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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

CONTROL LYAPUNOV FUNCTION DESIGN OF ADVERTISING IN A DUOPOLY

Bernardo Cardoso de Aquino Cruz

Março/2014

Orientador: Amit Bhaya

Programa: Engenharia Elétrica

Neste trabalho estudamos a viabilidade e a adequação ao mundo real de um modelo
de mercado de duopólio com churn. Para isso fazemos uso de uma estratégia baseada
em CLF para propaganda predatória para estressar o modelo em alguns cenários pré
determinados. Inicialmente, o CLF é comparado com um esforço predatório constante,
bem como com outra estratégia CLF idêntica, e resultados teóricos e práticos são apre-
sentados. Em seguida, um estimador baseado em um diferenciador robusto é introduzido
juntamente com o CLF, e sua eficiência é comparada com a estratégia CLF comum.
Subsequentemente, ela é confrontada com um controle idêntico, e novamente, os resulta-
dos são observados e estudados. Por último, as limitações encontradas são estudadas e
conclusões são obtidas.
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In this work we study the feasibility and adequacy to the real world of a duopoly
market model with churn. For that we use of a CLF based strategy of predatory adver-
tising to stress the model and observe how it behaves in some pre determined scenarios.
Initially, the CLF is compared with constant predation effort, as well as with another
identical CLF strategy, and theoretical and practical results are obtained. A robust dif-
ferentiator based estimator is introduced along with the CLF, and its efficiency compared
with a regular CLF strategy. Subsequently it is confronted with an identical control, and
again, results are observed and studied. At last, the limitations encountered are studied
and conclusions are obtained.
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that small deviations in the value of ĉ12 produces a big change in the control
variable, exposing a high sensitivity to this parameter. . . . . . . . . . . 21

ix
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Chapter 1

Introduction

In markets that operate under the hypothesis of pure competition, advertising always
plays an important role. Through advertising, firms seek to call attention to their goods
or services, attempting to induce consumers to prefer their products. This is done in
order to maximize sales, and consequently, profits, which is the primary goal.

Given this fundamental role of advertising, it is no surprise that many studies have
been made, seeking to model such dynamics. One of the earliest mathematical models of
advertising was proposed by Dorfman and Steiner [1]. They assumed that a firm makes
two kinds of choices: the price of its product and the amount of its advertising budget.
They also postulated a functional relationship between the quantity the firm can sell per
unit of time, q, its price, p, and its advertising budget, s, denoted as q = f(p, s) and
derived some basic qualitative results, using graphical methods and the tools of calculus.
This pioneering work was soon followed by the influential paper of Vidale and Wolfe [2],
who carried out detailed analysis of real firms and advertising data in order to propose
their well known eponymous model, which is described as follows:

Ṡ = rA(t)(M − S)
M

− λS (1.1)

The model can be described by three parameters: λ, the exponential sales decay
constant which models product obsolescence and reduces sales of a firm over time, M ,
the saturation level, which describes the maximum number of potential consumers, and r,
the response constant, which represents the effectiveness of the advertising. This equation
has the following interpretation: the increase in the rate of sales, Ṡ, is proportional to the
magnitude of the advertising effort, A(t), reaching the fraction of potential customers,
(M−S)
M

, less the number of customers that are being lost due to obsolescence and forgetting,
λS.
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1.1 Duopoly in advertising models

The authors of the previously mentioned classical models performed their analysis using
the term monopoly to denote the single firm models. Ozga [3] made one of the first studies
of competitions and the diffusion of information and its interaction with the dynamics
of advertising, effectively introducing the idea of competitive duopolistic models, which
is the scenario used in this work. Another important class of models, closely related to
the model used in this work, derives from the Lanchester model of human warfare [4],
reprinted in [5], first applied to competition by Kimball [6], and reapplied to oligopolies
by Little [7]. The latter model is described as follows:

ṡ1 = ρ1x1s2 − ρ2x2s1 (1.2)

ṡ2 = ρ2x2s1 − ρ1x1s2 (1.3)

where si is the sales rate of firm i, xi is the rate of advertising of firm i and ρi is the
advertising effectiveness constant of firm i.

Both the Vidale-Wolfe and Lanchester classes of models have been intensively studied
theoretically and verified through experimental data (see, e.g., [8],[9], [10]).

Even though many of the early models were descriptive, they were conducive to the
use of optimal control theory in order to derive the associated profit-maximizing dynamic
advertising policies. In fact, a significant portion of the economics and management liter-
ature is focused on designing management strategies that optimize some predetermined
performance indexes, using tools from optimal control (see [11], [12], [13], [14], [15], [16]).

Another approach is to recast the problem into a dynamic or differential game frame-
work, to investigate possible Nash equilibrium that represent some possible equilibrium
market shares [17], [18]. Finally, several studies have focused on the appearance of chaos
in duopolistic or oligopolistic models (see, e.g., [19], [20] and references therein).

Some exceptions to these mainstream studies have also been published. The paper
[21] studies different patterns of equilibrium without concentrating on the search for any
optimal behavior. In [22], the authors exploit the different aspects of the dynamics of a
duopolistic model also without a specific focus on optimality.

1.2 Models introducing churn

The term churn, sometimes also referred to as customer churn, refers to the loss of
customers and can be thought of as the opposite of customer retention. It is a ubiquitous
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phenomenon that affects firms in almost all industries and therefore it is of interest to
model the phenomenon adequately and provide a systematic analysis of the effects of
churn. Specifically, for any given firm, since customers can both churn in and churn
out (i.e., become or cease to be customers), it is necessary to analyze how the level
of churn should affect advertising expenditure. One of the earliest attempts to model
churn was in the classic Vidale-Wolfe model [2], which considered a “sales decay” term,
which reduces the market share of a firm over time. This term was intended to model
product obsolescence. In more recent times, according to Prasad and Sethi [23], there
has occurred a “morphing of the sales decay term (...) into decay caused by competitive
advertising and noncompetitive churn that acts to equalize market shares in the absence
of advertising.”

The churn effect intends to model product obsolescence, forgetting [2], lack of market
differentiation [12], lack of information [13], variety seeking [14] and brand switching.
These factors do not necessarily cause total market share to decay because the decay
of market share for one firm is gain in market share for the other. Hence, we use the
term churn rather than decay. Due to churn, the market shares converge to a long-run
equilibrium when neither brand is advertised for a very long durations. The model used
in this work takes into account decay due to competitive advertising as well as churn due
to noncompetitive factors.

1.3 Objectives

The objective of this dissertation is to study the properties of the model with churn
proposed in [24] in order to check its feasibility and adequacy to the real world. In order
to achieve this we propose control strategies for the predatory advertising policy of a
firm, in order for it to be able to achieve a desired market share. As a suggestion, we
use a CLF based strategy. We also propose a way to estimate the competitor’s predatory
actions to improve the effectiveness of the CLF design. Finally, we discuss the results and
the effectiveness of the proposed control technique, as well the consistency of the model
with the real world, given the results attained with the CLF strategy.

1.4 Structure of dissertation

This dissertation is organized in five chapters. The first chapter presents a brief history
of advertising models in duopoly markets and churn effects. Subsequently, a review of
the linear churn model and the full churn model is presented. In the following chapter,
a control Lyapunov function approach is proposed as a management policy. We also
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study the advantages and limitations of the technique, as well as the differences between
a scenario in which a single firm uses the CLF approach, and a scenario in which both
firms use the CLF approach. In the subsequent chapter, we propose an improvement on
the technique, adding Levant’s robust differentiator [25] to the CLF scheme to estimate
the predatory actions that the firm’s competitor is using. Finally, in the last chapter we
review the main conclusions obtained in the dissertation, and suggest directions of future
research.

4



Chapter 2

Models of advertising in duopolies
with churn

In this chapter we will study a unified model of duopolistic dynamics that considers
competition and churn, under the actions of different competitive advertising policies that
is thought as different controls. This model was proposed in [24], and can be described
as follows:

ẋ1 = u11s− u12x1 + u21x2 − k1x1 + k2x2 (2.1)

ẋ2 = u22s+ u12x1 − u21x2 + k1x1 − k2x2 (2.2)

where

• x1, x2 are the state variables representing the market share fractions of firm 1 and
firm 2 respectively (in the interval [0, 1]),

• s := 1−x1−x2 is the unconquered market, also referred to as the untapped market
or the market of undecided clients.

• uii is the action of firm i and represents positive advertising (i.e., advertising that
increases the goodwill of the consumer and hence the market share xi),

• the positive advertising control uii acts on s,

• uij(x1, x2), i 6= j represents the predatory advertising (j on i),

• the predatory advertising control uij acts on xi,

• the churn parameters ki are non-negative numbers (in the interval [0, 1], if they are
rates).
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The unit for controls uii and uij are a measure of unit of money spent per unit of
time. In this dissertation we will not use a specific unit such as dollars per month or
dollars per year, since our main interest here is to study the dynamics of the system. All
graphics presenting advertising efforts along this dissertation can be interpreted in the
sense of any given unit of money spent per unit of time.

Furthermore, the controls presented here are always subject to some constraint in the
real world. We consider that the money spent for advertising must be less or equal to the
advertising budget of a firm. At first, we will not determine how much this maximum
value must be. We will assume that the budget can support the amount spent.

In the following sections we will discuss the behavior of this model in detail, as well
as the effects of some control policies on uii and uij.

2.1 Linear churn model

In this section the linear churn model is studied. The linear churn model can be considered
a sub-model of equations (2.1) and (2.2), with additional constant churn parameters, and
can be described as follows:

ẋ1 = −k11x1 + k12x2 + ν1 (2.3)

ẋ2 = k21x1 − k22x2 + ν2 (2.4)

The linear churn model can be used to study equilibrium points of the full churn
model. If we consider that “due to churn, the market shares converge to a long-run
equilibrium when neither brand is advertised for a very long duration” [23], we can
assume that uii = uij = 0, i, j,= 1, 2. In this case, the equilibrium of the linear churn
model determines the equilibrium of the full churn model in the absence of advertising.

This means that choice of parameters kij and νi is crucial in the determination of
these equilibria. We state and prove a lemma in this regard.

Lemma 2.1. The linear churn dynamics (2.3)-(2.4) possess a unique equilibrium if and
only if detK 6= 0, where

K =
 −k11 k12

k21 −k22

 (2.5)

subject to the initial condition (x10, x20) ∈ R2, with xi0 ≥ 0, i = 1, 2. In this case,
the unique equilibrium occurs at −K−1ν, where ν = (ν1, ν2) ∈ R2. On the other hand,
if detK = 0 and ν1 = ν2 = 0, then the linear churn dynamics possesses infinitely
many equilibria. In this case, without loss of generality, we can set k11 = k21 =: k1,
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k12 = k22 =: k2 and, in this notation, all equilibria are located on the straight line through
the origin with slope k1/k2. Specifically, trajectories emanating from the given initial
condition (x10, x20) converge to the equilibrium ( k2

k1+k2
(x10 +x20), k1

k1+k2
(x10 +x20)) located

on this line.

Proof : Equilibria must satisfy the equation Kx = −ν, where x = (x1, x2), from which the
first statement for nonsingular K is obvious, in order to admit a nontrivial equilibrium.
The more interesting case is for non-unique, nontrivial equilibria. Evidently, if Kx = −ν,
Ky = −ν then K(x − y) = 0, and for this homogeneous equation to admit a nontrivial
solution, K must be singular. Singularity of the matrix K also means that its rows
are multiples of each other and, in particular, we can choose the second row to be the
negative of the first, justifying the choice k11 = k21 =: k1, k12 = k22 =: k2. From this
viewpoint, this choice means that the so called churn-out, −k1x1, from firm 1 becomes the
churn-in for firm 2 and vice-versa. With this choice, (i) all equilibria satisfy the equation
−k1x1 + k2x2 = 0; (ii) isoclines of the trajectories are of slope dx2/dx1 = −1, proving the
claim about the point ( k2

k1+k2
(x10 + x20), k1

k1+k2
(x10 + x20)), which is the intersection of the

isocline through (x10, x20) and the line −k1x1 + k2x2 = 0.
Lemma 2.1 justifies the use of only two churn rate parameters ki and ν1 = ν2 = 0 in the

model (2.1)-(2.2), since we wish to avoid specifying the unknown long term equilibrium
of the linear churn dynamics. Note, however, that the initial conditions (x10, x20) and
the churn rate parameters k1, k2 do specify the long term equilibrium. These parameters
can be and usually are estimated in real-life situations [26]. Observe also that the linear
churn dynamics (2.3), (2.4) is the continuous-time equivalent of the discrete-time model
proposed in [27].

Lemma 2.1 motivates the following terminology, used in the sequel. If k2 > k1, the
equilibrium market share of firm 1 is larger than that of firm 2 and thus, in this case, we
say that churn parameters are favorable to firm 1, and vice-versa when the inequality is
reversed. Figure 2.1 exemplifies this by showing isoclines and the equilibrium line with
slope k1

k2
. This line divides the area of feasible market shares into two triangles and, since

k2 > k1, the upper triangle is bigger than the lower one. As is possible to notice, every
initial condition chosen inside the upper triangle is favorable for firm 1, since the red
isoclines lines are pointing downwards and to the left, that is, the market share of firm 1
is increasing, while the market share of firm 2 is decreasing. An analogous interpretation
holds for the lower triangle, with firm 2 having an advantage in this region. Even though
there is a small region that favors firm 2, initially increasing its initial market share, it
must be noticed that firm 1 always ends up with a greater market share than firm 2, that
is, x1f > x2f .
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Figure 2.1: Phase plane for the linear churn model. The green lines are trajectories de-
parting from initial conditions on the x1 axis, while the red line are trajectories departing
from initial conditions on the x2 axis. In both cases, trajectories converge to equilibria
on the line x2 = (k1

k2
)x1, as announced in lemma 2.1.

2.2 Full churn model

In this section we present and study the full churn model introduced in [24]. This model
can be considered a generalization of the ideas contained in previous models presented in
[23], [27], [28], and [29]. The model is rewritten here for convenience:

ẋ1 = u11s− u12x1 + u21x2 − k1x1 + k2x2 (2.6)

ẋ2 = u22s+ u12x1 − u21x2 + k1x1 − k2x2 (2.7)

The justification of the particular choice of model (2.6),(2.7) is as follows. In an
unsaturated market, s > 0, three types of terms are present in the dynamics, positive
advertising acting on the unconquered market (s), predatory advertising acting on the
competitor’s market share and adding to the predator’s share (observe that this obeys
the principle of conservation of market share/clients) and, finally, churn, which also acts
in such a way as to conserve total market share. When the market saturates, we have
x1 +x2 = 1, which implies that ẋ1 + ẋ2 = 0 or, equivalently, dx2 = −dx1. In other words,
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if the market dynamics is to remain saturated (s = 0), the only way a firm can obtain
more market share is from its competitor, conquering it by using predatory advertising,
or by the churn effect. Moreover, we state that the equilibrium can only occur at a point
on the line x1 + x2 = 1, as we show in Lemma 2.2.

Lemma 2.2. The following assumptions are made on the advertising efforts u11, u22:

A1. the sum of the advertising efforts u11(t) + u22(t) is positive for all t;

A2. the sum of the advertising efforts is not L1-integrable, i.e.:
∫ t

0
(u11(τ) + u22(τ)) dτ →∞ as t→∞ (2.8)

Under assumptions A1 and A2, the dynamical system given by (2.6), (2.7) possesses the
equilibrium set

Seq := {x ∈ R2 : x1 + x2 = 1}. (2.9)

Moreover, the set Seq is globally attractive in the sense that all trajectories initiating in
the positive quadrant (x1(0), x2(0)) tend exponentially to a point in Seq.

Proof. At any equilibrium point (x∗1, x∗2), associated to s∗ = 1 − x∗1 − x∗2, of the
dynamical system (2.6), (2.7), ẋ1 = ẋ2 = 0, i.e.:

u11s
∗ − u12x

∗
1 + u21x

∗
2 − k1x

∗
1 + k2x

∗
2 = 0 (2.10)

u22s
∗ + u12x

∗
1 − u21x

∗
2 + k1x

∗
1 − k2x

∗
2 = 0 (2.11)

Summing (2.10) and (2.11) yields:

(u11 + u22)s∗ = 0 (2.12)

By A1, (2.12) implies that s∗ = 0. Conversely, if x∗1, x∗2 are such that s∗ = 1−x∗1−x∗2 = 0,
then it is immediate that (2.10) and (2.11) are satisfied, proving that Seq is the equilibrium
set. To prove that Seq is attractive, observe that ṡ = −ẋ1− ẋ2, so that the ODE satisfied
by s is

ṡ = −(u11(t) + u22(t))s (2.13)

the solution of which is
s(t) = s(0)e

∫ t

0 −(u11(τ)+u22(τ)) dτ

which shows, by A2, that s(t)→ 0 exponentially, for all initial conditions s(0), as claimed.

Remarks:
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1. Note that Lemma 2.2 holds independently of the choice of u12, u21 and does not
specify which point in the equilibrium set Seq is attained by a particular trajectory.
In section 3.3, particular choices of the control efforts u12, u21 are considered and
the resulting equilibrium point in Seq calculated.

2. Note that assumption A2 (and, of course, A1) hold if u11(t) + u22(t) is a positive
constant function. More generally, if u11(t) + u22(t) tends to zero slower than 1/t,
then assumption A2 will be satisfied.

In summary, the construction of this model is based on the following assumptions:

A1 In the unsaturated market, positive advertising by firm i acts only on the uncon-
quered market.

A2 Negative or predatory advertising occurs only when firm i has a market share larger
than that of firm j and, in this case, acts with constant effort by firm j on the share
of firm i, i.e., through a term −cijxi.

A3 The market share lost by firm i due to this predatory action is gained by firm j.

A4 In the saturated state, only predatory advertising is present.

A5 Churn is always present, in both saturated and unsaturated markets.

Assumption A1 is a standard one in the literature, dating from the seminal paper [2].
Assumption A2 is a simple version of optimizing behavior: a firm only begins to in-
vest in predatory advertising when it realizes that it has a lower market share than its
competitor. Assumption A3 reflects the belief that, in a duopoly for an essential good,
the market share lost by one firm is necessarily gained by the other, since clients need
the good, no matter which firm is supplying it, and therefore cannot simply disappear.
Assumption A4 has the following natural interpretation. Once the market is saturated,
there are no more undecided clients, thus any attempt by either firm to increase its mar-
ket share must necessarily be predatory, reducing its competitor’s share. Assumption A5
is natural because churn is essentially a client driven phenomenon and therefore present
independently of the control strategies used by the firms.

After presenting this model and its inherent properties, we develop a control technique
to try to achieve a desired market share. A variety of switching policies combining linear
and constant controls were proposed in [24] for positive and predatory advertising, in
order to study these possibilities. This work proposes a more complex control, by using
Control Lyapunov Functions, from now on denoted as CLF. We will make use of constant
positive advertising, while we will develop a CLF scheme for predatory advertising.

10



The use of an estimator of the competitor’s predatory effort is also proposed, in order
to analyze how it might improve the control effectiveness.

After constructing these new techniques, we will be able to verify the consistency of
the model and to understand the model’s dynamic more deeply. In order to systematize
our study, the following questions will be raised and answered, in the chapters that follow:

Q1 Is it possible for a single firm using the CLF control, to achieve a desired market
share?

Q2 Is this still possible, if the firm does not know, precisely, how much advertising
effort its competitor is using?

Q3 What happens if both firms use CLF control to achieve their desired market share
in the case when the desired shares add up to more than 1?

Q4 Does the use of an estimator (of its competitor’s actions/parameters) by one firm
confer some advantage to it, assuming that its competitor does not use an estimator?

Q5 What happens when both firms use the same technique with the same information?

11



Chapter 3

Control design using CLF method

In this chapter a control law using CLF method will be developed for the system described
by equations (3.1) and (3.2), repeated here for convenience:

ẋ1 = u11s− u12x1 + u21x2 − k1x1 + k2x2 (3.1)

ẋ2 = u22s+ u12x1 − u21x2 + k1x1 − k2x2 (3.2)

The proposed control law will be applied and studied in different scenarios. In the
next section, we start with a brief review of the CLF method.

3.1 CLF Method

In this section we present the Control Lyapunov Function method briefly. First we
consider an autonomous system:

ẋ = f(x) (3.3)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. We
also suppose that x = 0 is an equilibrium point. In order to x = 0 to be stable or
asymptotically stable, the following theorem must hold:

Theorem 3.1. Let x = 0 be an equilibrium point for (3.3) and D ⊂ Rn be a domain
containing x = 0. Let V : D → R be a continuous differentiable function such that:

V (0) = 0 and V (x) > 0 in D − {0} (3.4)

V̇ (x) ≤ 0 in D (3.5)
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Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (3.6)

then x = 0 is asymptotically stable.

A function V (x) satisfying (3.4) and (3.5) is called a Lyapunov Function. A proof
of Theorem 3.1 can be found in [30]. It must be noticed that Theorem 3.1 also holds
for a non zero equilibrium point, that is x 6= 0. This can be achieved by making the
transformation z = x − xe, where xe is the non-zero equilibrium. This transformation
generates an autonomous system equivalent to (3.3), and x = xe, implies that z = 0,
which is sufficient, along with an appropriate function V (z), to create the same premises
necessary for Theorem 3.1 to hold.

The Control Lyapunov Function method uses Theorem 3.1 to guarantee asymptotic
stability for a desired equilibrium point of a given system by chosing an appropriate input
function u(t). Let us suppose that we have now the following system:

ẋ = f(x, u) (3.7)

The key idea here is to choose a Lyapunov Function V (x) where u(x) is constructed
in such a way that (3.4) and (3.6) hold. Of course, u must be a function of x only in
order that (3.7) continue to be an autonomous system. Designing V (x) and u this way
will make it possible to apply Theorem (3.1).

In the next section we will design both V (x) and u for the system described by
equations (3.1) and (3.2).

3.2 Control applied by a single firm

In this section a CLF will be proposed for the system described by equations (3.1) and
(3.2), assuming that it is desired to attain the equilibrium point, xd = (m1, 1−m1). We
start by defining the Lyapunov Function, V (x).

V (x) = 1
2(x1 −m1)2 + 1

2(x2 − (1−m1))2 (3.8)

The value xd = (m1, 1−m1) is the only point that makes V (x) = 0 and corresponds
to the market share scenario desired by firm 1. These conditions on V (x) are the first
step towards making xd the unique attractor of the system. Differentiating the expression
for V (x) with respect to time along the trajectories of (3.1) and (3.2) leads to equation
(3.9). Also, we make the following assumption:
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Assumption 3.2. The advertising efforts u11(t), u22(t) are assumed to be constants
denoted by c11, c22 respectively.

We will choose c11 and c22 according to each situation, rather than fixing predeter-
mined values. Also, these values will be changed within an analysis in order to verify its
influence in the model.
After these considerations, then V̇ (x) will be as follows:

V̇ (x) = [(x1−m1)c11 +(x2−1+m1)c22](1−x1−x2)+a[(u21 +k2)x2−(u12 +k1)x1] (3.9)

where a = x1 − x2 − 2m1 + 1.
In order to obtain a stable closed loop controlled system, we need to ensure that

V̇ (x) is negative definite, and to this end we will use the yet to be defined parameter
u21. We will make V̇ (x) negative by the particular choice of the control u21 that makes
V̇ (x) = −2V (x), since this implies that V and hence x(t) (roughly) decay like e−2t. Thus:

V̇d(x) = −(x1 −m1)2 − (x2 − (1−m1))2 (3.10)

Also, notice that xd = (m1, 1−m1) is the only point that makes V̇ (xd) = 0. This last
property fully characterizes xd as the unique equilibrium. Equating (3.9) and (3.10), the
following expression for u21 is obtained after algebraic manipulations:

u21 = u†21 + (u12 + k1)x1

x2
− k2 (3.11)

where

u†21 = −[(x1 −m1)c11 + (x2 − 1 +m1)c22]s− (x1 −m1)2 − (s+ x1 −m1)2

s+ 2(x1 −m1) (3.12)

Initially we will not be concerned about the positivity of u21, even though negative or
unbounded values of the control variable are not feasible in the theoretical model. These
restrictions will be considered later on in section 3.4.

We assume now that only firm 1 uses control designed via a CLF, while firm 2 uses
a constant effort control. We also assume that firm 2 does not use a CLF strategy, and
maintains a constant effort to predate firm’s 1 market share, which will be denoted as
u12 = c12. This value will be chosen according to each situation, in order to achieve a
better understanding of the system dynamics.

Furthermore, firm 1 is considered to not have any previous knowledge of constant
c12, nor of c22, which represents the action of firm 2 on the unconquered market. Thus,
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estimates ĉ12 and ĉ22 replace these constants in expressions (3.11) and (3.12) for u21 and
u†21 respectively. All other constant parameters are assumed to be known, and market
shares x1 and x2 are assumed known (in real time).

Figure 3.1 shows the trajectory that the system follows for a initial condition x0 =
(0.2, 0.3) and final objective m1 = 0.8. The churn parameters ki and positive advertising
parameters cii were chosen in order to create an unfavorable scenario for firm 1.

Figure 3.1: Trajectory for a set of different initial conditions and m1 = 0.8. The technique
is successful and firm 1 achieves the desired market share.

As we can see, the technique is successful, and makes it possible for firm 1 to achieve
the desired market share in finite time, despite an unfavorable initial condition, a smaller
value of positive advertising, as well as an adverse choice of churn parameters. Another
important feature of this design is the fact that the control signal is bounded and feasible,
as we can see in figure 3.2

After these considerations, we can state the following theorem:

Theorem 3.3. If firm 2 uses constant predatory advertising, and both firms use constant
positive advertising, then firm 1 can achieve any desired market share from any initial
market share, using a CLF predatory control with a precise estimate of predatory control
of firm 2. This result only holds if no restrictions are imposed on the magnitude of
predatory control of firm 1.
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Figure 3.2: Control Signal for firm 1 for the case with initial conditions x0 = (0.2, 0.3).
Represents the amount of predatory advertising firm 1 uses. As mentioned before, we
will not use a specific unit since we are interested in studying the dynamics, and therefore
this graphic must be understood as amount of money spend during a certain period of
time

Proof: In order to find the equilibrium points of the controlled system, we apply
(3.11) in (3.1) and (3.2) and equate them to zero, yielding the following linear system of
algebraic equations:

c11(1− x1 − x2) + u† = 0 (3.13)

c22(1− x1 − x2)− u† = 0 (3.14)

The unique solution of (3.13) and (3.14) is the point (m1, 1−m1) is the unique solu-
tion. The asymptotic stability of this point within the domain of interest is guaranteed
by the CLF design of V (x).

3.3 Sensitivity of CLF design to errors in estimates

This subsection investigates the sensitivity of the control design with respect to errors in
the estimates ĉ12 and ĉ22, since so far they have been considered to be perfectly accurate.
For the subsequent analysis, all the other parameters are considered to be identical to
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the previous case, as shown in figure 3.1. Simulations in figure 3.3 indicate that param-
eter ĉ22 has only a small effect on the transient response, making it slightly slower for
underestimated values. The effect on the state trajectory is also presented in figure 3.4.
In regard to the control signal, figure 3.5 indicates that the more we underestimate the
value of ĉ22, the smaller the L2 norm of the control signal will be. Conversely, the more
we overestimate it, the bigger this norm of the control signal will be. Finally, from figures
3.3 and 3.4, it can also be observed that the target market share is attained by firm 1 in
all cases. After these experimental observations, it is reasonable to make the following
assumption:

Assumption 3.4. Consider two different estimates for parameter cii, ĉii1 and ĉii2. If
ĉii1 > cii2 then ‖u1‖2 > ‖u2‖2, where ‖.‖2 represents the L2 norm of a function, and u1

and u2 are the control signals generated with the respective estimates.
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ĉ12 = 4
x10 = 0.2
x20 = 0.3

Figure 3.3: The trajectories of x1 do not differ much, as parameter ĉ22 is varied, and all
others are kept fixed, showing the low sensitivity of x1 with respect to the parameter ĉ22.

On the other hand, when the estimate ĉ12 deviates from its correct value, more severe
changes occur. The most notable one is that the targeted market share may not be
reached. If ĉ12 is underestimated, the steady state market share of firm 1, x1f , will
be lower than the intended market share m1. Similarly, if ĉ12 is overestimated we get
x1f < m1. From this observation it is possible to enunciate the following theorem:
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Figure 3.4: Sensitivity of trajectory with respect to the parameter ĉ22. Notice that the
final state does not change.

Theorem 3.5. [Calculation of specific equilibrium point in Seq resulting from the ap-
plication of CLF control, under the assumption of estimation error in ĉ12] Consider the
dynamical system (3.1), (3.2) subject to the CLF-designed control u21 given by (3.11) and
the control u12 = c12 (constant). The equilibrium point xf ∈ Seq attained under these
circumstances is given by:

xf =
(

u21f + k2

c12 + u21f + k1 + k2
,

c12 + k1

c12 + u21f + k1 + k2

)
(3.15)

If c12 is overestimated, i.e. ĉ12 > c12 then x1f > m1. Conversely, if c12 is underesti-
mated, i.e. ĉ12 < c12 then x1f < m1.

Proof : First we recall that the result of Lemma 2.2 holds for all choices of u12, u21,
including those of the statement of this theorem and it remains to solve the equilibrium
equations for these specific choices. In other words, we wish to solve:

u11(1− x1f − x2f )− u12x1f + u21x2f − k1x1f + k2x2f = 0 (3.16)

u22(1− x1f − x2f ) + u12x1f − u21x2f + k1x1f − k2x2f = 0 (3.17)

From Lemma 2.2, we may put s = (1 − x1 − x2) = 0, so that (3.16), (3.17) simplify
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Figure 3.5: Sensitivity of control variable with respect to the parameter ĉ22. Error in the
estimate results in larger predatory advertising effort spent if overestimated, and smaller
predatory advertising effort spent if underestimated.

to:

− u12x1f + u21fx2f − k1x1f + k2x2f = 0 (3.18)

u12x1f − u21fx2f + k1x1f − k2x2f = 0 (3.19)

Equations (3.18) and (3.19) are linearly dependent so it is only possible to solve for
x1f in terms of x2f . Substitution of u12 = c12 and, from (3.11), u21f = u†

21f
+(ĉ12+k1)x1f

x2f
−k2

yields:

− c12x1f + ĉ12x1f + u†21f = 0 (3.20)

From (3.12), u†21f = −(x1f −m1), since x2f = 1− x1f , which implies that

(ĉ12 − c12)x1f = x1f −m1 (3.21)

Since x1f > 0, (3.21) implies the statements about under- and overestimation of the
constant control c12.

From (3.18) and the fact that x1f + x2f = 1, it follows directly that the solution of
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the linear system (3.18), (3.19) is given by (3.15), as claimed.

Figure 3.6: Sensitivity of trajectory with respect to the parameter estimate ĉ12. Over
estimates and under estimates produce corresponding errors in the final state.(below
(respectively above) desired value of m1 = 0.8)

Figure 3.6 illustrates state trajectories that result when the inequalities presented in
theorem 3.5 are imposed. Control signals are also shown in figure 3.7. These results are
intuitively clear. If firm 2’s predation effort is actually bigger than what was predicted
for it, u21 is designed in such a way that it has a smaller magnitude than what it should
have had. The immediate consequence is that firm’s 1 market share ends up being smaller
than what was planned. If the estimate is far below the real value of c12, the results can
be disastrous, with firm 1 having almost no market share at the end.

Similarly, if the estimated predation of firm 2 is smaller than what occurs in reality,
u21 has a greater magnitude than required, and firm 1’s market share ends up being
greater than what was planned. This result could also be undesirable since the extra
market share obtained may not compensate the extra advertising costs, leading to a loss
in the long term.

This can be enunciated analytically, manipulating equation (3.21) to obtain a relation
between percentage error of ĉ21 and x1f

εxf
= εc

1
c21
− εc

100
(3.22)
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Figure 3.7: Sensitivity of control variable with respect to the parameter ĉ12. Notice that
small deviations in the value of ĉ12 produces a big change in the control variable, exposing
a high sensitivity to this parameter.

where εxf
= 100(x1f−m1)

m1
and εc = 100(ĉ21−c21)

c21
. The graph showing the relation of both

percentage errors is shown in figure 3.8.
The main conclusion that can be drawn from this section is that the proposed con-

trol technique works fine as long as we have a good estimate for c12 based on equation
(3.22). This task can be quite difficult since small errors in estimate ĉ21 can produce a
considerable error in the final state x1f . Another question that arises immediately is the
following: what happens if firm 2 also uses a similar CLF scheme? This is addressed in
the next section. We return to the question of estimation of parameters in chapter 4.

3.4 CLF designed control applied by both firms

In this section, we study the effects of both firms using the CLF method in order to
achieve a certain market share. Initially, an expression for u12 is required. This can be
done in a very similar way as was previously done for u21. The first step is to define a
new CLF V (x) as follows:

V (x) = 1
2(x1 − (1−m2))2 + 1

2(x2 −m2)2 (3.23)
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Figure 3.8: Percentage error of the estimate ĉ21 versus percentage error of the final market
share x1f with respect to the desired market share m1, for m1 = 0.8 and c21 = 4. This
plot is only illustrative, since errors that produce x1f > 1 do not have any practical
meaning.

Then,

V̇d(x) = −(x1 − (1−m2))2 − (x2 −m2)2 (3.24)

Following steps similar to those in section 3.2, one finds:

V̇ (x) = [(x2 −m2)c22 + (x1 − 1 +m2)c11]s+ b[(u12 + k1)x1 − (u21 + k2)x2] (3.25)

where b = x2 − x1 − 2m2 + 1. And therefore:

u12 = u†12 + (u21 + k2)x2

x1
− k1 (3.26)

where

u†12 = −[(x1 − 1 +m2)c11 + (x2 −m2)c22]s− (s+ x2 −m2))2 − (x2 −m2)2

s+ 2(x2 −m2) (3.27)
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Again, as in the single firm case, firm 2 does not have any knowledge about constant
c11 and control signal u21, and they were replaced by constant estimates ĉ11 and ĉ21 in
equations (3.26) and (3.27).

It should be noticed that the inclusion of the objective market share of firm 2 may lead
to a situation in which m1 +m2 > 1. We know a priori that this situation is infeasible. It
is natural to assume that the firms will struggle for their objectives with all the predatory
effort that is available to them.

So far we have not raised any concerns about the boundedness of the control signals,
since they were limited by some value and we were assuming that the budget was greater
than it. But in this situation we have two continuous control functions, struggling with
opposing forces for more market share. It may therefore be expected that one, or both
could increase their magnitude arbitrarily until they get what they planned. In this
case we need to define how much a firm is able to spend with advertising. Furthermore,
negative numbers could result in equations (3.11) and (3.26). It thus becomes necessary
to impose some physical limit on the controls uij, since it is not feasible to have a firm
spending negative money on advertising, or spending an arbitrarily large amount of money
on this activity. For further analysis, we will assume that:

0 ≤ uij(t) ≤ umax,

for all t > 0.
The value of umax will be interpreted as a firm using its entire budget for predation,

equal to 100 for the sake of exemplification. This value can be changed without any loss
of generality.

The behavior of the system was simulated subject to these assumptions. It is possible
to check in figure 3.9 that the controls are identical, since both firms are under equal initial
conditions, and have the same goals and parameters. This is an expected outcome, since
both controls were designed in the same way. If no firm were given an advantage, they
should indeed end up on the 50-50 market share point as they are seen to do. Control
signals u12 and u21 are also shown in figure 3.10.

The next obvious step is to check what happens when one or more parameters change,
giving an edge to a firm. In figure 3.11, the effects on state trajectory of changing initial
condition x10, ceteris paribus, are shown.

The outcome is an outright victory of a firm depending on who has the bigger initial
condition. When x10 = 0.15 firm 1 conquered almost the entire market share, saturating
its control variable (See figure 3.12). But if a similar experiment is made with a different
choice of parameters, the outcome is very different as can be seen in figure 3.13. The
control variables when x10 = 0.15 are also shown in figure 3.14.
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Figure 3.9: State trajectory for m1 = m2 = 0.9 and x10 = x20 = 0.1. Notice that under
identical conditions, the use of the technique by both firms leads them to an equal division
of the market.

It is clear that further investigation of the stability of equilibrium points is needed to
better interpret these graphs. In order to do that, the values of u12 and u21 (Equations
(3.26) and (3.11)) will be applied in the dynamic equations (Equations (3.1) and (3.2)).
Also, we know from Lemma 2.2 that the line s = 0 is the only locus that can contain
equilibrium points. Substituting accordingly, this leads to the following expressions:

ẋ1 = −(x1 −m1) + (x2 −m2) + k1x1 − k2x2 + ĉ12x1 − ĉ21x2 (3.28)

ẋ2 = (x1 −m1)− (x2 −m2)− k1x1 + k2x2 − ĉ12x1 + ĉ21x2 (3.29)

Equating the right hand side of these equations to zero and recalling that x1 +x2 = 1,
allow us to calculate the following unique equilibrium point:

xe =
(
k2 + ĉ21 − 1 +m2 −m1

k1 + k2 + ĉ12 + ĉ21 − 2 ,
k1 + ĉ12 − 1 +m1 −m2

k1 + k2 + ĉ12 + ĉ21 − 2

)
(3.30)

If we analyze the previous case (Figure 3.9 and figure 3.11), where all parameters were
identical, the equilibrium point will be (0.5, 0.5). It remains to examine the stability of
this point. This is done in theorem 3.6:
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Figure 3.10: Control signals for a scenario in which both firms use CLF and have the
same goals and the same amount of informations from its competitor

Theorem 3.6. If both firms use a CLF predatory control, then the equilibrium point of the
system is a stable node if k1 +k2 + ĉ12 + ĉ12−2 < 0. Otherwise, if k1 +k2 + ĉ12 + ĉ12−2 > 0,
then the equilibrium point is a saddle

Proof for theorem 3.6 is as shown:
In order to demonstrate Theorem 3.6, first we substitute the predatory controls in the

duopoly system, represented in (2.1) and (2.2) with proposed controls (3.11) and (3.26).

ẋ1 = c11 (1− x1 − x2)− u†12 − ĉ21x2 + u†21 + ĉ12x1 + k1x1 − k2x2 (3.31)

ẋ2 = c22 (1− x1 − x2) + u†12 + ĉ21x2 − u†21 − ĉ12x1 − k1x1 + k2x2 (3.32)

We now evaluate the Jacobian of system (3.31) and (3.32):

J =
 −c11 − ∂u†

12
∂x1

+ ∂u†
21

∂x1
+ k1 + ĉ12 −c11 − ∂u†

12
∂x2

+ ∂u†
21

∂x2
− k2 − ĉ21

−c22 + ∂u†
12

∂x1
− ∂u†

21
∂x1
− k1 − ĉ12 −c22 + ∂u†

12
∂x2
− ∂u†

21
∂x2

+ k2 + ĉ21

 (3.33)

Evaluating the partial derivatives of controls u12 and u21, one obtain:
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Figure 3.11: Trajectories for different values of x10, while x20 is maintained constant at
0.1. The imbalance in the initial conditions determines the final outcome.

∂u†12
∂x1

= (x2 −m2) c22 + (x1 − 1 +m2) ĉ11 − ĉ11 (1− x1 − x2)− 2 (x1 − 1 +m2) + u†12
x2 − x1 − 2m2 + 1

(3.34)

∂u†21
∂x2

= (x1 −m1) c11 + (x2 − 1 +m1) ĉ22 − ĉ22 (1− x1 − x2)− 2 (x2 − 1 +m1) + u†21
x1 − x2 − 2m1 + 1

(3.35)

∂u†12
∂x2

= (x2 −m2) c22 + (x1 − 1 +m2) ĉ11 − c22 (1− x1 − x2)− 2 (x2 −m2)− u†12
x2 − x1 − 2m2 + 1

(3.36)

∂u†21
∂x1

= (x1 −m1) c11 + (x2 − 1 +m1) ĉ22 − c11 (1− x1 − x2)− 2 (x1 −m1)− u†21
x1 − x2 − 2m1 + 1

(3.37)
It is known from Lemma 2.2 that the equilibrium point must be located on the line

x1 + x2 = 1. Hence we will make this substitution in the expressions above.
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Figure 3.12: Control variables for x10 = 0.15. Notice that the predatory control of firm
1 reached its limit.

∂u†12
∂x1

∣∣∣∣∣
x=xe

= c22 − ĉ11 + 1
2 (3.38)

∂u†21
∂x2

∣∣∣∣∣
x=xe

= c11 − ĉ22 + 1
2 (3.39)

∂u†12
∂x2

∣∣∣∣∣
x=xe

= c22 − ĉ11 − 1
2 (3.40)

∂u†21
∂x1

∣∣∣∣∣
x=xe

= c11 − ĉ22 − 1
2 (3.41)

Substituting these expressions in (3.33) the following Jacobian will be obtained:

J =
 −c22−c11+ĉ11−ĉ22

2 + k1 + ĉ12 − 1 −c22−c11+ĉ11−ĉ22
2 − k2 − ĉ21 + 1

−c22−c11−ĉ11+ĉ22
2 − k1 − ĉ12 + 1 −c22−c11−ĉ11+ĉ22

2 + k2 + ĉ21 − 11

 (3.42)

In order to analyze the sign of the eigenvalues of matrix J , it is necessary evaluate
both the determinant and the trace of this matrix.

27



Figure 3.13: Trajectories using different values of x10 using k1 = k2 = 0.5, m1 = m2 = 0.8,
ĉ12 = ĉ21 = 0.4, and c11 = c22 = ĉ11 = ĉ22 = 3. In this case, all trajectories converge to
the point (0.5, 0.5)

det(J) = − (c22 + c11) (k1 + k2 + ĉ12 + ĉ21 − 2) (3.43)

tr(J) = − (c11 + c22) + (k1 + k2 + ĉ12 + ĉ21 − 2) (3.44)

From equations (3.43) and (3.44) it is possible to notice that the eigenvalues of J
are respectively − (c11 + c22) and k1 + k2 + ĉ12 + ĉ21 − 2. The first one is negative, since
parameters cii were previously defined as positive numbers. Therefore if k1 + k2 + ĉ12 +
ĉ21 − 2 > 0 then the equilibrium point is a saddle, and if k1 + k2 + ĉ12 + ĉ21 − 2 < 0 the
equilibrium point is a stable node.

Theorem 3.6 allows us to affirm that, with identical parameters, the point (0.5, 0.5)
will be stable if and only if k + c − 1 < 0, where k = k1 = k2 and c = ĉ21 = ĉ12.
This result explains the differences between the simulation scenarios presented above.
In the first one (Figure 3.11) k + c − 1 = 0.5, which resulted in unstable trajectories,
and therefore a saturation in the control variable of the victorious firm. In the second
scenario (Figure 3.13) k + c − 1 = −0.1, and the point (0.5, 0.5) attracts all trajectories
to itself, leading all initial conditions to a tie.

28



0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

X: 10
Y: 0.6172

 

 

t

M
ag

ni
tu

de
u12
u21

Figure 3.14: Control variables for x10 = 0.15. In this case, neither control variable reaches
its saturation limit

It is also worth mentioning, that if k1 + k2 + ĉ12 + ĉ12− 2 = 0 the system will have an
infinite number of equilibrium points and their locus will be the line x1 + x2 = 1. In this
very particular case, which is the case of null measure trajectory, the final point can only
be calculated by the analytical expression for the trajectory. Since this is a very unlikely
case we will not focus on it.

Going further in our analysis, if we look at equations (3.30) and the condition present
in theorem 3.6 similar conclusions can be drawn if we desire to study the effect of each
parameter imbalance. But we should keep in mind that the only possibilities are a stable
equilibrium point or an unstable one.

From now, if we consider that every parameter in the model is fixed except ĉ12 and ĉ21,
we can ask: what would be the best choice for them? We already know that depending
on the region that the initial condition is located, one of the firms will conquer almost
the entire market, if the condition present in theorem 3.6 sets the equilibrium point as
a saddle. So, the best option for a firm is to augment its region, and it can do that by
a choice of parameters that results in a favorable location for the unstable equilibrium
point. For firm 1, the best place the equilibrium point can be located is at the point
(0, 1), since the trajectory that lies on the line x1 + x2 = 1 tends to move away from this
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point.
The best strategy for firm 1 is therefore to use a large value for ĉ12, because when

ĉ12 −→ ∞, xe −→ (0, 1). An analogous strategy holds for firm 2, in regard to the point
(1, 0) and the parameter ĉ21.

Since, there is a limit to how large uij can be, the optimal choice for both firms is
ĉij = uMAX . Since this particular choice is the best option for both firms using CLF
control in a duopolistic market, we will further analyze it. For this choice of estimates,
we will have a final market share xf as follows:

xf =
(

uMAX + k2

2uMAX + k1 + k2
,

uMAX + k1

2uMAX + k1 + k2

)
(3.45)

The expression (3.45) is obtained by simply replacing ĉij by uMAX in equation (3.30).
One should notice that if umax � k1 and umax � k2, the final market share xf tends
to (0.5, 0.5). In figure 3.15 some simulations for different values of k1 and k2 are shown.
The chosen values are not intended to represent real parameter values, but rather to
emphasize the points being made.

Figure 3.15: Examples of trajectories for different values of x0 and ki. Notice that the
larger the difference between k1 and k2, the farther the final state is located from the
(0.5, 0.5) point.
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Unfortunately, keeping predation at a high level can be very costly for a firm. This
is caused by the choices of estimates ĉij. Since these estimates play a central role in this
method, in the next chapter we will develop a better way to estimate them.
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Chapter 4

Control design using CLF with
estimator

In the previous chapter, we discovered that precise estimation of parameters cij is vital
in order to track the desired final market share via CLF control. In this chapter, we will
focus on the development of a new method to estimate the predation effort that a firm
should make.

Initially, we will assume the point of view of firm 1 and we will try to estimate
predation effort u12 made by firm 2. To begin our analysis, we need to look at equation
(3.1) again, rewritten here for convenience.

ẋ1 = u11(1− x1 − x2)− u12x1 + u21x2 − k1x1 + k2x2 (4.1)

Since u21 has already been chosen (chapter 3), the functions ẋ1 and u12 are the only
unknown quantities in equation (4.1). Thus, if we can estimate ẋ1, equation (4.1) can be
rewritten in order to furnish an estimate of u12. Indeed:

u12 = u11(1− x1 − x2) + u21x2 − k1x1 + k2x2 − ẋ1

x1
(4.2)

4.1 Robust differentiator using HOSM

The problem of obtaining a derivative ẋ1 from a given function of time x1 has already
been studied in the past. The technique that will be used in this work can be found in
[25], whose main results are stated briefly as follows.

In order to differentiate an unknown signal f(t), the so called modified second order
sliding algorithm can be considered as follows:
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ẋ = u

u = u1 − λ|x− f(t)| 12 sign(x− f(t))

u̇1 = −αsign(x− f(t))

(4.3)

where α, λ > 0. Here u(t) is the output of the differentiator, i.e., u(t) is the desired
estimate of the derivative ẋ. In figure 4.1 it is possible to observe the block diagram that
represents these equations.

Figure 4.1: Block diagram for the equations of the modified second order sliding algorithm

Define the function φ (α, λ, C) = Ψ(t∗), where (Σ,Ψ) is the solution of:


Σ̇ = −|Σ| 12 + Ψ

Ψ̇ =

−
1
λ2 (α− C) ,−|Σ| 12 + Ψ > 0

− 1
λ2 (α + C) ,−|Σ| 12 + Ψ ≤ 0

(4.4)

with Σ(0) = 0, Ψ(0) = 1, t∗ = inf{t|t > 0 and Σ(t) = 0 and Ψ(t) < 0}. We state the
main results for robust differentiation from [25]:

Theorem 4.1. Let α > C > 0, λ > 0, φ (α, λ, C) < 1. Then u(t) becomes identically
equal to ḟ(t) after a finite time provided that ḟ has a Lipschitz constant C. The smaller
the value of φ (α, λ, C), the faster the convergence.

We also state the sufficient conditions:
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α > C, λ2 ≥ 4Cα + C

α− C
(4.5)

Theorem 4.2. If f, x, u1 are measured at discrete times with time interval τ , and f(t)
has a derivative with Lipschitz constant C > 0, the inequality

∣∣∣u(t)− ḟ(t)
∣∣∣ < aλ2τ holds

after a finite-time transient. Here a > 0 is some constant dependent on α−C
λ2 and α+C

λ2 .

The differentiator is also considered to be robust, since the maximum derivative error
is also proportional to the square root of the input noise magnitude after a finite-time
transient process. The demonstration of this statement and theorems 4.1 and 4.2 can be
found in [25].

It is simple to notice from (4.1) that − (umax + k1) ≤ ẋ1 ≤ u11 + umax + k2. Thus a
Lipschitz constant for ẋ1 can be estimated as:

C = max (umax + k1, u11 + umax + k2) (4.6)

This technique makes it possible to track ẋ1, and consequently u12 by rewriting (4.1)
as:

û12 =

(
u11(1− x1 − x2) + u21x2 − k1x1 + k2x2 − ˙̂x1

)
x1

(4.7)

The attentive reader will notice that û12 is needed to compute u21 (Equation (3.11))
and vice-versa (Equation (4.7)). One way out of this circularity is to apply a small delay
(sized as one simulation step) to û12 in the calculation of u21.

Specifically, the use of (4.7) requires the knowledge of u21 at the exact instant that
û12 is being estimated. In practice a delay of one simulation step, δ, in the value of û12

is used while calculating u21:

u21(t) = u†21 + (û12(t− δ) + k1)x1

x2
− k2 (4.8)

with u†21 defined in equation (3.12).

4.2 Single firm using CLF design and estimation

In this section we will present the results for a scenario in which firm 1 uses a CLF design
together with an estimator based on the robust differentiator. For an initial analysis,
firm 2 uses only a constant estimate for u21 and its predation effort is also constant. The
other parameter values are the same as those used in figure 3.1.

As it is possible to see in figure 4.2, the error in the final market share point is
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drastically reduced. It also worth underscoring that the initial oscillating behavior in the
state trajectory is due to the fact that the differentiator has always a transient. It must
also be noticed that inequalities in (4.5) provide crude estimates. Smaller values for λ
and α still achieve convergence, which is preferable since the convergence error depends
on λ2 (4.2). Also, we will not be concerned with the values of λ and α. Given that they
are adequate for convergence, they only affect the transient, and our main focus is on
permanent regime analysis.

Figure 4.2: State trajectory for α = λ = 10. These values were found experimentally and
do not obey inequations in (4.5), which results in smaller errors. Moreover, the initial
oscillation is due to differentiation transient

Furthermore, figure 4.3 shows us that the estimator was able to track u12 with great
precision. The minor errors that are present in both final state xf and estimate of firm
2’s predation effort û12 are due to the error present in the robust differentiator. Some
undesirable spikes also appear in both estimate and control signal. This problem will be
discussed later in Section 4.4.

The next result, concerns a scenario in which firm 2 uses a CLF design but does
not use an estimator. All other market parameters were kept the same as the previous
case. Figures 4.4 and 4.5 show an example of the intuitive fact that having a dynamical
estimator is a better tactic than using a static estimate. Since u21 accesses a precise
estimate, it develops a better response to firm 2’s behavior. As discussed previously in
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Figure 4.3: Control signal u21 and estimate û12. In this case, u12 is equal to c12 = 4. Some
spikes appear in the transient response due to the characteristics of Levant’s differentiator.

section 3.3, if a firm underestimates its opponent’s predation effort, it will end up having
a smaller market share than its desired market share. Then, firm 1 just needs to adjust
its predation effort in order to create a sufficient gap between u21 and û21, so that firm
2 will be underestimating its competitor. Ultimately the expression for the equilibrium
utilizes firm 1’s desired market share point. The expression for steady state value of u21

is as follows:

u21f = m2 − x2f

x2f
+ ĉ21 (4.9)

The proof for equation (4.9) is similar to that for equation (3.15). Finally, it is worth
mentioning that the only disadvantage of this technique is a minor error in the final state.
This steady state error is due to a minor error present in the estimator. It is possible to
find this error if we check the steady state equation for x1:

0 = −u12x1f + u21x2f − k1x1f + k2x2f (4.10)

substituting u21 as in equations (3.11) and (3.12) leads to:

u12x1f = −(x1 −m1) + û12x1f (4.11)
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which becomes:

x1f = m1

1− ε (4.12)

where ε = u12 − û12

Figure 4.4: State trajectory for α = λ = 10. These values do not satisfy the sufficient
conditions, but still result in convergence. The initial segment of the trajectory is a
consequence of the transient of the estimator. The final state has a small error.

4.3 Both firms using CLF design and estimator

In this section the problem of both firms using a control via CLF, along with a real time
estimator based on the robust differentiator, will be presented. To begin this analysis, we
will check whether the technique achieves the 50-50 market share point under identical
initial conditions. In figure 4.6, it is possible to see that no firm prevails if both use the
same tactics. The predation effort each firm uses, quickly grows to its maximum value,
as can be seen in figure 4.7, in which control signal u12 and both estimates are omitted,
since they do not differ visibly from control signal u21.

We will approach the problem of having an unbalanced market scenario. Initially we
will change only the initial condition and check what happens to the trajectory. Figure
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Figure 4.5: Estimates û12 and û21 and control signals u12 and u21. The estimator final
value has a small error. The spike is also present in the control signal.

4.8 reveals a surprising outcome: firm 1 and 2 ended up sharing the market equally. An
explanation for this fact can be guessed from figure 4.9, where both predation efforts,
u12 and u21, appear. Initially, both firms use a rapidly increasing predatory effort in
order to achieve their goals. Since firm 1 started with a bigger market share, it has to
expend more effort to maintain it, due to the effect of churn. This explains why firm 1’s
predation effort is always bigger than firm 2’s predation effort, that is, u21 ≥ u12. At the
time u21 reaches the limit umax, u12 starts to develop a trajectory that will lead firm 2 to
its objective at m2 = 0.8, since firm 1 is stuck with a constant predation. But in order
to achieve this objective, a predation effort with magnitude much greater than the limit
imposed by umax is required. So, when u12 reaches the value umax, both predation efforts
become equivalent. This occurs exactly at the moment that the state trajectory crosses
the line x1 = x2.

Now that we have studied the effects of different initial conditions, we turn to other
market parameters. In figure 4.10, several state trajectories are presented with different
parameter values, as shown in table 4.1. Churn parameters are kept constant for now,
since we will carefully discuss them later on.

As can be seen, variations in the model parameters are only responsible for changes in
the concavity of the state trajectory. The property of achieving the equal market share
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Figure 4.6: Trajectory for an even market and equal initial conditions. A tie is always
expected when all parameters and control strategies are the same.

point was not lost, and the technique has revealed to be itself robust with respect to these
parameters, since the steady state dynamics do not depend on them. Also it is noticeable
that the trajectory follows the line x1 = x2 after a certain time, and then converges to
the equilibrium point (0.5, 0.5).

Trajectory Number u11 u22 û11 û11 x10 x20 m1 m2
1 2 0.1 2 1 0.3 0.1 0.8 0.9
2 2 1 1 1.5 0.1 0.25 0.9 0.7
3 1 3 2 2 0.2 0.3 0.85 0.8
4 4 2 3 3 0.4 0.15 0.7 0.95
5 0.5 0.5 1 0.3 0.05 0.1 1 1
6 1 10 4 2 0.2 0.05 1 0.8

Table 4.1: Table of parameters used in simulations

We have postponed the discussion for churn parameters because, the final equilibrium
point depends on them. The final market share point expression is the same as the one
shown in equation (3.45). We rewrite it here for convenience.

xf =
(

uMAX + k2

2uMAX + k1 + k2
,

uMAX + k1

2uMAX + k1 + k2

)
(4.13)
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Figure 4.7: Predation effort u21. Again a small spike is present. Notice that the control
quickly saturate.

Figure 4.11 shows some state trajectories for different values of k1 and k2, and figure
4.12 shows their respective time plots. As it is possible to see experimentally from figure
4.11 and analytically from equation (4.13), the use of the technique by both firms simul-
taneously could not avoid the churn effects, let alone achieve their desired market shares.
Also, the bigger the maximum value of predation effort, the more independent from churn
parameters the equilibrium state becomes. This is easy to check since if umax � k1 and
umax � k2, then umax + k1 ≈ umax and umax + k2 ≈ umax, and as a result the final state
xf tends to (0.5, 0.5). In the next section we will further discuss the inherent limitations
of the proposed technique.

4.4 Limitations of the technique

In this subsection we discuss the limitations of the proposed technique, as well as their
consequences. The first observation is that discontinuities may be present in the control
variable. Let us recall expression (3.11):

u21 = u†21 + (u12 + k1)x1

x2
− k2 (4.14)
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Figure 4.8: Trajectory for an even market and different initial conditions. Despite the
inbalance on the initial conditions, firms 1 and 2 ended up evenly sharing the market

where

u†21 = −[(x1 −m1)c11 + (x2 − 1 +m1)c22](1− x1 − x2)− (x1 −m1)2 − (x2 − (1−m1))2

a
(4.15)

a = x1 − x2 − 2m1 + 1 (4.16)

As it is possible to see a defines a line in the plane, and also is the denominator in
the expression of u†21. An undesirable discontinuity will occur if a trajectory reaches any
point on this line. The consequences are depicted in figures 4.13 and 4.14, which show,
respectively, the trajectory and control effort for a situation in which this line is crossed.
As one can see in figures 4.13 and 4.14, the trajectory does not appear to be affected. On
the other hand, both control signals present a severe discontinuity.

When the trajectory approaches the line, the value of u21 approaches ∞. This phe-
nomenon is minimized in our simulation since we have imposed an upper bound on the
predation efforts. The real problem shows up when the trajectory reaches the other side of
the discontinuity line, and the value of u21 suddenly turns to −∞, but is set to zero. Firm
2’s rapidly detects this behavior and zeros its predation effort, since firm 1 is no longer
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Figure 4.9: Control Signals u21 and u12. Notice that after control u21 saturates, firm 2
slows down its predation effort since firm 1 is making constant effort. And later, control
u12 also saturates.

making any predation effort. In the end, both firms end up having a major discontinuity
that is not feasible in a real market scenario.

If both firms are aggressively competitive (i.e., both m1 and m2 are equal to 1) then
the line a = 0 does not divide the domain of possible market shares (0 ≤ x1 ≤ 1 and
0 ≤ x2 ≤ 1), and therefore, no trajectory will be able to cross the line a = 0 and no
discontinuity in the control variable will occur.

Another difficulty one may encounter while applying this technique is the presence
of spikes in the control signal, that has already been cited before. Figure 4.15 shows an
example of spike in a control signal. As mentioned before, large spikes in control effort
(=expenditure) are generally infeasible for a firm in a real market scenario, which makes
this behavior undesirable.

Since this problem is mainly generated by the transient of the robust differentiator,
we will use a method similar to the one proposed by Levant [25] in order to reduce the
transient. A low pass first order filter described by equation (4.17), with an adequately
chosen τ , will be introduced at the output of the robust differentiator.

H (s) = 1
τs+ 1 (4.17)
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Figure 4.10: Examples of state trajectories with k1 = k2 = 0.3. Notice that point (0.5, 0.5)
is the unique equilibrium point for equal churn parameters. Other parameters only affect
the transient response.

As we can see in figure 4.16, the use of the filter causes disappearance of spiking
behavior. The control signal now starts at a higher magnitude and keeps increasing from
there. It is also worth mentioning, that if this filter is used in a situation in which only
one firm is using the proposed control scheme, a small error will appear in the steady
state, proportional to τ .
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Figure 4.11: Example of trajectories for different values of k1 and k2. The final state
depends only on churn parameters and predation effort saturation level.
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Figure 4.12: Firm 1 and 2 market shares along the time for different values of the churn
parameters.
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Figure 4.13: State trajectory crossing the discontinuity line. The trajectory is unaltered
after crossing it.
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Figure 4.14: Control signals now have discontinuities. Notice that the discontinuity
occurs exactly when the trajectory crosses the line a = 0. This is an undesired effect.

45



0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100
M

ag
ni

tu
de

t

 

 
Control Signal with Spikes

Figure 4.15: Control signal with spikes. A filter is necessary to reduce the latter.
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Figure 4.16: Control signal smoothed with τ = 0.1. The spike is gone, and the control
rises more smoothly.
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Chapter 5

Conclusions and future works

In this section we present a brief review of the results obtained through this work, as well
as some conclusions about them. Subsequently, some ideas for future work are proposed.

5.1 Conclusions

In this dissertation we approached the problem of controlling the duopoly model with
churn proposed in [24], which is based on the classical Vidale-Wolfe model. A CLF con-
trol for predatory advertising was designed (a brief review of CLF method was presented
in section 3.1) and used, along with a constant positive advertising, and many different
scenarios were studied.

In section 3.2 the problem of a single firm using CLF predatory control was studied,
and, with the aid of theorem 3.3, we discovered that as long as a firm has an accurate
estimate of the predatory control of its competitor, any final objective can be achieved.
Also it is required that no restrictions are imposed on the magnitude of the firm’s control
signal.

Section 3.3 answered the question of the role played by the estimate of the competitor’s
predatory control. Equation (3.22) shows that an inaccurate estimate can compromise
the effectiveness of the CLF considerably.

Section 3.4 studied the problem of both firms using a CLF strategy. After some
simulations, we verified, and latter demonstrated (theorem 3.6), that two scenarios are
possible for the equilibrium point (if it is unique): a stable node equilibrium, to which all
trajectories in the plane are attracted, and a saddle. The latter causes the trajectories to
deviate from it leading them either to the point (0, 1) or (1, 0), depending on the initial
condition.

The results fo chapter 3 imply that a firm should estimate the predatory effort of its
competitor as accurately as possible, in order to meet the condition presented in theorem
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3.6 to obtain a saddle point and conquer almost the entire market.
Since the estimation of the competitor’s predatory control plays such a key role, chap-

ter 4 was dedicated to find a better alternative to the estimation problem. Section 4.1
made a brief presentation of Levant’s differentiator [25], which was the theoretical basis
for the estimator proposed in this dissertation.

Section 4.2 presented the simulations of one firm using the estimator based on the
robust differentiator, and its competitor using a CLF with constant estimate. We verified
that the final objective was attained with a small error, proportional to the error of the
robust differentiator.

A scenario in which both firms use the estimator was simulated next. We concluded
that the equilibrium point achieved by the system is dependent on the churn parameters
and the maximum value imposed on the predatory control, as shown in equation (4.13).

Finally, section 4.4 investigated the limitations of the technique utilized. We explained
that a severe discontinuity can occur in the control signal (Figure 4.14), when a trajectory
crosses the line that zeroes the denominator of the expression for the predatory control
(Figure 4.13). Also, when utilizing a robust differentiator, spikes can occur in the tran-
sient of the control signal (Figure 4.15, which is a very undesirable phenomena. In order
to diminish this effect, a simple low pass filter was proposed in (4.17).

After this brief review of the results obtained in this dissertation, it is possible to
conclude that the use of a CLF predatory control proved to be much more efficient than
a constant one. However, the technique is very susceptible to errors in the estimate of the
competitor’s predatory control. Also, the control signal can present severe discontinuities
depending on the objective market share.

If both firms are using CLF strategy, the best choice for a firm to estimate its com-
petitor’s predation effort is to choose the maximum control effort possible. Furthermore,
if an estimator based on a robust differentiator is available, it should be used, since its
combined use with the CLF technique was more efficient than the use of a constant es-
timate. One should be aware that the robust differentiator can introduce spikes in the
marketing expenditure of a firm, which can be very undesirable in a real context.

Through this work, it was possible to observe, the CLF technique stressed the model to
its limits. Many saturation in the control signals were found, and the more we developed
the control technique, the more the control signal resembled a step signal. Expending
the entire budget of a firm for an indefinitely long time in a real market scenario surely
is not the best answer one can obtain. This observation exposes a fragility in the model,
concerning the predation term in the dynamics. It is not feasible or trustworthy to rely
on a predation effort that achieves market share directly proportional to the predation
expenditure.
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5.2 Future works

For a future work, a change in predation dynamics should definitely be modeled. It
should be developed in a way that saturation does not occur so easily. The predation
effort should be related to the variation of market share by a bounded function (not
linear, as it is as of now).

Improvements to the CLF technique using more sophisticated functions, should also
be researched in order to mitigate, or even eliminate, discontinuities, spikes, and other
undesirable effects.

Also, studies considering game theory, and thus considering the system as a differential
game, may rise more information about optimality as well as minimax strategies for a
firm.
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