. Thus, state {6Y } can be replaced with F ,

generating the diagnoser automaton G′d, depicted in Figure 4.11. Note that a self-

loop is introduced in state F labeled with all observable events. Computing Mnot,

according to Algorithm 4.2, we obtain:

Mnot = {({1N}, {4N, 5Y }), ({2N}, {4N, 5Y })}.

After obtaining Mnot for G′d, we compute MS(x, y) for each pair of mergeable states
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(x, y), according to Algorithm 4.4, leading to the following sets:

MS({1N}, {2N}) ={{{1N}, {2N}}, {{4N, 5Y }, {3N}}},
MS({1N}, {3N}) ={{{1N}, {3N}}},
MS({2N}, {3N}) ={{{2N}, {3N}}},

MS({3N}, {4N, 5Y }) ={{{3N}, {4N, 5Y }}}.

Note that states {1N}, {2N}, and {3N} are pairwise mergeable. However, if we

merge the three states into a single state {{1N}, {2N}, {3N}}, we will be forced to

merge all states of G′d into a single state {{1N}, {2N}, {3N}, {4N, 5Y }, {F}}, with

a self-loop labeled with a, b, c, to guarantee that G′′d is deterministic. Thus, clearly

G′′d cannot be used for diagnosis.

1 2 3

4 5 6

a c

b
b
σf b

c

Figure 4.9: Automaton G of Example 4.5.
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Figure 4.10: Automaton Gd of Example 4.5.
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Figure 4.11: Automaton G′d of Example 4.5.

Example 4.5 shows that after merging a pair of states of G′d, it is necessary to

compute M ′′
not and the sets MS(x′′, y′′), for all mergeable pairs of states x′′, y′′ ∈ X ′′d
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of G′′d, in order to continue the reduction procedure. When no mergeable pair of

states is found, then the diagnoser cannot be reduced anymore, and Gr
d has been

computed.

Adapting the methods proposed in [2] and [10] to the reduction of diagnosers,

states of G′d are merged according to a predefined order that these states are given.

However, the order that the states are merged is not exploited to obtain a reduced

automaton with a smaller number of states. In [1], a criterion to choose which states

are merged at each step of the reduction procedure is proposed. The basic idea is to

find, at each step, the maximal set of states that are pairwise mergeable, and then,

merge these states.

In this work, we propose a new criterion for choosing which pair of states, at each

step of the reduction procedure, should be merged to generate a reduced diagnoser.

We show that the new criterion may generate reduced diagnosers with a smaller

number of states than the method proposed in [2] and it will be deterministic,

differently from the one obtained using the method proposed in [1].

4.6 Diagnoser Reduction Algorithm

In previous section, we computed the mergeable states set for each state of G′d.

Then, to reduce G′d as maximum as possible, we establishes a criterion to define in

which order the state merging will occur. In this section we propose an algorithm

that exactly follows this criterion, and computes the reduced diagnoser Gr
d.

As shown in Example 4.5, the existence of a set formed of pairwise mergeable

states is only a necessary condition to merge all states into a single state, since the

state merging may alter the mergeability of the other states. Thus, the reduction

procedure must be carried out considering the merging of only pairs of states, and,

consequently, performing the merging of all states defined in MS(x, y), at each step

of the reduction procedure.

Let G′′d = (X ′′d ,Σo, f
′′
d , x

′′
0d

) be the diagnoser computed after performing the merg-

ing of two states of a diagnoser Ĝd. In order to choose which pair of states (x, y)

of Ĝd should be merged to obtain G′′d, we define Nm that measures the potential

merging of states of G′′d, as follows:

Nm =
Ne

|X ′′d |
,

where Ne is the number of pairs of possibly mergeable states of G′′d. Since the total

number of pairs of states of G′′d is given by
|X′′d |(|X

′′
d |−1)

2
, then

Ne =
|X ′′d |(|X ′′d | − 1)

2
− |M ′′

not|,
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where M ′′
not is the set of pairs of states of G′′d that are not mergeable obtained using

Algorithm 4.2.

If Nm is large, then there are several possible merging of pairs of states of G′′d,

which implies that the chance of merging more states in the next step of the reduction

procedure is greater than if Nm is a small number. Using this reasoning, we choose

to merge, at each step of the reduction procedure, the pair of states of the diagnoser

Ĝd whose merging leads to the diagnoser G′′d with the higher value of Nm. This

procedure is described in Algorithm 4.5.

Algorithm 4.5: REDUCED DIAGNOSER(G′d)

Input: G′d
Output: Gr

d

1 Ĝd ← G′d
2 ML←COMPUTE MS(Ĝd,Mnot)
3 while ML 6= NULL do
4 LN ← NULL
5 for each element [(x, y),MS(x, y)] of ML do

6 G′′d ← DET MERGE(Ĝd, x, y)
7 M ′′

not ← NOT MERGEABLE(G′′d)

8 Compute Nm =
|X′′d |(|X

′′
d |−1)

2
−|M ′′not|

|X′′d |

9 Add [Nm, G
′′
d] to list LN

10 Find the maximum number Nmax of Nm in list LN
11 Choose an automaton G′′dmax associated with Nmax in LN

12 Ĝd ← G′′dmax
13 ML←COMPUTE MS(Ĝd,Mnot)

14 Gr
d ← Ĝd

Following the steps of Algorithm 4.5, the reduced diagnoser Gr
d is computed from

G′d. In lines 2 and 3, Mnot and ML are computed for automaton Ĝd. Then, while

there are mergeable states in ML, in line 7, automaton G′′d is computed for each pair

[(x, y),MS(x, y)] of ML, and, in line 9, Nm is computed for each G′′d. In line 10, the

maximum number Nmax of Nm is computed. Note that more than one automaton

G′′d can have the same value of Nm. Thus, in line 11, an automaton G′′dmax associated

with Nmax is chosen. After that, in line 13, ML is computed for G′′d. If ML is NULL,

i.e., there is no mergeable pair of states, the algorithm stops and returns Gr
d = G′′d.

On the other hand, the algorithm continues, and a new reduction is carried out.

In the worst case, the while loop in Algorithm 4.5 merge pair of states until there

is only one state, i.e., there will be |X ′d|−1 merges. Also, at each run of the for loop

of Algorithm 4.5, pairs of states are verified for each pair of states (x, y) ∈ X ′d×X ′d,
and ML is computed. Hence, the complexity of Algorithm 4.5 is O(|X ′d|5)|. The
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diagnoser reduction procedure is illustrated in the following example.

Example 4.6 Let us consider again the plant automaton G, and diagnoser G′d, both

respectively depicted in Figures 4.1 and 4.3 of Example 4.4, and suppose we want to

obtain a reduced diagnoser, Gr
d, that is capable of verify diagnosability of language L

and has the same diagnosis delay of G′d. Then, it is necessary to compute Algorithm

4.5. In line 2, the set Mnot is computed, whose result was obtained in Example 4.3,

and is shown in the sequel.

Mnot ={({1N}, {3N}), ({1N}, {6N}), ({3N}, {4N, 7Y }), ({3N}, {5N, 8Y }),
({4N, 7Y }, {6N}), ({5N, 8Y }, {6N})}.

In line 3, the MS(x, y) for each pair of mergeable states is computed, whose

results were obtained in Example 4.4, and are shown in the sequel.

MS({1N}, {2N}) ={{1N}, {2N}},
MS({1N}, {4N, 7Y }) = {{{1N}, {4N, 7Y }}} ,
MS({1N}, {5N, 8Y }) = {{{1N}, {5N, 8Y }}} ,

MS({2N}, {3N}) = {{2N}, {3N}} ,
MS({2N}, {4N, 7Y }) = {{{2N}, {4N, 7Y }}} ,
MS({2N}, {5N, 8Y }) = {{{2N}, {5N, 8Y }}} ,

MS({2N}, {6N}) ={{2N}, {6N}},
MS({3N}, {6N}) ={{2N}, {3N}, {6N}},

MS({4N, 7Y }, {5N, 8Y }) = {{{4N, 7Y }, {5N, 8Y }}} .

Then, the algorithm computes Nm for each MS(x, y) obtained in previous step,

and adds the result for each pair (x, y) to list LN . G′d has six states, then |X ′d| = 6.

Thus, when a pair is merged, G′′d has five states, i.e., |X ′′d | = 5.

Let us compute Ne for pair ({1N}, {2N}). Note that when states {1N} and

{2N} are merged, the new M ′′
not set can be computed as

M ′′
not ={(({1N}, {2N}), {3N}), (({1N}, {2N}), {6N}), ({3N}, {4N, 7Y }),

({3N}, {5N, 8Y }), ({3N}, {6N}), ({4N, 7Y }, {6N}),
({5N, 8Y }, {6N})}.

The computation of Ne and Nm are, respectively, given by: Ne = (5×(5−1))/2−
7 = 3, and Nm = Ne/|X ′′d | = 3/5. After computing Ne for each pair of states, we

compute Nm. The list LN that contains the results of Nm for each pair of states is
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Figure 4.12: Merging of states {1N} and {4N, 7Y } of G′d of Example 4.6.

presented in the sequel.

LN ={[3/5, ({1N}, {2N})], [6/5, ({1N}, {4N, 7Y })], [6/5, ({1N}, {5N, 8Y })],
[4/5, ({2N}, {3N})], [3/5, ({2N}, {4N, 7Y })], [3/5, ({2N}, {5N, 8Y })],
[4/5, ({2N}, {6N})], [4/5, ({3N}, {6N})], [6/5, ({4N, 7Y }, {5N, 8Y })]}.

Clearly, Nmax = 6/5. Then, according to Algorithm 4.5, any pair of states

such that Nm = 6/5 can be chose to be merged. For instance, suppose that states

{1N}, {4N, 7Y } are merged. Therefore, the diagnoser G′′d after the first merge of

states, depiced in Figure 4.12, is computed.

Since there are mergeable states in G′′d, the while loop restarts, where Mnot and

MS(x, y) are computed for G′′d.

In line 2, the set Mnot is computed, whose result is shown in the sequel.

Mnot ={({{1N}, {4N, 7Y }}, {3N}), ({{1N}, {4N, 7Y }}, {6N}),
({3N}, {5N, 8Y }), ({5N, 8Y }, {6N})}.

In line 3, the MS(x, y) for each pair of mergeable states is computed, whose

results are shown in the sequel.

MS({{1N}, {4N, 7Y }}, {2N}) ={{{1N}, {4N, 7Y }}, {2N}},
MS({{1N}, {4N, 7Y }}, {5N, 8Y }) ={{{1N}, {4N, 7Y }}, {5N, 8Y }},

MS({2N}, {3N}) = {{2N}, {3N}} ,
MS({2N}, {5N, 8Y }) = {{{2N}, {5N, 8Y }}} ,

MS({2N}, {6N}) ={{2N}, {6N}},
MS({3N}, {6N}) ={{2N}, {3N}{6N}}.

Then, the algorithm computes Nm for each MS(x, y) obtained in previous step,

and adds the result for each pair (x, y) to list LN . G′d has five states, then |X ′d| = 5.
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Figure 4.13: Merging of states {1N}, {4N, 7Y } and {5N, 8Y } of G′d of Example 4.6.

Thus, when a pair is merged, G′′d has four states, i.e., |X ′′d | = 4. The list LN that

contains the results of Nm for each pair of states is presented in the sequel.

LN ={[1/4, ({{1N}, {4N, 7Y }}, {2N})], [4/4, ({{1N}, {4N, 7Y }}, {5N, 8Y })],
[2/4, ({2N}, {3N})], [1/4, ({2N}, {5N, 8Y })],
[2/4, ({2N}, {6N})], [2/4, ({3N}, {6N})]}.

Since, Nmax = 4/4, then, pair of states {{1N}, {4N, 7Y }}, {{5N, 8Y }} is

merged, and diagnoser G′′d, depiced in Figure 4.13, is computed.

Continuing Algorithm 4.5, it is verified that G′′d still has mergeable states. Then,

the while loop continues, where Mnot and MS(x, y) are computed for G′′d.

In line 2, the set Mnot is computed, whose result is shown in the sequel.

Mnot ={({{1N}, {4N, 7Y }, {5N, 8Y }}, {3N}),
({{1N}, {4N, 7Y }, {5N, 8Y }}, {6N})}.

In line 3, the MS(x, y) for each pair of mergeable states is computed, whose

results are shown in the sequel.

MS({{1N}, {4N, 7Y }, {5N, 8Y }}, {2N}) ={{{1N}, {4N, 7Y }, {5N, 8Y }}, {2N}},
MS({2N}, {3N}) = {{2N}, {3N}} ,
MS({2N}, {6N}) ={{2N}, {6N}},
MS({3N}, {6N}) ={{2N}, {3N}{6N}}.

Then, the algorithm computes Nm for each MS(x, y) obtained in previous step,

and adds the result for each pair (x, y) to list LN . G′d has four states, then |X ′d| = 4.

Thus, when a pair is merged, G′′d has three states, i.e., |X ′′d | = 3. The list LN that
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contains the results of Nm for each pair of states is presented in the sequel.

LN ={[0/3, ({{1N}, {4N, 7Y }, {5N, 8Y }}, {2N})],
[1/3, ({2N}, {3N})],
[1/3, ({2N}, {6N})], [1/3, ({3N}, {6N})]}.

Since, Nmax = 1/3, then, any pair of states associated with this value of

Nm can be merged. Let us suppose that states {3N}, {6N} are merged. Since

MS({3N}, {6N}) = {{2N}, {3N}{6N}}, the three states {2N}, {3N}{6N} are

merged.

Note that it is not possible to reduce G′′d anymore, since ML = NULL. There-

fore, the reduced diagnoser Gr
d is computed, and it is depicted in Figure 4.14.

a, g, tc, t

F

c

b, d

a, b, c, d, g, t

d{1N} , {4N, 7Y } , {5N, 8Y }

{2N} , {3N} , {6N}

Figure 4.14: Automaton Gr
d of Example 4.6.

Since Gr
d does not have indeterminate cycles, language L is diagnosable with

respect to Po and Σf , and its diagnosis delay is z = 3. Note that diagnosis delay of

original diagnoser G′d, depicted in Figure 4.3, is also z = 3.

It is important to remark that if the reduction method proposed in [1] is used,

then the reduced automaton presented in Figure 4.15 is obtained. Also, if the

reduction method proposed in [2] is used, then the reduced automaton presented in

Figure 4.16 is obtained.

In diagnoser reduction we established that two contradictory states cannot be

merged, while in [1] and [2], two states with different control actions cannot be

merged, i.e., if an event σ is disabled in state x and f(y, σ)!, then x, y cannot be

merged. Thus, the algorithms proposed in [1] and [2] can be applied to diagnoser

reduction according to this adaptation.
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{2N} , {3N} , {6N}

b, d

Figure 4.15: Automaton Gr
d of Example 4.6 computed using the method proposed

in [1].

b, t
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c, g a, b, c, d, g, t

d{1N} , {2N} , {4N, 7Y } , {5N, 8Y }

3N 6N

c, d, t t a

d

Figure 4.16: Automaton Gr
d of Example 4.6 computed using the method proposed

in [2].

Note that the reduced automaton obtained using our method has only three

states, while the reduced automaton computed using the method proposed in [2]

has four states. Although the reduced diagnoser obtained by method proposed in

[1] has three states, it is a nondeterministic diagnoser. This example shows that it is

possible, in some cases, to obtain reduced automata with smaller number of states

using the proposed strategy in this work than by using the strategy presented in [2],

and still obtain a deterministic diagnoser, differently from the method proposed in

[1].
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Chapter 5

Conclusions and Future Works

Although it has been shown in the literature that the minimization problem of super-

visors is NP -hard, empirical results show that it is possible to reduce the diagnoser

proposed in [6]. With that in mind, our main goal of this work was to propose an

algorithm for the computation of a deterministic reduced diagnoser of DES, where

the diagnosability of the system language is preserved and diagnosis delay is the

same as the original diagnoser. We show that the algorithm proposed can lead to

reduced diagnosers with fewer states than methods proposed in the literature, most

notably the supervisor reduction strategies. This suggests the possibility of adapting

the method proposed in this work to solve the supervisory reduction problem.

The advantage of this method, and also its difference from the supervisor re-

duction strategies, is that the criterion to merge states does not depends on the

previous order of the states of the automaton model. This allows us to exploit all

possible merges for each state, which is the main reason why our method provides

better results than [1] and [2] in some cases.

Possible topics of research to continue this work are listed below:

(i) Verifying if the method proposed in this work achieves better results than

approaches proposed in [1] and [2], when applied to supervisors.

(ii) It would be of interest to check if the method proposed here always computes

a diagnoser with minimal state size, maintaining the desired properties.

(iii) Another future direction is to investigate how to minimize the computational

cost of constructing the reduced diagnoser proposed in this work.

(iv) Application of diagnoser reduction algorithm to real manufacturing systems.

60



Bibliography

[1] MINHAS, R. S. Complexity Reduction in Discrete Event Systems. Ph.D. thesis,

ECE Department, University of Toronto, Canada, 2002.

[2] SU, R., WONHAM, W. M. “Supervisor reduction for discrete-event systems”,

Journal of Discrete Event Dynamic Systems, v. 14, n. 1, pp. 31–53, 2004.

[3] YOO, T.-S., GARCIA, H. E. “Computation of fault detection delay in discrete-

event systems”. In: Proceedings of the 14th International Workshop on

Principles of Diagnosis, DX’03, pp. 207–212, Washington, USA, 2003.

[4] YOKOTA, S., YAMAMOTO, T., TAKAI, S. “Computation of the delay bounds

and synthesis of diagnosers for decentralized diagnosis with conditional

decisions”, Discrete Event Dynamic Syst., pp. 1–40, 2016.

[5] TOMOLA, J. H. A., CABRAL, F. G., CARVALHO, L. K., et al. “Robust

Disjunctive-Codiagnosability of Discrete-Event Systems Against Perma-

nent Loss of Observations”, IEEE Transactions on Automatic Control,

v. 62, n. 11, pp. 5808–5815, 2017.

[6] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S. “Diagnosability of discrete-

event systems”, IEEE Transactions on Automatic Control, v. 9, n. 40,

pp. 1555–1575, 1995.

[7] CLAVIJO, L. B., BASILIO, J. C. “Empirical studies in the size of diagnosers and

verifiers for diagnosability analysis”, Discrete Event Dynamic Systems,

v. 27, n. 4, pp. 701–739, 2017.

[8] ZAD, S. H., KWONG, R. H., WONHAM, W. M. “Fault diagnosis in discrete-

event systems: Framework and model reduction”, IEEE Transactions on

Automatic Control, v. 48, n. 7, pp. 1199–1212, 2003.

[9] HOPCROFT, J. E., MOTWANI, R., ULLMAN, J. D. Introduction to Automata

Theory, Languages and Computation. 3 ed. Boston, MA: USA, Addison-

Wesley, 2006.

61



[10] CAI, K., GIUA, A., SEATZU, C. “On Consistent Reduction in Discrete-Event

Systems”. In: Proc. 15th IEEE Int. Conf. on Automation Science and

Engineering, pp. 474–479, 2019.

[11] VAZ, A. F., WONHAM, W. M. “On supervisor reduction in discrete-event

systems”, International J. Control, v. 44, n. 2, pp. 475–491, 1986.

[12] CAI, K., WONHAM, W. M. “Supervisor localization: a top-down approach

to distributed control of discrete-event systems”, IEEE Transactions on

Automatic Control, v. 3, n. 55, pp. 605–608, 2010.

[13] CASSANDRAS, C., LAFORTUNE, S. Introduction to Discrete Event Systems.

New York, Inc., Secaucus, NJ, Springer-Verlag, 2008.

[14] RAMADGE, P., WONHAM, W. M. “Supervisory control of a class of discrete

event processes”, SIAM J. Control and Optimization, v. 25, n. 1, pp. 206–

230, 1987.

[15] WONHAM, W., CAI, K., RUDIE, K. “Supervisory control of discrete-event

systems: A brief history”, Annual Reviews in Control, v. 45, 2018.

[16] RAMADGE, P., WONHAM, W. M. “The Control of Discrete Event Systems”,

Proceedings of the IEEE, v. 77, n. 1, pp. 81–98, 1989.

62


	List of Figures
	List of Tables
	Introduction
	Discrete-Event Systems and Fault Diagnosis
	Discrete-Event Systems
	Languages
	Automata
	Generated and Marked Languages
	Operations on Automata
	Nondeterministic Automata
	Partially-Observed DES Modeled by Deterministic Automata

	Fault Diagnosis
	Diagnosability of DES
	Diagnoser Automaton


	Supervisor Reduction for DES
	Controlled DES Under Full Observation
	Controllability of a Language

	Supervisor Reduction Methods
	Reduction Based on Control Covers
	Reduction Based on Control Congruence


	Diagnoser Reduction Method
	First Step in Diagnoser Reduction
	Procedure of State Merging
	Computation of Not Mergeable States
	Computation of Deterministic Diagnoser
	Computation of Mergeable States Set
	Diagnoser Reduction Algorithm

	Conclusions and Future Works
	Bibliography

