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O problema de fluxo de potência ótimo em redes de corrente alternada (FPO-CA) 

está dentre as ferramentas computacionais necessárias para o suporte à tomada de 

decisão no contexto do planejamento da operação e expansão de sistemas de 

distribuição. Nesta dissertação, emprega-se técnicas de linearização e convexificação 

para obter uma reformulação da versão não-linear do FPO-CA como um problema de 

programação inteira linear mista (PLIM). A formulação proposta: (i) captura o 

comportamento não-linear do sistema de distribuição através de aproximação cuja 

acurácia pode ser arbitrada pelo usuário; (ii) dá suporte a decisões discretas e contínuas; 

(iii) é construída com base em variáveis convencionalmente utilizadas para a descrição 

do comportamento da rede elétrica, o que resulta em flexibilidade na definição de 

funções objetivo e estende a aplicabilidade da formulação proposta a um conjunto 

elevado de problemas; e (iv) pode ser tratada por meio de pacotes comerciais para a 

solução de problemas de programação inteira mista, podendo-se obter soluções ótimas 

globais. Características físicas específicas de sistemas de distribuição são extensamente 

exploradas para obter-se uma formulação PLIM que concilie acurácia e desempenho 

computacional. A aplicabilidade e as características principais da formulação proposta 

são demonstradas com o auxílio de estudos de caso. 
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The alternating current (AC) optimal power flow (ACOPF) is among the 

computational tools required to support decision making in distribution system 

operations and expansion planning. In this dissertation, linearization and 

convexification techniques are employed in order to reformulate the non-linear version 

of the ACOPF for distribution systems, and a mixed-integer linear programming 

reformulation of this problem is proposed. The proposed formulation: (i) captures the 

non-linear behavior of the distribution system with an arbitrarily accurate 

approximation, with attention to the AC nature of the distribution system; (ii) supports 

both continuous and discrete decisions; (iii) is constructed with basis on conventional 

physical variables that describe network behavior, yielding significant flexibility in the 

definition of objective functions and extending its applicability to a number of different 

problems; and (iv) can be solved to global optimality with the use of widely employed 

and commercially available mixed-integer linear optimization solvers. Specific physical 

characteristics of distribution systems are extensively explored for achieving a MILP 

formulation that conciliates the desired attributes of accuracy and computational 

performance. The applicability and the main characteristics of the proposed formulation 

are showcased with help of several case studies. 
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NOMENCLATURE 

The nomenclature presented in the following is used in chapters 2 and 4. 

Indices and sets 

k ; m Indices for buses of the distribution system. 

km Index for branches of the distribution system (this is the concise notation 

for the ordered pair 〈   〉, in which the first entry corresponds to the from 

bus of a given branch, and the second entry corresponds to the to bus of a 

the same branch). 

r ; s  Index for evaluation points and associated variables, used in a number of 

different piecewise-linear approximations. 

     Set of indices for evaluation points   ̂ 
    

 and associated variables. 

     Set of indices for evaluation points   ̂ 
    

 and associated variables. 

    Set of indices for evaluation points   ̂ 
  and associated variables. 

     Set of indices for evaluation points   ̂   
  and associated variables. 

     Set of indices for evaluation points    ̂ 
    

 and associated variables. 

     Set of indices for evaluation points    ̂ 
    

 and associated variables. 

    Set of all branches in the distribution system. 

     Set of circuits that represent candidate reinforcements (candidate current-

carrying facilities). 

     Set of switchable branches in the system. 

    Set of all buses in the distribution system. 

      Set of buses with candidate capacitors. 

        Set of buses to which generators with control over the output of active and 

reactive power connect. 

       Set of buses to which generators with control only over reactive power 

output connect. 

       Set of buses to which curtailable generators connect. 

      Set of all buses to which generators (of any type) connect. 
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       Set of buses to which loads of the constant-current type connect. 

       Set of buses at the interface of the internal network with the external 

network 

       Set of all buses to which loads (of any type) connect. 

    Set of buses directly connected to bus k. 

       Set of all buses to which loads that cannot be shed connect. 

       Set of buses to which loads of the constant-power type connect. 

      Set of voltage reference buses in the system. 

       Set of buses chosen as root buses. 

        Set of all slack buses in the system. 

       Set of all buses to which loads that can be shed connect. 

       Set of buses to which loads of the constant-impedance type connect. 

Parameters 

  
      

Cost coefficient associated with the placement of the candidate capacitor 

at bus k (in $). 

   
       

Cost associated with construction of reinforcement represented by circuit 

km (in $). 

  
      

Cost coefficient associated with curtailment of generator at bus k (in 

$/p.u.). 

  
     

Cost coefficient associated with generation with controllable active 

power output at bus k (in $/p.u.). 

  
        

Cost coefficient associated with imports from the external network, at the 

interface represented as the slack bus k (in $/p.u.). 

       Cost coefficient associated with ohmic losses (in $/p.u.). 

  
      Cost coefficient associated with load shedding at bus k (in $/p.u.). 

   
        

Cost of switching action (cost of changing the status of the switchable 

circuit) associated with circuit km (in $). 

  
    Nominal value of active power demanded by load at bus k (in p.u.). 

  
 

  Nominal value of reactive power demanded by load at bus k (in p.u.). 
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Active power generated by generator at bus k (in p.u.). This is a 

parameter for all generators in set      , and a decision variable for all 

generators in set       . 

  
      

   
Lower and upper bounds for active power output of generator at bus k (in 

p.u.). Defined only for generators in       . 

  
      

 
  

Lower and upper bounds for reactive power output of generator at bus k 

(in p.u.). 

 ̂   
   Evaluation points of real component of slack current of bus k in      . 

    
   ;     

  
 Lower and upper bounds for the real component of the slack current of 

bus k in       (in p.u.). 

    ;     
Lower and upper bounds for magnitude of current flowing through 

branch km (in p.u.). 

  
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 

 
Disjunctive constants for the disjunctive constraints employed for 

modeling generation curtailment. 

  
           

 ;   
           

 ;   
           

 ;   
           

 ;   
           

 ;   
           

 ; 

  
           

 ;   
           

 

 
Disjunctive constants for the disjunctive constraints employed for 

modeling shedding of loads of the constant-current type. 

  
           

 ;   
           

 ;   
           

 ;   
           

 ;   
           

 ;   
           

 ; 

  
           

 ;   
           

 

 
Disjunctive constants for the disjunctive constraints employed for 

modeling shedding of loads of the constant-power type. 

  
           

 ;   
           

 ;   
           

 ;   
           

 ;   
           

 ;   
           

 ; 

  
           

 ;   
           

 

 Disjunctive constants for the disjunctive constraints employed for 

modeling shedding of loads of the constant-impedance type 

  
      ;   

      ;   
      ;   

      

 Disjunctive constants for disjunctive constraints for product  

   (    ). 
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      ;   

      ;   
      ;   

      

 Disjunctive constants for disjunctive constraints for product 

   (    ). 

 ̂ 
   

  Evaluated values of function   (       
  ), for bus k. 

     Resistance of the branch connecting buses k and m (in p.u.). 

  
   Resistance of constant impedance load at bus k (in p.u.). 

 ̂ 
    

  Evaluation point of real component of voltage at bus k (in p.u.). 

 ̂ 
    

  Evaluation point of imaginary component of voltage at bus k (in p.u.). 

 ̂ 
   

   Evaluated values of function   (  
     

  ), for bus k (in p.u.). 

 ̂ 
   Evaluation points of voltage magnitude of bus k in      . 

   ;    Lower and upper bound for magnitude of voltage at bus k (in p.u.). 

  
   

  Fixed voltage magnitude of reference bus k (in p.u.). 

   
    Disjunctive constant for Kirchhoff’s Current Law. 

   
       

 ;    
       

 ;    
       

 ;    
    

 

 Disjunctive constants for Kirchhoff’s Voltage Law. 

     Reactance of the branch connecting buses k and m (in p.u.). 

  
   Reactance of constant impedance load at bus k (in p.u.). 

  
   Impedance of constant impedance load at bus k (in p.u.). 

  
   

  Reference angle for reference bus voltage at bus k (in degrees). 

  ̂ 
    

  Evaluation points of    
  , for branch km (in p.u.). 

  ̂ 
    

  Evaluation points of    
  , for branch km (in p.u.). 

  ̂ 
   

  Evaluated values of function     for branch km (in p.u.). 

 ̂ 
   

  Evaluated values of function   
  (in p.u.

2
). 

 ̂ 
   

   Evaluated value of function   (  
     

  ), for bus k (dimensionless). 

 ̂ 
   

   Evaluated value of function   (  
     

  ), for bus k (dimensionless). 

 ̂ 
   

  Evaluated values of function   (  
     

  ), for bus k (in 1/p.u.). 

   ;  
 
 Lower and upper bounds for the values that    may assume. 

 ̂ 
   

  Evaluated values of function   (  
     

  ), for bus k (in 1/p.u.). 

   ;  
 
 Lower and upper bounds for the values that    may assume. 
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Continuous decision variables 

  
   Active power generated by generator at bus k (in p.u.), free in signal or 

non-negative depending on the upper and lower bounds defined. This is a 

decision variable for all generators in       . 

  
 

  Reactive power generated by generator at bus k (in p.u.), free in signal. 

    
    Real component of current demanded by load connected to bus k (in p.u.), 

free in signal. 

    
    Imaginary component of current demanded by load connected to bus k (in 

p.u.), free in signal. 

    
    Real component of current generated by generator connected to bus k (in 

p.u.), free in signal. 

    
    Imaginary component of current generated by generator connected to bus k  

(in p.u.), free in signal. 

     Magnitude of current flowing through branch km (in p.u.), non-negative. 

   
    Real component of current flowing through the branch connecting buses k 

and m, from bus k to bus m (in p.u.), free in signal. 

   
    Imaginary component of current flowing through the branch connecting 

buses k and m, from bus k to bus m (in p.u.), free in signal. 

    
    Imaginary component of current demanded by load connected to bus k (in 

p.u.), free in signal. 

  
    

  Auxiliary decision variable for modeling the product      
  (in p.u.), free 

in signal or non-negative depending on the upper and lower bounds defined 

for   
 . 

  
    

  Auxiliary decision variable for modeling the product      
  (in p.u.), free 

in signal. 

  
    

  Auxiliary decision variable for modeling the product      
 

 (in p.u.), free 

in signal. 

  
    

  Auxiliary decision variable for modeling the product      
 

 (in p.u.), free 

in signal. 
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    Auxiliary (continuous) decision variable for approximating the product 

       
  , for all buses k in       (in p.u.), free in signal or non-negative 

depending on the upper and lower bounds defined. 

    Magnitude of voltage at bus k (in p.u.), non-negative. 

  
    Real component of voltage at bus k (in p.u.), non-negative. 

  
    Imaginary component of voltage at bus k (in p.u.), free in signal. 

    Continuous decision that assumes the value      if and only if      

and     ; and assumes the value      for all other combinations of the 

binary variables    and   . Dimensionless and non-negative. 

  
   

  Weights for constructing piecewise-linear approximation of non-convex, 

non-linear function of     and     
   (dimensionless), non-negative. 

  
      Auxiliary decision variable for modeling the product    (    ) (in p.u.), 

non-negative. 

  
      Auxiliary continuous decision variable for modeling the product    

(    ) (in p.u.
2
), non-negative. 

    Auxiliary decision variable that models a function of the complex voltage 

components at bus k (dimensionless), non-negative. 

     Auxiliary variable that is at least as high as    , for branch km (in p.u.), 

non-negative. 

   
    Auxiliary variable that is at least as high as the modulus of    

  , for branch 

km (in p.u.), non-negative. 

   
    Auxiliary variable that is at least as high as the modulus of    

  , for branch 

km (in p.u.), non-negative. 

    Auxiliary decision variable that models a function of the complex voltage 

components at bus k (dimensionless), free in signal. 

  
   

  Weights for constructing piecewise-linear approximation of non-convex, 

non-linear functions of    
   and   

   (dimensionless), non-negative. 

    Auxiliary variable that represents approximation of   
 , for k in       (in 

p.u.
2
), non-negative. 

    Auxiliary decision variable that models a function of the complex voltage 

components at bus k (in 1/p.u.), non-negative. 
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    Auxiliary decision variable that models a function of the complex voltage 

components at bus k (in 1/p.u.), free in signal. 

   
   

  Weights for constructing piecewise-linear approximation of    , for branch 

km (dimensionless), non-negative. 

Binary decision variables 

  
  ;   

  Auxiliary binary decision variables for ensuring that the weights   
   

 form 

a SOS2. 

  
  ;   

  Auxiliary binary decision variables for ensuring that the weights   
   

 form a 

SOS2. 

   
  ;    

  Auxiliary binary decision variables for ensuring that the weights    
   

 form 

a SOS2. 

    Binary decision variable that models the decision to disconnect a bus k 

from the system (the generator is disconnected if     ), employed in 

connectivity approach (iii). 

    Binary variable that indicates if load at bus k is shed (     indicates that 

load is shed). 

     Binary variable that represents the status of circuit km: if this is a candidate 

reinforcement,       indicates that reinforcement is built; if this is a 

switchable branch,       indicates that branch is switched-on. 

    Binary variable that indicates if generator at bus k is curtailed (     

indicates that generator is curtailed). 

   
   Binary variable associated to line km that assumes the value    

    if bus 

k is the parent of bus m, and that assumes the value    
    if bus m is the 

parent of bus k. 

 

 

 



 

                                                                                                                                                                                                                                                                    

1 

 

1 INTRODUCTION 

This introductory chapter begins with an exposition of the background and the 

motivation for the development of the research that lead to this dissertation. In section 

1.2, the technical literature on the research topic is reviewed. The objective and the 

technical contributions of this work are presented in section 1.3, and the chapter ends 

with a description of the organization of this document. 

1.1 Background and motivation 

In the course of the last decade, the evolution of business models have either 

brought about important challenges to the distribution segment of the electricity 

business, or enhanced the criticality of previously existing ones: 

(i) Performance-based regulation (or incentive-based regulation) [1]-[5] has 

been adopted in several jurisdictions with the objective of incentivizing 

operational efficiency and controlling costs perceived by electricity 

consumers. Utilities have thus received strong economic incentives to 

optimize the expansion of the distribution network and the use of existing 

distribution assets, which often resulted in pressure to operate the system 

closer to admissible technical limits. 

(ii) The development of information technology has fundamentally changed 

the requirements of retail consumers on the continuity and adequacy of 

electricity supply. This has been a motivation for the adoption of 

reliability-driven economic incentives for regulated distribution utilities 

in many jurisdictions around the globe, strictly binding compliance to 

technical performance standards (supply continuity and adequacy) [4]-[5] 

with the financial health of distribution utilities. 

Also, technological advances associated with the evolution of the electrical 

system towards the smart grid have led to growing attention to the use of sensory 

information and automation within the distribution system. The deployment of these 

technologies is expected not only to facilitate the achievement of operational efficiency 

and adequate technical performance, but also to enhance the observability and 

controllability of the grid. This enhanced controllability is thought to be a feature that 
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will help distribution utilities to better integrate distributed generation and storage 

within their systems, and allow a more active participation of end-consumers (including 

those from the retail segment) in market and system operations [6]-[7]. 

In order to meet the challenges and achieve the goals listed in the previous 

paragraphs, distribution management systems require advanced computational tools  

[7]-[8] to support operation decisions with respect both to traditional processes (such as 

system reconfiguration or integrated voltage/reactive power control) and to new, 

envisioned functions (such as central control of distributed generation). But it is not 

only operations planning that drives the growing demand for advanced computational 

tools for distribution systems: the need for tools to support expansion planning 

decisions has also become more critical, due to the need to coordinate traditional 

activities, such as reinforcement to current-carrying facilities and placement of 

capacitors and switches, with the goals of asset optimization and accommodation of 

distributed generation, among others. 

The alternating current (AC) Optimal Power Flow (ACOPF) is among the tools 

required for several of the distribution system operations and expansion processes listed 

in the previous paragraphs. In the ACOPF problem, one seeks the optimization of a 

given objective function (e.g. minimization of generation costs, minimization of costs of 

ohmic losses), subject to constraints that represent the physical laws governing power 

systems and the operating limits of network equipment. Explicit reference is made here 

to the AC nature of the problem, as a reminder that phenomena related to reactive power 

and to bus voltage magnitudes are of great relevance to distribution system expansion 

and operation [9].  

The reader will notice that several of the distribution system expansion and 

operation processes listed in the previous paragraphs involve discrete decisions, such as 

circuit construction, placement of switches and system reconfiguration. It is obviously 

in the interest of distribution engineers that such discrete decisions are modeled within 

the ACOPF, in order to take full advantage of the optimization tools. However, due to 

the non-linear nature of the ACOPF, factoring discrete decisions into the optimization 

approach is a complex task.  

As described in section 1.3, this dissertation aims at presenting a formulation for 

the ACOPF in distribution systems that is amenable to the incorporation of discrete 
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decisions, and that may thus be used to support a wide range of applications in 

operations and expansion processes.  

1.2 Bibliographic review 

This section provides the reader with a review of the technical literature on 

decision support tools for distribution system operations and expansion planning, with 

focus on the ACOPF problem and, particularly, on discrete decisions. As this 

dissertation is oriented towards the solution of the ACOPF in distribution systems, the 

bibliographic review will emphasize the formulation and solution approach employed 

in the references, regardless of whether each reference deals with single-stage or multi-

stage applications, deterministic or stochastic problems, or other specific features that 

are more involved with the application than to the formulation and solution of the 

ACOPF problem.  

Some of the earlier works on support systems involving discrete decisions for 

distribution planning and operation, such as [10], consist of computational tools that 

basically duplicate ad hoc heuristic analyses conducted by distribution system 

engineers. In reference [10], which is oriented towards distribution expansion planning, 

the proposed computational tool involves the sequential execution of procedures for: 

comparing load forecasts to substation capacity; determining preliminary (discrete) 

reinforcements for the relief of overloads, with help of heuristic procedures; checking 

the feasibility of the preliminary solutions with help of a simplified load flow program 

(the expression is used in [10] without further explanation); and finding solutions that 

remove technical infeasibilities, with help of further heuristics. 

Solution algorithms based on heuristics have, indeed, been widely used in 

distribution system planning. One heuristic technique that has been widely used is the 

branch exchange. This technique, particularly employed in distribution system 

expansion and reconfiguration problems in which radiality constraints must be enforced, 

basically consists of starting from an arbitrary initial solution that complies with the 

radiality constraints, and then iteratively choosing a pair of branches to be exchanged – 

this meaning that, in each iteration, a branch that does not pertain to the active network 

topology is activated, and a branch that pertains to the active topology is deactivated. 

The pair of branches to be activated/deactivated is chosen with help of any given metric 
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that captures the sensitivity of the objective function (e.g., minimization of losses or of 

circuit overloading) with respect to changes in the status of branches. The method is 

usually based on local sensitivities, meaning that the calculation of the sensitivities is 

made considering the network topology verified at the beginning of each iteration. The 

iterative process is repeated until no branch exchanges that result in improvements to 

the objective function are found. Obviously, the branch exchange heuristic applies to 

problems in which the discrete decisions refer to modifications in circuit status 

(switched on/off for reconfiguration problems, and constructed/not constructed for 

expansion problems).  

The authors of [11] make use of a technique such as the one described in the last 

paragraph (though not using the name branch exchange), in the context of feeder 

reconfiguration for loss reduction, and with local sensitivities basically obtained with 

help of the equations of the AC power flow problem, expressed in terms of complex 

branch currents and bus voltages. In [11], formulas for the estimating the local 

sensitivities with different levels of accuracy are presented. 

Reference [12] presents a method for distribution system expansion planning 

that relies on local sensitivities – and the term branch exchange is actually used to 

describe the proposed method. The local sensitivities used for choosing the set of 

branches to be exchanged are calculated with help of linear programming techniques. In 

order to allow the use of linear programming techniques, the authors employ a “direct 

current power flow calculation” [12] to model distribution network behavior. It is worth 

mentioning that the authors initially present a mixed-integer linear programming 

formulation of the OPF in distribution systems, based on the direct current power flow 

formulation, before characterizing this approach as being excessively demanding to 

solve directly, and describing and employing the branch exchange method. The authors 

of [12] also employ the branch exchange method in [13], considering in the latter 

reference a multi-stage problem. 

Heuristic methods based on the calculation of local sensitivities are also applied 

to other problems within distribution system expansion and operations planning. As an 

example, a method based partially in local sensitivities (which are used within a hybrid 

algorithm that combines tabu search with features from other metaheuristics
1
) is 

                                                 
1
 Metaheuristics will be reviewed further in this section. 
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employed in [14] for the capacitor placement and sizing problem, in which network 

behavior is modeled via non-linear equations. Heuristic methods based on local 

sensitivities have also been employed to the problems of coordinated electric vehicle 

charging [15] and distributed generation placement and sizing [16], [17]. 

Heuristic methods based on successively and iteratively performing greedy 

searches, and in each iteration making a decision that most improves the value of a 

given metric, have been proposed for distribution systems applications, particularly for 

the network reconfiguration problems. The branch exchange heuristic is obviously an 

example of such methods. Other examples are those presented in [18] and [19]: in both 

methods, the solution algorithm is based on initially considering all switches closed and 

executing the iterative algorithm, in each iteration opening the switch that results in the 

largest improvement of a given metric. The methods employed in [18] and [19] differ 

from those reviewed in the previous paragraphs in that the evaluation of the metric is 

not based on sensitivity analyses considering the topology at the beginning of each 

iteration as fixed, but rather on implicit investigation of the changes in the evaluation 

metric that would be obtained after a switching decision would be made. In reference 

[18], the evaluation metric is obtained in each iteration via the solution of a modified 

ACOPF, with the simplifying assumption that all loads are current sources, and 

modeling the closed switches as fully adjustable current sources. After the solution of 

this modified ACOPF, the switch that carries the lowest current is selected for opening. 

In the approach of reference [19], the chosen metric is the value of overall system losses 

after the switching decision, and the choice of the switch to be opened in each iteration 

is made via implicit evaluation of all possibilities via the standard Newton method with 

second derivatives. 

There are also classes of greedy algorithms for distribution system 

reconfiguration that include features for partially mitigating the problems of a purely 

greedy search. In the algorithm proposed in reference [20], all switches are initially 

considered opened, and local sensitivities of the proposed objective function 

(incremental losses divided by incremental load served) with respect to branch 

switching are used to screen candidates and make the choice of a single switch to be 

closed in each iteration. The solution of the full set of AC power flow equations is made 

after each closing action in order to ensure feasibility, and the authors propose a 

backtracking feature, based on the construction of lists and on ranking, to mitigate the 
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problems of a purely greedy search. Reference [21] proposes a method that starts with 

all switches closed, and then proceeds to screening candidates and preliminarily 

determining the switch to be opened by evaluating AC power flow equations. A 

heuristic based on the branch exchange technique is used to partially mitigate the short-

sightedness of a purely greedy search. 

A number of methods based on representing a switch by a continuous function, 

rather than a discrete (on/off) model, have been proposed for the distribution system 

reconfiguration problem. Reference [22] proposes a method in which all switches are 

initially considered closed, and heuristics are employed to iteratively open switches 

until the network is radial. The first step in the heuristic procedure for choosing the 

switch to open is an ACOPF in which switches are represented by a linear variable that 

may assume any value within the interval [0, 1]. The objective function of this ACOPF 

accounts for power losses and branch utilization costs. The optimal value of the 

continuous decision variable that represents switches is used for raking candidates, and 

posterior heuristics involving evaluation of full power flow equations, now with 

discretely modeling (on/off) of the status of short-listed switches, are executed to 

support a final decision on the switch to open in each iteration. In [23], switches are 

represented via sigmoidal functions, and a non-linear ACOPF is solved in each iteration 

of a heuristic that starts with a meshed topology and successively open switches, in 

order to achieve a radial topology. The Lagrange multipliers associated with specific 

constraints of the ACOPF are used for the ranking of switches to be opened, in the first 

steps of the heuristic procedure. Sigmoidal functions have also been used to model 

discrete decisions regarding capacitor placement [24], within a heuristic approach which 

is similar to that described above. It is worth mentioning that reference [23] treats both 

network reconfiguration and capacitor placement decisions. 

The attention of the reader is now directed back to methods built upon local 

sensitivities. Besides being used in iterative heuristics, local sensitivities have also been 

used in methods that utilize classical optimization techniques (mainly linear 

programming and mixed-integer linear programming) to solve formulations of the 

ACOPF that are characterized by a local linearization around a pre-defined operating 

point. 

As an example, the authors of [25] present a set of linear equations to solve the 

steady-state power flow problem in distribution networks, and propose a linear 
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programming model for the problem of minimizing losses in a distribution system with 

distributed generation. In the proposed formulation, the complex nature of state 

variables is taken into account while defining equations for the First and Second 

Kirchhoff Laws in rectangular coordinates. As the formulation is expressed in terms of 

complex voltages and current flows and injections (as opposed to complex voltages and 

power flows and injections), the current demanded by constant-power loads would be 

described via non-linear equations. The authors thus employ a representation of 

constant-power loads based on local linearization of the relationship among load 

currents and bus voltages, with help of approximate multiplicative factors determined 

offline (i.e., previously to the solution of the steady state power flow or to the 

optimization problem, and not within the problem solution). The solution approach 

proposed in [25] does not explicitly deals with discrete decisions variables. Another 

example of a method based on local linear approximations used within a linear 

programming approach is [26]. Reference [26] presents an expansion planning model 

with approximate and simplified modeling of network behavior, in which the voltage 

drop across a given branch is approximated as a real quantity, given by the product of 

the branch apparent power flow (in MVA) by a constant calculated offline (i.e., not 

within the solution of the optimization model), as a function of an assumed (lagging) 

power factor, branch impedance and rated voltage. 

Simplified models of network behavior based on local linear approximations are 

also used within MILP approaches to the distribution system expansion planning 

problem. A number of references employ restrictive approximations regarding the 

complex nature of bus voltages and branch currents, while proposing MILP 

formulations. In [27], a mixed-integer expansion planning model that encompasses both 

the primary and the secondary distribution grids is presented. The authors of [27] 

suggest that constraints on voltage drops along sets of branches are explicitly enforced 

only for identified critical routes (a critical route being a set of branches that connects 

the voltage source to a bus with potential violations of voltage limits). They also suggest 

approximating those voltage drops as the product of apparent power flows by a 

multiplicative constant calculated offline, with basis on branch parameters and bus 

voltages obtained from a load flows solved previously to the optimization algorithm. 

MILP approaches that employ other classes of approximations have also been 

proposed for distribution system expansion planning problems. For instance, reference 
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[28] proposes one such model, focusing on switch placement with the objective of 

minimizing capital investment and operation costs, with particular emphasis on 

interruption costs. Due to the exclusive focus on continuity, only the First Kirchhoff 

Law is modeled, with the Second Kirchhoff Law (the voltages law) purposefully not 

being incorporated to the model. 

References [29] and [30] also present mixed-integer models for distribution 

system expansion planning, with particular attention respectively to distributed 

generation and to the treatment of reliability. In both of these references, voltage drops 

across branches are approximated by the real product of branch currents and branch 

impedances (which is a restrictive approximation), and all loads are modeled as fixed 

current injections. Modeling loads as fixed current injections may be interpreted as a 

linearization around a pre-defined operation point, due to the fact that the actual currents 

injections corresponding to constant-power and constant impedance loads vary 

according to bus voltages.  

It is worth pointing out that simplifications such as representing voltage drops 

across branches by the real product of branch currents and branch impedances were also 

employed in mixed-integer programming approaches to distribution system expansion 

planning dated from the early 1980’s, such as [31]. Other MILP formulations for 

distribution system expansion planning problems proposed in the early 1980’s employ 

other classes of approximations regarding the network model. For instance, reference 

[32] focused exclusively in connectivity and balance of power while representing 

network behavior, not accounting for Kirchhoff’s Voltage Law. Other models, such as 

[33], placed emphasis on the solution of the distribution expansion planning problem 

using pre-calculated, aggregate cost functions – the power-loss envelope curves defined 

in [33] –, with little attention to the representation of network behavior. 

A number of other mathematical programming approaches, besides linear and 

mixed-integer programming methods, have been applied to distribution system 

operations and planning problems. References that employ such approaches are 

reviewed in the following. 

In reference [34], which deals with the problem of service restoration in 

unbalanced three-phase distribution systems, the non-linearities associated with the AC 

OPF model are accommodated within a mixed-integer non-linear programming 

formulation. The authors point out that the solver LINGO [35] (citation obtained from 
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[34]), which treats mixed-integer non-linear programs with a branch-and-bound 

algorithm in which each node of the branch-and-bound tree is evaluated via successive 

linear programming, has been used for the solution of the proposed formulation. 

Reference [36] also presents a mixed-integer non-linear programming 

formulation of the distribution system reconfiguration problem. The proposed 

formulation includes binary decisions modeling the connection/disconnection of 

capacitors and generating units. The solution approach involves two-stage Benders 

decomposition, in which all discrete decisions are treated within the master problem 

(which has a quadratic objective function due to the modeling of losses, and includes 

some of the linear network constraints), whereas the slave problem ensures feasibility 

with respect to (non-linear) network behavior. The master and slave problems are 

coupled via linear Benders cuts. 

Variable transformations are an important technique employed in references [37] 

and [38]. Reference [37] presents a mixed-integer quadratically constrained 

programming formulation for the problem of distribution system reconfiguration to 

minimize ohmic losses. The exact formulation of [37] is based on defining 

nonconventional transformed variables in order to model network behavior. Finally, 

reference [38] deals with the problem of distribution network reconfiguration to 

minimize ohmic losses, presenting an exact convex second-order cone programming 

formulation for this problem, as well as a MILP formulation with polyhedral 

approximation of the conic constraints (for which auxiliary nonconventional variables 

are defined). 

Metaheuristics have also been widely employed as solution approaches to 

distribution system operation and planning problems in recent times. The flexibility of 

these approaches allows modeling the full set of non-linear equations for the ACOPF, 

within several classes of problems. The most common approaches used in recent times 

include the methods listed below, used at times in combinations with other heuristics: 

∙ Genetic/evolutionary algorithms: examples of references that make use 

of this technique include [39]-[50]. 

∙ Simulated annealing: examples of references that make use of this 

technique include [51]-[54]. 

∙ Tabu search: examples of references that make use of this technique 

include [55]-[57]. 
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It should be noted that, for the specific problem of network reconfiguration for 

achieving minimal losses in radial distribution systems, a brute-force algorithm based 

on exhaustive search have been proposed in [58]. The authors employ graph-theoretic 

techniques, based on semi-sparse transformations of a current sensitivity matrix, to 

increase the efficiency of the exhaustive search method. 

In complement to the previously mentioned references, the reader may find 

extensive reviews of distribution system planning models in [59] and [60], including 

works that deal with discrete decisions, but that were not treated in this section due to 

the similarity with at least one of the listed references. 

Having concluded the bibliographic review, the objective and the technical 

contributions of this dissertation are presented in the following section. 

1.3 Objective and contributions of this dissertation 

The objective of this dissertation is to develop a mixed-integer linear 

programming (MILP) reformulation of the AC optimal power flow (ACOPF) problem 

for distribution systems that:  

(i) captures the non-linear behavior of the distribution system with an 

arbitrarily accurate approximation; 

(ii) supports both continuous and discrete decisions, respectively via 

continuous and integer decision variables; 

(iii) is constructed with basis on conventional physical variables that 

describe network behavior (bus voltages, branch currents, bus power 

injections, etc.), yielding significant flexibility in defining a number 

of possible objective functions for the ACOPF, and extending its 

applicability to a number of different problems faced by distribution 

system engineers; and 

(iv) can be solved to global optimality with the use of widely employed 

and commercially available mixed-integer linear optimization solvers. 

Furthermore, as most commercially available mixed-integer linear optimization 

solvers have options to provide the user with detailed execution reports, including 

information on the duality gap displayed on-screen during execution, the user is able to 

control the quality of the solutions obtained in the course of the solution of the MILP 
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problem, eventually interrupting the optimization algorithm and obtaining an 

intermediate solution, for which the value of the duality gap is known (i.e., the quality 

of the solution can be controlled), if desired.  

Convexification and linearization techniques will be extensively used to develop 

the MILP reformulation of the ACOPF problem for distribution systems, and the 

particular physical characteristics of the distribution system will be explored while 

applying these techniques, with the goal of enhancing its computational efficiency. 

The technical contributions of this dissertation relate not only to the novelty of 

the proposed MILP reformulation of the ACOPF, but also to the fact that it 

simultaneously accounts for all aspects listed at the beginning of this section. The reader 

will notice that none of the methods presented in the reviewed references 

simultaneously displays the set of attributes (i)-(iv) listed before. The following points 

are highlighted: 

∙ Despite the fact that many of the methods based on heuristics of 

metaheuristics generally lead to high-quality sub-optimal solutions, none 

of them present inherent guarantees of convergence to the global optimal 

solutions. 

∙ Many of the methods based on classical mathematical programming 

techniques, particularly those that employ linear programming or mixed-

integer programming, are based on severe and restrictive approximations 

of the non-linear behavior of the distribution network. 

∙ Some methods based on mathematical programming apply techniques 

that are not currently available in the most commonly used commercial-

grade optimization solvers. The possibility to use commercial 

optimization solvers is important for industry applications, due to the 

guarantee of longevity, maintainability and prevention of obsolescence of 

the solver that underlies practical utility applications. 

At this point, it is worth mentioning that, in the technical literature, reference has 

already been made to the application of the linearization and convexification techniques 

used in this dissertation to power system problems. As an example, the authors of [61], 

while discussing the appropriateness of MILP reformulation of non-linear problems, 

make explicit reference to “network problems with nonlinearities occurring on the 

edges such as the design and management of energy networks design”, though not 
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providing any formulation of a specific problem. In fact, MILP reformulations have 

been proposed for the problem of the ACOPF in transmission systems, employing 

exclusively equations that are functions of voltage and power quantities [62]. However, 

to the knowledge of the author of this dissertation, no formulation directed to 

distribution systems, that employs equations that are functions of voltages and currents 

to describe network behavior, and that take specific characteristics of the distribution 

network into account in order to achieve adequate trade-offs between accuracy and 

computational performance, have been proposed. 

The formulation proposed in this dissertation applies both to radial and to 

meshed distribution systems (a feature that lacks in many of the approaches listed in the 

bibliographic review, notably among those based in greedy heuristics, such as the 

branch exchange technique). However, the application of the proposed approach is 

currently limited to either three-phase balanced distribution systems or to single-phase 

networks. 

1.4 Organization of the dissertation 

The remainder of this dissertation is organized as follows: 

∙ In chapter 2, the non-linear version of the ACOPF problem in 

distribution systems is presented. This chapter will begin with a 

discussion on the particular characteristics of distribution networks that 

are relevant for the formulation and solution of the optimal power flow 

problem. Selected applications of the ACOPF in distribution system 

operations and expansion planning are also presented. 

∙ Convexification and linearization techniques for the reformulation of 

non-linear, non-convex problems (such as the ACOPF in distribution 

systems with discrete decisions) as mixed-integer linear programs are 

presented in chapter 3. 

∙ The proposed MILP reformulation of the ACOPF for distribution 

systems is presented in details in chapter 4. 

∙ The proposed formulation is applied to several case studies in chapter 5. 

The analysis of results of these case studies allows showcasing the 
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applicability of the proposed formulation and discussing its features and 

characteristics.  

∙ Conclusions and suggestions for future work are presented in chapter 6. 

∙ References are listed at the end of this document. 

∙ The input data for the case studies of chapter 5 is presented in Appendix 

A (chapter 7). 

∙ An alternative MILP reformulation of the ACOPF in distribution systems 

is presented in Appendix B (chapter 8). 

∙ An alternative method for formulating the constraints through which the 

current injections of generators are obtained is presented in Appendix C 

(chapter 9). 
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2 THE (NON-LINEAR) ACOPF IN DISTRIBUTION 

SYSTEM OPERATIONS AND EXPANSION 

PLANNING 

This chapter begins with the presentation of characteristics of the distribution 

system that are relevant for the formulation of the ACOPF problem.  

The formulation of the non-linear version of the ACOPF problem for 

distribution systems (not yet including the modeling of discrete decisions
2
) is then 

presented in section 2.2.  

The chapter ends with a list of selected applications of the ACOPF to 

distribution system expansion and operations planning. 

2.1 Relevant characteristics of distribution systems 

For the purposes of this dissertation, the distribution system is defined as the set 

of current-carrying facilities at rated voltages inferior to 69 kV that either functions as 

an isolated system or originates at step-down substations at the interface with the 

subtransmission or transmission network. In this definition, the distribution system 

includes all electrical power sources, loads and associated control equipment connected 

to the buses at rated voltages inferior to 69 kV. This definition is clearly oriented 

towards the ACOPF problem and by no means aims at being exhaustive – this is 

illustrated by the very fact that the definition does not coincide with that used in 

PRODIST [63]
3
, the grid code for electrical power distribution in Brazil. 

The following subsections review particular characteristics of the distribution 

system, which are relevant to the formulation of the ACOPF problem (and particularly 

to its MILP reformulation, as will be seen in chapter 4). 

                                                 
2
 The representation of discrete decisions will be dealt with in chapter 4. 

3
 In PRODIST [63], the distribution system is defined as the set of electrical facilities and equipment 

owned by a distribution utility and located in its concession area, and may include facilities at voltage 

levels equal to and above 69 kV. According to PRODIST, the set of facilities with voltages below 69 kV 

would be defined as the union of the medium voltage and the low voltage distribution (sub)systems. 
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2.1.1 Shunt susceptance of overhead distribution lines  

The first relevant characteristic of distribution systems is that the shunt 

susceptance of overhead distribution lines is comparatively lower than that of overhead 

transmission lines. This relates mainly to rated voltage levels and to constructive 

characteristics of distribution lines. 

In fact, it is usual to consider the shunt susceptance of overhead distribution 

lines may as negligible in power flow calculations. In this case, circuits are represented 

exclusively by their series resistance and reactance – this approximation is considered, 

e.g., in [19], [25], [34], [64]-[67], and will also be adopted in this dissertation. 

2.1.2 Resistance-to-reactance ratio 

Also due to the comparatively lower voltage levels and to constructive 

characteristics, the typical resistance-to-reactance (R/X) ratio of overhead distribution 

lines is comparatively higher than the typical ratio of transmission and subtransmission 

lines. 

This has important implications for the power flow analyses in distribution 

systems, which will be discussed with help of Figure 2.1. 

   

Figure 2.1: Model of a distribution circuit (a); phase diagram considering low R/X ratio;  

(c) phase diagram considering high R/X ratio 

Part (a) of Figure 2.1 depicts a simple series-impedance model of a fictitious 

distribution circuit, in which the line current lags the voltages at the two extremities. 

Parts (b) and (c) indicate phase diagrams, with a higher R/X ratio considered for the 

circuit of part (c). To facilitate the discussion, the modulus of the branch impedance,  
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|         |, is kept approximately constant while varying the R/X ratio from Figure 

2.1.(b) to Figure 2.1.(c).  

By comparing the phase diagrams, it becomes clear that a higher R/X ratio 

results in a lower angular difference between the complex voltages  ̇  and
 
 ̇ . This 

illustrative analysis alludes to the fact that, due to the high R/X ratios, the angular 

differences between complex voltages of buses of a distribution network usually do not 

display values as high as those from transmission systems. 

Figure 2.1 is merely illustrative, and the configuration of the diagrams would 

vary if the phase angle difference between the voltage  ̇  and the line current   ̇  were 

modified. One of the factors that affect the phase angle between bus voltages and 

branch currents is the power factor of bus injections. At this point, the reader shall keep 

in mind that there are usually incentives for customers connected to distribution systems 

to keep the power factor of their loads within relatively narrow intervals – e.g., the 

Brazilian regulation [68] prescribes that the power factor of loads connected to 

distribution systems at all voltage levels below 230 kV shall be kept within the interval 

[0.92lagging, 0.92leading]. The fact that load power factors are usually kept close to unitary 

values basically contributes to keeping the angular differences among complex voltages 

of buses of the distribution network at low values. 

Thus, if any given bus within the distribution system or at its frontier (e.g., the 

bus that represents the high-voltage side of the step-down transformer at an interface 

with the subtransmission or transmission system) is chosen to be the angular reference 

bus, and a reference angle of      = 0° is attributed to it, the voltage angles of all buses 

in the distribution network will usually vary within a narrow interval around zero. The 

reader shall keep this in mind, as this fact will be relevant for the presentation of the 

MILP reformulation of the ACOPF in distribution systems, in chapter 4. 

2.1.3 Radiality constraints and reconfiguration 

As of this writing, distribution systems are predominantly operated radially, as 

the radial configuration allows that adequate protection coordination can be achieved 

even if more economical protection equipment is used – e.g., the protection system may 

be built mainly upon fuses, which are not only economical but also comparatively 

reliable in interrupting fault currents [6]. There are, however, distribution systems that 
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are operated as meshed networks [6], [69]. In fact, meshed operation may be 

economical under strict reliability requirements, and it has been argued that, under 

specific conditions, it may be adequate to facilitate the penetration of distributed 

generation [70]. 

Many distribution systems that are operated radially are meshed in design – this 

meaning that there are switches that may be opened or closed to reconfigure the system 

both in response to a disturbance (e.g., allowing the isolation of a fault) or to enhance 

operating efficiency (e.g., with respect to ohmic losses) [64]. Evidently, in distribution 

systems for which radial operation is required in order to achieve protection 

coordination, any reconfiguration of the network shall comply with radiality constraints. 

2.1.4 Unbalance between phases  

Distribution systems may be subject to unbalanced conditions due to structural 

and operational factors [71]. Structural unbalanced relates to aspects such as the 

existence of single-phase or two-phase circuits (mainly in secondary systems), 

incomplete transposition of three-phase circuits, asymmetrical wiring of transformers, 

etc. Operational unbalance is that associated with the uneven distribution of single-

phase and two-phase loads within the network, and to unbalanced three-phase loads 

[71]. Unbalanced operation in distribution systems may lead to increased losses, limit 

transformer loading and bring additional problems with respect to voltage control [71]. 

The assessment of the impacts of unbalanced operation in power flow 

simulations requires the use of an unbalanced three-phase model, allowing the 

representation of different electrical parameters for each phase of the circuits, as well as 

permitting the modeling of unbalanced loads. It should be noted, however, that 

unbalance between phases in the primary distribution system (medium voltage) is less 

significant than that of the secondary distribution system (low voltage), and that, within 

the primary distribution system, unbalance is less significant in feeders (usually three-

phase circuits) than laterals [72]. 

The ACOPF formulation proposed in this dissertation is based on the equivalent 

single-phase model for balanced three-phase electrical systems, and does not apply to 

unbalanced distribution systems. Its primary applicability is therefore to the primary 
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feeder system
4
. As indicated in section 6, the extension of the proposed MILP 

formulation of the ACOPF model to unbalanced three-phase systems is a possible topic 

for future work. 

2.2 The ACOPF for distribution systems 

This section is dedicated to the presentation of the non-linear version of the 

ACOPF problem for distribution systems
5
, with focus on mathematical modeling. 

Section 2.2.1 introduces the constraints of the ACOPF, through which the 

electrical behavior of the network and of bus injections is modeled. Constraints related 

to equipment operating limits are also presented. Objective functions associated with 

selected applications of the ACOPF for distribution system operations and expansion 

planning are presented in section 2.2.2. 

Though discrete decisions are briefly mentioned in the following sections, their 

full mathematical formulation is presented only in chapter 4. Nonetheless, the reference 

to discrete decisions in this section will allow the reader to notice that the ACOPF for 

distribution system operations and expansion planning applications is a non-convex, 

mixed-integer non-linear programming problem (MINLP). Techniques for the 

reformulation of such problems as mixed-integer linear programs will be presented in 

chapter 3. 

The nomenclature used in this and other chapters of this dissertation has been 

presented at a specific section of this document, before the introductory chapter. 

2.2.1 Constraints: modeling electrical behavior and enforcing 

operating limits  

The formulation presented below is based on expressing complex variables in 

rectangular coordinates (real and imaginary components, as opposed to angles and 

                                                 
4
 It is worth mentioning that, for many of the applications of interest to distribution systems engineers, 

analyses restricted to the primary feeder system are sufficient – e.g., switchable elements are usually 

restricted to the feeder system, meaning that reconfiguration studies executed with models restricted to 

this system will usually lead to satisfactorily accurate results.  

5
 The reader will notice that the formulation presented here is not yet the proposed MILP reformulation of 

the ACOPF, which will be presented only in chapter 4. 
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magnitudes), and utilizing voltages and currents (as opposed to voltages and power 

quantities) to describe Kirchhoff’s laws. The motivation for these modeling choices will 

be presented further in this document. 

2.2.1.1 Kirchhoff’s Laws 

Equations (1) and (2) model Kirchoff’s Current Law for all buses in the 

distribution system: 

 

    
   ∑    

  
         

   ∑    
  

     ,      (1) 

    
   ∑    

  
         

   ∑    
  

     ,      (2) 

 

where: 

k ; m Indices for buses of the distribution system; 

   Set of all buses in the distribution system; 

   Set of buses directly connected to bus k; 

    
   Real component of current demanded by load connected to bus k; 

    
   Imaginary component of current demanded by load connected to bus k; 

    
   Real component of current generated by generator connected to bus k; 

    
   Imaginary component of current generated by generator connected to bus k; 

   
   Real component of current flowing through the branch connecting buses k 

and m, from bus k to bus m; 

   
   Imaginary component of current flowing through the branch connecting 

buses k and m, from bus k to bus m. 

 

The decision variables in equations (1) and (2) are     
  ,     

  ,     
  ,     

  ,    
   and 

   
   (continuous decision variables, free in signal). 

Equations (3) and (4) model Kirchhoff’s Voltage Law for all branches in the 

distribution system: 

 

  
     

      
          

       ,       (3) 

  
     

      
          

       ,       (4) 
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where: 

km Index for branches of the distribution system; 

   Set of all branches in the distribution system; 

  
   Real component of voltage at bus k; 

  
   Imaginary component of voltage at bus k. 

 

At this point, a few words on the notation employed for in the above definitions 

are in order. The set    is considered to be a set of ordered pairs, and the first and 

second entries of each ordered pair correspond to the from and to buses of a branch in 

the distribution system. Thus, the element 〈   〉 of the set    *〈   〉 〈   〉 〈   〉+ 

indicates the distribution circuit that connects bus   to bus  . For the sake of 

conciseness of notation, we refer to 〈   〉 simply as   . 

The decision variables in equations (3) and (4) that have not yet been identified 

are   
   (continuous, non-negative

6
) and   

   (continuous, free in signal). 

The constraints represented by equations (1) to (4) are linear, and can therefore 

be readily represented in linear or mixed-integer linear programs. In fact, the linearity of 

the equations that describe Kirchhoff’s laws is one of the reasons for employing a 

rectangular formulation for the power flow equations, with basis on voltages and 

currents (as opposed to voltages and power quantities) values. 

For switchable branches in the off state or for candidate branches (candidates for 

distribution system expansion) that have not been constructed, these constraints must be 

relaxed. This will be discussed in chapter 4. 

2.2.1.2 Generators 

As Kirchoff’s laws have been formulated with basis on voltages and currents (as 

opposed to voltages and power quantities), it is necessary to obtain the (voltage-

dependent) values of     
   and     

   for all generators in the system. This is done with help 

of equations (5) and (6): 

                                                 
6
 For the typical bus voltage angles verified in distribution systems (considering that the angular reference 

bus is within the distribution system and that the reference angle is zero),   
   may be characterized as a 

non-negative decision variable. 
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 ,        (5) 

    
        

       
 

 ,        (6) 

 

where: 

     Set of all buses to which generators are connected; 

  
  Active power generated by generator at bus k; 

  
 

 Reactive power generated by generator at bus k; 

   ;    Auxiliary decision variables, defined below. 

 

The auxiliary variables    and    are dependent on the real and imaginary 

components of the voltage at bus k, as shown below: 

 

     
  .  

      
   /⁄  ,   *          + (7) 

     
  .  

      
   /⁄  ,   *          + (8) 

 

The decision variables in equations (5) to (8) that have not yet been identified 

are    (continuous, non-negative
7
) and    (continuous, free in signal). It is assumed that 

the reactive power output of all generators in the system is controllable, and   
 

 is thus a 

(continuous) decision variable. Also, if the active power output of the generator at bus k 

is controllable,   
  is a (continuous) decision variable. Whether   

  and   
 

 are non-

negative or free in signal will depend on the bounds defined as inputs for the ACOPF – 

for typical applications,   
  will be non-negative and   

 
 will be free in signal. 

The reader will notice that the constraints specified in equations (7) and (8) are 

enforced not only for the buses pertaining to     , but also for those in the set      . 

This latter set will be defined in section 2.2.1.3.1. 

The non-linear nature of the constraints represented by equations (7) and (8) is 

evident. 

                                                 
7
 For the typical bus voltage angles verified in distribution systems (considering that the angular reference 

bus is within the distribution system and that the reference angle is zero),    may be characterized as a 

non-negative decision variable. 
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2.2.1.3 Loads 

Analogously to what has been done for the current injections from generators, it 

is necessary to define constraints through which the currents     
   and     

   will be 

obtained, for all loads in the system. Those constraints are presented in the following 

sections, for constant-power, constant-current and constant-impedance loads. These are 

the three basic components of the widely employed static load model known as ZIP 

model [73]. For the sake of conciseness of presentation, the equations presented below 

consider that the load at any given bus is modeled as purely of the constant-power type, 

purely of the constant-current type or purely of the constant-impedance type. Still, the 

modification of the equations to account for any affine combination of these types of 

loads is trivial. 

2.2.1.3.1 Constant-power loads 

The currents demanded by constant-power loads are obtained with help of 

equations (9) and (10): 

 

    
        

       
 

 ,         (9) 

    
        

       
 

 ,         (10) 

 

where: 

      Set of all buses to which constant-power loads are connected; 

  
  Nominal value of active power demanded by load at bus k; 

  
 

 Nominal value of reactive power demanded by load at bus k. 

 

The auxiliary variables    and    have already been defined through equations 

(7) and (8). Constraints (9) and (10) are linear. 
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2.2.1.3.2 Constant-current loads 

Keeping in mind that constant-current loads are characterized by the linear 

variation of the demanded power with respect to bus voltage magnitude [73], the 

currents demanded by these loads can be obtained with help of equations (11) and (12): 

 

    
        

       
 

 ,         (11) 

    
        

       
 

 ,         (12) 

 

where: 

      Set of all buses to which constant-current loads are connected; 

   ;    Auxiliary decision variables, defined below. 

 

The auxiliary variables    and    are dependent on the real and imaginary 

components of the voltage at bus k, and defined as: 

 

     
  √  

      
   ⁄  ,          (13) 

     
  √  

      
   ⁄  ,          (14) 

 

The decision variables in equations (11) to (14) that have not yet been identified 

are    (continuous, non-negative
8
) and    (continuous, free in signal). 

Constraints (13) and (14) are clearly non-linear. 

2.2.1.3.3 Constant-impedance loads 

The currents demanded by constant-impedance loads can obtained with help of 

the following constraints: 

 

                                                 
8
 For the typical bus voltage angles verified in distribution systems (considering that the angular reference 

bus is within the distribution system and that the reference angle is zero),    may be characterized as a 

non-negative decision variable. 
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|  
 |
    

   
  
 

|  
 |
  ,         (15) 

    
     

   
  
 

|  
 |
    

   
  
 

|  
 |
  ,         (16) 

 

where: 

      Set of all buses to which constant-impedance loads are connected; 

  
  Resistance of constant-impedance load at bus k; 

  
  Reactance of constant-impedance load at bus k; 

  
  Impedance of constant-impedance load at bus k. 

 

All decision variables in constraints (15) and (16) have been previously 

identified. The reader will notice that (15) and (16) correspond to linear constraints. 

At this point, it is worth recalling that the nominal value of the load associated 

with constant-impedance loads – i.e., the value of the load at the voltage of (    ) p.u. 

– is given by: 

 

  
  

  
 

|  
 |
  ;   

  
  
 

|  
 |
  ,         (17) 

2.2.1.4 Operating limits 

2.2.1.4.1 Bounds on bus voltage magnitudes 

Constraints that ensure that bus voltage magnitudes are kept within admissible 

limits are presented below: 

 

   √  
      

    ,   *       + (18) 

         ,   *       + (19) 

 

where: 

     Set of voltage reference buses in the system; 

   Magnitude of voltage at bus k; 
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   ;    Lower and upper bounds for magnitude of voltage at bus k. 

 

The decision variable in equations (18) and (19) that has not yet been identified 

is    (continuous, non-negative).  

The operator   indicates set difference – i.e.,     *           +, where 

A and B are sets. The reader will notice that constraints (18) and (19) are not enforced 

for the set of voltage reference buses in the distribution system, as discussed in in 

section 2.2.1.5.  

Constraint (18) is evidently non-linear. 

2.2.1.4.2 Bounds on branch currents 

At this point, it is important to recall that thermal loading limits of transmission 

lines are actually related to current loading, despite the fact that, mainly in applications 

of the ACOPF to transmission systems, it is common to represent these thermal loading 

constraints approximately as bounds on apparent power flows. 

The following constraints ensure that branch current magnitudes are kept within 

admissible limits: 

 

    √   
       

   
 ,      (20) 

        ,      (21) 

 

where: 

    Magnitude of current flowing through branch km; 

    Upper bound for magnitude of current flowing through branch km.  

 

The decision variable in equations (20) and (21) that has not yet been identified 

is     (continuous, non-negative).  

The reader will notice that (20) is a non-linear constraint. 
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2.2.1.4.3 Bounds on active and reactive power output of generators 

Constraints that ensure that the active and reactive power output of generators 

are kept within the admissible ranges are presented below: 

 

  
    

    
  ,          (22) 

  
    

    
 

 ,        (23) 

 

where: 

       Set of buses to which generators with control over the output of 

active and reactive power connect; 

  
      

  Lower and upper bounds for active power output of generator at 

bus k; 

  
      

 
 Lower and upper bounds for reactive power output of generator at 

bus k. 

 

Equations (22) and (23) correspond to linear constraints. 

2.2.1.5 Voltage reference buses 

If the representation of more than one islanded system in a single ACOPF 

problem is required, it is necessary to define one (and only one) angular reference bus 

for each island. For this reason, we refer to the definition of voltage reference buses 

(plural emphasized), which pertain to the set     . Obviously, for any specific ACOPF 

application that requires the representation of a single electrical island, the cardinality of 

the set of reference buses will be |    | = 1.  

The real and imaginary components of the complex voltage at the angular 

reference bus may be specified with help of the following constraints: 

 

  
     

   
      

   
 ,         (24) 

  
     

   
      

   
 ,         (25) 
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where: 

  
   

 Fixed voltage magnitude of reference bus, an input parameter for the 

ACOPF; 

     
   

 ;      
   

 

 Cosine and sine of reference angle for reference bus. 

 

As the voltage magnitudes of reference buses are fixed, it is not necessary to 

enforce constraints (18) and (19) for them, hence the previous definition of these 

constraints. 

If, alternatively, the voltage magnitudes at the reference buses are to be 

considered decision variables in any specific application, equations (24) and (25) should 

be substituted for the following constraints: 

 

  
           

   
 ,         (26) 

  
           

   
 ,         (27) 

 

where, as previously stated,    is a continuous decision variable. In this case, constraint 

(19) shall also be enforced for the set of reference buses. 

Constraints (24) to (27) are linear. 

2.2.1.6 Slack buses and buses without generators and/or loads 

The following set of constraints ensures that the load currents of all buses to 

which no loads connect are set to zero: 

 

    
       

     ,    *        + (28) 

 

where: 

      Set of buses to which loads connect,       *                 +. 
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The following set of constraints ensures that the generator currents of all buses 

to which no generators connect are set to zero: 

 

    
       

     ,    {   *           +} (29) 

 

where: 

       Set of all slack buses in the system. 

 

The reader will notice that (29) ensures that the generator currents     
   and     

   

may assume any given value for the buses in set       . It is important to emphasize 

that, in the ACOPF problem, it is not necessary that slack buses are defined – an 

ACOPF problem without slack buses is potentially feasible whenever the generating 

capacity within the system is sufficient to supply its load and cover ohmic losses. 

However, for some specific applications, it may be in the interest of the distribution 

system engineer to define slack buses, and in these cases        will be a nonempty set. 

It should also be emphasized that it is not necessary that the sets        and 

     coincide – i.e., a slack bus may or may not be a voltage reference bus, and a 

voltage reference bus may or may not be a slack bus. 

2.2.1.7 Radiality constraints 

The formulation of radiality constraints demands the use of binary decision 

variables, and will therefore be presented only in chapter 4. For now, it suffices to 

indicate that radiality constraints will ensure that each active bus in every island of the 

system will be connected to the root bus of that island via one and only one electrical 

path, with no loops. The root bus is that from which the radial network originates, and, 

for most practical applications, this will be the bus at the interface of the distribution 

system with the transmission or subtransmission system. 

It is worth recalling that, as stated in section 2.1.3, there are distribution systems 

that are operated in a meshed, and not a radial, fashion. The ACOPF formulation 

proposed in this dissertation is valid both for meshed and for radial systems – the 

difference is that, if radiality is required, a specific set of radiality constraints (that will 

be indicated in chapter 4) must be enforced. 
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2.2.2 Objective functions for selected distribution system 

operations and expansion planning applications 

In this section, the mathematical formulation of objective functions associated 

with selected applications of the ACOPF for distribution system operations and 

expansion planning is presented. The equations of this section are potentially non-linear, 

and their MILP reformulation will be presented in chapter 4. Though applications 

involving discrete decisions are preliminarily presented here (so that the reader can have 

a better comprehension of the full problem to which the linearization and 

convexification techniques presented in chapter 3 will be applied), their full 

mathematical formulation will be shown only in chapter 4. 

Each of the following subsections will begin with the mathematical formulation 

of an objective function, such as minimization of generation costs, minimization of 

costs of losses, minimization of load shedding costs, etc. These may be also interpreted 

as modules of a composite objective function – e.g., a given distribution system 

operations planning application may require the simultaneous minimization of losses 

and of load shedding costs. An enumeration of practical applications of the presented 

objective functions will follow the mathematical formulation in each subsection. This 

enumeration aims not at being exhaustive, but only at illustrating the flexibility of the 

proposed formulation of the ACOPF problem.  

The operations and expansion planning applications presented in this chapter 

involve the evaluation of a single operating point of the distribution grid, which 

constrains the universe of treatable problems to deterministic, single-stage applications. 

It is worth mentioning, however, that both the non-linear formulation presented in this 

chapter and the MILP reformulation presented in chapter 4 may be employed in 

applications in which more than one operating point is evaluated. Thus, it is 

theoretically possible to treat stochastic and multi-stage problems – naturally, at the cost 

of augmented computational requirements –, even though this topic is has not yet been 

subject to research. 
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2.2.2.1 Minimization of costs of load shedding 

In case of contingencies or disturbances that affect the distribution network, load 

shedding may be adopted as a last-resource remedial action. As of this writing, most 

distribution utilities implement load shedding via controlled de-energization of entire 

segments of the distribution network, mainly by maneuvering switches in the primary 

distribution feeder system. With this implementation, each load in the network will be 

either completely de-energized (shed) or will not experience any load shedding at all – 

thus, a representation of the discrete nature of the decision to de-energize of each load is 

required.  

Assuming that the costs of load shedding are proportional to the nominal value 

of the loads in the network, the following formulation may be defined: 

 

         {∑   
       

           } (30) 

 

where: 

      Value of the objective function modeling the (minimization of) load 

shedding costs;       may also be used as a parcel of a composite objective 

function;  

      Set of all buses to which loads are connected, defined as  

      *                 +; 

  
     Cost coefficient associated with load shedding at bus k; 

   Binary decision variable that indicates if load at bus k is shed (     

indicates that load is shed). 

 

This discrete modeling of load shedding demands the modification of some of 

the constraints defined in section 2.2.1. As the modification of these constraints 

involves the use of discrete decision variables, it will be discussed in details only in 

chapter 4. 

Future technological advancements may facilitate the widespread employment 

of other load shedding mechanisms, including those in which the utility decides on what 

parcel of the load to curtail in each bus – i.e., the amount of load shedding in each bus 

would be a continuous decision variable. If such mechanisms are to be considered in an 
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ACOPF application,   
  should be modeled as a continuous decision variable, and the 

following objective function would be employed: 

 

         {∑   
     (  

     
   

 )       } (31) 

 

where: 

      Value of the objective function modeling the (minimization of) load 

shedding costs, considering the case in which   
  is modeled as a continuous 

decision variable;       may also be used as a parcel of a composite 

objective function; 

  
     

 Reference value (value with no load shedding) of the active load at bus k. 

 

This work will focus on the former formulation of the objective function (     , 

as opposed to      ), as it currently corresponds to the more common practice for the 

implementation of emergency, last resource load shedding actions. Thus, for all 

equations presented in this dissertation, with the exception of equation (31),   
  is a 

parameter (the nominal value of the active load at bus k). 

The minimization of load shedding costs may compose the objective function in 

a wide range of applications in distribution operations and expansion planning, such as:  

∙ Elaborations of contingency plans; 

∙ Reliability studies (which would require the evaluation of more than one 

operating point); 

∙ Comparison of alternatives and estimation of added value of 

reinforcements, in the context of system expansion planning. 

2.2.2.2 Minimization of costs of curtailment of non-controllable 

generation 

The distribution utility may not have full control over the output of some of the 

distributed generators in its network, either due to these generators being located at the 

consumer side of the meter (assuming that there is no centralized dispatch mechanism in 

force) or to the fact that they rely on primary energy sources that are essentially non-

controllable, as in the case of solar photovoltaic panels. Depending on specific incentive 
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mechanisms for distributed generation prescribed by regulation in each jurisdiction, it 

may be in the utility’s interest to minimize the curtailment of the output of these kinds 

of generators – e.g., if penalties or monetary compensations are imposed in case 

renewable distributed generation is curtailed. 

Assuming that the active power output of the distributed generation is not 

controllable, and that the only response to short-term violation of operating limits 

caused by these generation is their disconnection from the grid
9
, the objective function 

for the minimization of costs of curtailment of non-controllable distributed generation 

may be formulated as follows: 

 

         2∑   
       

      {           }
3 (32) 

 

where: 

      Value of the objective function modeling the (minimization of) non-

controllable generation curtailment costs;       may also be used as a parcel 

of a composite objective function; 

      Set of buses to which generators with non-controllable active power output 

(reactive power output assumed to be controllable) connect, defined as 

                   ; 

      Set of buses to which curtailable generators connect; 

  
      Cost coefficient associated with curtailment of generator at bus k; 

   Binary variable that indicates if generator is curtailed (     indicates that 

generator is curtailed). 

 

The minimization of the costs of curtailment of non-controllable generation may 

compose the objective function for applications such as: 

∙ Determination of the maximum penetration of distribution generation; 

∙ Distribution system expansion and operations planning under explicit 

modeling of generation curtailment costs. 

                                                 
9
 Alternatively, we may think of the discrete decision to curtail a generator, in the context of medium-

term planning, as an indication of the need to prohibit or postpone its grid connection until future 

reinforcements ensure technical feasibility. This will be further explored in section 5.2.2. 
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2.2.2.3 Minimization of generation costs 

Assuming that generators with non-controllable active power output have null 

variable operation costs (or at least null costs perceived by the distribution utility), the 

objective function for the minimization of variable generation costs within the 

distribution system may be formulated as follows: 

 

        2∑   
      

 
        3 (33) 

 

where: 

     Value of the objective function modeling the (minimization of) variable 

generation costs;      may also be used as a parcel of a composite objective 

function; 

  
    Cost coefficient associated with generation with controllable active power 

output at bus k. 

 

The minimization of variable generation costs may compose the objective 

function for applications such as the economic dispatch of generation resources within 

the distribution system. 

2.2.2.4 Minimization of costs of power imports 

It may be necessary to model the costs associated with power imports from an 

external network (the transmission system or even other distribution systems) in a 

variety of operations or expansion planning applications. One possible way of doing 

that is by modeling power imports as the output of a virtual generator, and employing 

the objective function defined in section 2.2.2.3.  

Another modeling choice would be to represent the bus at the interface with the 

external network as a slack bus which is also a reference bus (implicitly considering 

this bus as an idealized voltage source), and to associate costs to the infeed of active 

power at this bus. Considering this, and assuming the most general case in which the 

reference voltage magnitudes of all buses at the interface with the external network are 
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considered as decision variables, the formulation of the objective function for the 

minimization of the costs of power imports would be: 

 

         {∑   
          (     

   
     
        

   
     
  )       } (34) 

 

where: 

      Set of buses at the interface of the internal network with the external 

network, considered to be defined as                  ; 

      Value of the objective function modeling the (minimization of) costs of 

power imports from an external network;       may also be used as a parcel 

of a composite objective function; 

  
       Cost coefficient associated with imports from the external network, at the 

interface represented as the slack bus k. 

 

It should be kept in mind that, as pointed out in section 2.2.1.5, it is necessary to 

define one (and only one) angular reference bus for each island of the distribution 

system to be simulated. Thus, for most conceivable practical applications, the voltage 

angle of all buses in angle of       may be set to   
   

   , without loss of generality. 

After that, equation (34) may be rewritten as: 

  

         {∑   
              

  
       } (35) 

 

If, besides all modeling assumptions considered so far, the reference voltage 

magnitude of all buses in       is fixed at any arbitrary value   
   

 (an input parameter 

of the ACOPF), the last expression may be rewritten as: 

 

         {∑   
         

   
     
  

       } (36) 

 

The minimization of costs associated with power imports from an external 

network may be employed in application as: 

∙ Least-cost operations and expansion planning studies; 
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∙ Determination of the amount of imports to be contracted at the interface 

with external networks. 

2.2.2.5 Minimization of costs of ohmic losses 

The total ohmic losses within a given distribution system may be calculated 

either by summating the losses of each individual circuit, or by determining the 

difference between the total active power injected into the distribution network and the 

total active power consumed. The latter option is considered for the definition of the 

following objective function: 

 

         {      {∑   
   
     
  

        ∑   
 

           

  ∑   
 

  {           }
 ∑   

  (    )         

  [∑   
 

  *           +  ∑   
  (    )  *           + ]   

 [∑      
 

  *           +  ∑      
  (    )  *           + ] 

  [∑   
  

  
 

|  
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   *           +  ∑   

  
  
 

|  
 |
  (    )  *           + ]++ 

 (37) 

where: 

      Value of the objective function modeling the (minimization of) costs of 

ohmic losses;       may also be used as a parcel of a composite objective 

function; 

      Cost coefficient associated with ohmic losses. 

 

The reader will notice that the first summation at the right portion of equation 

(37) corresponds to the power imported from external networks. For the sake of 

conciseness of presentation, we consider the case in which the voltages of all buses in 

      are fixed at (  
   
   ) p.u. However, the other (more general) cases described in 

section 2.2.2.4 may also be considered while formulating this objective function. 

Yet, even under consideration of the simplest case for the imports from external 

networks, equation (37) is obviously non-linear. Keeping in mind that   
  is a parameter 
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of the ACOPF, it is clear that the non-linearities are associated with the terms      , 

  
  and   

    . 

The cost coefficient       may be set to unity if the value of the objective 

function is to be expressed in MW (or p.u.) rather than in monetary units ($). In fact, 

this cost coefficient may be manipulated according to the requirements of the specific 

application – e.g., if the evaluated operating point is deemed representative of any given 

time interval, the costs coefficient may be determined by the multiplication of the 

duration of the interval in hours and the cost of losses in $/MWh. The same 

consideration basically applies to all cost coefficients presented so far. 

The minimization of (the costs of) ohmic losses may compose the objective 

function in a wide range of applications in operations and expansion planning, such as:  

∙ Network reconfiguration studies; 

∙ Integrated voltage/VAr control planning; 

∙ Planning of network reinforcements (current carrying-facilities); 

∙ Capacitor placement and sizing planning; 

∙ Planning of placement and control of distributed generation. 

2.2.2.6 Minimization of costs of reinforcements to the distribution system 

Expansion planning applications require the determination of the optimal set of 

reinforcements to the distribution system, usually with focus on new circuits, 

substations, and equipment for reactive power support. According to the planning 

objectives of a given utility, the objective function of the planning problem may include 

different components – one of the most important being the costs of reinforcements. 

The objective function for the minimization of the costs of network reinforcements is 

indicated below: 

 

         {∑    
               } (38) 

 

where: 

      Value of the objective function modeling the (minimization of) costs of 

reinforcements to the distribution system;       may also be used as a parcel 

of a composite objective function; 
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    Set of circuits that represent candidate reinforcements to current-carrying 

facilities; 

   
       Cost associated with construction of reinforcement represented by circuit 

km; 

    Binary variable that represents decision of constructing the reinforcement 

represented by km (      indicates that reinforcement is built). 

 

At this point, it is worth mentioning that a fictitious candidate circuit may be 

used to model either a candidate substation of candidate reactive power support 

equipment. For that, it suffices to ensure that the bus corresponding to the candidate 

substation/equipment is only included into the network if the fictitious candidate circuit 

is built (which can be done by manipulating the equivalent network topology), and set 

the value of the impedance of the candidate circuit in order to ensure that its inclusion 

will not materially affect the solution of the ACOPF problem. Naturally, the costs 

associated with the candidate substation/equipment would be represented via the    
      

of the candidate circuit. 

Obviously, it is necessary to ensure that the constraints associated with candidate 

circuits that are not built are relaxed, in the formulation of the ACOPF. As this requires 

discrete decision variables, this matter will be discussed further only in chapter 4. 

2.2.2.7 Minimization of costs of capacitor placement 

The capacitor placement problem involves determining the optimal location and 

sizing of capacitors to be added to the distribution network.  

One option to account for the capacitor placement costs while determining the 

optimal network expansion plan is to employ the same basic formulation described in 

section 2.2.2.6, and then represent the candidate capacitors as a purely reactive (and 

capacitive) load at a candidate bus that is connected to the remainder of the system via a 

fictitious, low-impedance circuit. In this case, the costs of the candidate capacitors 

would be attributed to the candidate, fictitious circuits. 

An alternative for factoring capacitor placement costs into the objective function 

of an ACOPF is to consider the capacitors as a purely reactive, “curtailable” load, and 

then associate the costs of installing the capacitor to the change of status of this reactive 
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load from inactive to active. Mathematically, this corresponds to the following objective 

function: 

 

         {∑   
     (    )      } (39) 

 

where: 

      Value of the objective function modeling the (minimization of) capacitor 

placement costs;       may also be used as a parcel of a composite objective 

function; 

     Set of buses with candidate capacitors; 

  
     Cost coefficient associated with the placement of the candidate capacitor 

(purely reactive, capacitive load) at bus k; 

   Binary variable that indicates if the capacitor (purely reactive, capacitive 

load) is connected to the system (     indicates that capacitor was 

installed and is connected to the system). 

 

As previously mentioned, costs of capacitor placement are considered within 

distribution system expansion planning applications. 

2.2.2.8 Minimization of circuit switching costs 

It is not customary to consider switching costs in applications of distribution 

system operations and planning – normally, the costs of switching actions are 

considered negligible, and the costs considered in studies of system reconfiguration are 

those associated with losses, load shedding, etc. 

However, the following objective function may be defined for applications in 

which switching costs are relevant and must be minimized: 

 

     2∑    
       (     )      

   ∑    
                

   3 (40) 

 

where: 

   
   Set of switchable circuits that were originally active (i.e., switched-on) at the 

situation corresponding to the input data for the ACOPF; 
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    Set of switchable circuits that were originally inactive (i.e., switched-off) at 

the situation corresponding to the input data for the ACOPF; 

    Set of all switchable circuits in the system,        
      

   ; 

   
        Cost of switching action (cost of changing the status of the switchable 

circuit) associated with circuit km; 

    Binary variable that represent the desired state of the switchable circuit km 

(      indicates that it is desired that the circuit is active;       

indicates that it is desired that the circuit is inactive). 
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3 SELECTED TECHNIQUES FOR THE 

REFORMULATION OF NON-LINEAR, NON-

CONVEX PROBLEMS AS MIXED-INTEGER 

LINEAR PROGRAMS 

The ACOPF for distribution system operations and expansion planning 

applications described in chapter 2 is a non-convex, mixed-integer non-linear 

programming (MINLP) problem. Problems of this class are usually difficult to treat 

computationally, and even the continuous relaxation of a non-convex MINLP is a global 

optimization problem [74], likely to be NP-hard (non-deterministic polynomial-time 

hard) [75].  

There are, however, techniques that may be applied to approximate the 

nonlinearities of a MINLP, some of which may be employed to achieve approximations 

of arbitrary accuracy (i.e., with a level of accuracy arbitrated by the user), and 

reformulate the problem as a MILP. Solution algorithms for MILP, which are standard 

features in a wide range of commercially available solvers, may then be used to 

implicitly treat non-convexities, in a process that involves successively partitioning the 

domain of decisions variables. 

The main advantages of reformulating MINLP problems as MILPs are well 

summarized by Geiβler [61], in the excerpt reproduced below: 

 

“The advantage of applying mixed integer linear techniques are that 

these methods are nowadays very mature, that is, they are fast, robust, 

and are able to solve problems with up to millions of variables. In 

addition, these methods have the potential of finding globally optimal 

solutions or at least to provide solution guarantees.” 

 

As the excerpt indicates, one practical advantage of reformulating MINLPs as 

MILPs refers to the maturity of techniques for solving the latter class of problems. It is 

worth emphasizing that such maturity brings about not the only benefits with respect to 

computational performance listed in the excerpt, but also advantages associated with the 

availability of commercial solvers for mixed-integer linear programs. That is to say, 
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there are a number of companies that offer commercial-grade solvers that pertain to 

well-established product lines and may be used to solve mixed-integer linear programs. 

This is an important advantage from the point of view of industry applications, as it 

essentially translates into guarantees of longevity, maintainability and prevention of 

obsolescence of the solver that underlies an optimization solution. 

The excerpt from reference [61] also mentions another class of benefits from 

employing MILP reformulations of MINLPs: the existence of solution guarantees. This 

also relates to another practical advantage associated with the use of commercial 

solvers: as those solvers usually provide the user with detailed execution reports, 

including information on the duality gap displayed on-screen in execution time, the user 

is able control the quality of the solutions obtained in the course of the algorithm 

execution and may, if desired, interrupt the optimization algorithm, accepting an 

intermediate solution for which the value of the duality gap is known (i.e., the quality of 

the solution can be controlled). 

In the following sections, three convexification and linearization techniques for 

the reformulation of MINLPs as MILPs are presented. While presenting the techniques, 

some emphasis will be given to how the determination of the parameters for writing 

down the equality and inequality constraints may affect the accuracy of the 

approximation and the computational efforts associated with the solution of mixed-

integer linear programs – a concept that will be loosely referred to as tightness in this 

dissertation. 

The nomenclature used in this section applies exclusively to the presentation of 

the linearization and convexification techniques. None of the symbols used here should 

be interpreted as referring to any of the physical or economic quantities of the ACOPF 

formulation (either the non-linear version presented at chapter 2 or the MILP 

reformulation presented at chapter 4). 

3.1 Disjunctive constraints 

In optimization problems involving binary decisions (i.e., decisions of the type 

do/don’t), it may be required to represent disjunctions of the feasible region that are 

associated with values of binary decision variables [76]. A disjunction appears when, 



 

                                                                                                                                                                                                                                                                    

42 

 

according to the value of an auxiliary binary variable (a control variable), one set of 

constraints is enforced while another is relaxed. 

For instance, assume that, in a given problem, either the constraint  

∑   
         is to be enforced when the binary variable   assumes the value    , 

or the constraint ∑   
         is to be enforced if    . The enforcement of the 

former constraint implicates in the relaxation of the latter, and vice-versa. This 

disjunction may be modeled with help of the following disjunctive constraints:  

 

∑   
              (41) 

∑   
            (   ) (42) 

 

where the numerical value of the constants    and    must be large enough to ensure 

that constraint (41) is relaxed if     (i.e., that ∑   
         will always be smaller 

than or equal to   ), and that constraint (42) is relaxed if    .  

If each decision variable    is known to vary only within the interval 

        , the minimum value of the constants    and    that ensures that the 

desired constraints are relaxed can be pre-calculated by: 

 

      {∑   
        } subject to                 (43) 

      {∑   
        } subject to                (44) 

 

Disjunctive constraints may also be employed when more than two disjunctions 

of the feasible region need to be modeled.  

For instance, consider the case in which only one of   constraints the type 

∑   
        , with   *   +, is to be enforced at a time. A possible approach is to 

define   binary control variables   , with   *   +, and to write the following set of 

equations: 

 

∑   
            (    ) (45) 

∑       (46) 
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If, analogously to equations (43) and (44), if each decision variable    is known 

to vary only within the interval         , the minimum admissible value of each 

constant    can be pre-calculated by: 

 

      {∑   
        } subject to                 (47) 

 

The determination of the constants   , which are sometimes called big-M 

parameters and which will be referred to disjunctive constants
10

 in this dissertation, may 

be more complex than suggested by the explanation above – there are problems in 

which the solution of equation (47) is complex, the determination of the bounds of the 

interval          is not immediate, or for which the other constraints of the problem 

may implicitly determine the actual range within which the decision variables may vary 

(which may be narrower than that defined simply by bounds informed as input 

parameters).  

Nonetheless, defining disjunctive constants with the lowest possible absolute 

value is desired from the point of view of computational efficiency. This definition of 

tight values for the disjunctive constants is important because solution algorithms for 

MILPs include an intermediary relaxation step, in which integer decision variables are 

allowed to assume any continuous value – i.e., the associated integrality constraint is 

relaxed. Generally speaking, the closer the feasible space of this relaxed problem is to 

the convex hull of the original mixed-integer linear problem [76], the more 

computationally efficient will be the solution of a given mixed-integer linear program. 

The values of disjunctive constraints affect the size of the feasible space for the linear 

relaxations of the MILP [77]:  defining tight disjunctive constraints will result in tighter 

linear relaxations – i.e., linear relaxations that are more tightly wrapped around the 

convex hull. 

A few words on the nature of the procedure describe above are in order before 

moving on to section 3.2. The MILP problem obtained after applying disjunctive 

constraints to represent disjunctions of the feasible space is not convex. In fact, the 

phenomenon that we wish to represent, the disjunction of the feasible space, 

                                                 
10

 We employ the term disjunctive constant in order not to necessarily associate the constants with the 

letter ―M‖, as other letters, besides ―M‖, will be also used to denote disjunctive constants in chapter 4. 
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corresponds to a non-convexity. However, the MILP formulation obtained by applying 

disjunctive constraints is treatable by solution algorithms that inherently treat non-

convexities, by constructing a number of partitions of the feasible region and 

successively investigating these partitions, in an ordered fashion. Thus, disjunctive 

constraints are not a convexification technique per se, but a reformulation technique that 

allows treating non-convexities through algorithms designed to solve MILP problems. 

3.2 Special ordered sets of type 2 

The concept of ordered sets of decision variables, introduced in [78], may be 

used in two main classes of optimization applications: 

(i) Special ordered sets of type 1 (SOS1) are those in which no more than 

one variable may assume a non-zero value in the final solution of an 

optimization problem. Those ordered sets may be used to treat discrete 

functions that represent “multiple choice problems”, in which a single 

choice must be made among several discrete alternatives. 

(ii) Special ordered sets of type 2 (SOS2) are those in which no more than 

two variables may assume a non-zero value in the final solution of an 

optimization problem, and if two variables are non-zero they must be 

adjacent (consecutive in their ordering). SOS2 may be used to construct 

piecewise-linear approximations of non-convex, non-linear functions, 

such that these approximations can be integrated into a mixed-integer 

linear program.  

The focus of this section will be on SOS2 and, particularly, on their application 

in piecewise-linear approximations of non-convex, non-linear functions. 

Consider the example of Figure 3.1, which depicts a non-convex, non-linear 

function of a single variable,    ( ), as well as its piecewise-linear approximation, 

 ( ). As indicated in the figure, the value of the function    ( ) is calculated at   

different evaluation points  ̂ , with   *   +, thus resulting in   evaluated values  ̂ . 

Linear segments are then obtained by constructing affine combinations of consecutive 

 ̂ . Such an approximation will be linear within each segment, and therefore treatable 

through classical MILP techniques. The reader will notice that it is necessary that the 

affine combinations are constructed strictly with basis on consecutive evaluated values 
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 ̂ , in order to preserve the representativeness of the approximated function with respect 

to the original, non-linear one – e.g., it is clear that an affine combination of the 

evaluated values  ̂  and  ̂  of Figure 3.1 would result in a linear segment that bears no 

resemblance with the original function. 

 

Figure 3.1: Piecewise-linearization f(x) of non-linear functions fNL(x) and special ordered sets of type 2. 

In order to ensure that the segments of the piecewise-linear approximation are 

built strictly with basis on affine combinations of consecutive  ̂ , the weights associated 

with every evaluated value are treated as elements of an ordered set, and constraints are 

added to the MILP formulation to guarantee that at most two of the weights will assume 

a non-zero value in the final solution of the optimization problem, and any two non-zero 

values must be consecutive  – i.e., the weights are treated as a SOS2. Naturally, as we 

are dealing with affine combinations, the weights must sum up to unity. 

It is also necessary to obtain the argument of the approximated function that 

corresponds to the function value obtained by the affine combination of   ̂ . The 

argument of the approximated function is obtained via an affine combination of the 

evaluation points  ̂ , using the same weights employed for the affine combination of the 

evaluated values  ̂ . 

In the following, the mathematical formulation corresponding to the procedure 

described above is presented. Equation (48) corresponds to the reference row [78] of 

this formulation – the constraint by which the value of the argument   is obtained via 

the convex combination of the evaluated points  ̂
 : 

 

∑     ̂  
      (48) 
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In equation (87), the continuous decision variables   , with   *   +, are the 

weights for the affine combination, and pertain to a SOS2. The constraints for enforcing 

the special structure of this ordered set will be presented further in this section. 

The approximated value of the function,  , is obtained with help of constraint  

(49), which is usually referred to as the function row: 

 

∑     ̂  
      (49) 

 

The following constraint ensures that the weights    sum up to unity, and is 

referred to as the convexity row: 

  

∑    
      (50) 

 

It is now necessary to define constraints to ensure that the set of weights   , with 

  *   +, form a special ordered set of type 2 – i.e., constraints that impose that no 

more than two of those weights may assume non-zero values, and if two weights are 

non-zero they must be adjacent. This may be done by introducing   binary decision 

variables   , one for each weight   , and defining the following constraints: 

 

∑    
      (51) 

      (52) 

           ,    *   + (53) 

 

It is worth mentioning that specialized, efficient branching rules have been 

proposed for the solution of MILP with SOS2 constraints [78]. These specialized 

branching rules for SOS2 constraints are currently standard features in most commercial 

grade optimization solvers [75], [79], for the one-dimensional case. 

The procedure presented above applies to the approximation of non-convex, 

non-linear functions of a single variable. This procedure can be extended for functions 

of higher dimension. 

If a piecewise-approximation of a non-convex, non-linear function of two 

variables,    (   ), is to be constructed, a possible alternative is to determine a grid of 
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evaluation points ( ̂   ̂ ), with   *    + and   *    +, and determine the 

evaluated values  ̂       ( ̂
   ̂ ) at each point of the grid. Within each region 

delimited by four vertices of the grid (the reader will notice that a rectangular grid is 

assumed here), the approximation   of the non-linear function will be obtained via an 

affine combination of the corresponding evaluated values. The set of weights      

associated with each point ( ̂   ̂ ) is ordered, and constraints must be added to ensure 

that no more than four weights may assume non-zero values, and that the weights that 

assume non-zero values are adjacent. A possible mathematical formulation for this 

procedure is presented below: 

 

∑ ∑      [
 ̂ 

 ̂ 
]  

   
  

    0
 
 1 (54) 

∑ ∑       ̂     

   
  

      (55) 

∑ ∑       

   
  

      (56) 

 

The following constraints impose the required structure on the set of weights 

    : 

 

∑       

      (57) 

          ,    *    + (58) 

                 ,    *    +     *    + (59) 

∑       

      (60) 

          ,    *    + (61) 

                 ,    *    +     *    + (62) 

 

where     , with   *    +, and     , with   *    +, are binary decision 

variables. 

As previously stated, the procedure described above involves the construction of 

a rectangular grid of points at which the value of the non-linear function is evaluated. 

Procedures for constructing piecewise-linear approximations of non-linear functions of 

two variables based on constructing triangular grids of evaluation points (triangulation) 

have been proposed in the technical literature [61], [80], there being evidence that their 
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computational performance is superior to that of procedures based on rectangular grids. 

Yet, such procedures are not considered in this dissertation, and their application to the 

ACOPF in distribution systems will be the object of future work. 

At this point, a few words on the computational requirements for the piecewise-

linear approximation of non-convex, non-linear functions with SOS2 are in order. The 

computational requirements for these approximations grow significantly fast with the 

dimensions of the functions to be approximated [61]. Thus, non-convex functions of 

three decisions variables are significantly more complex to treat than functions of two 

variables, and so on. It is worth mentioning that, as will be seen in chapter 4, the 

proposed formulation of the ACOPF requires only that functions of two arguments are 

approximated.  

Another observation, immediately drawn from the equations presented in this 

section, is that the SOS2 approach to dealing with non-convex, non-linear functions of 

decision variables involves a trade-off between the desired level of approximation 

accuracy and the computational performance. For instance, Figure 3.1 clearly illustrates 

that, in arbitrating the number and location of evaluation points  ̂ , the user can control 

the approximation accuracy. Nevertheless, using more evaluation points leads not only 

to increased accuracy, but also to an increased number of integer variables and 

constraints, which may lead to increased computational requirements. Obviously, the 

optimal trade-off between accuracy and computational performance depends on how 

severe the non-linearities of the function being approximated are.  The results displayed 

in chapter 5 suggest that, for the ACOPF proposed in this dissertation, the 

computational requirements necessary to ensure satisfactorily accurate solutions are 

manageable. 

Naturally, the choice of the points at which the non-linear function is evaluated 

directly affects both the accuracy of the piecewise-linear approximation and the 

computational requirements for the solution of the MILP. Again referring to the 

example of Figure 3.1, it is clear that adding an evaluation point between  ̂  and  ̂  

would increase the number of integer variables without substantially increasing the 

quality of the approximation, and that removing the evaluation point  ̂  would 

significant impact the accuracy of the approximation, despite of removing one integer 

variable. Thus, the tightness of the formulation is directly affected by the choice of 

evaluation points. The reader will notice that the term tightness is used here with a 
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slightly different meaning of that of section 3.1, but still in reference to the definition of 

parameters that affect accuracy and computational performance. 

Before moving on, it is important to mention that using a smaller number of 

evaluation points will not necessarily lead to a faster solution of the MILP for all 

applications – e.g., if branch-and-bound is being used for the solution of the MILP, it 

may be that having more evaluation points leads to a particular pattern of investigation 

of the branch-and-bound tree that allows a faster convergence of the duality gap to zero.  

3.3 Convex envelopes for bilinear products 

Bilinear products are products of two continuous decision variables, such as  

x·y. Those products are obviously non-convex and non-linear. A possible approach to 

treat bilinear products within linear programming (LP) formulations (and by extension 

within MILP formulations) is to substitute them by an auxiliary variable, z, and then 

define constraints that are linear functions of x and y and that bound z within a narrow 

interval around the true value of x·y.  

The most general case of this approach is to define linear constraints that bound 

z from below and from above – respectively, a convex underestimator and a concave 

overestimator for the bilinear product. A convex under-estimator is a function u(x, y) 

such that u(x, y) ≤ x·y for all values that x and y may assume. Analogously, a concave 

over-estimator is a function o(x, y) such that o(x, y) ≥ x·y in the domain of interest. 

Together, these form the convex envelope for the bilinear product. 

The definition of the last paragraph correctly suggests that many different 

functions may serve as convex underestimators and concave overestimators. However, 

there is obviously interest in defining the tightest possible convex envelope for the 

bilinear product. As the auxiliary variable z will be allowed to assume any value in the 

interval u(x, y) ≤ z ≤ o(x, y), the maximum potential approximation error will obviously 

depend on how tightly the envelope wraps the bilinear product – i.e., on how significant 

the differences x·y – u(x, y) and o(x, y) – x·y can be. 

The tightest possible convex envelope for bilinear products x·y has been 

determined by McCormick [81], and is thus commonly referred to as McCormick’s 

envelope. Assuming x bounded within the interval        and y bounded within 
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     , McCormick’s envelope for the auxiliary variable z is defined with help of 

the following linear constraints: 

 

              (63) 

              (64) 

              (65) 

              (66) 

 

where equations (63) and (64) correspond to the convex under-estimator and equations 

(65) and (66) to the concave over-estimator for x·y. 

As previously stated, McCormick’s envelope is the tightest possible convex 

envelope for bilinear products. The tightness of McCormick’s envelope for each 

application, however, depends on how accurate the upper and lower bounds of the 

intervals       and       are defined.  

In order to understand that, consider that         and         for a 

certain application. Assume, however, that a mistake was inadvertently made while 

defining the upper and lower bounds for the variation of x and y, and the lower bounds 

for the interval were wrongfully taken as        . Figure 3.2 indicates the actual 

value of the product x·y, as well as the convex underestimator and the concave 

overestimator for McCormick’s envelope when both x and y are incorrectly considered 

to vary within [0.5, 1.5]. In this case, the absolute value of the approximation error 

within the correct domain (i.e., [1.0, 1.5] for x and y) may be as high as 0.25. 
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Figure 3.2: Bilinear products and McCormick’s envelope, considering the incorrect lower bound of 0.5 for x 

and y: z = x·y (left); overestimator for z (middle); underestimator for z (right). 

Consider now that the mistake has been identified and corrected, and that the 

correct lower bound         has been considered while constructing McCormick’s 

envelope for the bilinear product. In this situation, the convex underestimator and the 

concave overestimator indicated in Figure 3.3 would be obtained. In order to facilitate 

the comparison, the range of the axes of all graphs in Figure 3.3 matches that of Figure 

3.2. After a comparison of the figures, it becomes clear that the convex envelope 

indicated in Figure 3.3 is much tighter within the domain of interest – i.e., for x and y 

varying within [1.0, 1.5] – than that of Figure 3.2. In fact, now the maximum absolute 

value of the approximation error within the domain of interest is 0.0625 (a significant 

decrease over the 0.25 of the previous paragraph). 

 

Figure 3.3: Bilinear products and McCormick’s envelope, consider the correct lower bound of 1.0 for x and y:  

z = x·y (left); overestimator for z (middle); underestimator for z (right). 
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The previous analysis illustrates the fact that, for any given application, the 

accuracy of the approximation obtained by McCormick’s envelope will be dictated by 

how tight one is able to define the upper and lower bounds on the values that the 

continuous variables may assume. The closer these parameters match the actual interval 

in which the continuous decision variables may vary, the better the approximation will 

be.  

Before moving on to the next chapter, it is worth briefly mentioning that 

analytical expressions for convex envelopes for trilinear and quadrilinear terms 

(respectively, products of three and four continuous decisions variables) have been 

proposed in the technical literature [82], [83]. Those are not employed in the MILP 

formulation proposed in this dissertation. 
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4 THE MILP REFORMULATION OF THE ACOPF 

FOR DISTRIBUTION SYSTEMS 

This chapter presents the main technical contribution of this dissertation: the 

MILP reformulation of the ACOPF problem for distribution systems, with focus on 

operations and expansion planning applications. 

In Section 4.1, the main characteristics of the proposed MILP reformulation of 

the ACOPF for distribution systems are presented, and the practical advantages 

associated with these characteristics are discussed in detail. The mathematical 

formulation of the mixed-integer linear program is presented in section 4.2.  

While defining the mathematical expressions of section 4.2, reference will be 

made to a number of parameters that are needed for the use of the linearization and 

convexification techniques defined in chapter 3: (i) the disjunctive constants necessary 

for the definition of disjunctive constraints; (ii) the evaluation points and evaluated 

values necessary for the definition of piecewise-linear approximations with SOS2; and 

(iii) the upper and lower bounds for the continuous variables whose product is modeled 

with help of McCormick’s envelope. As seen in chapter 3, the definition of these 

parameters affects the accuracy of the approximations and/or the computational 

requirements for the solution of the resulting mixed-integer linear program. Section 4.3 

will deal with the definition of these parameters, taking advantage of particular 

characteristics of the distribution system in order to achieve satisfactory trade-offs 

between accuracy and computational performance. 

In section 4.4, reference is made to an alternative MILP reformulation of the 

ACOPF in distribution systems. This alternative formulation, which is thoroughly 

presented in Appendix B (chapter 8), has been investigated as part of the research 

activities that led to the present dissertation, but abandoned at early stages due to its 

performance being inferior, with respect to accuracy and computational requirements, to 

the formulation presented in this fourth chapter. 
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4.1 Main characteristics of the proposed formulation 

The main characteristics of the proposed MILP reformulation of the ACOPF for 

distribution systems are directly related to the advantageous features of the proposed 

formulation, which have been already mentioned in the introductory section of this 

dissertation, and are reproduced below for the sake of clarity: 

(i) The proposed formulation captures the non-linear behavior of the 

distribution system with an arbitrarily accurate approximation. 

(ii) The proposed formulation supports both continuous and discrete 

decisions, respectively via continuous and integer decision variables. 

(iii) The proposed formulation is constructed with basis on conventional 

physical variables that describe network behavior (bus voltages, 

branch currents, bus power injections, etc.), yielding significant 

flexibility in defining a number of possible objective functions for the 

ACOPF, and extending its applicability to a number of different 

problems faced by distribution system engineers. 

(iv) The proposed formulation can be solved to global optimality with the 

use of widely employed and commercially available mixed-integer 

linear optimization solvers. 

The direct relationship of the abovementioned features to the characteristics of 

the proposed formulation will become clear with the discussion of the next subsections. 

4.1.1 Rectangular coordinates, current-voltage formulation of 

Kirchhoff’s laws 

The first relevant characteristic is that the proposed formulation is based on 

expressing complex variables in rectangular coordinates (real and imaginary 

components, as opposed to angles and magnitudes), and utilizing voltages and currents 

(as opposed to voltages and power quantities) to describe Kirchhoff’s laws. As seen in 

section 2.2.1.1 of this document, this leads to the linearity of the set of constraints 

describing Kirchhoff’s laws. Thus, these linear constraints can be immediately factored 

into a MILP problem, without the need to employ any transformation (e.g., linearization 
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or convexification) that may result in approximations or demand the use of integer 

variables. 

As seen in chapter 2, employing rectangular coordinates and describing the 

behavior of the network via current-voltage equations brings about some non-linearities 

that would not be verified if the power-voltage formulation of network equations were 

used: obtaining the current injections corresponding to the power injections of 

generators and loads of the constant-power and constant-current types require the use 

of non-linear equations. Nonetheless, the linearization and convexification techniques 

described in chapter 3 allow dealing with these latter non-linearities efficiently – 

partially due to the fact that specific characteristics of the distribution system 

(particularly those described in section 2.1.2, which result in the voltage angles of all 

buses of typical distribution systems varying within narrow intervals around     = 0°) 

allow conciliating accuracy and computational performance, as we will see later in this 

chapter.  

It is important to emphasize that, even if the power-voltage description of 

Kirchhoff’s laws were to be used, representing loads of the constant-current type would 

demand non-linear equations. Besides, loads of the constant-impedance type, which are 

described exclusively via linear equations when Kirchhoff’s laws are described with 

current-voltage quantities, would require non-linear equations for their description in 

case Kirchhoff’s laws were formulated with basis on voltages and power quantities. 

One last advantage of using the current-voltage description of Kirchhoff’s laws 

is that this facilitates the formulation of constraints representing thermal loading limits 

of overhead lines. Such thermal loading limits are associated with maximum admissible 

currents (despite the fact that these limits are commonly approximated as limits on 

apparent power flows in many applications), and currents are ―natural‖ decision 

variables in the proposed formulation. 

4.1.2 Use of integer decision variables 

As stated in the introductory chapter of this dissertation, there are a number of 

applications in distribution systems operations and expansion planning that involve 

discrete decisions. The most traditional of these relate to binary decisions on 

reinforcements to the network (either build or do not build the reinforcement) and to 
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network reconfiguration (a switch is either on or off). Also, depending on the level of 

detail of the representation of the network and on the necessity to accurately represent 

operation actions of the distribution company, other discrete decisions may need to be 

modeled – e.g., the reader will recall that most distribution utilities currently implement 

load shedding by de-energizing entire segments of the primary distribution feeder 

system If this procedure is to be simulated, the decision to shed any given load at the 

distribution system is discrete, as the load is either energized or de-energized. 

If classical mathematical programming techniques are to be used for the 

formulation and solution of the ACOPF, the representation of discrete decisions such as 

those mentioned above require the use of integer decision variables. Notably, binary 

decisions (of the type do or don’t) may be formulated by using binary decision variables 

(which may only assume the values 0 or 1). Naturally, it is also required to represent 

continuous decisions in the ACOPF problem for distribution system, in order to allow 

answering questions such as how much to import from an external network, or how 

much should the output of a given generator be. 

Also, the definition of certain type of constraints may require the use of integer 

variables. This is the case of constraints for ensuring network radiality, which will be 

defined further in this chapter. 

4.1.3 Treatment of non-convexities and non-linearities 

The need to model discrete decisions is not the only reason for employing 

integer decision variables in the proposed reformulation of the ACOPF problem. As 

seen in section 3.2, the piecewise-linear approximation of non-convex, non-linear 

functions based on using SOS2 also requires that binary variables are used, in order to 

impose a certain structure on ordered sets of decision variables. It is the structure 

imposed by binary constraints that allow defining the segments of the piecewise-linear 

approximation exclusively as convex combinations of adjacent evaluated values, and it 

is the binary variables that contain the information of which segment of the piecewise-

linear approximated function is active at the solution of the optimization problem. The 

auxiliary binary decision variables are of uttermost importance: as only one of the linear 

segments of the piecewiwe-linear approximation is active at a time, and as a linear 
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segment is convex (and obviously linear) by definition, the piecewise-linear 

approximation may be factored into a mixed-integer linear program. 

Also, the procedure described in section 3.2 may be used to obtain 

approximations of arbitrary accuracy – i.e., with a level of accuracy arbitrated by the 

user and directly related to the number of segments used to approximate the original 

non-convex, non-linear function. Enhanced accuracy comes at the cost of augmented 

computational complexity – but the case study results in chapter 5 will show that, for 

the problem at hand and when particular characteristics of the distribution system are 

correctly taken into account while determining the parameters used to write down the 

constraints, satisfactory compromises between accuracy and computational performance 

can be achieved.  This is partially related to the fact that the approximated functions 

have low dimensions (i.e., they are not functions with a large number of arguments) and 

are fairly well behaved. 

It is worth mentioning that, among the two techniques presented in chapter 3 for 

producing approximations of non-convex, non-linear functions, only that based on 

piecewise-linear approximations with the use of SOS2 constraints (section 3.2) may 

always have its accuracy directly controlled by the user. The accuracy of the 

approximation obtained with McCormick’s envelope (section 3.3) for products of two 

continuous decision variables     is implicitly determined by the lower and upper 

bounds on   and  . However, the reader will notice that there are no impediments for 

employing a SOS2-based piecewise-linear approximation of products of two continuous 

decision variables – thus, if needed, the MILP reformulation of the ACOPF may be 

made entirely independent of McCormick’s envelope, which results in the 

approximation accuracy always being controlled by the user. In fact, a SOS2-based 

reformulation of the bilinear products that appear in the constraints used for obtaining 

generator current injections is presented in Appendix C (section 9) of this dissertation, 

and used in the case study of section 5.2.3. 

4.1.4 Final formulation as a MILP 

All of the features mentioned above can be accommodated within a MILP 

formulation. This leads to a class of benefits that can hardly be overestimated, and are 

associated with the maturity of the techniques and commercial-grade software packages 
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dedicated to the solution of mixed-integer linear programs, as extensively described at 

the beginning of chapter 3. 

4.2 Mathematical formulation 

As in chapter 2, the constraints employed for modeling the behavior of the 

network and enforcing operating limits will be presented first. This is done in 

subsection 4.2.1. Objective functions for selected distribution system operations and 

expansion planning applications will be presented in subsection 4.2.2. 

4.2.1 Constraints: modeling electrical behavior and enforcing 

operating limits 

4.2.1.1 Kirchhoff’s Laws 

The constraints presented in subsection 2.2.1.1 for modeling Kirchhoff’s Current 

Law are entirely linear, and can be factored into a MILP without any modification. For 

the sake of clarity, constraints (1) and (2) of subsection 2.2.1.1 are reproduced below: 

 

    
   ∑    

  
         

   ∑    
  

     ,       (67) 

    
   ∑    

  
         

   ∑    
  

     ,       (68) 

 

One of the main reasons for proposing a MILP reformulation of the ACOPF was 

to model decisions regarding the change of status of branches of the network: branches 

may be active or inactive. For switchable circuits, the states active and inactive 

correspond to switched-on or switched-off; for candidate reinforcements for distribution 

system expansion, these states correspond to built or not built. 

Normally, it is not all branches of the distribution network that can have their 

status modified: there may be many existing, non-switchable branches that are always 

active. For these circuits, the following constraints model Kirchhoff’s Voltage Law:  

 

  
     

      
          

       ,     {     *       +} (69) 

  
     

      
          

       ,     {     *       +} (70) 
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The reader will notice that the expressions above are virtually identical to (3) 

and (4) of section 2.2.1.1 – the only difference being that (68) and (69) are not defined 

for all branches in the system (the set   ), but only for non-switchable and non-

candidate branches (i.e., branches in the set {     *       +}). 

For branches whose status corresponds to a decision variable of the ACOPF 

(switchable branches or candidate branches), it is necessary that Kirchhoff’s Voltage 

Law is enforced whenever the circuit is active (i.e., whenever      ), but relaxed 

whenever the branch is inactive (i.e., whenever      ). In order to do that, the 

following disjunctive constraints are defined: 

 

   
        (     )    

     
      

          
          

        (     ) 

 ,     *       + (71) 

   
        (     )    

     
      

          
          

     (     ) 

 ,     *       + (72) 

 

where: 

   
       

 ;    
       

  

Disjunctive constants for Kirchhoff’s Voltage Law (difference among the 

real components of terminal bus voltages); 

   
       

 ;    
    

   

Disjunctive constants for Kirchhoff’s Voltage Law (difference among the 

imaginary components of terminal bus voltages). 

 

In section 4.3.1, it is shown how to determine the constants defined above. 

Constraints (71) to (72) are not the only disjunctive constraints that need to be 

formulated to ensure the correct modeling of inactive branches. Obviously, the real and 

imaginary components of the current flowing through inactive branches must be forced 

to zero. In order to do that, the following disjunctive constraints are added to the MILP 

model: 

 

    
          

      
       ,    *       + (73) 
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       ,    *       + (74) 

 

where: 

   
   Disjunctive constant for the disjunctive constraints that force the real and 

imaginary parts of the current flowing through an inactive branch to zero. 

 

The definition of    
   will also be dealt with in section 4.3.1. 

4.2.1.2 Generation 

At this point, it is adequate to recall the definition of the following sets: 

 

     Set of all buses to which generators connect; 

       Set of buses to which generators with control over the output of active and 

reactive power connect; 

      Set of buses to which generators with non-controllable active power output 

(but with reactive power output assumed to be controllable) connect; 

      Set of buses to which curtailable generators connect; 

      Set of buses to which non-curtailable generators connect. 

 

It is assumed that, for the distribution system planning applications of interest, 

there will be no need to associate costs with the curtailment of generators with 

controllable active power output. Therefore, only generators with non-controllabe 

power output may be in      . – i.e., the intersection              corresponds to 

an empty set. 

In the following subsections, the mathematical formulation of the constraints 

that model current injections for each type of generator is presented. The formulation of 

the following subsections makes use of McCormick’s envelopes. As previously stated, a 

formulation that eliminates the need to employ McCormick’s envelopes, and relies 

solely on SOS2-based piecewise-linear approximations, is presented in Appendix C 

(section 9) of this dissertation. 
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4.2.1.2.1 Non-curtailable generators with no control over the active power output 

The current injections from generators that pertain to {           } are 

modeled with help of the following constraints: 

 

    
        

    
    

 ,    {           } (75) 

    
        

    
    

 ,    {           } (76) 

 

where: 

  
    

 Auxiliary decision variable for modeling the product      
 

; 

  
    

 Auxiliary decision variable for modeling the product      
 

. 

 

The auxiliary decision variables   
    

 and   
    

 are free in signal. 

The reader will recall that, for generators with no control over the active power 

output,   
  is a parameter (and not a decision variable).  

There are a number of constraints needed for defining the auxiliary decision 

variables that appear in equations (76) and (77):   ,   ,   
    

 and   
    

. 

The auxiliary variables    and    will be approached first. As seen in section 

2.2.1.2, these auxiliary decision variables represent non-convex, non-linear functions of 

  
   and   

   – i.e., they are both functions of two variables. For the MILP 

reformulation of the ACOPF, piecewise-linear approximations of these non-convex, 

non-linear functions will be employed. Using the technique based on SOS2 and 

described in section 3.2, the following set of equations may be used for the definition of 

   and   : 

 

∑ ∑   
    [

 ̂ 
   

 ̂ 
   ]           [

  
  
] ,    *          +  (77) 

∑ ∑   
    [

 ̂ 
    

 ̂ 
    ]           [

  
  

  
  ] ,    *         +  (78) 

∑ ∑   
   

             ,    *         + (79) 

 

where: 
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    Set of indices for evaluation points   ̂ 
    

 and associated variables; 

    Set of indices for evaluation points   ̂ 
    

 and associated variables; 

 ̂ 
    

  Evaluation points of real component of voltage at bus k; 

 ̂ 
    

  Evaluation points of imaginary component of voltage at bus k; 

 ̂ 
   

  Evaluated values of function   (  
     

  ), for bus k; 

 ̂ 
   

  Evaluated values of function   (  
     

  ), for bus k; 

  
   

 Weights for constructing piecewise-linear approximation of non-convex, 

non-linear functions of    
   and   

  . 

 

Section 4.3.2 deals with the definition of the evaluation points and evaluated 

values  ̂ 
    

,  ̂ 
    

,  ̂ 
   

 and  ̂ 
   

.  

The vector equations (77) and (78) correspond respectively to the function row 

and to the reference row for the piecewise-linear approximation, while (79) is the 

convexity row.  

The reader will notice that equations (78) and (79) are defined for all buses in 

the system, except the voltage reference buses. This is due to the fact these same 

equations will be used for constructing a piecewise-linear approximation of the square 

root function through which the voltage magnitude of each bus is obtained, as described 

in subsection 4.2.1.4.1. The reader will recall that the voltage magnitude for the voltage 

reference bus is either fixed or it consists of a ―natural‖ decision variable, and therefore 

the implicit determination of the bus voltage magnitude at voltage reference buses is not 

necessary. 

Equation (77) is defined for all buses with generators and all buses with 

constant-power loads, as these are the buses for which the auxiliary variables    and    

are defined, as these variables are needed to obtain the current injections corresponding 

to power injections. 

Having defined (77) to (79), it is necessary to define constraints that ensure that 

the weights   
   

 form a SOS2: 

 

∑   
 

        ,    *         + (80) 

  
      

  ,          *         + (81) 

  
      

      
  ,    {      * +}         *         + (82) 
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∑   
 

        ,    *         + (83) 

  
      

  ,          *         + (84) 

  
      

      
  ,          2    * +3    *         + (85) 

 

where: 

  
  ;   

  Auxiliary binary decision variables. 

 

Having dealt with the definition of    and   , it is necessary to indicate the 

constraints for the definition of   
    

 and   
    

. As previously stated, these auxiliary 

variables are used for approximating the product of continuous decision variables. For 

their definition, it is possible either to use piecewise-linear approximations or to employ 

McCormick’s envelope.  

At this point, an option is made for the latter procedure, and the following 

constraints are defined: 

 

  
          

       
       

 
 ,        (86) 

  
      

 
   

       
 
  

 
  

 

 
 ,        (87) 

  
          

       
 
      

 
 ,        (88) 

  
      

 
   

       
   

 
   

 
 ,        (89) 

  
          

       
       

 
 ,        (90) 

  
      

 
   

       
 
  

 
  

 

 
 ,        (91) 

  
          

       
 
      

 
 ,        (92) 

  
      

 
   

       
   

 
   

 
 ,        (93) 

 

where: 

   ;  
 
 Lower and upper bounds for the values that    may assume; 

   ;  
 
 Lower and upper bounds for the values that    may assume. 
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The lower and upper bounds for   
 

 are inputs for the ACOPF, as they depend 

on particular characteristics of each generator. The definition of the lower and upper 

bounds for    and    will be dealt with in section 4.3.3. 

The reader will notice that constraints (86) to (93) have been defined for all 

generators of the system (i.e., ,       ), and not only for the generators that pertain 

to {            }. This is due to the fact that all generators in the system are 

assumed to have control over their reactive power output, and it is therefore necessary 

to determine the approximation of the bilinear products      
 

 and      
 

 for the 

whole set     . 

It is worth mentioning that, despite the fact that McCormick’s envelopes have 

been used for the formulation of the constraints used for obtaining the current injections 

from generators in in this section, there are alternative formulations that completely 

eliminate the need to employ the convex envelopes. An alternative formulation, based 

on treating the generator currents     
   and     

   as functions of three continuous decision 

variables – i.e.,     
  (  

     
     

 ) and     
  (  

     
     

 ) – and constructing a 

piecewise-linear approximation of these functions with help of SOS2, is presented in 

Appendix C (section 9.1) of this dissertation. 

4.2.1.2.2 Curtailable generators with no control over the active power output 

As already discussed in subsection 2.2.2.2, generation curtailment is considered 

to be a discrete decision in the proposed formulation: the generator at bus k will be 

considered to be either energized (    ) or de-energized (    ). 

Therefore, it is necessary to ensure that, if the generator connected to bus k is 

curtailed, its current injections will be forcefully set to zero. In order to do that, the 

following set of disjunctive constraints will be defined for generators that pertain to 

{           } (i.e., for curtailable generators with no control over their active power 

input): 

 

  
              

        
    

       
           

 ,   {           } (94) 
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       (    )      

     
       (    )  

 ,   {           } (95) 

  
              

        
    

       
           

 ,   {           } (96) 

  
       (    )      

     
       (    )  

 ,   {           } (97) 

 

where: 

  
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

  

Disjunctive constants for the disjunctive constraints employed for modeling 

generation curtailment. 

 

The definition of these disjunctive constants will be dealt with in section 4.3.1. 

The reader will notice that the constraints needed for determining the value all 

auxiliary decision variables that appear in (94) to (97) have already been defined, as 

many of the constraints of previous sections have been defined for sets that include 

{           } as a subset. 

4.2.1.2.3 Generators with control over the active power output 

Generators with control over the active power output are considered to be non-

curtailable. This assumption is based on the fact that, as these generators can simply set 

their output to zero, it is not required to model their curtailment and to attribute a cost to 

it. 

The current injections from generators that pertain to        are modeled with 

help of the following constraints: 

 

    
     

       
    

 ,          (98) 

    
     

       
    

 ,          (99) 

 

where: 

  
    

 Auxiliary decision variable for modeling the product      
 ; 
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 Auxiliary decision variable for modeling the product      
 . 

 

For the generators that pertain to       ,   
  is a continuous decision variable. 

Thus, products of two decision variables appear once again. These products may be 

approximated either by a piecewise-linear function constructed with help of SOS2, or 

via McCormick’s envelope. An option is made for the latter procedure, and the 

following constraints are defined: 

 

  
          

       
       

  ,          (100) 

  
      

 
   

       
 
  

 
  

 

 
 ,          (101) 

  
          

       
 
      

 
 ,          (102) 

  
      

 
   

       
   

 
   

  ,          (103) 

  
          

       
       

  ,          (104) 

  
      

 
   

       
 
  

 
  

 

 
 ,          (105) 

  
          

       
 
      

 
 ,          (106) 

  
      

 
   

       
   

 
   

  ,          (107) 

 

The auxiliary decision variable   
    

 may be free in signal or non-negative, 

depending on the upper and lower bounds defined for   
 , whereas   

    
 is always free 

in signal. Typically,   
  and   

    
 will be non-negative. The lower and upper bounds 

for   
  are inputs for the ACOPF, and vary by generator. The constraints needed for 

defining all auxiliary decision variables that appear in (100) to (107) have already been 

defined. 

A discussion similar to that of the end of subsection 4.2.1.2.1 applies here: it is 

possible to define an alternative formulation of the constraints used for obtaining the 

current injections from generators that control their active power output that completely 

eliminates the need to employ McCormick’s envelopes. This formulation is based on 

treating the generator currents as functions of four decision variables – i.e., 

    
  (  

     
     

    
 ) and     

  (  
     

     
    

 ) – and then constructing piecewise-

linear approximations of these functions, with help of SOS2. By using this alternative 
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formulation and eliminating the need to employ McCormick’s envelopes, the user may 

arbitrate the accuracy of the approximation of the generation currents (which is not 

possible when McCormick’s envelopes are used). This alternative formulation is 

presented in Appendix C (section 9.2). Yet, it should be kept in mind that enhancing the 

accuracy of the piecewise-linear approximation by augmenting the number of 

evaluation points may result in additional computational requirements. This matter will 

be discussed further in 5.2.3 of this dissertation, in which both the formulation 

presented above and the formulation that does not employ McCormick’s envelopes are 

used in the solution of a case study. 

4.2.1.3 Loads 

In the following subsections, constant-power, constant-current and constant-

impedance loads are treated separately – these types of loads are those that pertain 

respectively to the sets      ,       and      . For each type of load, separate 

subsections will deal with loads that cannot be shed and loads that can be shed. 

At this point, it is necessary to remember the definition of the following sets: 

 

      Set of all buses to which loads that can be shed are connected; 

      Set of all buses to which loads that cannot be shed are connected. 

 

4.2.1.3.1 Constant-power loads that cannot be shed 

Equations (9) and (10) of section 2.2.1.3.1 may be used to define the currents 

demanded by constant-power loads that cannot be shed. These constraints are 

reproduced below, for the sake of clarity: 

 

    
        

       
 

 ,    *           + (108) 

    
        

       
 

 ,    *           + (109) 

 

The constraints needed for defining the auxiliary decision variables    and    

have already been defined. 
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4.2.1.3.2 Constant-power loads that can be shed 

As indicated in subsection 2.2.2.1, load shedding is considered to be a discrete 

decision: the load at bus k will be considered to be either energized (    ) or de-

energized (    ). When the load at bus k is shed, it is obviously necessary to ensure 

that the associated currents will be forcefully set to zero. 

Thus, the following disjunctive constraints may be used to model loads of the 

constant-power type that may be shed: 

 

  
                   

        
       

    
                

 ,    *           + (110) 

  
            (    )      

     
            (    )  

 ,    *           + (111) 

  
                   

        
       

    
                

 ,    *           + (112) 

  
            (    )      

     
            (    )  

 ,    *           + (113) 

where: 

  
           

 ;   
           

 ;   
           

 ;   
           

  

  
           

 ;   
           

 ;   
           

 ;   
           

  

Disjunctive constants for the disjunctive constraints employed for modeling 

shedding of loads of the constant-power type. 

 

Section 4.3.1 will deal with the definition of these disjunctive constants. 

The constraints needed for defining the auxiliary decision variables    and    

have been already defined. 

4.2.1.3.3 Constant-current loads that cannot be shed 

Equations (11) and (12) of section 2.2.1.3.2 may be used to define the currents 

demanded by constant-current loads that cannot be shed. These equations are 

reproduced below, with slight modifications regarding the set of buses for which the 

constraints are defined: 
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 ,   *           + (114) 

    
        

       
 

 ,   *           + (115) 

 

It is necessary to present the constraints needed for the definition of the auxiliary 

decision variables    and   . As seen in section 2.2.1.3.2, the auxiliary decision 

variables    and    represent non-convex, non-linear functions of   
   and   

  . For the 

MILP reformulation of the ACOPF, piecewise-linear approximations of these non-

convex, non-linear functions will be employed. Using the technique based on the 

construction of SOS2, the following vector equation may be employed for the definition 

of    and   : 

 

∑ ∑   
    [

 ̂ 
   

 ̂ 
   ]           0

  
  
1 ,          (116) 

 

where: 

 ̂ 
   

  Evaluated values of function   (  
     

  ), for bus k; 

 ̂ 
   

  Evaluated values of function   (  
     

  ), for bus k. 

 

The reader will notice that, at this point, it is only necessary to define the vector 

equation corresponding to the function row of the piecewise-linearization, as all other 

necessary constraints have already been defined in section 4.2.1.2.1. A simple 

verification of the equations presented in section 4.2.1.2.1 will indicate that the sets for 

which equations (78) to (85) have been defined already include the set      .  

It is also clear that the constraint corresponding to equation (116) is defined not 

only for the loads in *           +, but to all loads of the current-type. 

Section 4.3.2 deals with the definition of the evaluated values  ̂ 
   

 and  ̂ 
   

. 

4.2.1.3.4 Constant-current loads that can be shed 

As load shedding is considered to be a discrete decision, the following 

disjunctive constraints may be used for modeling loads of the constant-current type that 

may be shed: 
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 ,   *           + (117) 

  
         (    )      

     
         (    )  

 ,   *           + (118) 

  
                

        
       

    
             

 ,   *           + (119) 

  
         (    )      

     
         (    )  

 ,   *           + (120) 

where: 

  
           

 ;   
           

 ;   
           

 ;   
           

  

  
           

 ;   
           

 ;   
           

 ;   
           

  

Disjunctive constants for the disjunctive constraints employed for modeling 

shedding of loads of the constant-current type. 

 

Section 4.3.1 will deal with the definition of the disjunctive constraints. 

The constraints needed for defining the auxiliary decision variables    and    

have already been defined. 

4.2.1.3.5 Constant-impedance loads that cannot be shed 

Equations (15) and (16) of section 2.2.1.3.3 may be used to define the currents 

demanded by constant-impedance loads that cannot be shed. These equations are 

reproduced below, with slight modifications regarding the set of buses for which the 

constraints are defined: 

 

    
     

   
  
 

|  
 |
    

   
  
 

|  
 |
  ,   *           + (121) 

    
     

   
  
 

|  
 |
    

   
  
 

|  
 |
  ,   *           + (122) 

 

Equations (121) and (122) are linear and can be readily incorporated to a MILP. 
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4.2.1.3.6 Constant-impedance loads that can be shed 

As load shedding is considered to be a discrete decision, the following 

disjunctive constraints may be used for modeling loads of the constant-impedance type 

that can be shed: 

 

  
                

     
   

  
 

|  
 |
    

   
  
 

|  
 |
    

             

 ,   *           + (123) 

  
         (    )      

     
         (    )  

 ,   *           + (124) 

  
                

     
   

  
 

|  
 |
    

   
  
 

|  
 |
    

             

 ,   *           + (125) 

  
         (    )      

     
         (    )  

 ,   *           + (126) 

where: 

  
           

 ;   
           

 ;   
           

 ;   
           

  

  
           

 ;   
           

 ;   
           

 ;   
           

  

Disjunctive constants for the disjunctive constraints employed for modeling 

shedding of loads of the constant-impedance type. 

 

Section 4.3.1 will deal with the definition of the disjunctive constraints 

mentioned above. 

4.2.1.4 Operating limits 

4.2.1.4.1 Bounds on bus voltage magnitudes 

The magnitude of the voltage at bus k is a non-linear, non-convex function of the 

real and imaginary components of the voltage at this bus, as indicated in section 

2.2.1.4.1. It is thus necessary to obtain an approximation of this decision variable – 
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which will be done with help of the technique presented in section 3.2 of this 

dissertation. The following equation may be employed for the definition of   : 

 

∑ ∑   
     ̂ 

   
              ,   *       +  (127) 

 

where: 

 ̂ 
   

  Evaluated values of function   (  
     

  ), for bus k. 

 

The equation above corresponds to the function row for the piecewise-linear 

approximation. The reader will recall that all other necessary constraints have already 

been defined in section 4.2.1.2.1. 

After using (127) to obtain an approximation of   , the following constraint may 

be used to impose bounds on this variable: 

 

         ,   *       + (128) 

 

4.2.1.4.2 Bounds on the magnitude of branch currents 

Analogously to what has been seen in the previous section, the magnitude of the 

current flowing through branch km is a non-linear, non-convex function of its real and 

imaginary components. Thus, an approximation of this non-convex, non-linear function 

will be required for the MILP reformulation of the ACOPF. 

When constructing a piecewise-linear approximation of the bus voltage 

magnitude, the fact that there were several other decision variables that were non-

convex, non-linear functions of the real and imaginary components of the bus voltage at 

each bus was taken advantage of. Taking that into account, it was only necessary to 

define constraints referring to the function row of piecewise-linear approximation 

technique described in section 3.2. 

This is not the case for the real and imaginary components of the branch currents 

– there are no other non-linear functions of these variables.  

As the only function of the real and imaginary components of the branch 

currents that will need to be approximated is the magnitude of the corresponding 



 

                                                                                                                                                                                                                                                                    

73 

 

complex quantity, the fact that the function     √(   
  )  (   

  )  is symmetric 

about the origin can be used for reducing the number of evaluation points needed to 

obtain the piecewise-linear approximation. 

In order to do that, it is first necessary to define auxiliary variables that will be at 

least as high as the modulus of the components    
   and    

  . This may be done with 

help of the following constraints: 

 

   
      

   ,      (129) 

   
       

   ,      (130) 

   
      

   ,      (131) 

   
       

   ,      (132) 

 

where: 

   
    Auxiliary variable that is at least as high as the modulus of    

  , for branch 

km; 

   
    Auxiliary variable that is at least as high as the modulus of    

  , for branch 

km. 

 

The reader will notice that, given that    
   and    

   are at least as high as the 

modulus of    
   and    

  , the square root of the sum of the squared values of these 

auxiliary variables will always be at least as high as the square root of the sum of the 

squared values of the current components. Thus, enforcing bounds on the former square 

root will result in the latter being bounded. 

It is thus necessary to obtain an approximation of     √(   
  )  (   

  ) . This 

can be done by building a piecewise-linear approximation of this function, with help of 

the technique presented in section 3.2. This piecewise-linear approximation can be 

obtained with help of the following equations: 

 

∑ ∑    
      ̂ 

   
               ,         (133) 

∑ ∑    
    [

  ̂ 
    

  ̂ 
    ]           [

   
  

   
  ] ,         (134) 
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∑ ∑    
   

             ,        (135) 

 

where: 

    Set of indices for evaluation points    ̂ 
    

 and associated variables; 

    Set of indices for evaluation points    ̂ 
    

 and associated variables; 

  ̂ 
    

  Evaluation points of    
  , for branch km; 

  ̂ 
    

 Evaluation points of    
  , for branch km; 

  ̂ 
   

  Evaluated values of function     √(   
  )  (   

  ) , for branch km; 

   
   

 Weights for constructing piecewise-linear approximation of    , for branch 

km; 

     Auxiliary variable that is at least as high as    , for branch km. 

 

Section 4.3.2 deals with the definition of the evaluation points and evaluated 

values   ̂ 
    

,   ̂ 
    

 and   ̂ 
   

.  

The following constraints ensure that the variables    
   

 form a SOS2: 

 

∑    
 

        ,        (136) 

   
       

  ,              (137) 

   
       

       
  ,    {      * +}             (138) 

∑    
 

        ,       (139) 

   
       

  ,              (140) 

   
       

       
  ,          2    * +3        (141) 

 

where: 

   
  ;    

  Auxiliary binary decision variables. 

 

After obtaining an approximation of    , the following constraint may be used 

for bounding this variable (and indirectly bounding the magnitude of the current 

flowing through branch km): 
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        ,        (142) 

 

4.2.1.4.3 Bounds on active and reactive power output of generators 

The constraints of section 2.2.1.4.3, reproduced below for the sake of clarity, 

may be employed for bounding the active and reactive power output of generators: 

 

  
    

    
  ,          (143) 

  
    

    
 

  ,        (144) 

4.2.1.5 Voltage reference buses 

The constraints of section 2.2.1.5, reproduced below for the sake of clarity, may 

be employed for specifying the real and imaginary components of the voltage of buses 

pertaining to     . For applications in which the voltage magnitude of these reference 

buses is fixed, the following constraints apply: 

 

  
     

   
      

   
 ,         (145) 

  
     

   
      

   
 ,         (146) 

 

For applications in which the magnitude of the voltage at reference buses are 

decision variables of the ACOPF, the following constraints apply: 

 

  
           

   
 ,         (147) 

  
           

   
 ,         (148) 

 

Again, it is important to emphasize that, for applications in which the voltage 

magnitudes of the buses in      are considered decision variables, it is necessary to 

enforce the corresponding bounds by using the following constraint: 

  

         ,        (149) 
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4.2.1.6 Slack buses and buses without generators and/or loads 

The constraints of section 2.2.1.6, reproduced below for the sake of clarity, may 

be used to ensure that the load/generation currents of buses to which no loads/generators 

connect are set to zero. The reader will notice that the generator currents of all buses in 

the set        may assume any given value. 

 

    
       

     ,    *        + (150) 

    
       

     ,    {   *           +} (151) 

 

4.2.1.7 Radiality constraints 

If it is required to ensure that the distribution network is radial, the constraints 

presented in this section are to be added to the MILP formulation of the ACOPF for 

distribution systems. Reference [38] introduced a formulation of radiality constraints 

based on ensuring that the distribution network consists of a spanning tree that 

originates from the root node. This approach, which is based on using binary decision 

variables to impose a particular structure to the distribution system, can be readily 

incorporated to a mixed-integer program and will be used in this dissertation.  

In the following subsections, three slightly different approaches for the 

formulation of the radiality constraints are presented. The three approaches ensure that 

all nodes that are connected to the network are arranged within a radial structure – 

however, the approaches differ in the specification of which nodes must be connected to 

the network and which can be removed from it. In order to make it clear that the three 

approaches differ only with respect to this aspect, they will be referred to as connectivity 

approaches to the radiality constraints. 

At this point, the reader may want to consider why it is necessary to define more 

than one connectivity approach. Depending on specific characteristics of the 

distribution system operations or expansion planning application under consideration, it 

may be necessary to remove from the network some (or all) of the buses to which loads 

that have been shed and/or generators that have been curtailed connect. In previous 
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sections of this dissertation, reference has been made to the fact that, as of this writing, 

the most common approach to disconnect elements of the distribution system in case of 

emergencies is to maneuver switches and de-energize entire segments of the distribution 

network. Thus, depending on the application at hand, it may be in the interest of the 

distribution system planner to ensure that one load can be disconnected only if all 

circuits connected to it are de-energized. For some other applications, this may not be 

necessary. 

Keeping this in mind, one of the three following connectivity approaches may be 

chosen while formulating the radiality constraints: 

(i) For this first approach, all buses of the distribution system, which have 

been defined in the input data for the ACOPF, must be connected to the 

network at all times – even if the loads and/or generators connected to it 

are curtailed.  

(ii) For the second approach, it is considered that the load and/or generator at 

a bus can only be de-energized (shed and curtailed, respectively) if all 

circuits that connect to that bus are removed from the network (i.e., all 

circuits must have their status changed to inactive).  

(iii) For the third approach, it is considered that the buses to which loads that 

are shed and generators that are curtailed, as well as all buses that do 

have any potential injections (i.e., those that are not reference or slack 

buses and to which no loads or generators connect), may or may not be 

disconnected from the network, according to the distribution system 

planner decision. Thus, the optimality of the decision is the only criterion 

that dictates if these buses will be connected to or disconnected from the 

network. 

The mathematical formulation corresponding to the three basic connectivity 

approaches listed above is presented in the following subsections. In subsection 5.2.1 of 

this dissertation, an example of the application of each of these three approaches is 

presented. 

It is worth pointing out that, despite the fact that the three approaches are 

presented in different subsections for the sake of didactics, it is possible to combine 

them within a single optimization problem, utilizing different connectivity approaches 

for different buses of the distribution system. 
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4.2.1.7.1 Connectivity approach (i) 

For approach (i), all buses of the distribution system, which have been defined in 

the input data for the ACOPF, must be connected to the network at all times.  

The formulation of the radiality constraints corresponding to this connectivity 

approach corresponds exactly to that proposed in [38]. In order to ensure radiality, it 

suffices to determine that every bus in the network has exactly one parent bus, except 

for the root bus. Each spanning tree in the distribution system (each islanded, radial 

system) originates from a root bus, and none of the root buses have parents. The 

following set of constraints may be used to impose this particular structure to the 

distribution system: 

 

   
     

    ,     {   *       +} (152) 

   
     

      ,     *       + (153) 

[∑    
 

         ]  [∑    
 

         ]    ,    *        + (154) 

   
    ,     *  |       + (155) 

   
    ,     *  |       + (156) 

 

where: 

   
  Binary variable associated to line km that assumes the value    

    if bus k 

is the parent of bus m, and that assumes the value    
    if bus m is the 

parent of bus k;  

      Set of buses chosen as root buses. The number of root buses must equal the 

number of allowed islands in the system. 

 

The reader will notice that equations (152) and (153) ensure that, for every 

active branch km, either k is the parent of bus m or m is the parent of bus k. Equation 

(154) ensures that every bus in the system, except the root buses, has one and only one 

parent. Equations (155) and (156) ensure that, for every branch km that includes one 

root bus at one its extremities, the bus that is not the root cannot be a parent bus – i.e., 

the root bus will always be a parent bus if there is an active circuit connected to it [38]. 
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As pointed out in [38], constraint (153) suffices for ensuring that the variable 

    can only assume the values 0 or 1, even if     is defined as a continuous (rather 

than a binary) variable. Therefore, whenever this constraint is added to the MILP 

formulation of the ACOPF,     may be defined as a continuous (rather than a binary) 

variable. Nonetheless, the reader will recall that the MILP reformulation of the ACOPF 

for distribution systems presented in this dissertation may be applied to distribution 

systems that are operated in a radial fashion or in a meshed fashion – thus, whenever a 

radial operation is not required, constraint (153) will not be part of the MILP problem. 

This is the reason why, in previous sections,     has always been defined as binary 

decision variable. However, as pointed out in this paragraph, whenever the radiality 

constraints are added to the model,     may be defined as a continuous variable. 

It is worth pointing out that it is not required that       coincide with the set 

     or to the set       . It should be kept in mind that        may be an empty set 

depending on the application, but the cardinality of the set      must always equal the 

number of potentially islanded systems in the network, with one and only one reference 

voltage bus defined for every island. Thus, in many applications, it may be in the 

interest of the distribution system engineer to define           , despite of this not 

being compulsory. 

4.2.1.7.2 Connectivity approach (ii) 

For connectivity approach (ii), it is considered that the load and/or the generator 

at a bus can only be de-energized if all circuits that connect to that bus are removed 

from the network. 

In order to model this condition, it is necessary to modify some of the constraints 

proposed in [38]. The modifications proposed in this dissertation will be presented in 

the following.  

The first two constraints of the previous section, which ensure that every active 

branch has one and only one parent bus in its extremities, are not modified: 

 

   
     

    ,     {   *       +} (157) 

   
     

      ,     *       + (158) 
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However, the constraints that control which buses in the network must have 

parents need to be modified. In this dissertation, these will be referred to as parenthood 

constraints. The formulation of these constraints for buses with loads that can be shed, 

but to which no curtailable generators connect, is indicated below:   

 

[∑    
 

         ]  [∑    
 

         ]  (    )  

 ,    *           + (159) 

   
  (    ) ,     {  |  *           +} (160) 

   
  (    ) ,     {  |  *           +} (161) 

 

Equation (159) ensures that, if a given load is shed (    ), it does not have 

any parent; and if the bus is not shed (    ), it has exactly one parent. Equations 

(160) and (161) ensure that buses with loads that have been shed cannot be the parents 

of any other buses; but buses with loads that have not been shed may be the parents of 

other buses. It is thus clear that a bus with a load that has been shed will not have any 

parents and it will not be the parent to any other buses, meaning that this bus will be 

disconnected from the network. 

A set of analogous constraints are defined for buses that have curtailable 

generators, but no loads that can be shed (i.e., buses in *           +). The only 

difference is that the binary variable that controls generation curtailment is   , and not 

  : 

 

[∑    
 

         ]  [∑    
 

         ]  (    )  

 ,    *           + (162) 

   
  (    ) ,     {  |  *           +} (163) 

   
  (    ) ,     {  |  *           +} (164) 

 

It is now necessary to model buses that have loads that can be shed and 

generators that can be curtailed (i.e., buses in *           +). As any of these 

elements may only be de-energized if the bus is entirely removed from the network, 

shedding the load necessarily requires curtailing the generator, and vice-versa. Thus, the 

following set of constraints may be used: 
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      ,    *           + (165) 

[∑    
 

         ]  [∑    
 

         ]  (    )  

 ,    *           + (166) 

   
  (    ) ,     {  |  *           +} (167) 

   
  (    ) ,     {  |  *           +} (168) 

 

The reader will notice that, if the connectivity approach (ii) is employed, for all 

buses in *           +, is possible to substitute    by    in every constraint of 

section 4.2.1.2.2, dropping the binary variable    altogether from the formulation of the 

MILP problem. This is not done here, however, for the sake of simplicity. 

Now that all buses with loads that can be shed and curtailable generation have 

been treated, the parenthood constraints for the remainder of the buses in the network 

are presented: 

 

[∑    
 

         ]  [∑    
 

         ]     

 ,    {   *                 +} (169) 

 

For the formulation above, we consider that the sets       and       are 

defined in such a way that there are no buses that have either loads that cannot be shed 

and curtailable generators, of non-curtailable generators and loads that can be shed.  

As in connectivity approach (i), the root buses do not have any parents. Also, the 

root buses are necessarily the parents of all nodes directly connected to them through 

active circuits, as indicated by the following constraints, whose formulation remains 

unchanged: 

 

   
    ,     *  |       + (170) 
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4.2.1.7.3 Connectivity approach (iii) 

For the third connectivity approach, it is considered that the buses to which loads 

that are shed and generators that are curtailed, as well as all buses that do have any fixed 

or curtailable injections, may or may not be disconnected from the network, according 

exclusively to the distribution system planner decision. That is to say, the only criterion 

that determines that one of these buses will or will not be connected to the network is 

the impact of this decision on the objective function of the optimization problem. 

As in approach (ii), the following constraints are exactly equal to those presented 

in section 4.2.1.7.1: 

 

   
     

    ,     {   *       +} (172) 

   
     

      ,     *       + (173) 

 

Yet, the parenthood constraints must also be modified in approach (iii). The 

modifications proposed in this dissertation will be presented in the following. The 

following constraints apply to the set of buses to which loads that can be shed connect, 

but to which no curtailable generators connect (i.e., buses in *           +):   

 

   (    ) ,    *           + (174) 

[∑    
 

         ]  [∑    
 

         ]     ,    *           + (175) 

   
     ,     {  |  *           +} (176) 

   
     ,     {  |  *           +} (177) 

 

where: 

   Binary decision variable that models the decision to disconnect a bus k from 

the system: if     , the bus is disconnected from the system, if     , 

the bus is connected to the system. 

 

A few words on the logical implications of the constraints defined above are in 

order at this point: 
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∙ It is clear that, if the load at bus k has not been shed, then     . Since 

   is binary and can only assume the values   or  ,      leads to 

    , meaning that bus k is connected to the system (it will have one 

and only one parent, and it may or may not be the parent to other buses). 

∙ If the load at bus k has been shed,    may is entirely free to assume the 

values      or     . If     , the situation described above is 

valid. If     , bus k will have no parents and will not be the parent to 

any other buses in the network – thus, bus k has been removed from the 

network. 

From the explanation above, it is clear that, given that the load at bus k has been 

shed, the decision to remove or not a bus from the network is dictated only by its impact 

on the objective function. 

A set of analogous constraints are defined for buses in *           +: 

 

   (    ) ,    *           + (178) 
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         ]     ,    *           + (179) 
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     ,     {  |  *           +} (181) 

 

For buses that have both loads that can be shed and curtailable generators, the 

situation is slightly more complex. A bus in set *           + may be only 

disconnected from the network if the load has been shed (    ) and the generator has 

been curtailed (    ). In order to check if this condition is met, an auxiliary, 

continuous decision variable    is introduced to the problem, and the following 

constraints apply: 

 

      ,    *           + (182) 

      ,    *           + (183) 

   (     )    ,    *           + (184) 

     ,    *           + (185) 

  

where: 
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   Continuous (non-negative) decision that assumes the value      if and 

only if      and     ; and assumes the value      for all other 

combinations of the binary variables    and   . 

 

Having defined the auxiliary variable above, the parenthood constraints for the 

buses in *           + may be formulated as: 

 

   (    ) ,    *           + (186) 
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Now, it is necessary to model the fact that every bus to which no injections 

connect (i.e., buses that have no loads or generators, and that are not slack buses) and 

that are not reference buses can be removed from the network if desired. This is done 

with help of the following set of constraints: 
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         ]  [∑    
 

         ]     

 ,    {   *                            +} (190) 

   
    

 ,     2  |  {   *                            +}3 (191) 

   
    

 ,     2  |  {   *                            +}3 (192) 

 

Finally, it is necessary to ensure that the buses that do not pertain to any of the 

sets defined above are always connected to the network. This is done by defining the 

following constraints: 

 

 [∑    
 

         ]  [∑    
 

         ]    

 ,    2*                      + {*           +       }3 (193) 
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Finally, the following constraints ensure that the root buses are necessarily the 

parents of all nodes directly connected to them: 

 

   
    ,     *  |       + (194) 

   
    ,     *  |       + (195) 

 

4.2.2 Objective functions for selected distribution system 

operations and expansion planning applications 

In this section, the objective functions presented in section 2.2.2 are revisited. At 

this point, the binary variables that represent discrete decisions have already been 

presented to the reader, allowing a better comprehension of the mathematical 

formulation of the objective functions presented blow, as well as of the MILP 

reformulation of the ACOPF as a whole.   

The majority of the objective functions presented at section 2.2.2 can be readily 

factored into mixed-integer linear problems. Due to that, most of the equations of 

section 2.2.2 will be simply reproduced below with no further manipulation.  

4.2.2.1 Minimization of costs of load shedding 

As discussed in sections 2.2.2.1 and 4.2.1.3, the focus of this dissertation is on 

the case in which load shedding is a discrete decision. The following objective function, 

first introduced in section 2.2.2.1 and reproduced below for the sake of clarity, can be 

directly integrated to the MILP reformulation of the ACOPF: 

 

         {∑   
       

           } (196) 

 

4.2.2.2 Minimization of curtailment of non-controllable generation 

As previously discussed, the power output of generators pertaining to       

cannot be controlled – meaning that, for these generators,   
  is a parameter of the 
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optimization problem. Consequently, the following objective function, first introduced 

in section 2.2.2.2 and reproduced below for the sake of clarity, can be directly integrated 

to the MILP reformulation of the ACOPF: 

 

         2∑   
       

      {           }
3 (197) 

 

4.2.2.3 Minimization of generation costs 

The following objective function, first introduced in section 2.2.2.3, can be 

directly integrated to the MILP reformulation of the ACOPF: 

 

        2∑   
      

 
        3 (198) 

 

4.2.2.4 Minimization of costs of power imports 

Section 2.2.2.4 has presented three slightly different formulations of the 

objective function associated with the problem of minimizing the costs of power 

imports from an external network. The two formulations of practical interest correspond 

to equations (35) and (36). 

The latter of these corresponds to a linear equation that can be incorporated to a 

MILP without further manipulation, due to     
   being the only (continuous) decision 

variable appearing in equation (36) – all other terms are parameters of the optimization 

problem. For the sake of clarity, equation (36) is reproduced below: 

 

         {∑   
         

   
     
  

       } (199) 

 

However, the bilinear product of decision variables        
   appears in equation 

(35). It is obviously necessary to approximate this product before the inclusion of an 

objective function of this type into a mixed-integer linear program. Two alternatives for 

obtaining such an approximation are presented in the following subsections. 
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4.2.2.4.1 Approximation via McCormick’s envelope 

The first alternative is to substitute the bilinear product by an auxiliary variable 

   and bound this auxiliary variable within the convex envelope for the original 

product. This is done by adding the following constraints to the optimization problem: 

 

          
          

          
   ,         (200) 

          
          

  
        

  
 ,         (201) 

          
          

  
        

  
 ,         (202) 

          
          

          
   ,         (203) 

 

where: 

   Auxiliary (continuous) decision variable for approximating the product 

       
  , for all buses k in      ; 

   ;    Lower and upper bounds for the voltage magnitude for bus k (as mentioned 

in section 4.2.1.5); 

    
   ;     

  
 Lower and upper bounds for the real component of the slack current of bus k 

in      . 

 

The objective function corresponding to equation (35) may be then rewritten as: 

 

         {∑   
                } (204) 

 

The definition of     
   and     

  
, the bounds for the real component of the slack 

current of bus k in      , is related strictly to the necessity of incorporating these 

bounds into the constraints of McCormick’s envelope. The definition of these bounds 

will be dealt with in section 4.3.2. 

4.2.2.4.2 Piecewise-linear approximation with the use of SOS2 

If the accuracy of the approximation via McCormick’s envelope is not 

considered satisfactory, an SOS2-based piecewise-linear approximation of        
   may 
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be used. The product is substituted by an auxiliary variable   , and the following 

constraints are added to the problem: 

 

∑ ∑   
     ̂ 

   
             ,           (205) 

∑ ∑   
    [

 ̂ 
 

 ̂   
    ]          [

  
    
  ] ,           (206) 

∑ ∑   
   

            ,          (207) 

∑   
 

       ,          (208) 

  
      

  ,                (209) 

  
      

      
  ,    {     * +}               (210) 

∑   
 

        ,          (211) 

  
      

  ,               (212) 

  
      

      
  ,         {    * +}         (213) 

 

where: 

   Set of indices for evaluation points   ̂ 
  and associated variables; 

    Set of indices for evaluation points   ̂   
  and associated variables; 

 ̂ 
   Evaluation points of voltage magnitude of bus k in      ; 

 ̂   
    

  Evaluation points of real component of slack current of bus k in      ; 

 ̂ 
   

  Evaluated values of function   (       
  ), for bus k; 

  
   

 Weights for constructing piecewise-linear approximation of non-convex, 

non-linear function of     and     
  . 

  
  ;   

  Auxiliary binary decision variables. 

 

The objective function corresponding to equation (35) is then rewritten as: 

 

         {∑   
                } (214) 
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4.2.2.5 Minimization of costs of ohmic losses 

A non-linear objective function corresponding to the problem of minimization of 

the cost of losses has been presented in section 2.2.2.5. The non-linearities in equation 

(37) are associated with the terms   
 ,   

  (    ) and    (    ), where    is a 

continuous and    a discrete decision variable.  

One possible way to deal with these non-linearities is to assume that, for the 

range of variation of the magnitude of buses to which loads of the constant-current type 

and of the constant-impedance type, it suffices to approximate     . This would 

result in the following approximated objective function, which can be readily 

incorporated to a mixed-integer linear program: 

 

         {  
     {∑   

   
     
  

        ∑   
 

           

  ∑   
 

  {           }
 ∑   

  (    )         

  [∑   
 

  *           +  ∑   
  (    )  *           + ]   

 [∑   
 

  *           +  ∑   
  (    )  *           + ] 

  [∑
  
 

|  
 |
   *           +  ∑

  
 

|  
 |
  (    )  *           + ]++  (215) 

 

If this approximation is not considered satisfactory, it is possible to employ a 

number of reformulation techniques for approximating the non-linear term   
  by an 

auxiliary continuous decision variable    (some of them allowing approximations of 

arbitrary accuracy), and to exactly represent the products    (    ) and  

   (    ). These techniques are presented in the following subsections. The MILP 

reformulation of the objective function for the minimization of losses is then 

summarized in subsection 4.2.2.5.3. 

4.2.2.5.1 Approximation of Vk
2
 

There are a number of alternatives for obtaining an approximation of the term 

  
  that can be employed within a mixed-integer linear program. All of the alternatives 

require the substitution of the term   
  by an auxiliary variable, which will be referred 
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to as    in the following. All alternatives will obviously take advantage of the fact that 

  , being a bus voltage magnitude, may only assume non-negative values in the interval 

        . 

The reader will notice that, as the term   
  appears in equation (37) only in 

association to buses with loads of the constant-impedance type, it is only needed to 

define    and any other auxiliary variables or constraints for buses k in      . 

The first of alternative for approximating   
  requires that the auxiliary variable 

   is bounded within a convex envelope for the   
 . Taking into account that    is 

bounded within         , the tightest possible convex envelope for   
  is defined 

with help of the following constraints: 

 

   (    )       
  ,         (216) 

   (    )       
 
 ,         (217) 

   (     )           ,         (218) 

 

where: 

   Auxiliary variable that represents approximation of   
 , for k in      . 

 

The second alternative would be to build an approximation of the function   
 , 

around a reference value   
 , with basis on the corresponding Taylor series, truncated at 

the term of order 1.  This would result in the following approximation: 

 

   (  
 )      

  (     
 ) ,         (219) 

 

where: 

  
  Reference voltage magnitude around which the approximation of   

  based 

on a truncated Taylor series is constructed. 

 

The reference value   
  may be selected within      

     according to 

specific requirements of each application, keeping in mind that the quality of the 

approximation decreases as the distance among    and   
  increases. Due to the fact that 
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voltages at the distribution system are (ideally) kept close to      p.u., choosing 

  
    (and thus obtaining          ) may be a reasonable choice (but not the 

only one) for several practical applications. 

The two alternatives presented so far do not allow the user to arbitrate the 

accuracy of the approximation over the entire domain of the function   
  (i.e., over the 

entire interval         ). A third alternative for approximating   
 , which allows 

achieving an arbitrary accuracy, is to employ a piecewise-linear approximation using 

SOS2, such as that described in section 3.2 of this dissertation.  

In order to do that, it is possible to treat   
  as a non-linear function of a single 

continuous decision variable,   , and to employ equations (48) to (53) to obtain the 

corresponding piecewise-linear approximation. This would, however, demand the 

definition of additional integer decision variables. 

Alternatively, a piecewise-linear approximation that demands no additional 

integer decision variables can be constructed taking into account that    is a function of 

  
   and   

  . Thus,   
   [  (  

     
  )]   (  

     
  )    

      
   . 

Taking into account that equations (78) to (85) have already been defined for all 

buses in *         + (see section 4.2.1.2.1) and that       *         +, it becomes 

clear that it is only necessary to define the function row for obtaining a piecewise-linear 

approximation of   
    

      
   . All other relevant constraints (the reference row, 

the convexity row, and the set of constraints that ensure that the weights   
   

 form a 

SOS2) have already been defined for buses in      . 

Thus, the third alternative for approximating   
 , which involves a piecewise-

linear approximation of this function, requires only the definition of the following set of 

constraints: 

 

∑ ∑   
     ̂ 

   
              ,          (220) 

 

where: 

 ̂ 
   

 Evaluated values of function   
 , calculated at evaluation points 

( ̂ 
      ̂ 

    ) for bus k – i.e.,  ̂ 
     ̂ 

       ̂ 
     

. 
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4.2.2.5.2 Reformulation of Vk·(1 – ρk) and Vk
2
·(1 – ρk) 

Approximating      
  by applying one of the techniques described in the 

previous subsection is only the first step to obtaining a reformulation of equation (37) 

that may be employed as the objective function of a mixed-integer linear program. It is 

also necessary to eliminate the products of decision variables    (    ) and  

  
  (    ) – or, better said,    (    ) and    (    ).  

Due to    being a binary decision variable, it is not necessary to construct 

approximations of the products    (    ) and    (    ). By introducing 

auxiliary decision variables and using disjunctive constraints, the exact values of these 

products can be represented in the objective function. 

The product    (    ) will be dealt with first. Every occurrence of it in the 

objective function is substituted by the auxiliary continuous decision variable   
    , and 

the following disjunctive constraints are defined: 

 

  
      (    )    

       
      (    ) ,    *           +  (221) 

  
           

          
         ,    *           +  (222) 

 

where: 

  
     Auxiliary, continuous decision variable for modeling the product  

   (    ), defined for buses k in *           +; 

  
      ;   

      ;   
      ;   

      

 Disjunctive constants for disjunctive constraints for product    (    ). 

 

The definition of the constants   
     ,   

     ,   
      and   

      will be dealt 

with in section 4.3.1. 

Analogously to what has been done for    (    ), every occurrence of the 

product    (    ) in the objective function should be replaced by the auxiliary 

continuous decision variable   
    . The following disjunctive constraints are then 

defined: 
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      (    )    

       
      (    )

 ,    *           +  (223) 

  
           

          
         ,    *           +  (224) 

 

where: 

  
     Auxiliary continuous decision variable for modeling the product  

   (    ), defined for buses k in *           +; 

  
      ;   

      ;   
      ;   

      

 Disjunctive constants for disjunctive constraints for product    (    ). 

 

The definition of the constants   
     ,   

     ,   
      and   

      will be 

dealt with in section 4.3.1. The reader will notice that, as the associated disjunctive 

constraints are used for modeling the product    (    ), the value of the disjunctive 

constants will depend on the approximation method employed to obtain    . 

4.2.2.5.3 Resulting objective function 

After employing the approximation techniques listed in subsections 4.2.2.5.1 and 

4.2.2.5.2 for treating the non-linear terms   
 ,   

  (    ) and    (    ), the 

following reformulation of the objective function for the minimization of the cost of 

ohmic losses is obtained: 

 

         {  
     {∑   

   
     
  

        ∑   
 

           

  ∑   
 

  {           }
 ∑   

  (    )         

  [∑   
 

  *           +  ∑   
  (    )  *           + ]   

 [∑      
 

  *           +  ∑   
       

 
  *           + ] 

  [∑    
  
 

|  
 |
   *           +  ∑   

     
  
 

|  
 |
   *           + ]++  (225) 
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4.2.2.6 Minimization of costs of reinforcements to the distribution system 

The following objective function, first introduced in section 2.2.2.6 and 

reproduced below for the sake of clarity, can be directly integrated to the MILP 

reformulation of the ACOPF: 

 

         {∑    
               } (226) 

 

4.2.2.7 Minimization of costs of capacitor placement 

The following objective function, first introduced in section 2.2.2.7 and 

reproduced below for the sake of clarity, can also be directly integrated to the MILP 

reformulation of the ACOPF: 

 

         {∑   
     (    )      } (227) 

 

4.2.2.8 Minimization of circuit switching costs 

As well as in the two previous subsections, the following equation can be 

directly integrated to the MILP reformulation of the ACOPF. This objective function 

was first introduced in section 2.2.2.8 and is reproduced below for the sake of clarity. 

 

     2∑    
       (     )      

   ∑    
                

   3 (228) 

 

4.3 Definition of parameters for 

linearization/convexification constraints 

This section is dedicated to the calculation of the parameters necessary for 

employing linearization and convexification techniques to reformulate the ACOPF in 

distribution systems as a mixed-integer linear program:  
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∙ The definition of the disjunctive constants necessary for the definition 

of disjunctive constraints will be the object of section 4.3.1; 

∙ The evaluation points and evaluated values necessary for the 

definition of piecewise-linear approximations with SOS2 will be dealt 

with in section 4.3.2;  

∙ The upper and lower bounds for the continuous variables whose 

product is modeled via McCormick’s envelope will be the object of 

section 4.3.3. 

It is important to explore the particular characteristics of the distribution system 

mentioned in section 2.1 (particularly, those of subsection 2.1.2), in order to be able to 

define numerical values for the abovementioned parameters that allow conciliating 

approximation accuracy and computational performance. 

As will be seen in following subsections, many of the parameters of interest will 

be defined as a function of quantities related to bus voltages, particularly their real and 

imaginary components. Therefore, before moving on to subsections 4.3.1, 4.3.2 and 

4.3.3, it is worth dedicating a few paragraphs to understand the intervals within which 

these real (  
  ) and imaginary (  

  ) components may vary – i.e., to characterize the 

domain of functions of the type  (  
     

  ). 

For that, it is first necessary to define an interval within which it is certain that 

each of the voltage angles within a typical distribution network may vary. This interval 

is denoted as         ,         

In section 2.1.2, it has been stated that the voltage angles of all buses in a typical 

distribution network vary within a narrow interval around zero (provided that the 

reference angle of the reference bus, considered to be within the distribution network or 

right at its interface with the transmission system, its set to zero). The physical 

reasoning behind this statement has been presented in section 2.1.2 and will not be 

repeated here. The adjective narrow, however, does not correspond to a mathematical 

definition. A more precise definition would be to say that typical bus voltage angles 

within the distribution system vary in intervals such as          . While the exact 

lower and upper bounds vary from system to system, it is safe to say that, due to the 

characteristics mentioned in section 2.1.2, |  |      and |  |      for all practical 

distribution systems – this assumption will be considered for all further definitions and 
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mathematical manipulations in this dissertation. Actually, given that the reference angle 

has been set to zero and that a reference bus was chosen within the distribution system 

or at the interface with the transmission network, defining             for any 

bus of a distribution network would be too conservative, and in practical distributions 

networks intervals such as           would already suffice to capture the range of 

variation of the angles. The reader will notice that, for all case studies taken from the 

technical literature and simulated in chapter 5, using           has been more than 

sufficient to capture the interval of variation of the bus voltage angles. It is important to 

emphasize that, for the discussion of this chapter, it is not required that |  |  |  |. For 

all further discussion, it is assumed, however, that      and     . 

Keeping this in mind, and recalling that bus voltage magnitudes are kept within 

the interval           (typically, with    near 0.95 p.u. and    near 1.05 p.u.), it is 

possible to characterize the domain for functions of the type  (  
     

  ). 

First, the maximum and minimum values that   
   and   

   may assume can be 

calculated as: 

 

  
          ,       (229) 

  
             [   (|  | |  |)] ,       (230) 

  
             (  ) ,       (231) 

  
             (  ) ,       (232) 

 

where: 

  
      

 ;   
      

 

 Minimum and maximum values that   
   may assume; 

  
      

 ;   
      

 

 Minimum and maximum values that   
   may assume; 

   ;    Lower and upper bounds for the voltage angle at bus k (defined as inputs). 

 

Above, reference is made to the definition of the bounds    and   . As 

suggested by the subindex k, different bounds may be defined for each bus, if this is 

justified or allowed by some previous knowledge the user has on the distribution system 
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to be analyzed. If this knowledge is not available or if for any other reason defining 

different bounds for different buses is not desired,      and      may be used 

indistinctly for all buses. In fact, as the results of chapter 5 will show, for all simulated 

case studies considered in this dissertation, it has been sufficient to define bounds as 

conservative as           for all buses. 

It is important to emphasize that the bounds    and    are not directly used for 

defining of constraints of the type         . Rather than that, these bounds are 

employed for the definition of input parameters such as disjunctive constraints, 

evaluation points and evaluated values for piecewise-linear approximations, and 

extreme points for McCormick’s envelopes. 

The reader will notice that the superindices      and     , instead of the 

accents   and  , have been used for characterizing the minimum and maximum values 

for   
   and   

  . As a general notation choice employed in this dissertation,   and   

are used for characterizing bounds defined as inputs for the ACOPF, whereas      and 

     are used for calculating maximum and minimum values for variables with help of 

this input information. 

Despite of the information on   
      

,   
      

,   
      

 and   
      

 being very 

useful (as will be seen in the next subsections), it does not provide as much insight on 

the domain of functions of the type  (  
     

  ) as the reader may want at this point. A 

graphic characterization of the domain of these functions is shown in Figure 4.1, for 

different ranges of variation of    and   .  
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Figure 4.1: Domain for functions of the type  (  
     

  ), for different ranges of variation of    and   . 

For Figure 4.1, the interval within which    may vary is assumed to be 

symmetric about     , and the interval within which    may vary is assumed to be 

symmetric about     .  However, these are not requirements for the concepts 

presented in this section. 

Having provided the reader with some insight on the domain of functions of the 

type  (  
     

  ), it is now time deal with the calculation of the parameters necessary to 

use linearization and convexification techniques for the reformulation of the ACOPF as 

a mixed-integer linear program. 

4.3.1 Disjunctive constants 

For the reasons exposed in section 3.1, defining tight disjunctive constants may 

affect the efficiency of solution techniques for mixed-integer programs. Tight constants 

are those that, while allowing the correct representation of disjunctions of the feasible 

space, have low numerical modulus (ideally, as low as possible). In this section, it will 

be shown how to define tight values for the disjunctive constraints used in the MILP.  

4.3.1.1 Kirchhoff’s laws for branches whose status can be altered 

Constraints (73) and (74) of section 4.2.1.1 ensure that the real and imaginary 

components of the current flowing through an inactive branch are set to zero. Thus, the 
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value of the constant    
   must be calculated so that, whenever the branch km is active, 

these constraints are relaxed. This can be done by defining: 

 

   
       ,     *       + (233) 

 

The definition above may be used independently of any analysis of the topology 

and loading conditions of the distribution system to be investigated. It is worth 

mentioning that, in theory, a tighter definition may be achieved by the solution of 

auxiliary optimization problems, with the objective of maximizing/minimizing the value 

of the current components while complying with a set of constraints that basically 

corresponds to that of the original problem. Nonetheless, the focus of this work is rather 

on the definition of disjunctive constants that may be readily obtained by simple 

manipulation of input parameters for the ACOPF – which corresponds to equation 

(233). 

Equations (71) and (72), also from section 4.2.1.1, ensure that Kirchhoff’s 

voltage law is relaxed whenever a branch km is inactive. Given that the real and 

imaginary components of the current flowing through that inactive branch will have 

been set to zero, it must be ensured that the disjunctive constraints are large enough to 

allow the free variation of the real and imaginary components of the terminal buses. 

This implicates in the following definition of the disjunctive constraints: 

 

   
        (  

         
      ) ,     *       + (234) 

   
        (  

         
      ) ,     *       + (235) 

   
        (  

         
      ) ,     *       + (236) 

   
        (  

         
      ) ,     *       + (237) 

 

4.3.1.2 Loads 

4.3.1.2.1 Constant-power loads that can be shed 

Constraints (110) to (113) of section 4.2.1.3.2 ensure that the real and imaginary 

current components associated with a load that has been shed are set to null. The 
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definition of the disjunctive constants employed in these constraints will be dealt with in 

the following. 

First, the following parameters are defined: 

 

  
  √  

     
  

 ,          (238) 

       (  
   

 ⁄ ) ,          (239) 

 

where: 

  
   Nominal apparent power demanded by load connected to bus k; 

    Apparent power angle (such that   
    

        and   
    

       ) of 

load connected to bus k. 

 

The reader will recall that the nominal values of the active and reactive power 

demanded by constant-impedance loads are   
    

 |  
 | ⁄  and   

    
 |  

 | ⁄ . 

Therefore, equations (238) and (239) apply to the calculation of the parameters   
  and 

   for all types of loads.  

These parameters will be employed in algebraic manipulations of the equations 

through which the real and imaginary components of loads of the constant-power type 

are obtained. Consider the following expressions: 

 

    
   (  

     
    

     
 ) (  )

 ⁄  ,          (240) 

    
   (  

     
    

     
 ) (  )

 ⁄  ,          (241) 

 

These equations are obtained by substituting    and    with the equivalent 

expressions in terms of   
   and   

  . Equations (240) and (241) can be further 

manipulated, as indicated in the following. 

The expression for     
   will be dealt with first. For the following manipulation, 

the rectangular coordinates will be briefly abandoned, and polar coordinates will be 

employed: 
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   (            

                    
       ) (  )

 ⁄

 ,          (242) 

    
   

     
 

(  )
 
 (                       ) ,          (243) 

 

The expression inside parentheses obviously corresponds to    (     ), and 

(204) may be rewritten as: 

 

    
   

  
 

  
    (     ) ,          (244) 

 

Keeping in mind that    is a fixed parameter, the maximum and minimum 

values that     
   may assume are given by: 

 

    
         

             
        

2
 

  
    (     )3 ,          (245) 

    
         

             
        

2
 

  
    (     )3 ,          (246) 

 

where: 

    
      

 ;     
      

 

 Minimum and maximum values that     
   may assume. 

 

The evaluation of the expressions above is rather simple, but it is important to 

notice that, according to the values of   ,    and   ,    (     ) may assume 

negative values.  

However, as mentioned in section 2.1.2, loads in the distribution system are 

incentivized to keep their power factor within narrow intervals. For instance, the 

Brazilian regulation prescribes incentives for the power factor of these loads to be 

bounded within [0.92lagging, 0.92leading], resulting in    bounded within [–38.86º, 38.86º]. 

With this range of typical values of   , and considering that typical bus voltage angles 

within the distribution system vary in intervals such as          ,    (     ) 

may only assume positive values. Even if the typical range of variation of the power 
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factor of distribution system loads were considered to be [0.8lagging, 0.8leading] (a 

conservative assumption), the range of values for    would be [–59.20º, 59.20º], with 

the implication that    (     ) would still be able to assume only positive values for 

         . 

Whenever the typical conditions mentioned in the last paragraph hold, resulting 

in    (     ) only assuming positive values, the expression for the calculation of the 

maximum and minimum values of the real current component may be rewritten as: 

 

    
       

  
 

  
            

*   (     )+ ,          (247) 

    
       

  
 

  
            

*   (     )+ ,          (248) 

 

However, the reader should be careful in using equations (247) and (248) instead 

of (245) and (246). For some situations, using (247) and (248) may yield wrong values 

for     
      

 and     
      

 – e.g., when a purely capacitive load (which may be used for 

modeling a capacitor bank) is to be represented. This is due to the fact that a purely 

capacitive load has a power factor of zero. Obviously, for a purely capacitive load, the 

more general equations (245) and (246) must be used to calculate     
      

 and     
      

. 

Now, the equivalent expressions for calculating     
      

 and     
      

 will be 

presented. Below, equation (241) is written in polar coordinates and manipulated: 

 

    
   (            

                    
       ) (  )

 ⁄

 ,          (249) 

    
   

     
 

(  )
 
 (                       ) ,          (250) 

 

The expression inside parentheses obviously corresponds to    (     ), and 

(250) may be rewritten as: 

 

    
   

  
 

  
    (     ) ,          (251) 

 

With    fixed, the maximum and minimum values of     
   are then calculated by: 
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2
 

  
    (     )3 ,          (252) 

    
         

             
        

2
 

  
    (     )3 ,          (253) 

 

where: 

    
      

 ;     
      

 

 Minimum and maximum values that     
   may assume. 

 

A further simplification of (252) and (253) for typical conditions is not possible, 

due to the fact that the sine function is an odd function. The following example 

illustrates the impossibility of simplification, even when the typical condition| 

           is considered: if          , the expression for     
      

 is given by  

    
       (  

   ⁄ )     (     ); yet, if           , the  expression for     
      

 

is     
       (  

   ⁄ )     (     ). The reader will notice that    is the denominator 

in the first case, and    is the denominator in the second case.  

Having introduced the expressions for     
      

,     
      

,     
      

 and     
      

, the 

disjunctive constraints introduced in section 4.2.1.3.2 are now defined: 
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4.3.1.2.2 Constant-current loads that can be shed 

Analogously to what has been done for constant-power loads, the first step to 

obtaining the values of the disjunctive constants for constant-current loads is rewriting 

the equations that relate the nominal value of the power demanded by the loads to the 

actual load currents, substituting    and    by the expressions in terms of   
   and   

  : 

 

    
   (  

     
    

     
 )   ⁄  ,          (262) 

    
   (  

     
    

     
 )   ⁄  ,          (263) 

 

In the following, the expression for     
   is rewritten in polar coordinates and 

manipulated: 

 

    
   (            

                    
       )   ⁄

 ,          (264) 

    
   

     
 

  
 (                       ) ,          (265) 

    
     

     (     ) ,          (266) 

 

Keeping in mind that    is a fixed parameter, the maximum and minimum 

values that     
   may assume are given by: 

 

    
         

             
*   (     )+ ,          (267) 

    
         

             
*   (     )+ ,          (268) 

 

The reader will notice (267) and (268) are not functions of   . Therefore, no 

further simplification is required.  

Now, the expression for     
   is rewritten in polar coordinates and manipulated: 

 

    
   (            

                    
       )   ⁄

 ,          (269) 
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 (                       ) ,          (270) 

    
     

     (     ) ,          (271) 

 

With    fixed, the maximum and minimum values of     
   may be calculated by: 

 

    
         

             
*   (     )+ ,          (272) 

    
         

             
*   (     )+ ,          (273) 

 

Having defined the expressions for     
      

,     
      

,     
      

 and     
      

, the 

disjunctive constraints introduced in section 4.2.1.3.4 may be defined: 

 

  
                 

      
 ,          (274) 

  
                 

      
 ,          (275) 

  
                

      
 ,          (276) 

  
                

      
 ,          (277) 

  
                 

      
 ,          (278) 

  
                 

      
 ,          (279) 

  
                

      
 ,          (280) 

  
                

      
 ,          (281) 

 

4.3.1.2.3 Constant-impedance loads that can be shed 

Keeping in mind that, for constant-impedance loads, the nominal values of the 

demanded active and reactive power are given by   
    

 |  
 | ⁄  and   

    
 |  

 | ⁄ , 

the expression that relates these nominal values to the actual load currents are given by: 

 

    
   (  

     
    

     
 ) ,          (282) 

    
   (  

     
    

     
 ) ,          (283) 
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The expression for     
   may be rewritten in polar coordinates and manipulated: 

 

    
   (            

                    
       )

 ,          (284) 

    
        

  (                       ) ,          (285) 

    
        

     (     ) ,          (286) 

 

Keeping in mind that    is a fixed parameter, the maximum and minimum 

values that     
   may assume are given by: 

 

    
         

             
        

*      (     )+ ,          (287) 

    
         

             
        

*      (     )+ ,          (288) 

 

For loads to which typical conditions apply (i.e.,                   and 

         , as discussed in section 4.3.1.2.1),    (     ) is only able to assume 

positive values. Therefore, whenever these typical conditions apply, the expression for 

the calculation of the maximum and minimum values of the real current component may 

be written as: 

 

    
            

             
*   (     )+ ,          (289) 

    
            

             
*   (     )+ ,          (290) 

 

As for the case of constant-power loads, the reader should be careful while 

employing equations (289) and (290) instead of the more general forms (287) and (288). 

For instance, for a capacitor bank modeled as a purely capacity load, it is not possible to 

employ (289) and (290) – the more general expressions (287) and (288) must be used. 

Now, the expression for     
   is rewritten in polar coordinates and manipulated: 

 

    
   (            

                    
       )

 ,          (291) 
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  (                       ) ,          (292) 

    
        

     (     ) ,          (293) 

 

With    fixed, the maximum and minimum values of     
   may be calculated by: 

 

    
         

             
        

*      (     )+ ,          (294) 

    
         

             
        

*      (     )+ ,          (295) 

 

Having defined the expressions for     
      

,     
      

,     
      

 and     
      

, the 

disjunctive constraints introduced in section 4.2.1.3.6 may be defined: 

 

  
                 

      
 ,          (296) 

  
                 

      
 ,          (297) 

  
                

      
 ,          (298) 

  
                

      
 ,          (299) 

  
                 

      
 ,          (300) 

  
                 

      
 ,          (301) 

  
                

      
 ,          (302) 

  
                

      
 ,          (303) 

 

4.3.1.3 Generators 

4.3.1.3.1 Curtailable generators with no control over the active power output 

In section 4.2.1.2.2, disjunctive constraints have been introduced for modeling 

the curtailment of generators with no control over their active power output. This 

sections deals with the definition of the associated disjunctive constants. 
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The following are the (non-linear) expressions that relate the power output of 

generators to the associated current injections: 

 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,          (304) 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,          (305) 

 

The reader will notice that the previous equations are structurally very similar to 

those relating the nominal power and currents of loads of the constant-power type. 

However, the fact that the reactive power output of generators,   
 

, is a decision variable 

that may vary in   
    

   
 

 
 introduces additional complexity in the calculation of 

the maximum and minimum values that the generation currents may assume. In fact, the 

method used in section 4.3.1.2, which involves expressing the power quantities in polar 

coordinates, would not facilitate the calculus of the maximum values that the current 

components may assume. 

One technique that may be used for determining these values is to express only 

the voltage quantities in polar coordinates, thus obtaining: 

 

    
   (        

          
 )   ⁄  ,          (306) 

    
   (        

          
 )   ⁄  ,          (307) 

 

The maximum and minimum values of the generation currents may be then 

obtained by solving the following equations: 

 

    
                  

        

  
 
   

 
   

 

2
 

  
 (        

          
 )3 ,          (308) 
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 (        

          
 )3 ,          (309) 

    
                  

        

  
 
   

 
   

 

2
 

  
 (        

          
 )3 ,          (310) 
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2
 

  
 (        

          
 )3 ,          (311) 

 

where: 

    
      

 ;     
      

 ;     
      

 ;     
      

 

 Minimum and maximum values that     
   and     

   may assume. 

 

Solving the problems above, obtained after the transformation of the voltage 

quantities to polar coordinates, is slightly simpler than solving for the maxima and 

minima of     
   and     

   using equations (304) and (305), and considering additional 

constraints to ensure that      
      

       and        (  
    

  ⁄ )    . 

However, if even the solution of (308) to (311) is deemed as problematic for any 

given reason, the user may resort to rough overestimators of     
      

 and     
      

 and 

rough underestimators of     
      

 and     
      

. A possible alternative for obtaining such 

rough underestimators and overestimators is to use the following expression: 

 

    
           

            
            

       
 

  
 √  

   0   .|  
 
|  | 

 

 
|/1

 

  

 ,          (312) 

 

After obtaining     
      

,     
      

,     
      

 and     
      

 for all generators in      , 

the disjunctive constraints introduced in section 4.2.1.2.2 may be defined: 

 

  
            

      
 ,          (313) 

  
            

      
 ,          (314) 

  
           

      
 ,          (315) 

  
           

      
 ,          (316) 

  
            

      
 ,          (317) 

  
            

      
 ,          (318) 
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 ,          (319) 

  
           

      
 ,          (320) 

 

4.3.1.4 Terms of the objective function for minimization of losses 

A number of disjunctive constraints have been defined in section 4.2.2.5.2 for 

the reformulation of the products Vk · (1 – ρk) and Vk
2 

· (1 – ρk). Those will be dealt with 

in the following subsections. 

4.3.1.4.1 Reformulation of the product Vk · (1 – ρk) 

As indicated below, the value of the disjunctive constants employed in the 

reformulation of the product Vk · (1 – ρk) can be determined exclusively with basis on 

inputs for the ACOPF – namely the bounds for voltage magnitudes of the buses in 

           . 

 

  
         ,    *           +  (321) 

  
         ,    *           +  (322) 

  
          ,    *           +  (323) 

  
          ,    *           +  (324) 

 

4.3.1.4.2 Reformulation of the product μk
 
· (1 – ρk) 

As indicated in section 4.2.2.5.1,    represents an approximation for the term 

  
 . As the disjunctive constants   

     ,   
     ,   

      and   
      are used in the 

reformulation of the product    (    ), the definition of these constants will depend 

on the approximation method used to obtain   . 

In the following, three different definitions of the disjunctive constants are 

presented. Each of these is associated with one alternative method for approximating    

presented in section 4.2.2.5.1. 
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4.3.1.4.2.1 Approximation of μk via McCormick’s envelope 

If    is approximated via a convex envelope, the following definition applies:  

 

  
      (  )

  ,    *           +  (325) 

  
      (  )

  ,    *           +  (326) 

  
       (  )

  ,    *           +  (327) 

  
       (  )

  ,    *           +  (328) 

 

4.3.1.4.3 Approximation of μk via truncated Taylor series 

If the approximation via truncated Taylor series has been used, the disjunctive 

constants should be defined as follows: 

 

  
      ,(  

 )      
  (     

 )-  ,    *           +  (329) 

  
      ,(  

 )      
  (     

 )-  ,    *           +  (330) 

  
       ,(  

 )      
  (     

 )-  ,    *           +  (331) 

  
       ,(  

 )      
  (     

 )-  ,    *           +  (332) 

 

4.3.1.4.4 Term μk obtained via piecewise-linear approximation with SOS2 

In this case, the disjunctive constraints should be defined as shown below: 

 

  
      *              . ̂ 

       ̂ 
     /+  ,    *           +  (333) 

  
      *              . ̂ 

       ̂ 
     /+  ,    *           +  (334) 

  
       *              . ̂ 

       ̂ 
     /+  ,    *           +  (335) 

  
       *              . ̂ 

       ̂ 
     /+  ,    *           +  (336) 
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4.3.2 Evaluation points for piecewise-linearization with SOS2 

As indicated in section 3.2, there is a trade-off between approximation accuracy 

and computational performance while defining the number of evaluation points for 

piecewise-linear approximations of non-convex, non-linear functions, with help of 

SOS2.  

In this section, we present the choice of the number and location of these 

evaluation points which has been used in this dissertation. The set of evaluation points 

(and consequently evaluated values) presented here, while not necessarily optimal, led 

to the accuracy and computational performance results shown in chapter 5, which are 

deemed as satisfactory for an initial investigation. 

There are a number of reasons for which the procedure presented here is not 

optimal. The first is that, as indicated in section 3.2, the choice of the evaluation points 

is based on rectangular partitions of the domain of the non-linear, non-convex functions, 

whereas there is evidence (see [61], [80]) that triangular partitions may lead to better 

computational performance. Furthermore, the set of evaluation points presented here has 

been chosen basically via a trial-and-error procedure, guided by knowledge of the 

ACOPF problem and of the shape of the functions to be approximated. Particular 

emphasis has been given to defining a set of evaluation points whose convex hull 

includes the whole domain of the functions of two arguments – i.e., that any point in the 

domain could be achieved by affine combination of evaluation points. But yet, no 

techniques that ensure that the choice of points is optimal either with respect to accuracy 

(e.g., minimizing the maximum approximation error while keeping the number of points 

below a certain threshold) or computational performance (e.g., minimizing the number 

of points while keeping the maximum approximation error below a certain threshold) 

have been used. The investigation of such techniques is listed among possible topics for 

future work. 

Now that the reader has been warned of the potentially sub-optimal character of 

the procedure employed for the definition of evaluation points, the set of points chosen 

for each piecewise-linear approximation introduced in section 4.2 will be presented in 

the following subsections. 
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4.3.2.1 Evaluation points for functions of Vk
re

 and Vk
im

 

Various functions that have   
   and   

   as arguments have been introduced in 

the previous sections:    and    in sections 4.2.1.2 and 4.2.1.3;    and    in sections 

4.2.1.3.3 and 4.2.1.3.4;    in section 4.2.1.4.1; and   
  in section 4.2.2.5.1. 

The definition of the evaluation points for these functions may take advantage of 

the fact that, due to physical characteristics of the distribution system (low R/X ratio, 

voltage magnitude kept within narrow limits, etc.), the domain of the functions of 

interest in the Cartesian coordinate system (  
     

  ) has the particular shape indicated 

in Figure 4.1. Among the most important characteristics of this domain is that it does 

not include the point (  
       

    ). In fact, it excludes all points for which 

√(  
  )  (  

  )    . This is an important feature, as some of the functions to be 

approximated have either the term (  
  )  (  

  )  or its square root in their 

denominator, meaning that the approximation of the non-linearities would become 

increasingly more demanding as the point (  
       

    ) were approached. 

The first alternative to determining the sets of evaluation points { ̂ 
  } and { ̂ 

  } 

would be to first define the cardinality of each set and then to distribute the 

correspondent number of points evenly within the intervals [  
         

      ] (for 

{ ̂ 
  }) and [  

         
      ] (for { ̂ 

  }), making sure to include evaluation points 

corresponding to the extreme values of each interval. This approach is described in 

more detail in sections 4.3.2.2 and 4.3.2.3, in which functions of other decision 

variables are dealt with. It is worth mentioning that, as the interval [  
         

      ] 

includes negative and positive values, it is recommended that the point  ̂ 
     is 

included in { ̂ 
  }, as described in detail in section 4.3.2.3. 

However, a second possible definition of the evaluation points, which has been 

obtained empirically and has led to slightly better results than using equally-spaced 

points within the intervals of interest (with respect both to accuracy and computational 

performance, for sets of the same cardinality), will be presented below.  

The set of evaluation points { ̂ 
  } corresponding to this second alternative, 

which has cardinality |{ ̂ 
  }|  |   |   , is that defined through equation (337): 
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{ ̂ 
  }  

{
 
 

 
   

      

  
 

 
 (     )

      [   (|  | |  |)]

  
      

}
 
 

 
 

 (337) 

 

The characteristics of this set of evaluation points will be discussed further in 

this section, with help of graphic information. Before that, the set of evaluation points 

{ ̂ 
  } corresponding to this second approach is presented. This set, whose cardinality is 

|{ ̂ 
  }|  |   |   ,  is defined by: 

 

{ ̂ 
  }  

{
 
 
 
 
 

 
 
 
 
   

      

      (  )
 

 
    [   (  )     (   ⁄ )]

      (   ⁄ )

 

      (   ⁄ )
 

 
    [   (  )     (   ⁄ )]

      (  )

  
      

}
 
 
 
 
 

 
 
 
 
 

 (338) 

 

 

It is clear the sets defined above include the extreme values   
      

,    
      

, 

  
      

 and   
      

. This ensures that the convex hull of the set of points {〈 ̂ 
    ̂ 

  〉} 

includes the entire domain of (  
     

  ). 

At this point, the reader’s comprehension of the nature of piecewise-linear 

approximations of functions of two decision variables may be enhanced with the display 

of graphical information. For the following discussion, the definition of the evaluation 

points corresponding to equations (337) and (338) has been considered. 

The reader is thus invited to first consider Figure 4.2, in which the domain 

(  
     

  ) is indicated in black, while the set of evaluation points {〈 ̂ 
    ̂ 

  〉}, 

obtained by the Cartesian product of the sets { ̂ 
  } and { ̂ 

  }, is indicated by white 
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dots. The intervals              and           have been considered for this 

and all subsequent figures of section 4.3.2.1.  

   

Figure 4.2: Domain (  
     

  ) and set of evaluation points {〈 ̂ 
  
  ̂ 

  〉} obtained  

by the Cartesian product of the sets defined in equations (300) and (301). 

It is clear that, while the convex hull of {〈 ̂ 
    ̂ 

  〉} includes the domain 

(  
     

  ), it does not coincide with it. This is not a problem from the point of view of 

the adequacy of the representation of the domain, as other constraints of the MILP 

formulation (e.g.,         ) will ensure that the (approximate) solution of the 

problem lies within the correct domain. However, the non-coincidence of the convex 

hull of {〈 ̂ 
    ̂ 

  〉} and the domain (  
     

  ) points out to an inefficiency of the 

definition of the evaluation points – it is clear that a triangular partition of the feasible 

space would potentially reduce the required number of evaluation points. 

The following figures allow the graphical evaluation both of the non-linear 

functions of (  
     

  ) and of the corresponding piecewise-linear approximations. In 

each of the figures, the non-linear function is shown on the left side and the piecewise-

linear approximation on the right, with white dots indicating the position of the 

evaluation points in both graphs. Due to limitations of the plotting procedures, both the 

original function and the piecewise-linear approximation are shown for the region 

defined by the convex hull of {〈 ̂ 
    ̂ 

  〉}, and not for the original domain – the reader 

should thus keep in mind that other constraints of the MILP will only allow that points 

that lie within the original domain are visited. 
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Figure 4.3: Depiction of   : non-linear function (left) and piecewise-linear approximation (right). 

 

Figure 4.4: Depiction of   : non-linear function (left) and piecewise-linear approximation (right). 

 

Figure 4.5: Depiction of   : non-linear function (left) and piecewise-linear approximation (right). 
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Figure 4.6: Depiction of   : non-linear function (left) and piecewise-linear approximation (right). 

 

Figure 4.7: Depiction of   : non-linear function (left) and piecewise-linear approximation (right). 

 

Figure 4.8: Depiction of   
 : non-linear function (left) and piecewise-linear approximation (right). 
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4.3.2.2 Evaluation points for a function of ιkm
re

 and ιkm
im

 

As indicated in section 4.2.1.4.2, the auxiliary variables    
   are    

   are at least 

as high as the modulus of the branch current components    
   and    

  . Due to that, and 

to the fact that each of the current components may assume any value within the interval 

[        ],    
   are    

   will vary in      
       and      

      , respectively. 

However, the reader will notice that the constraint         limits the domain of 

interest of the function     √(   
  )  (   

  ) .  

The set of evaluation points *  ̂ 
  + and {  ̂ 

  } used in this dissertation corresponds 

to an equally-spaced partition of the intervals      
       and      

      . 

Keeping in mind that |   |   |*  ̂ 
  +|, *  ̂ 

  + can be written as: 

 

*  ̂ 
  +  2    

(   )

(|   |  )
|     3 (339) 

 

Analogously, the set of evaluation points {  ̂ 
  } may be written as: 

 

{  ̂ 
  }  {    

(   )

(|   |  )
|  |   |} (340) 

 

Figure 4.9
11

 depicts the function     and its piecewise-linear approximation, 

obtained for |   |  |   |   . The corresponding set of evaluation points {〈  ̂ 
     ̂ 

  〉} 

is indicated by white dots.  

                                                 
11

 In Figure 4.9, it is assumed that       p.u. Depending on the apparent power basis considered, this 

would be an overly overestimated limit. Figure 4.9 aims merely at providing the reader with insight on the 

shape of the non-linear function and its approximation. 
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Figure 4.9: Depiction of    : non-linear function (left) and piecewise-linear approximation (right) obtained 

with |   |  |   |   . The set of evaluation points *〈  ̂ 
  
   ̂ 
  〉+ is indicated by white dots. 

Here, as well as in section 4.3.2.1, the non-coincidence of the convex hull of 

{〈  ̂ 
     ̂ 

  〉} and the region limited by the constraint         points out to an 

inefficiency of the definition of the evaluation points – for instance, as the point  

{〈  ̂ 
         ̂ 

      〉} will never be reached, moving it closer to the origin would 

presumably enhance the accuracy of the approximation.  

4.3.2.3 Evaluation points for a function of Vk and Ig,k
re

 

In section 4.2.2.4.2, the construction of a piecewise-linear approximation of the 

bilinear product        
   has been suggested as one of the alternatives for incorporating 

it into a MILP. 

In the following discussion, reference will be made to the bounds of the decision 

variables    and     
  . The bounds for    (   and   ) are input parameters for the 

ACOPF, and need no further explanation. 

Considering only the physical characteristics of the problem of minimization of 

imports, it would not be necessary to impose any bounds to the real component of the 

slack current     
   – i.e., it may be in the interest of the user to assume that the bus at the 

interface with the transmission system is capable of meeting any power import demands 

(it is an infinite bus). However, due to the need to reformulate the product        
  , it is 

necessary to define the limits of the interval within which     
   may vary. One possible 
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way of doing that is to define, with basis on knowledge about the system under analysis, 

a (conservative) estimate of the minimum amount of power that will need to be 

imported through bus k (which may be negative is exports are also possible),   , and an 

(conservative) estimate of the maximum amount of power to be exported through bus k, 

 
 
. As    is always non-negative, the bounds on     

   would then be calculated as: 

 

    
   {

    ⁄      

    ⁄      
 ,          (341) 

    
  
 {

 
 
  ⁄   

 
  

 
 
  ⁄   

 
  

 ,          (342) 

 

where: 

   ;  
 
 Estimates for minimum and maximum power to be imported through bus k. 

 

The set of evaluation points { ̂ } used in this dissertation corresponds to an 

equally-spaced partition of the interval         . Denoting the cardinality of the 

set    by |  |, the following expression may be used for defining { ̂ }: 

 

{ ̂ }  {   (     )  
(   )

(|  |  )
|    } (343) 

 

The definition of the set of evaluation points { ̂   
  } is somewhat more complex. 

If     
   assumes strictly non-negative values or strictly non-positive values, the following 

expression may be used: 

 

{ ̂   
  }  {    

   .    
  
     

  /  
(   )

(|   |  )
|     } (344) 

 

If     
   may assume both negative and positive values, it is important to include 

the value zero within the set { ̂   
  }. One possible alternative for defining the set is then 

to use      negative evaluation points and      positive evaluation points, and define 

the set of evaluation points as: 



 

                                                                                                                                                                                                                                                                    

121 

 

 

{ ̂   
  }    

{    
   .  

   

    
/ |  *      +}  * +  {    

  
 
 

    
|  *      +} (345) 

 

In this case, the cardinality of { ̂   
  } is            . 

4.3.3 Bounds for continuous decision variables in bilinear 

products 

As mentioned in section 3.3, the accuracy of the approximation of bilinear 

products via McCormick’s envelope is dictated by how tight one is able to define the 

upper and lower bounds of the continuous variables that form the product. Ideally, the 

definition of the bounds should correspond to the tightest de facto interval within which 

the continuous variables may vary. In this section, it will be shown how to define tight 

values for the bounds of variables whose bilinear products are approximated via 

McCormick’s envelope, for the proposed MILP reformulation of the ACOPF. 

4.3.3.1 Bounds for ξk e ζk 

The auxiliary variables    and    have appeared in the bilinear products      
 

, 

     
 

,      
  and      

  in section 4.2.1.2. The bounds for the reactive and active 

output of the generators are inputs for the ACOPF, but it is still needed to define lower 

and upper bounds for the auxiliary variables    and   , in order to completely define the 

expressions for the correspondent McCormick’s envelopes. The first step for doing that 

is expressing    and    in polar coordinates: 

 

             
 ⁄         ⁄   (346) 

             
 ⁄         ⁄   (347) 

 

The determination of the maximum and minimum values of the above 

expressions is facilitated by the fact that the voltage magnitude    is strictly positive 

and bounded within         , and the voltage angles in typical distribution 
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systems assume values within a narrow interval around  . Considering this, the 

following bounds may be defined: 

 

      [   (|  | |  |)]   ⁄   ,        (348) 

 
 
    ⁄   ,        (349) 

          ⁄  ,        (350) 

 
 
        ⁄  ,        (351) 

 

4.3.3.2 Bounds for Vk and Ig,k
re

 of a slack bus 

In section 4.2.2.4.1, the product        
   has been approximated via a 

McCormick’s envelope. The bounds for the voltage magnitude are usual inputs and 

need not to be discussed, and the procedure for estimating (conservative) bounds for     
   

has been discussed in section 4.3.2.3 – see equations (341) and (342). 

4.4 An alternative MILP reformulation of the ACOPF in 

distribution systems 

In the course of the research activities that led to this dissertation, an alternative 

MILP reformulation of the ACOPF in distribution systems has been investigated. This 

alternative formulation is similar to the one presented above in various aspects, but 

differs from it with respect to the construction of piecewise-linear approximations of 

non-linear, non-convex functions. In the formulation presented above, each segment of 

the piecewise-linear approximation of a non-linear function is a linear function, 

obtained by the affine combination of the vertices of the segment. In the alternative 

formulation, each segment of the piecewise-linear approximation represents a constant 

value, which is taken to be representative of the values that the non-linear function 

assumes between the vertices of a partition of its domain. This difference in the 

approximation of the non-linear functions requires the rewriting of several constraints of 

the ACOPF problem, particularly those that relate power injections at buses with the 

corresponding current injections. 
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This alternative formulation, which is thoroughly presented in Appendix B 

(chapter 8) for the sake of didactics, has been abandoned at early stages of the research 

activities due to its performance being inferior, with respect to accuracy and 

computational requirements, to the formulation presented in sections 4.1 to 4.3. 
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5 CASE STUDIES AND DISCUSSION OF RESULTS 

In this chapter, the proposed MILP reformulation of the ACOPF is applied to a 

number of case studies. Two classes of case studies are considered: 

∙ Those of section 5.1 allow the comparison of the solutions obtained with 

the proposed MILP reformulation of the ACOPF with the solutions 

obtained by exhaustive search, for the problem of network 

reconfiguration for the minimization of losses. While this comparison 

does not allow a thorough validation of the proposed formulation, due to 

the fact that only a parcel of its features is put into service, it serves the 

purpose of benchmarking its accuracy and computational performance. 

∙ The case studies of section 5.2 illustrate the flexibility and the range of 

application of the MILP reformulation of the ACOPF. Each of the 

alternative objective functions (or modules for objective functions) 

presented in section 4.2.2 will be used in at least one application, with 

the exception of that presented in section 4.2.2.8. 

For all applications of the proposed MILP reformulation of the ACOPF 

presented in this chapter, the methods described in section 4.3 have been used for 

obtaining the disjunctive constants, the bounds for variables in McCormick’s envelope, 

and the sets of evaluation points and evaluated values for piecewise-linearizations with 

SOS2. The procedures described in subsection 4.3.2 have been employed considering 

|   |    and |   |    (subsection 4.3.2.1) and |   |  |   |    (subsection 

4.3.2.2). Furthermore, the range for the variation of the voltage angles of all buses in the 

system was assumed to be           in all simulations, which is a conservative 

definition, as the numerical results will indicate. 

5.1 Benchmark of the proposed formulation against an 

exhaustive search algorithm 

In this section, the proposed MILP reformulation of the ACOPF is employed in 

four case studies, all of which involve the problem of network reconfiguration for the 

minimization of losses. The solutions obtained with the proposed MILP reformulation 
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of the ACOPF will be compared to those obtained by a brute force, exhaustive search 

method, with respect to accuracy and computational performance. 

The two main reasons for choosing the problem of network reconfiguration for 

the analyses of this section are: 

∙ If branch switching is the only control action modeled in a network 

reconfiguration problem, the problem will involve exclusively binary 

decisions. This facilitates the construction of an exhaustive search 

algorithm for the solution of the network reconfiguration problem, which 

will be necessary for the conducting the benchmarking activity that is the 

object of this section. Obviously, exhaustive search methods are 

excessively demanding when continuous decisions are taken into 

consideration. 

∙ The network reconfiguration problem has been extensively dealt with in 

the technical literature. Thus, the input data associated with a number of 

test systems for network reconfiguration applications can be readily 

obtained, facilitating the construction of the case studies of this section. 

The fact that network reconfiguration applications involve exclusively binary 

decisions prevents the full range of features of the proposed MILP formulation to be put 

into service. As mentioned in the introductory chapter of this dissertation, one of the 

main advantages of the proposed formulation is its flexibility to simultaneously 

represent discrete and continuous decisions. Thus, limiting the case studies of this 

section to network reconfiguration applications, while being necessary to allow the use 

of exhaustive search methods in manageable time, does not allow the validation of all 

features of the proposed formulation. Nonetheless, the comparison of the two solution 

methods will serve the purpose of providing insight on the accuracy and computational 

performance of the proposed MILP reformulation of the ACOPF, as well as on the on 

the adherence of the solutions to those obtained by exhaustive search, for a common 

problem in distribution system operations planning. 

The four test systems considered in the benchmarking are presented in the 

following subsection. In section 5.1.2, the exhaustive search method employed for the 

benchmarking analysis is presented, and reference is made to the objective function 

used for the mixed-integer linear program. In section 5.1.3, the results of the simulations 
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conducted with the proposed MILP reformulation are compared to those obtained via 

exhaustive search.  

For the network reconfiguration applications listed below, radiality of the 

network topology is required, and all buses are always required to be connected to the 

network. The objective of the reconfiguration is to minimize the total ohmic losses in 

the system. No costs are considered to be associated to switching actions. 

5.1.1 Test systems 

5.1.1.1 Test system S1  

The data for test system S1 has been taken directly from [84].   

This is the simplest test system, with 12 buses and 11 branches. All branches in 

the system may be switched. The input data for test system S1 is presented in Appendix 

A (section 7.1.1). 

5.1.1.2 Test system S2 

Test system S2 has also been taken from [84]. Slight modifications have been 

necessary to adjust the data to the format required by the ACOPF formulation: the 

addition of buses to allow the modeling of capacitor banks, and the addition of low-

impedance branches (Rkm = 0 p.u. and Xkm = 0.001 p.u.) to connect these buses to the 

main system.  

Test system S2 has 23 buses and 23 branches, 16 of which may be switched – 

the low-impedance branches used to connect the buses modeling capacitor banks are the 

only ones that cannot be switched. The input data for test system S2 is presented in 

Appendix A (section 7.1.2). 

5.1.1.3 Test system S3 

The data for test system S3 has been taken from [64].  

Test system S3 has 33 buses and 37 circuits, all of which are considered as 

switchable in the original reference [64]. The exhaustive search of 2
37

 configurations 

could not be handled in manageable time (the brute force algorithm has been interrupted 
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after about 72 hours of computation). Therefore, in order to allow this test system to be 

treated by the brute force method, the number of switchable circuits has been reduced to 

26 – i.e., 11 of the circuits closest to the root node have been considered as non-

switchable.  

The input data for this test system is presented in Appendix A (section 7.1.3). 

5.1.1.4 Test system S4 

The data for test system S4 was adapted from the IEEE 123 Bus radial 

Distribution Feeder presented in [85]. The original test system consisted of a three-

phase unbalanced system, with structural and operational unbalance. Several 

modifications have been made in order to obtain a three-phase balanced distribution 

system with basis on the original data, as the proposed MILP reformulation of the 

ACOPF is currently limited to such systems. Despite the fact that the proposed MILP 

reformulation of the ACOPF explicitly models loads of the constant-current type (as 

case studies presented further in this document will show), these types of loads are not 

dealt with by the brute force algorithm employed for the benchmarking activity – thus, 

all loads of the constant-current type have been converted to constant-impedance loads. 

Voltage regulators were removed from the input data, and additional buses, connected 

to the system via low-impedance circuits, were added in order to model capacitor banks. 

Also, the total number of switchable branches in the system was increased from the 

original 11 to 16, in order to obtain a case with higher dimensions (notably, a higher 

number of feasible configurations to be investigated). With these modifications, the 

total number of buses and branches in the system is respectively 132 and 134.  

A full description of the input data for test system S4 can be found in Appendix 

A (section 7.1.4).  

5.1.2 Algorithm for exhaustive search and objective function for 

MILP approach 

5.1.2.1 Brute-force, exhaustive search algorithm 

The exhaustive search algorithm employed for the benchmarking analyses of 

this section is described in the following: 



 

                                                                                                                                                                                                                                                                    

128 

 

(i) For a network with |   | switchable circuits, there are  |   | possible 

network configurations to be investigated. 

(ii) Each of the  |   | configurations is first checked for connectivity and 

radiality. If the configuration is fully connected and radial (i.e., if there is 

a single path through which each bus is connected to one and only one 

root bus), the configuration is flagged as feasible with respect to 

connectivity and radiality. 

(iii) For all configurations that are feasible with respect to connectivity and 

radiality, the backward-forward load flow algorithm [67] is executed to 

solve for all complex bus voltages and branch currents in the system. The 

stop criterion for the execution of successive backward-forward 

iterations is that, from one iteration to another, the maximum variation in 

any component of any complex bus voltage does not exceed 10
-5

 p.u. 

Another stop criterion is that the number of iterations does not exceed 

100 (though this did not happen in any of the simulations). After 

convergence, the losses in the system are calculated and stored. 

(iv) Once all  |   | configurations have been treated, all of the 

configurations for which the power flow problem has been solved are 

ordered, from that with the lowest losses to that with the highest losses. 

The one with the lowest losses is re-simulated, and the compliance of the 

solution to operational limits is checked. If the solution complies with 

operational limits, it is chosen as the optimal solution of the brute-force 

search. If not, the procedure is repeated with the next solution of the list, 

until a solution that complies with operational limits is found.  

5.1.2.2 Objective function for MILP approach 

In section 4.2.2.5, a number of alternative formulations for the objective function 

of the losses minimization problem have been presented. At this point, it is important to 

indicate which of these has been used for the benchmark of section 5.1, for the network 

reconfiguration problem. 

As previously mentioned, the only control action considered for the case studies 

of this section is the switching of branches. As load shedding decisions are not 
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considered here, the products    (    ) and   
  (    ) do not appear in the 

objective function. Furthermore, due to the fact that the brute force algorithm against 

which the MILP approach will be benchmarked does not treat loads of the constant-

current type, the only loads that appear in the objective function are those of the 

constant-power and of the constant-impedance type.  

It is necessary to model the dependence of the latter loads with the voltage 

magnitude of the buses to which they connect, and for that the approximation  

  
  (      ) is employed. The reader will recall that this approximation is based 

on the truncated Taylor series calculated about the reference value   
   . Despite the 

fact that a piecewise-linear approximation of this product may be employed to ensure 

better control over the approximation accuracy, the results of section 5.1.3 will show 

that the truncated Taylor series technique is sufficient to ensure that the switching 

decisions taken with help of the MILP reformulation perfectly match those obtained 

with the brute force algorithm. 

After this introduction, the exact objective function employed for the case 

studies of this section is presented: 

 

         {∑   
   
     
  

        [∑   
 

          

 ∑ (      )  
  
 

|  
 |
        ]}  (352) 

 

The reader will notice that no specific costs have been assigned to losses, and 

therefore all results will be given in p.u. (for the tables of section 5.1.3, these will be 

converted to MW). The connectivity approach for the formulation of radiality 

constraints presented in section 4.2.1.7.1, approach (i), has been used for all case  

studies in this section. 

5.1.3 Case study results 

The main results of all case studies are summarized in Table 5.1. 
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Table 5.1. Case study results: benchmark of MILP formulation against exhaustive search 

Test system Execution time [s] 
Switching decisions  

(status of switchable branches) 

Comment 

ID 

N
u
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f 
b
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B

F
 [

%
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Switched-on  

branches 

S
w
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ch

ed
-o

ff
 

b
ra

n
ch

es
 

S1 12 
11  

(11) 
1.14 1.69 48% 

(1000-5), (5-4), (4-3),  

(3-2), (2-1), (1-101),  

(102-103), (103-104), 

(104-105),(105-2000) 

(101-102) 

Identical 

switching 

decisions  

in MILP 

and BF 

S2 23 
23  

(16) 
52.87 10.03 -81% 

(1-4), (4-5), (4-6), (6-7), 

(2-8), (8-9), (9-12), (3-13),  

(13-14), (13-15), (15-16),  

(5-11), (10-14) 

(8-10),  

(9-11), 

(7-16) 

Identical 

switching 

decisions  

in MILP 

and BF 

S3 33 
37  

(26) 
65668 626.0 -99% 

(5-6), (7-8), (9-10), (7-20), 

(10-11), (11-12), (12-13), 

(14-15), (15-16), (16-17) 

(20-21), (5-25), (25-26),  

(26-27), (27-28), (28-29) 

(29-30), (30-31), (8-14),  

(11-21), (17-32) 

(6-7),  

(8-9),  

(13-14), 

(31-32),  

(24-28) 

Identical 

switching 

decisions  

in MILP 

and BF 

S4 132 
134  

(16) 
651.1 688.9 5.8% 

(42-44), (54-94), (25-44),  

(13-152), (60-160),  

(61-610), (97-197),  

(250-251), (450-451),  

(151-300), (300-350),  

(150-149), (33-149) 

(23-25),  

(86-87) 

(18-135) 

Identical 

switching 

decisions  

in MILP 

and BF 

 

The computer used for all simulations is a Dell Vostro 3300 with the processor 

Intel® Core™ i5, with 2.26 GHz and 3.8 GB of usable RAM, and using Windows 7® 

as the operational system. The brute force algorithm has been coded and executed in 

Matlab® Version 7.10 64 bit. The MILP reformulation of the ACOPF has been coded 

and executed with FICO Xpress Mosel ® Version 3.2.2, with help of the graphical 

interface FICO Xpress-IVE ® Version 1.22.02, 64 bit. 
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As indicated in Table 5.1, identical switching decisions have been obtained with 

the MILP reformulation of the ACOPF and with the brute-force, exhaustive search 

algorithm, for all case studies. This effectively means that, if the optimal decisions 

obtained with both methods were implemented, the same ohmic losses in distribution 

network would be obtained – indicating that the actual value of the objective function 

obtained with the MILP formulation and the brute-force algorithm is identical, for all 

case studies. 

 Keeping in mind what has been discussed in the last paragraph, it is also worth 

comparing the numerical value of the objective function obtained by the MILP 

reformulation (i.e., the approximated numerical value corresponding to the solution of 

the mixed-integer program, and not the actual value that would be obtained by 

implementing the solution) to the numerical value of the objective function 

corresponding to the solution of the brute-force algorithm. This will provide the reader 

with insight on the accuracy of the approximations that are inherent to the MILP 

reformulation. The comparison of these values is shown in Table 5.2. 

Table 5.2. Case study results: comparison of approximated numerical value corresponding to the  

solution of the mixed-integer program (MILP) to the numerical value of the objective function  

corresponding to the solution of the brute-force (BF) 

Test system Numerical value of total losses at optimal solution [MW] 

ID 
Number 

of buses 

Number of 

branches 

(switchable) 

Brute force (BF) MILP reform. (MILP–BF)/BF [%] 

S1 12 11 (11) 0.3297 0.3270 -0.8% 

S2 23 23 (16) 0.4748 0.4814 1.4% 

S3 33 37 (26) 0.1396 0.1458 4% 

S4 132 134 (16) 0.0426 0.0452 6% 

 

The results of Table 5.1 and Table 5.2 indicate that, even when the 

approximation of   
  via the truncated Taylor series is used in the objective function, 

the results of the proposed MILP reformulation of the ACOPF closely match those 

obtained with the exhaustive search. The numerical value of the total losses obtained 

with the MILP reformulation differs slightly from that obtained with the brute force 

method, and the absolute value of this difference increases as the dimensions of the 

system increases. Systems S2 and S4 have loads of the constant-impedance type. Yet, 

the existence of loads of the constant-impedance type does not seem to be the most 
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preponderant factor for explaining the difference in the total losses obtained with the 

two methods – which is explained by the voltage magnitudes at all buses being close to 

1.0 p.u. (the reference point for the approximation of   
  via the truncated Taylor 

series). 

For test system S1, the computational performance of the brute force algorithm 

is superior to that of the MILP reformulation, which is explained by the small 

dimensions of the system and by the fact that, due to the particular topology of this 

system (it basically corresponds to 12 buses sequentially and linearly aligned, as 

indicated by the data in Appendix A), very few of the topologies are feasible with 

respect to connectivity and have their power flow simulated. For test system S4, the 

computational performance of the exhaustive search method has been slightly superior 

to that of the MILP reformulation (5.8%). For the other systems, the computational 

performance of the MILP reformulation of the ACOPF has been superior to that of the 

brute force method. For test system S3, the system with the highest number of possible 

network configurations (2
26

), the solution time with the MILP reformulation of the 

ACOPF was only 0.95% that of the brute force method. However, as the number of 

buses and branches increases and the number of possible configurations decreases from 

test system S3 to test system S4, the computational performance of the two methods 

become comparable – and, in fact, the brute force algorithm has a slightly better 

performance than the MILP reformulation. While analyzing this last result, the reader 

should keep in mind that, if continuous decisions were to be included in the case 

studies, the brute force algorithm could simply not be used, while the MILP 

reformulation would still apply. 

For tests systems S1, S2 and S3, a further benchmark of the optimal solution 

obtained with the proposed MILP reformulation of the ACOPF for distribution systems 

can be made. The value of the ohmic losses obtained by evaluating the optimal solution 

obtained by the proposed formulation with a backward-forward load flow
12

 (BFLF) is 

compared with the value of the optimal solution reported in the original references [84] 

(for test systems S1 and S2) and [64] (for test system S3). The original references have 

employed heuristics (variations of the branch-exchange heuristic presented in section 

                                                 
12

 This is the actual value of the system losses that would be obtained when the distribution syste4m 

engineer implements the decision taken with support of the MILP formulation. 
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1.2, though this name is not actually used by the authors) for the solution of the network 

reconfiguration problem for the minimization of losses (except for the very simple 

system S1, for which an exhaustive search has been implicitly conducted in [84]). The 

results of the comparison are indicated in Table 5.3, from which is clear that the ohmic 

losses corresponding to the solution obtained with the proposed MILP formulation are 

inferior to those corresponding to the solution informed in the original references for 

test systems S2 (by 3.67%) and S3 (by 5.22%). 

Table 5.3. Case study results: benchmark of optimal solution against solution informed in  

original references [84] (for test systems S1 and S2) and [64] (for test system S3) 

T
es

t 
sy

st
em

 

Optimal solution obtained with  

MILP formulation 

Optimal solution reported in original 

reference 

(O
P

T
-R

E
F

)/
O

P
T

 [
%

] 

Switching decisions  

(status of switchable 

branches) 

Total losses  

at optimal 

solution 

(evaluated 

with BFLF) 

[MW] 

Switching decisions  

(status of switchable 

branches) 

Total losses  

at optimal 

solution 

(evaluated 

with BFLF) 

[MW] 
Switched-off branches Switched-off branches 

S1 (101-102) 0.3297 (101-102) 0.3297 0% 

S2 (8-10), (9-11), (7-16) 0.4748 (8-10), (5-11), (7-16) 0.4922 3.67% 

S3 
(6-7), (8-9), (13-14), 

(31-32), (24-28) 
0.1396 

(7,20), (8,14), (10,11), 

(27,28), (30,31) 
0.1468 5.22% 

 

Before moving on to the next section, it is worth providing the reader with 

insight on the actual intervals within which the voltage angles throughout the system 

have varied, for all simulated systems. The range of variation of voltage angles within 

the systems S1 to S4 is indicated in Table 5.4. From the table, it is clear that considering 

          is a conservative modeling choice for all case studies.  

Table 5.4. Case study results: range of variation of voltage angles across the systems S1 to S4. 

Test 

system 

Range of variation of voltage 

angles across the system [º] 

Min Max 

S1 -1.24 0.00 

S2 -1.65 0.00 

S3 -1.02 0.60 

S4 -2.11 0.00 

 



 

                                                                                                                                                                                                                                                                    

134 

 

5.2 Illustration of selected applications 

In this section, five case studies, corresponding to different applications of the 

proposed MILP reformulation of the ACOPF, will be presented. Each of the alternative 

objective functions (or modules for objective functions) presented in section 4.2.2, with 

the exception of that presented in section 4.2.2.8, will be used in at least one 

application.  

5.2.1 Application A1: emergency load shedding plan 

For application A1, it is considered that the distribution operation planner wishes 

to construct an emergency load shedding plan for a severe contingency within the 

network of its utility. For that, it is necessary to determine which loads should be shed 

and which circuits should be maneuvered in the event of a specific, severe contingency, 

in order to minimize the combined costs of load shedding and ohmic losses. 

The distribution system considered for this application, referred to as S5, was 

built upon the data previously defined for test system S3. However, in order to better 

reflect the actual conditions with which distribution system operators are faced, only a 

limited subset of branches is considered to be switchable. Furthermore, it is necessary to 

represent the severe contingency for which the load shedding plan is to be built. Thus, 

two branches relatively close to the step-down substation at the interface with the 

transmission system are removed from the data – the branches (5-6) and (5-25) from the 

original data for S3).  

Also, the bus voltage magnitude limits, which in section 5.1.1.3 had been set to 

                       to ensure the feasibility of the problem (the reader will 

recall that no load shedding actions were allowed for the analyses of section 5.1), are 

now set to                       , for all buses.  

The distribution system operator is assumed to be able to shed 50% of the loads 

in the network – i.e., 16 loads have been randomly selected and marked as eligible for 

load shedding. The load shedding costs coefficients   
     vary within the interval  

[900 $/MW, 1200 $/MW], as shown in Appendix A. For the construction of the input 

data, the identification of the buses with loads that can be shed and the associated cost 
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coefficients were randomly sampled. The cost coefficient for ohmic losses equals  

100 $/MW.  

The input data for system S5, used for application A1, are presented in detail in 

Appendix A (section 7.2.1). A schematic diagram of system S5 is shown in Figure 5.1. 

In this figure, the branches under contingency are not represented. 

 

Figure 5.1: Schematic diagram of system S5. Switchable branches are indicated with a square.  

Adapted from [49]. 

The following objective function is employed for the minimization of the costs 

of load shedding and ohmic losses: 
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In the following three subsections, we present the results of the application of 

the proposed MILP reformulation under consideration of each of the three connectivity 
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approaches presented in subsection 4.2.1.7. As mentioned in section 4.2.1.7, the three 

approaches differ among themselves with respect to the necessity (or possibility) of 

entirely removing from the network a bus whose load has been shed.  

5.2.1.1 Simulation considering connectivity approach (i) 

In this subsection, the connectivity approach presented in section 4.2.1.7.1 is 

considered while determining the emergency load shedding plan for system S5. The 

reader will recall that, in this approach, is considered that all buses of the distribution 

system must be connected to the network at all times. 

The optimal emergency load shedding plan, obtained by the solution of the 

corresponding mixed-integer linear program, is summarized in Table 5.5. With help of 

Figure 5.1, it is easily understood that, after the maneuvering decisions are taken into 

account, the buses with the lowest voltage magnitudes are located at the extremities of 

the feeder. Among the curtailable loads located near these buses, those with the lowest 

value of   
     are shed in order to achieve compliance to the admissible range of bus 

voltage magnitudes. 
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Table 5.5. Case study results: application A1, emergency load shedding plan, approach (i). 
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S5 248.0 237.0 11.0 

0.06 15 950 

(6, 7), 

(7, 20), 

(8, 14), 

(11, 21), 

(16, 17), 

(27, 28), 

(29, 30), 

(30, 31), 

(31, 32), 

(24, 28) 

(8-9), 

(13-14), 

(17-32) 

17 (0.951), 

32 (0.951) 

1000 

(1.00), 

2 (0.997) 

242.9 

0.2 29 900 

 

The operation point corresponding to the optimal solution indicated in Table 5.5 

has been used as the input data for a backward-forward load flow [67] simulation, for 

system S5. The stop criterion for the execution of successive backward-forward 

iterations is that the maximum variation in any component of any complex bus voltage 

does not exceed 10
-5

 p.u. from one iteration to another. The losses obtained by the 

backward-forward load flow simulation are 0.22% lower than those obtained with the 

MILP reformulation of the ACOPF. Furthermore, it is relevant to to quantify the 

approximation errors of the bus voltages. Table 5.6 also indicates the results obtained by 

the backward-forward load flow, as well as the relative error between the voltages 

obtained by the MILP problem and the backward-forward load flow. It is clear that the 

approximation errors range from 0.00005% to 0.0006% for voltage magnitudes and 

from -1.13% to -0.04% for bus angles (excluding the reference voltage bus). At this 

point, the reader is reminded that, as the branch impedance is known for every branch  

in the system, the branch currents can be readily calculated when the information of  

the bus voltage magnitudes is at hand – i.e., the complex bus voltages are the state 
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variables of the system. Due to that, an option is made not to construct a table similar to 

Table 5.6 for branch currents.  

Table 5.6. Bus voltages: solution of MILP ACOPF (MILP), simulation with backward-forward load flow 

(BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF. 

B
u

s 
#
 Voltage magnitude [p.u.] Voltage angle [°] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

1000 1.00000 1.00000 - 0.00000 0.00000 - 

1 0.99743 0.99743 0.00005% -0.00168 -0.00166 -1.1270% 

2 0.98955 0.98955 0.0002% -0.00648 -0.00642 -0.8441% 

3 0.98885 0.98884 0.0002% -0.00544 -0.00538 -1.0227% 

4 0.98850 0.98849 0.0002% -0.00698 -0.00693 -0.7902% 

5 0.98810 0.98809 0.0003% -0.01652 -0.01646 -0.3106% 

6 0.95875 0.95875 0.0001% -0.75173 -0.75121 -0.0692% 

7 0.95983 0.95983 0.0001% -0.76110 -0.76060 -0.0665% 

8 0.95757 0.95757 0.0000% -0.80262 -0.80209 -0.0658% 

9 0.96144 0.96144 0.0003% -0.66929 -0.66881 -0.0713% 

10 0.96153 0.96152 0.0003% -0.66930 -0.66882 -0.0713% 

11 0.96182 0.96182 0.0004% -0.67151 -0.67104 -0.0703% 

12 0.95924 0.95923 0.0003% -0.68663 -0.68613 -0.0732% 

13 0.95844 0.95844 0.0004% -0.70305 -0.70253 -0.0728% 

14 0.95390 0.95390 0.0001% -0.91218 -0.91161 -0.0629% 

15 0.95295 0.95295 0.0001% -0.92668 -0.92610 -0.0625% 

16 0.95100 0.95100 0.0002% -0.99801 -0.99740 -0.0611% 

17 0.95042 0.95042 0.0002% -1.00687 -1.00625 -0.0611% 

18 0.99530 0.99530 0.0001% -0.04075 -0.04071 -0.1076% 

19 0.97734 0.97734 0.0002% -0.34219 -0.34192 -0.0797% 

20 0.97237 0.97237 0.0002% -0.46978 -0.46944 -0.0722% 

21 0.96891 0.96891 0.0003% -0.56019 -0.55981 -0.0680% 

22 0.98312 0.98311 0.0003% -0.06009 -0.06000 -0.1353% 

23 0.97055 0.97054 0.0005% -0.22200 -0.22187 -0.0581% 

24 0.96136 0.96136 0.0005% -0.33918 -0.33901 -0.0493% 

25 0.95532 0.95532 0.0005% -0.46205 -0.46185 -0.0428% 

26 0.95546 0.95545 0.0005% -0.46143 -0.46123 -0.0428% 

27 0.95659 0.95659 0.0005% -0.43832 -0.43813 -0.0436% 

28 0.95786 0.95785 0.0006% -0.41108 -0.41089 -0.0450% 

29 0.95611 0.95610 0.0005% -0.41169 -0.41150 -0.0451% 

30 0.95209 0.95209 0.0004% -0.49015 -0.48994 -0.0422% 

31 0.95121 0.95121 0.0004% -0.51156 -0.51135 -0.0415% 

32 0.95094 0.95094 0.0003% -0.51874 -0.51853 -0.0413% 
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5.2.1.2 Simulation considering connectivity approach (ii) 

In connectivity approach (ii), which has been presented in section 4.2.1.7.2, it is 

considered that the load and/or generator at a bus can only be de-energized if all circuits 

that connect to that bus are removed from the network. Removing a bus from the 

network requires that all circuits connected to that bus are deactivated (switched-off). 

The optimal emergency load shedding plan obtained by the solution of the 

corresponding mixed-integer linear program which has been formulated considering the 

second approach to connectivity requirements is summarized in Table 5.7. 

Table 5.7. Case study results: application A1, emergency load shedding plan, approach (ii). 
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S5 543.3 532.5 10.8 

0.09 17 1150 (6-7), 

(7-20), 

(8-14), 

(27-28), 

(11-21), 

(24-28) 

(8-9), 

(13-14), 

(16-17), 

(29-30), 

(30-31), 

(31-32), 

(17-32) 

(25) 

0.954, 

(26) 

0.954 

1000 

(1.00), 

2 

(0.997) 

11.03 
0.15 30 950 

0.21 31 1050 

0.06 32 1100 

 

From Table 5.7, it is clear that considering that a load can only be shed if its bus 

is removed from the network leads to an emergency load shedding plan with higher 

costs than that of subsection 5.2.1.1. The reader will notice that it is now not possible to 

shed the loads at buses 15 and 29 (shedding these two buses corresponds to the optimal 

solution obtained in subsection 5.2.1.1). 

Analogously to what has been done in subsection 5.2.1.1, the operation point 

corresponding to the optimal solution indicated in Table 5.7 has been used as the input 

data for a backward-forward load flow [67] simulation. The losses obtained by the 
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backward-forward load flow simulation are 0.17% lower than those obtained with the 

MILP reformulation of the ACOPF. Analogously to what was done in section 

subsection 5.2.1.1, it is relevant to quantify the approximation errors of bus voltages. 

The results of this comparison are shown in Table 5.8. It is clear that the approximation 

errors range from 0.00003% to 0.0008% for voltage magnitudes (excluding the 

reference voltage bus) and from -0.24% to +0.31% for bus angles. 

Table 5.8. Bus voltages: solution of MILP ACOPF (MILP), simulation with backward-forward load flow 

(BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF. 

B
u

s 
#
 Voltage magnitude [p.u.] Voltage angle [°] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

1000 1.00000 1.00000 - 0.00000 0.00000 - 

1 0.99747 0.99747 0.00003% 0.01471 0.01474 0.2250% 

2 0.98965 0.98965 0.0002% 0.09952 0.09966 0.1392% 

3 0.98894 0.98894 0.0003% 0.10056 0.10070 0.1403% 

4 0.98859 0.98859 0.0003% 0.09901 0.09915 0.1422% 

5 0.98819 0.98819 0.0002% 0.08948 0.08962 0.1540% 

6 0.96019 0.96018 0.0005% -0.72006 -0.71951 -0.0756% 

7 0.96126 0.96126 0.0006% -0.72940 -0.72887 -0.0724% 

8 0.95931 0.95931 0.0005% -0.77023 -0.76968 -0.0719% 

9 0.96220 0.96219 0.0006% -0.64557 -0.64508 -0.0767% 

10 0.96228 0.96228 0.0006% -0.64559 -0.64509 -0.0764% 

11 0.96258 0.96257 0.0006% -0.64779 -0.64731 -0.0754% 

12 0.95999 0.95999 0.0007% -0.66289 -0.66237 -0.0786% 

13 0.95920 0.95920 0.0006% -0.67928 -0.67875 -0.0781% 

14 0.95631 0.95630 0.0005% -0.87156 -0.87096 -0.0687% 

15 0.95558 0.95558 0.0005% -0.88546 -0.88485 -0.0687% 

16 0.95485 0.95485 0.0004% -0.91581 -0.91519 -0.0677% 

18 0.99540 0.99540 0.0001% -0.02385 -0.02379 -0.2437% 

19 0.97793 0.97793 0.0003% -0.32131 -0.32102 -0.0909% 

20 0.97312 0.97311 0.0005% -0.44637 -0.44602 -0.0798% 

21 0.96966 0.96965 0.0006% -0.53665 -0.53625 -0.0741% 

22 0.98308 0.98307 0.0004% 0.13544 0.13567 0.1708% 

23 0.97000 0.96999 0.0007% 0.16305 0.16346 0.2565% 

24 0.96032 0.96031 0.0007% 0.23882 0.23942 0.2506% 

25 0.95372 0.95371 0.0007% 0.23425 0.23498 0.3091% 

26 0.95386 0.95385 0.0008% 0.23487 0.23559 0.3076% 

27 0.95499 0.95499 0.0007% 0.25806 0.25877 0.2725% 

28 0.95626 0.95625 0.0007% 0.28539 0.28607 0.2383% 

29 0.95458 0.95458 0.0006% 0.38439 0.38511 0.1858% 
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5.2.1.3 Simulation considering connectivity approach (iii) 

The third approach to connectivity requirements has been presented in section 

4.2.1.7.3. In this approach, it is considered that the buses to which loads that are shed 

and generators that are curtailed, as well as all buses that do have any fixed or 

curtailable injections, may or may not be disconnected from the network, according to 

the impacts of their connection or disconnection on the objective function.  

For system S5, approach (iii) leads to exactly the same results as approach (i). It 

is worth mentioning that, despite of the third approach having led to the same results as 

the first for this particular system, the results obtained with both approaches may differ 

for other applications and systems. 

5.2.2 Application A2: generation curtailment at light loading 

hours 

For this second application, the distribution system expansion planner is 

assumed to have a list of requests for the connection of renewable generators to the 

distribution system, and must determine which of those requests to accept and which to 

decline, so that the maximum amount of renewable generation can be connected to the 

system while ensuring adequate technical conditions – i.e., compliance with bus voltage 

and branch current magnitude limits. This problem is equivalent to minimizing the 

curtailment of generators with non-controllable active power output (the curtailed 

generators are those whose connection request will not be met), with the curtailment 

cost coefficient set to unity for all generators. 

As well as in the previous section, the data for the distribution system considered 

for this application, referred to as S6, have also been obtained by modification of the 

input data for test system S3. It assumed here that the most critical condition for the 

evaluation of the connection of the renewable generators is at night, when the voltage 

magnitude at the interface with the transmission system is high, the load within the 

distribution network is low, and the generation is high due to the dynamics of the non-

controllable primary energy resources. The modifications made for obtaining system S6 

will reflect this assumption. These modifications are listed in the following: 
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(i) Only 11 of the 37 branches in the system are considered to be 

switchable; 

(ii) The load at all buses is reduced to 30% of their original value; 

(iii) The voltage magnitude of the bus at the interface with the 

transmission system is considered to be of          ; 

(iv) The admissible range for the voltage magnitude of all buses in the 

system is set to                       ; 

(v) Candidate renewable generators are assigned to 20 of the 33 buses in 

the system.  

(vi) The active power output of each of these generators has been 

randomly sampled from the interval [50 kW, 150 kW] (considering an 

uniform probability distribution).  

(vii) It is assumed that each generator can control its power factor within 

the range [0.98lagging, 0.98leading] (considering the installed active power 

capacity). In reality, this is a very narrow power factor for many 

common distributed generation technologies. Nonetheless, this narrow 

power factor is assumed to make the analysis scenario somewhat more 

complex. 

In this application, the “generation curtailment” decision does not refer to the 

actual physical disconnection of the generation from the system, but rather to the denial 

of a connection request. Due to that, the first approach to connectivity requirements, 

which has been presented in subsection 4.2.1.7.1, will be considered. In fact, this first 

approach will be considered for all applications presented in the following subsections, 

except for that of subsection 5.2.4. 

The input data for system S6, used for application A2, are presented in detail in 

Appendix A (section 7.2.2). A schematic diagram of system S5 is shown in Figure 5.2.  
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Figure 5.2: Schematic diagram of system S6. Switchable branches are indicated with a square.  

Adapted from [49]. 

The objective function used in this application corresponds exactly to equation 

(197) of section 4.2.2. 

The set of  answers to connection requests that result in the highest amount of 

renewable generation connected to system S6 are indicated in Table 5.9. 
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Table 5.9. Case study results: application A2, generation curtailment at light loading hours. 
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S6 326 

90 2 58 6 

(8-9), 

(27-28), 

(31-32), 

(8-14), 

(11-21), 

(17-32) 

(6-7), 

(13-14), 

(5-25), 

(7-20), 

(24-28) 

1602.84 

89 3 100 18 

62 7 168 21 

138 8     

68 9     

88 11     

65 12     

75 15     

69 19     

146 22     

123 23     

153 25     

126 28     

85 29     

94 30     

89 31     

114 32     

 

Due to the high voltage at the bus at the interface with the transmission system, 

the light loading conditions and the fact that the generators may only vary their power 

factor within a very limited range, the voltage profile within the network of system S6 is 

very high. In fact, it is the need to prevent voltages above 1.05 p.u. that leads to the 

curtailment (i.e., denial of the connection request) of the three generators indicated in 

Table 5.9.  

The bus voltages corresponding to the optimal solution of the MILP 

reformulation of the ACOPF are indicated in Table 5.10. In order to quantify the 

approximation errors of the bus voltage magnitudes, the operating point corresponding 

to the optimal solution of the MILP problem has been used as input data for a 

simulation using the backward-forward load flow algorithm [67] (i.e., the network 

topology and all bus injections, including the active power absorbed by generators, 

which have been modeled as fixed values, were used as input data and the system has 



 

                                                                                                                                                                                                                                                                    

145 

 

been simply simulated). The stop criterion for the execution of successive backward-

forward iterations is that the maximum variation in any component of any complex bus 

voltage does not exceed 10
-5

 p.u. from one iteration to another. Table 5.10 also indicates 

the results obtained by the backward-forward load flow, as well as the relative error 

between the voltages obtained by the MILP problem and the backward-forward load 

flow. The approximation errors range from 0.0002% to 0.0022% (excluding the 

reference voltage bus, for which the voltage magnitude is fixed in application A2) for 

voltage magnitudes, and from 2·10
-10

 (for bus 11) to 0.02% for bus angles (also 

excluding the reference voltage bus). 

Table 5.10: Bus voltage magnitude profile: solution of MILP ACOPF (MILP), simulation with backward-

forward load flow (BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF. 

B
u
s 

#
 Voltage magnitude [p.u.] Voltage angle [°] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

1000 1.05000 1.05000 - 0.00000 0.00000 - 

1 1.04999 1.04999 0.00038% 0.03986 0.03986 0.0016% 

2 1.04955 1.04955 0.0005% 0.08979 0.08978 0.0069% 

3 1.04936 1.04936 0.0004% 0.09752 0.09752 0.0072% 

4 1.04909 1.04909 0.0005% 0.09704 0.09704 0.0071% 

5 1.04856 1.04856 0.0003% 0.08871 0.08870 0.0077% 

6 1.04839 1.04839 0.0004% 0.07846 0.07845 0.0091% 

7 1.04775 1.04774 0.0008% 2.50050 2.50053 0.0014% 

8 1.04793 1.04791 0.0015% 2.48559 2.48563 0.0015% 

9 1.04733 1.04731 0.0014% 2.18062 2.18063 0.0006% 

10 1.04692 1.04691 0.0009% 2.13257 2.13257 0.0002% 

11 1.04619 1.04618 0.0006% 2.04040 2.04040 0.0000% 

12 1.04596 1.04595 0.0005% 2.06733 2.06733 0.0001% 

13 1.04574 1.04573 0.0007% 2.06319 2.06320 0.0004% 

14 1.04671 1.04669 0.0018% 3.03329 3.03336 0.0022% 

15 1.04693 1.04692 0.0010% 3.21596 3.21604 0.0025% 

16 1.04496 1.04495 0.0011% 3.59062 3.59072 0.0028% 

17 1.04502 1.04501 0.0012% 3.76136 3.76148 0.0032% 

18 1.04982 1.04982 0.0002% 0.10678 0.10678 0.0003% 

19 1.04908 1.04907 0.0007% 0.71314 0.71313 0.0002% 

20 1.04840 1.04839 0.0006% 0.88890 0.88889 0.0003% 

21 1.04697 1.04697 0.0003% 1.21826 1.21825 0.0009% 

22 1.04918 1.04918 0.0002% 0.11662 0.11661 0.0107% 

23 1.04788 1.04787 0.0005% 0.12922 0.12920 0.0152% 

24 1.04695 1.04695 0.0002% 0.11795 0.11793 0.0171% 

25 1.04492 1.04490 0.0016% 4.34433 4.34450 0.0038% 

26 1.04472 1.04470 0.0021% 4.33435 4.33452 0.0038% 

27 1.04424 1.04422 0.0018% 4.28260 4.28276 0.0038% 

28 1.04398 1.04396 0.0021% 4.24614 4.24631 0.0039% 
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B
u

s 
#
 Voltage magnitude [p.u.] Voltage angle [°] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

BFLF MILP 

(MILP-

BFLF) 

/BFLF [%] 

29 1.04356 1.04354 0.0022% 4.21362 4.21379 0.0041% 

30 1.04403 1.04401 0.0017% 4.05139 4.05153 0.0033% 

31 1.04427 1.04425 0.0020% 3.98601 3.98614 0.0033% 

32 1.04491 1.04489 0.0016% 3.89300 3.89312 0.0031% 

 

5.2.3 Application A3: minimization of the sum of variable 

generation costs and costs of power imports 

For this third application, it is assumed that the distribution system operator 

wishes to minimize the total costs related to supplying active power to the distribution 

system, including the variable costs of generators whose active power output can be 

controlled and the costs of power imports. 

The distribution system considered for this third application, referred to as S7, 

was also obtained by modifying the input data for test system S3. The following 

modifications have been made to obtain S7: 

(i) Only 11 of the 37 branches in the system are considered to be 

switchable; 

(ii) The load at all buses are increased to 110% of their original value; 

(iii) The voltage at the interface with the transmission system is assumed 

to be of 1.025 p.u. and the admissible range for the voltage magnitude 

of all buses in the system is set to                       ; 

(iv) It is assumed that there are four generations with controllable active 

power output in the system. Those generators are assumed to be 

connected to buses 7, 14, 17 and 29. The installed capacity of the 

generator connected to bus 7 is of 500 kW, and all other generators 

have an installed capacity of 300 kW. Each generator able to control 

its power factor within the range [0.95lagging, 1] (considering the 

installed active power capacity). 

(v) The unitary production costs for the generators connected to buses 7, 

14, 17 and 29 are respectively of 110 $/MWh, 118 $/MWh,  
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118 $/MWh and 145 $/MWh. The costs of imports from the external 

network are of 115 $/MWh. 

(vi) A period of one hour is considered, so that the conversion from MWh 

to MW is immediate.   

The input data for system S7, used for application A3, are presented in detail in 

Appendix A (section 7.2.3). The network topology of S7 is identical to that indicated in 

Figure 5.2.  

The following objective function is employed for the minimization of the sum of 

variable generation costs and costs of power imports: 

 

                2∑   
      

 
         ∑   

         
   
     
  

       3  

 (354) 

Two distinct groups of simulations will be executed for system S7. For the first 

group of simulations, whose results are indicated in subsection 5.2.3.1, it is required that 

the system is operated in a radial fashion (i.e., the radiality constraints are enforced). For 

the second group of simulations, whose results are indicated in subsection 5.2.3.2, the 

system may be operated in a meshed fashion if this is the optimal configuration (i.e., the 

radiality constraints are not enforced).  

5.2.3.1 Radiality enforced 

For the simulations of this section, it has been considered that the distribution 

system S7 must be operated in a radial fashion – i.e., radiality constraints are enforced 

while solving the problem of minimization of supply costs. 

For the first simulation, the formulation of the constraints for obtaining the 

generator currents that was presented in section 4.2.1.2 has been used. The reader will 

recall that this formulation makes use of McCormick’s envelopes for modeling bilinear 

products – and for that reason we identify this formulation as formulation with 

McCormick’s envelopes. The corresponding results are shown in Table 5.11. 
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Table 5.11. Case study results: application A3 with radiality enforced, minimization of the sum of  

variable generation costs and costs of power imports, formulation with McCormick’s envelopes.  
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0.5 110 7 
(5-25), (8-14), 

(27-28), (31-32), 

(11-21), (17-32) 

(6-7), (8-9), 

(7-20), (13-14), 

(24-28) 

45.3 
0.200 118 14 

0.215 118 17 

0 145 29 

 

It is clear that the location of the generators within the network influences the 

dispatch decisions, mainly due to the avoidance of ohmic losses – this being the main 

reason for the generators at buses 14 and 17 having a non-zero dispatch, despite the fact 

that their unitary production costs (118 $/MW) is superior to the unitary costs of power 

imports (115 $/MW). 

 With the results of the first simulation at hand, a second simulation has been 

conducted. For this second simulation, the formulation of the constraints for obtaining 

the generator currents presented in Appendix C (section 9.2) has been used. The reader 

will recall that this formulation completely eliminates the need to employ McCormick’s 

envelopes, as the generator currents     
   and     

   are treated as non-linear functions of 

four decision variables – i.e.,     
  (  

     
     

    
 ) and     

  (  
     

     
    

 ) – and 

piecewise-linear approximations of these functions are constructed with help of SOS2. 

For the construction of these piecewise-linear functions, the cardinality of the sets    

and    (see section 9.2) has been defined as |  |  |  |   , with the evaluation 

points distributed equally within the allowable range for the active and reactive power 

outputs. The formulation used in the second simulation is identified as formulation with 

piecewise-linear approximations in the tables of this section. The results obtained when 

using this formulation are shown in Table 5.12. 
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Table 5.12. Case study results: application A3 with radiality enforced, minimization of the sum of  

variable generation costs and costs of power imports, formulation with piecewise-linear approximations.  
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branches 

S7 479.1 118.3 360.8 

0.5 110 7 
(5-25), (8-14), 

(27-28), (31-32), 

(11-21), (17-32) 

(6-7), (8-9), 

(7-20), (13-14), 

(24-28) 

811 
0.241 118 14 

0.296 118 17 

0 145 29 

 

It is clear that the network topology (switching decisions) obtained with both 

formulations is equal.  

By comparing the results of Table 5.11 and Table 5.12, it may seem at first that 

the solution obtained with the formulation with McCormick’s envelopes (Table 5.11) is 

better than that obtained with the formulation with piecewise-linear approximations 

(Table 5.12), due to the numerical value of the objective function of the former being 

inferior to that of the latter. However, the approximations of generator currents in the 

first formulation are presumably less accurate than that of the second formulation, 

which may indicate that, if the distribution system operator were to implement the 

generation dispatch of both formulations, the actual power supply costs associated with 

the first solution (  
      MW,    

       MW,   
         MW,   

     MW, 

with the remainder of the power requirements supplied by power imports) could be 

higher than those of the second solution (  
      MW,    

         MW,   
   

      MW,   
     MW, with the remainder of the power requirements supplied by 

power imports).  

In order to investigate the hypothesis presented in the last paragraph, both 

solutions have been used as inputs for a backward-forward power flow simulation [67]: 

the decisions regarding the network topology (switching decisions) and generation 

dispatch (active power output of generators connected to buses 7, 14, 17 and 29) have 

been used as fixed input data, and the amount of power imports corresponding to each 

solution (formulation with McCormick’s envelopes and formulation with piecewise-
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linear approximations) have been obtained by the solution of the backward-forward 

power flow. With these results at hand, the value of the actual system operation costs 

can be calculated. Furthermore, the value of the actual system operating costs obtained 

by the procedure described above have been compared to that corresponding to the 

solution of a non-linear AC optimal power flow problem (NL-ACOPF), obtained with 

help of the software OptFlow [87]. This NL-ACOPF software does not support discrete 

decisions, and therefore the network topology corresponding to the switching decisions 

specified in the previous tables has been considered as fixed.  

The system operating costs obtained with help of the procedure described in the 

two previous paragraph, for the three situations (simulations of the actual system 

operation costs associated with the solution obtained by the MILP formulation with 

McCormick’s envelopes and with the solution obtained by the MILP formulation with 

piecewise-linear approximations, as well as the system operation costs obtained with 

the NL-ACOPF), are indicated in Table 5.13. 

Table 5.13. Comparison of solutions for application A3, with radiality enforced: simulation of actual system 

operation costs associated with the solutions obtained by the MILP formulation with McCormick’s envelopes 

and by the MILP formulation with piecewise-linear approximations, as well as the operating costs obtained  

with the NL-ACOPF with the network topology considered as fixed.  

Item 

Simulation of solutions obtained  

by the MILP formulation, with 

backward-forward load flow 
Solution 

with  

NL-ACOPF 

(benchmark)  
Formulation with 

McCormick’s 

envelopes  

Formulation with 

piecewise-linear 

approximations 

Active 

power 

output 

[MW] 

Generator at bus 7 0.500 0.500 0.500 

Generator at bus 14 0.212 0.241 0.288 

Generator at bus 17 0.226 0.296 0.299 

Generator at bus 29 0 0 0 

Power imports [MW] 3.29 3.15 3.09 

Actual system operation costs [$] 485.2 480.3 479.3 

 

The results of Table 5.13 indicate that the actual system operation costs obtained 

with the formulation with piecewise-linear approximations are inferior to those obtained 

with the formulation with McCormick’s envelopes. In fact, the system operation costs 

obtained with the formulation with piecewise-linear approximations are only 0.21% 

higher than those associated with the benchmark solution (that obtained with the NL-

ACOPF, considering the network topology as fixed). It is also evident that the 
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generation dispatch decisions obtained with the formulation with piecewise-linear 

approximations are closer to these obtained with the benchmark solution. The reader 

should notice, however, that the execution time for the formulation with piecewise-

linear approximations (811 s) is considerably higher than the execution time for the 

formulation with McCormick’s envelopes (45.3 s). Thus, the trade-off between 

approximation accuracy and computational performance becomes evident. 

5.2.3.2 Meshed operation allowed 

For the simulations of this section, it has been considered that the distribution 

system S7 may be operated either radially or in a meshed fashion – i.e., radiality 

constraints are not enforced while solving the problem. 

For the first simulation, the formulation of the constraints for obtaining the 

generator currents that was presented in section 4.2.1.2 has been used (formulation with 

McCormick’s envelopes). The corresponding results are shown in Table 5.17. 

Table 5.14. Case study results: application A3 with meshed operation allowed, minimization of the sum of  

variable generation costs and costs of power imports, formulation with McCormick’s envelopes.  
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S7 474.5 95.1 379.4 

0.5 110 7 (6-7),(5-25), (8-14), 

(7-20),(27-28), 

(31-32),(11-21), 

(17-32),(24-28) 

(8-9), (13-14) 152.0 
0.161 118 14 

0.179 118 17 

0 145 29 

 

The first noticeable result is that, now that the radiality constraints have been 

relaxed, the optimal network configuration corresponds to a meshed one.  

 With the results of the first simulation at hand, a second simulation has been 

conducted. For this second simulation, the formulation of the constraints for obtaining 

the generator currents presented in Appendix C (section 9.2) has been used, with 
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|  |  |  |   . This second formulation is identified as formulation with piecewise-

linear approximations in the following tables. The results obtained when using this 

formulation are shown in Table 5.15. 

Table 5.15. Case study results: application A3 with meshed operation allowed, minimization of the sum of  

variable generation costs and costs of power imports, formulation with piecewise-linear approximations.  
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Switched-on branches 
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branches 

S7 478.1 125.8 352.3 

0.5 110 7 (6-7),(5-25), (8-14), 

(7-20),(13-14), (27-28), 

(31-32),(11-21), 

(17-32),(24-28) 

(8-9) 1414.3 
0.300 118 14 

0.300 118 17 

0 145 29 

 

The reader will notice that the network topology of the solution obtained with 

the formulation with piecewise-linear approximations (Table 5.15) differs from that 

corresponding to the solution obtained with the formulation with McCormick’s 

envelopes (Table 5.17). The network topology indicated in Table 5.15 is also a meshed 

one. 

Again, by comparing the results of Table 5.17 and Table 5.15, it may seem at 

first that the solution obtained with the formulation with McCormick’s envelopes (Table 

5.17) is better than that obtained with the formulation with piecewise-linear 

approximations (Table 5.15), due to the value of the objective function of the former 

being inferior to that of the latter. However, the approximations of generator currents in 

the first formulation are presumably less accurate than that of the second formulation, 

which may indicate that, if the distribution system operator were to implement the 

generation dispatch of both simulations, the actual power supply costs associated with 

the first solution could be higher than those of the second solution. In order to verify if 

this is in fact the case, the optimal decisions of both simulations (network topology and 

active power output of generators) will be used as fixed inputs for simulations of the 
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power flow in the distribution system. Due to the fact that both topologies are now 

meshed, it is no longer possible to use a backward-forward power flow algorithm for 

the simulations. Thus, both operating points will be simulated with help of the 

NL-ACOPF software OptFlow [87]. For these simulations, the active and reactive 

power output of all generators in the network are considered as fixed, and the ACOPF is 

thus employed simply to obtain the solution corresponding to the operating point 

described by the input data – which is made to obtain the amount of active power 

imported from the external system (the active power infeed at the slack bus). With these 

results at hand, the value of the actual system operation costs have been calculated, 

analogously to what has been done in subsection 5.2.3.1.  

As in subsection 5.2.3.1, the operation costs obtained by the procedure described 

in the previous paragraph are compared to those corresponding to the optimal solution 

of a NL-ACOPF, also obtained with help of the software OptFlow [87]. Now, the 

network topologies corresponding to the switching decisions registered in Table 5.17 

and Table 5.15 are used as fixed inputs for NL-ACOPF simulations, through which the 

optimal generator dispatch is determined (i.e., the active power outputs are now 

decision variables of the NL-ACOPF). The costs corresponding to the optimal decisions 

obtained with the NL-ACOPF will be used to benchmark the actual system operation 

costs obtained by the procedure described in the previous paragraph. 

The results of the procedure described in the two previous paragraphs are 

indicated in Table 5.16. 

Table 5.16. Comparison of solutions for application A3 with meshed operation allowed: simulation of actual 

system operation costs associated with the solutions obtained by the MILP formulation with McCormick’s 

envelopes and by the MILP formulation with piecewise-linear approximations, as well as the operating costs 

obtained with the NL-ACOPF, with the corresponding network topologies considered as fixed.  

Item 

Simulation of 

solution obtained 

by the MILP 

formulation, with 

NL-ACOPF 

Solution 

with  

NL-ACOPF  

(considering 

network 

topology of 

Table 5.14) 

Simulation of 

solution obtained 

by the MILP 

formulation, with 

NL-ACOPF 

Solution 

with  

NL-ACOPF  

(considering 

network 

topology of 

Table 5.15) 

Formulation with 

McCormick’s 

envelopes  

Formulation with 

piecewise-linear 

approximations 

Active 

power 

output 

[MW] 

Gen. at bus 7 0.500 0.500 0.500 0.500 

Gen. at bus 14 0.161 0.296 0.300 0.300 

Gen. at bus 17 0.179 0.300 0.300 0.300 

Gen. at bus 29 0 0 0 0 
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Item 

Simulation of 

solution obtained 

by the MILP 

formulation, with 

NL-ACOPF 

Solution 

with  

NL-ACOPF  

(considering 

network 

topology of 

Table 5.14) 

Simulation of 

solution obtained 

by the MILP 

formulation, with 

NL-ACOPF 

Solution 

with  

NL-ACOPF  

(considering 

network 

topology of 

Table 5.15) 

Formulation with 

McCormick’s 

envelopes  

Formulation with 

piecewise-linear 

approximations 

Power imports [MW] 3.31 3.08 3.06 3.06 

Actual system op. costs [$] 475.7 479.5 477.7 477.7 

 

The results of Table 5.16 indicate that the actual system operation costs obtained 

with the formulation with piecewise-linear approximations are lower than those 

obtained with the formulation with McCormick’s envelopes. In fact, the generation 

dispatch obtained with the formulation with piecewise-linear approximations is 

identical to that obtained with the benchmark method (NL-ACOPF considering the 

network topology as fixed). The reader should notice that the execution time for the 

formulation with piecewise-linear approximations (1414.3 s) is considerably higher 

than the execution time for the formulation with McCormick’s envelopes (152.0 s). 

5.2.4 Application A4: minimum-cost expansion plan 

For this application A4, it is assumed that the user wishes to determine the 

distribution system expansion plan, involving capacitor placement, reinforcements to 

circuits and a possible new step-down substation, such that the sum of investments costs 

and costs of ohmic losses is minimized. 

The distribution system considered for this third application, referred to as S8, is 

based on the input data for test system S3. The following modifications have been made 

to obtain S8: 

(i) The 37 branches of the original system are considered as existing 

circuits, and 11 of these consist of switches; 

(ii) The load at all buses are increased to 125% of their original value; 

(iii) The voltage at the interface with the transmission system is assumed 

to be of 1.0 p.u. and the admissible range for the voltage magnitude of 

all buses in the system is set to                       ; 

(iv) The following are defined as candidates for system expansion: 

∙ A new distribution substation; 
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∙ Circuits connecting the low-voltage bus of the new distribution 

substation to the existing buses 13 and 15; 

∙ Circuits between the following existing buses (8-13), (9-21), (15-

26) and (15-30); 

∙ Capacitors connected to the existing buses 5, 11 and 31 (modeled 

as purely capacitive loads at the auxiliary buses 805, 811 and 831, 

which are connected to the existing buses via low-voltage 

fictitious circuits). 

The network topology of S8 indicated in Figure 5.3. 

 

Figure 5.3: Schematic diagram of system S8. Switchable branches are indicated with a square,  

candidate facilities are marked in red. Adapted from [49]. 

It is assumed that the system operating point evaluated by the user is 

representative of a year, and that the optimal expansion plan is that which minimizes the 

sum of the annualized investment costs of the facilities and the costs of losses within a 

2000

200

811

831

805
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year. The costs of losses are obtained simply by multiplying the losses in MW by  

8760 hours (typical duration of a year), and then multiplying the result by the cost 

coefficient of 125 $/MWh. Table 5.17 indicates the annualized investment costs of each 

candidate facility. 

Table 5.17. Annualized invest costs of candidate facilities. 

ID Candidate Representation 

Annualized 

investment 

costs [$] 

1 
Step-down substation and 

associated transformer 
Circuit (2000-200) 48,000 

2 

Circuit between low voltage 

bus of new substation and 

existing bus 13 

Circuit (200-13) 7,800 

3 

Circuit between low voltage 

bus of new substation and 

existing bus 15 

Circuit (200-15) 7,200 

4 
Circuit between existing 

buses 8 and 13 
Circuit (8-13) 9,000 

5 
Circuit between existing 

buses 9 and 21 
Circuit (9-21) 8,400 

6 
Circuit between existing 

buses 15 and 26 
Circuit (15-26) 12,000 

7 
Circuit between existing 

buses 15 and 30 
Circuit (15-30) 11,000 

8 Capacitor at bus 5 
Purely reactive 

load at bus 805 
9,000 

9 Capacitor at bus 11 
Purely reactive 

load at bus 811 
9,000 

10 Capacitor at bus 29 
Purely reactive 

load at bus 829 
9,000 

 

The complete input data for system S8 are presented in detail in Appendix A 

(section 7.2.4).  

The connectivity approach used in this application is that described in section 

4.2.1.7.3 – approach (iii). This approach is employed to ensure that, if the new 

substation is not built, the choice to build bus 200 (to which no loads or generators 

connect, and that is not a slack bus) is taken solely based on the impacts of this decision 

on the objective function. 

The following objective function is employed for the minimization of the sum of 

investments costs and costs of ohmic losses: 
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The optimal solution to the problem is summarized in Table 5.18 and Figure 5.4. 

Table 5.18. Case study results: application A4, minimization of the sum of  

of investments costs and costs of ohmic losses. 

T
es

t 
sy

st
em

 Objective function 

Reinforcements 

to distribution 

system 

Switching decisions  

(status of switchable 

branches) 

E
x
ec

u
ti

o
n

 t
im

e 
[s

] 

Objective 

function 

[$] 

Annual 

losses 

costs 

[$] 

Annualized  

investment 

costs [$] 

ID 

Annualized 

investment 

costs [$] 

Switched-

on 

branches 

Switched-off 

branches 

S8 188,568 114,568 74,000 

1 48,000 
(5-25), 

(7-20), 

(17-32) 

(6-7), (8-9), 

(8-14), (13-14), 

(27-28), (31-32), 

(11-21), (24-28) 

134.6 
2 7,800 

3 7,200 

7 11,000 
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Figure 5.4: Optimal distribution system expansion plan, application A4, system S8. Adapted from [49]. 

The bus voltages corresponding to the optimal solution of the MILP 

reformulation of the ACOPF (the system topology shown in Figure 5.4) are indicated in 

Table 5.19. In order to quantify the approximation errors of the bus voltage magnitudes, 

the operating point corresponding to the optimal solution of the MILP problem has been 

used as input data for a simulation using the backward-forward load flow algorithm 

[67], analogously to what has been done in section 5.2.2 to quantify the approximation 

errors of bus voltages. The results of this comparison are shown in Table 5.19. The 

approximation errors range from 0.00005% to 0.0017% for voltage magnitudes and 

from -0.71% to 0.40% for bus voltage angles (excluding the reference voltage bus). 

2000

200
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Table 5.19: Bus voltage magnitude profile: solution of MILP ACOPF (MILP), simulation with backward-

forward load flow (BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF. 

B
u

s 
#
 Voltage magnitude [p.u.] Voltage angle [°] 

BFLF MILP 
(MILP-BFLF) 

/BFLF [%] 
BFLF MILP 

(MILP-BFLF) 

/BFLF [%] 

1000 1.00000 1.00000 - 0.00000 0.00000 - 

1 0.99785 0.99785 0.00009% -0.00274 -0.00272 -0.7050% 

2 0.98983 0.98982 0.0006% -0.01202 -0.01195 -0.6040% 

3 0.98759 0.98758 0.0007% -0.01453 -0.01445 -0.5773% 

4 0.98573 0.98572 0.0008% -0.02046 -0.02037 -0.4570% 

5 0.98180 0.98179 0.0011% -0.09219 -0.09210 -0.0893% 

6 0.98101 0.98100 0.0011% -0.14092 -0.14086 -0.0439% 

7 0.97953 0.97952 0.0013% -0.37633 -0.37610 -0.0612% 

8 0.97892 0.97891 0.0013% -0.38742 -0.38719 -0.0618% 

9 0.99147 0.99147 0.0003% -0.08112 -0.08109 -0.0449% 

10 0.99157 0.99157 0.0003% -0.08114 -0.08110 -0.0439% 

11 0.99193 0.99193 0.0003% -0.08374 -0.08370 -0.0384% 

12 0.99461 0.99461 0.0002% -0.05392 -0.05390 -0.0419% 

13 0.99624 0.99624 0.0002% -0.01083 -0.01081 -0.2295% 

14 0.99030 0.99029 0.0005% 0.03043 0.03055 0.4003% 

15 0.99069 0.99069 0.0004% 0.04193 0.04205 0.3012% 

16 0.98719 0.98718 0.0006% -0.06437 -0.06428 -0.1449% 

17 0.98596 0.98595 0.0007% -0.07701 -0.07692 -0.1223% 

18 0.99669 0.99669 0.0002% -0.02570 -0.02567 -0.1172% 

19 0.98778 0.98777 0.0007% -0.18765 -0.18752 -0.0726% 

20 0.98558 0.98558 0.0008% -0.24672 -0.24657 -0.0629% 

21 0.98478 0.98477 0.0009% -0.27250 -0.27235 -0.0583% 

22 0.98537 0.98536 0.0009% -0.05019 -0.05010 -0.1803% 

23 0.97706 0.97705 0.0013% -0.15993 -0.15983 -0.0663% 

24 0.97292 0.97290 0.0017% -0.21411 -0.21400 -0.0545% 

25 0.98145 0.98144 0.0011% -0.09423 -0.09414 -0.0885% 

26 0.98113 0.98112 0.0011% -0.09635 -0.09626 -0.0876% 

27 0.98047 0.98046 0.0012% -0.11253 -0.11245 -0.0711% 

28 0.97142 0.97141 0.0014% 0.31344 0.31402 0.1838% 

29 0.97206 0.97205 0.0014% 0.31131 0.31188 0.1808% 

30 0.97974 0.97973 0.0010% 0.14960 0.14993 0.2221% 

31 0.97893 0.97892 0.0010% 0.12866 0.12898 0.2513% 

32 0.98556 0.98555 0.0008% -0.08161 -0.08152 -0.1155% 

2000 1.00000 1.00000 - 0.00000 0.00000 - 

200 0.99860 0.99860 0.00005% 0.01333 0.01335 0.1546% 

 

5.2.5 Application A5: voltage control at distribution substation to 

minimize active power requirements 

So far, all of the objective functions (or modules for objective functions) 

presented in section 4.2.2 have been used in at least one application – except for the 
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application of circuit switching costs (section 4.2.2.8), which is essentially analogous to 

the minimization of the costs of construction of new circuits, as costs are associated 

with the modification of the status of a given circuit. 

This section 5.2.5 deals with an application that was not directly mentioned in 

section 4.2.2, due to its very particular nature. It is assumed that the country in which 

the distribution system is located is experiencing problems with the security of energy 

supply, and having difficulties in meeting the total energy demand. Among the 

measurements under consideration for reducing the demand for electrical energy in this 

fictitious country is the operation of distribution systems at voltage magnitudes lower 

than the usual admissible range, in order to forcefully reduce the overall active power 

requirements. The operations planner of a given distribution utility is thus required to 

execute a study to indicate the optimal setpoint of the voltage magnitude at the interface 

of its system with the transmission network, such that the overall power requirements of 

its system will be minimized. 

It is assumed that the lower bound of the usual admissible range for the voltage 

magnitudes at all buses in the system, 0.95 p.u., is to be substituted by 0.8 p.u. – with 

the value of 0.8 p.u. assumed to be the lowest possible voltage at which is ensured that 

no damage is inflicted to any equipment (distribution facilities or consumer’s loads).  

It is worth mentioning that minimizing the overall power requirements does not 

necessarily mean operating at the lowest possible voltage, mainly due to the fact that the 

magnitude of the current demanded by loads of the constant-power type will increase as 

voltage decreases, leading to an increase in the ohmic losses within the distribution 

system. Thus, the actual optimal operating voltage will depend on the nature, location 

and magnitude of the loads in the distribution system. 

The distribution system considered for this fifth application, referred to as S9, is 

obtained by the modification of the input data for test system S3. The following 

modifications have been made to obtain S9: 

(i) Only 11 of the 37 branches in the system are considered to be 

switchable; 

(ii) The voltage magnitude at the interface with the transmission system is 

assumed to be fully controllable. 

(iii) The admissible range for the voltage magnitude of all buses in the 

system is set to                      ; 
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(iv) All loads in the original system S3 were of the constant-power type. In 

system S9, it is assumed that, from the 32 loads within the distribution 

system, 11 are of the constant-power type, 7 of the constant-current 

type, and 14 of the constant-impedance type. The nominal power 

associated with each of the load types is respectively of 1.19 MW, 

0.71 MW and 1.815 MW – i.e., the percentage of the loads of the 

contrant-power, constant-current and constant-impedance type are of 

32%, 19% and 49% of the total load in S9.  

The input data for system S9, used for application A5, are presented in detail in 

Appendix A (section 7.2.5). The network topology of S9 is identical to that indicated in 

Figure 5.2.  

As there are no generators in system S9, minimizing the overall power 

requirements equals minimizing the total power imports at the interface with the 

transmission system. Thus, one of the alternative formulations for the objective function 

of section 4.2.2.4 may be used, with the cost coefficient   
       set to unity. 

Obviously, as the voltage magnitude at the interface with the transmission system is a 

decision variable in the problem, it is necessary to approximate the product        
  .  

For that, a piecewise-linear approximation with the use of SOS2, which has been 

presented in section 4.2.2.4.2, will be used. The procedure for the determination of the 

evaluation points and evaluation values corresponds to that indicated in section 4.3.2.3, 

with      MW,  
 
   MW,      and       .  

The objective function employed for application A5 is: 

 

         {∑          }  (356) 

 

The optimal solution for this problem is summarized in Table 5.20.  
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Table 5.20. Case study results: application A5, minimization of system power requirements. 
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branches 
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S9 3.113 0.8528 

(5-25), (7-20), 

(8-14), (11-21), 

(17-32), (24-28) 

(6-7), (13-14), 

(8-9), (27-28) 

(31-32) 

16.53 

 

Figure 5.5 indicates the voltage profile across the distribution network at the 

optimal solution of the MILP problem. 

 

Figure 5.5: Voltage magnitude profile at the optimal solution. Buses with loads of the constant-power,  

constant-current and constant-impedance type are marked in red, green, and blue. Adapted from [49]. 

Auxiliary analyses have been executed for system S9, considering situations in 

which all loads were considered to be of the constant-power, constant-current and 

constant-impedance type. Obviously, the solutions obtained for these three cases differ 
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from that obtained when a combination of the three types of loads is considered – the 

solutions differ with respect to the optimal voltage magnitude at the interface with the 

transmission system, the optimal configuration of the distribution network and the value 

of the objective function. For the cases in which all loads are considered to be of the 

constant-power, constant-current and constant-impedance type, the optimal voltage 

magnitudes at bus 1000 (the interface with the transmission system) is respectively of 

1.050 p.u., 0.8804 p.u. and 0.8450 p.u., and the associated power requirements of the 

distribution system are of 3.848 MW, 3.272 MW and 2.564 MW. 

Before closing this section, it is worth considering one last auxiliary analysis for 

application A5. For this last auxiliary analysis, it is considered that system S9 has 

exactly the same composition of loads indicated in Appendix A – i.e., the composition 

presented in item (iv) at the beginning of this section. However, it is now considered 

that there are three switchable capacitors in the system, connected to buses 5, 11 and 31. 

Each of these switchable capacitors has a nominal rating of 200 kVAr and is modeled as 

a purely reactive load of the constant-impedance type at fictitious buses connected to 

the main network through low-impedance branches. This representation is virtually 

identical to that of the candidate capacitors of application A4, the difference being that 

no costs are associated with changing the status of the capacitors from active to inactive 

for the current analysis. 

It is expected that the presence of switchable capacitors within the distribution 

network allows a better control over the voltage profile and reduces the losses by 

providing local reactive power resources, thus allowing a further decrease in the total 

active power requirements of the distribution system.  

This modified version of system S9, with the addition of the abovementioned 

switchable capacitors, has been used for the problem of minimization of total power 

requirements via control of the bus voltage magnitude at the reference bus. The results 

of this auxiliary analysis, considering the modified version of S9, are summarized in 

Table 5.21. All capacitors are switched-on in the optimal solution of the problem, 

allowing that the voltage at the interface with the transmission system to be slightly 

reduced, and also slightly reducing the total power requirements of the distribution 

system (a reduction of 0.5%). 
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Table 5.21. Case study results: application A5, minimization of system power requirements, with modified 

system S9 (inclusion of switchable capacitors with nominal rating of 200 kVAr at buses 5, 11 and 31). 
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(6-7), (13-14), 

(8-9), (27-28) 

(31-32) 

5, 11, 31 96.83 

 

Figure 5.6 indicates the voltage profile across the distribution network for the 

modified version of system S9 (with the inclusion of switchable capacitors). 

 

Figure 5.6: Voltage magnitude profile at the optimal solution, for modified system (with capacitors added). 

Buses with loads of the constant-power, constant-current and constant-impedance type are marked  

in red, green, and blue. Adapted from [49]. 

A comparison of the bus voltage profile of the solutions indicated in this section 

5.2.5 with the bus voltages obtained by simulations with a backward-forward load flow 
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algorithm is not made at this point, due to the fact that the currently available backward-

forward load flow algorithm does not support loads of the constant-current type. 
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6 CONCLUSIONS 

In this dissertation, a MILP reformulation of the ACOPF problem for 

distribution systems, which allows the incorporation of discrete decisions associated 

with several distribution system operations and expansion planning applications, has 

been proposed.  

The proposed formulation is based on expressing Kirchhoff’s laws as a function 

of complex voltages and currents in rectangular coordinates – as opposed to employing 

a formulation based on polar coordinates and using voltages and power quantities. This 

modeling choice allows that particular characteristics of the distribution system are 

taken advantage of while formulating the problem, with the goal of conciliating 

accuracy and computational performance. 

The choice of reformulating the ACOPF problem as MILP allows the prompt 

modeling of many of the discrete decisions with which distribution system operations 

and expansion planners are faced, such as the maneuvering of switches for network 

reconfiguration and the construction of facilities for system expansion. The fact that the 

proposed formulation simultaneously supports discrete and continuous decisions widens 

its applicability to a wide range of distribution system operations and expansion 

planning problems – and some of these have been illustrated with help of the case 

studies of chapter 5. 

Other practical advantage of reformulating the ACOPF as a MILP is that the 

solution techniques for mixed-integer linear programs are notably mature, allowing the 

treatment of large-scale optimization problems with robustness and speed. These 

techniques are readily available in a number of commercial-grade solvers. The 

possibility of using commercial solvers is an attractive feature for industry applications, 

as it essentially translates into guarantees of longevity, maintainability and prevention 

of obsolescence of the solver that underlies a decision support system. 

The linearization and convexification techniques presented in chapter 3 have 

been employed to reformulate the original non-convex, non-linear ACOPF problem as a 

mixed-integer linear program. With the exception of the approximation of bilinear 

products with McCormick’s envelope, which have been employed to reformulate the 

products of decision variables within the equations for the current injections of 
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generators, the proposed linearization and convexification techniques allow the user to 

obtain approximations of arbitrary accuracy – i.e., the user is able control the accuracy 

of these approximations while formulating the problem. In this dissertation, reference 

has been made to the possibility of employing piecewise-linear approximations based 

on SOS2 to reformulate products of decision variables – and in fact this technique has 

been employed in the equations of subsection 4.3.1.4.4. The technique has also been 

employed for reformulating the bilinear products found in the constraints for generator 

current injections, in the alternative formulation presented in Appendix C (chapter 9), 

which have been used in the case study of subsection 5.2.3. Employing this technique in 

fact allows the user to control the accuracy of all approximations used in the 

reformulation of the ACOPF for distribution systems. 

The use of these linearization and convexification techniques requires the 

definition of the following input parameters: disjunctive constants for the definition of 

disjunctive constraints, evaluation points and evaluated values for the definition of 

piecewise-linear approximations with SOS2, and upper and lower bounds for the 

continuous variables whose product is modeled via McCormick’s envelope. In this 

dissertation, particular characteristics of the distribution system (mainly the fact that bus 

voltage angles vary within narrow intervals around the reference angle, due to the high 

R/X ratios and the typical power factors of loads within the system) have been explored 

to obtain a tight definition of the abovementioned parameters. This means that the 

parameters are defined in such a way that allows the correct representation of the 

problem, while seeking a satisfactory trade-off between approximation accuracy and 

computational performance.  

In chapter 5, the proposed MILP reformulation of the ACOPF has been 

benchmarked against a brute-force, exhaustive search solution method, for the problem 

of network reconfiguration with the goal of minimizing ohmic losses. The problem of 

network reconfiguration has been chosen because it involves exclusively binary 

decisions. While this was necessary to allow a construction of a brute force algorithm 

against which the MILP reformulation could be benchmarked, it is worth mentioning 

that many of the features of the proposed formulation are not put into service while 

solving the network reconfiguration problems of section 5.1. For instance, one relevant 

feature of the proposed MILP formulation is that it is able to support discrete and 
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continuous decisions, and this feature is clearly not thoroughly explored in the network 

reconfiguration problems of section 5.1. 

For all four test systems used in the benchmarking process mentioned above, the 

optimal network configuration obtained with the proposed MILP reformulation of the 

ACOPF perfectly matched that obtained with the brute-force method, meaning that the 

same switching decisions have been made with both methods. This effectively means 

that, if the optimal decisions obtained with both methods were implemented, the same 

ohmic losses in distribution network would be obtained – indicating that the actual 

value of the objective function obtained with the MILP formulation and the brute-force 

algorithm is identical, for all case studies. 

 The approximated numerical value of the objective function obtained with the 

MILP reformulation (i.e., the approximated numerical value corresponding to the 

solution of the mixed-integer program, and not the actual value that would be obtained 

by implementing the solution) is also similar to that obtained with the exhaustive search 

method. In fact, the relative differences between the numerical value of the optimal 

ohmic losses obtained with the MILP reformulation and with the exhaustive search 

method varied from –0.8% for the system with 11 branches to 6% for the system with 

134 branches.  

For systems with intermediate dimensions and a comparatively larger number of 

switches, the performance of the proposed MILP reformulation has been superior to that 

of the exhaustive search method – e.g., for system S3, in which there are 2
26

 possible 

network configurations to be analyzed, the solution time with the MILP reformulation 

was only 0.95% of the solution time with the brute force method. However, for larger 

systems with a comparatively smaller number of switches, the brute force method has 

outperformed the MILP reformulation – e.g., for system S4, with 134 branches and 2
16

 

possible network configurations, the exhaustive search method has been 5.8% faster 

than the MILP reformulation in finding the optimal decision. While analyzing this last 

result, the reader should keep in mind that, if the problem under consideration in the 

benchmarking analyses required the support to continuous decisions, the brute force 

algorithm could simply not be used, while the MILP reformulation would still apply. 

A number of possible applications of the proposed MILP reformulation of the 

ACOPF problem have been illustrated by the case studies of section 5.2. The case 

studies of this section referred to the minimization of costs of load shedding, generation 
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curtailment, variable costs of generation, costs of power imports and costs of 

reinforcements to the distribution system. This list does not aim at being exhaustive 

with respect to the possible applications of the proposed formulation, but solely at 

indicating its flexibility. Selected numerical results of these case studies have also been 

benchmarked against results obtained by simulating the solution of the mixed-integer 

program with a backward-forward load flow method, and the comparison also pointed 

to a satisfactory accuracy of the proposed MILP reformulation. All case studies have 

been built upon test systems obtained by modification of the data originally proposed in 

[64] (a system with 33 buses and 37 branches), with slight modifications in the number 

of elements in the network for certain applications. The execution times for the case 

studies of section 5.2 ranged from 11.03 s to 1602.8 s. The latter execution time has 

been obtained for an application with 11 switchable circuits and 20 curtailable 

generators – totalizing 2
31

 possible combinations of these binary variables, which model 

operations planning decisions. 

The results of the case studies of chapter 5 suggest that the proposed MILP 

reformulation of the ACOPF for distribution systems meets the goals of accurately 

capturing the non-linear behavior of the original problem and leading to solutions of 

good quality, while being flexible enough to support a wide range of applications. It is 

worth mentioning that the MILP reformulation of the ACOPF has been coded and 

executed with FICO Xpress Mosel ® Version 3.2.2 – a commercial-grade solver, which 

brings about the practical advantages mentioned at the beginning of this chapter. The 

solution times obtained for the applications may be classified as satisfactory, though 

there seems to be room for improvement – as indicated in the first paragraph of the 

following section. 

6.1 Suggested topics for future work 

Techniques for improving the computational performance of the proposed MILP 

reformulation of the ACOPF are among the suggested topics for future work. The 

reader will recall that the piecewise-linear approximations of functions of two variables 

employed in the current formulation are based in arranging the set of evaluation points 

at the vertices of a rectangular grid, which is superimposed to the function domain. It is 

likely that the procedures for the construction of piecewise-linear approximations based 
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on constructing triangular grids of evaluation points will lead to enhanced 

computational performance, as suggested in [61], [80]. Other possible approaches to be 

investigated, eventually in combination with the one described above, include: (a) using 

the technique described in [86] to reduce the number of binary variables necessary to 

implement SOS2-based piecewise linear approximations
13

; and (b) employing 

linearization and convexification techniques other than those described in this 

dissertation. In general terms, techniques that ensure that the choice of evaluation points 

is optimal either with respect to accuracy (e.g., minimizing the maximum 

approximation error while keeping the number of points below a certain threshold) or 

computational performance (e.g., minimizing the number of points while keeping the 

maximum approximation error below a certain threshold) are suggested as topics for 

future work. 

The improvement of the computational is an important research topic also in 

order to allow the practical use of the proposed formulation in problems in which 

multiple operating conditions have to be evaluated – e.g., in stochastic and multi-stage 

problems. 

The expansion of the proposed MILP reformulation of the ACOPF problem to 

unbalanced three-phase distribution systems may also be an interesting topic for future 

work, taking into account that phase unbalance is an important phenomenon in many 

real distribution systems. Future work may also include modeling of other equipment 

relevant for distribution systems, such as voltage regulators. 

 

 

 

 

 

                                                 
13

 Reference [86] basically suggests using a special encoding procedure for the definition intervals of the 

piecewise linear function, allowing the use of a logarithmic number of binary variables. 
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7 APPENDIX A: INPUT DATA FOR CASE 

STUDIES 

The input data for the case studies of chapter 5 are presented in the following 

subsections, in tabular form. The apparent power base for all quantities expressed in per 

unit (p.u.) is 100 MVA. The nomenclature presented in chapters 2 and 4 is used for  

ensuring a succinct presentation of data. 
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7.1 Input data for distribution systems used in section 5.1 

7.1.1 Test system S1 

Table 7.1. Bus data: test system S1 

Bus # 
Sets to which bus 

pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

1000 ΩSLACK, ΩREF, ΩROOT  1 0 0 0.95 1.05 -5 5 

5 ΩPCTE   2 0.6 0.95 1.05 -5 5 

4 ΩPCTE   3 1.3 0.95 1.05 -5 5 

3 ΩPCTE   2 0.5 0.95 1.05 -5 5 

2 ΩPCTE   1.5 0.3 0.95 1.05 -5 5 

1 ΩPCTE   0.5 0.1 0.95 1.05 -5 5 

101 ΩPCTE   1 0.2 0.95 1.05 -5 5 

102 ΩPCTE   1.5 0.2 0.95 1.05 -5 5 

103 ΩPCTE   2.5 0.6 0.95 1.05 -5 5 

104 ΩPCTE   3 0.4 0.95 1.05 -5 5 

105 ΩPCTE   2.5 0.9 0.95 1.05 -5 5 

2000 ΩSLACK, ΩREF, ΩROOT  1 0 0 0.95 1.05 -5 5 
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Table 7.2. Branch data: test system S1 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current [p.u.] 

1000 5 ΨSW 0.075 0.1 0.25 

5 4 ΨSW 0.08 0.11 0.25 

4 3 ΨSW 0.09 0.12 0.25 

3 2 ΨSW 0.04 0.04 0.25 

2 1 ΨSW 0.03 0.03 0.25 

1 101 ΨSW 0.04 0.01 0.25 

101 102 ΨSW 0.1 0.1 0.25 

102 103 ΨSW 0.11 0.11 0.25 

103 104 ΨSW 0.09 0.12 0.25 

104 105 ΨSW 0.055 0.11 0.25 

105 2000 ΨSW 0.1 0.1 0.25 
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7.1.2 Test system S2 

Table 7.3. Bus data: test system S2 

Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

1 ΩSLACK, ΩREF, ΩROOT  1 0 0 0.95 1.05 -5 5 

2 ΩSLACK, ΩREF, ΩROOT  1 0 0 0.95 1.05 -5 5 

3 ΩSLACK, ΩREF, ΩROOT  1 0 0 0.95 1.05 -5 5 

4 ΩPCTE   2 1.6 0.95 1.05 -5 5 

5 ΩPCTE   3 1.5 0.95 1.05 -5 5 

105 ΩZCTE   0 -1.1 0.95 1.05 -5 5 

6 ΩPCTE   2 0.8 0.95 1.05 -5 5 

106 ΩZCTE   0 -1.2 0.95 1.05 -5 5 

7 ΩPCTE   1.5 1.2 0.95 1.05 -5 5 

8 ΩPCTE   4 2.7 0.95 1.05 -5 5 

9 ΩPCTE   5 3 0.95 1.05 -5 5 

109 ΩZCTE   0 -1.2 0.95 1.05 -5 5 

10 ΩPCTE   1 0.9 0.95 1.05 -5 5 

11 ΩPCTE   0.6 0.1 0.95 1.05 -5 5 

111 ΩZCTE   0 -0.6 0.95 1.05 -5 5 

12 ΩPCTE   4.5 2 0.95 1.05 -5 5 

112 ΩZCTE   0 -3.7 0.95 1.05 -5 5 

13 ΩPCTE   1 0.9 0.95 1.05 -5 5 

14 ΩPCTE   1 0.7 0.95 1.05 -5 5 

114 ΩZCTE   0 -1.8 0.95 1.05 -5 5 

15 ΩPCTE   1 0.9 0.95 1.05 -5 5 

16 ΩPCTE   2.4 1 0.95 1.05 -5 5 
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Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

116 ΩZCTE   0 -1.8 0.95 1.05 -5 5 

Table 7.4. Branch data: test system S2 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1 4 ΨSW 0.075 0.1 0.35 

4 5 ΨSW 0.08 0.11 0.35 

4 6 ΨSW 0.09 0.18 0.35 

6 7 ΨSW 0.04 0.04 0.35 

2 8 ΨSW 0.11 0.11 0.35 

8 9 ΨSW 0.08 0.11 0.35 

8 10 ΨSW 0.11 0.11 0.35 

9 11 ΨSW 0.11 0.11 0.35 

9 12 ΨSW 0.08 0.11 0.35 

3 13 ΨSW 0.11 0.11 0.35 

13 14 ΨSW 0.09 0.12 0.35 

13 15 ΨSW 0.08 0.11 0.35 

15 16 ΨSW 0.04 0.04 0.35 

5 11 ΨSW 0.04 0.04 0.35 

10 14 ΨSW 0.04 0.04 0.35 

7 16 ΨSW 0.09 0.12 0.35 

5 105 {ΨC\ΨSW} 0 0.001 0.05 

6 106 {ΨC\ΨSW} 0 0.001 0.05 

9 109 {ΨC\ΨSW} 0 0.001 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

11 111 {ΨC\ΨSW} 0 0.001 0.05 

12 112 {ΨC\ΨSW} 0 0.001 0.05 

14 114 {ΨC\ΨSW} 0 0.001 0.05 

16 116 {ΨC\ΨSW} 0 0.001 0.05 
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7.1.3 Test system S3 

Table 7.5. Bus data: test system S3 

Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

1000 ΩSLACK, ΩREF, ΩROOT  1 0 0 0.90 1.10 -5 5 

1 ΩPCTE   0.1 0.06 0.90 1.10 -5 5 

2 ΩPCTE   0.09 0.04 0.90 1.10 -5 5 

3 ΩPCTE   0.12 0.08 0.90 1.10 -5 5 

4 ΩPCTE   0.06 0.03 0.90 1.10 -5 5 

5 ΩPCTE   0.06 0.02 0.90 1.10 -5 5 

6 ΩPCTE   0.2 0.1 0.90 1.10 -5 5 

7 ΩPCTE   0.2 0.1 0.90 1.10 -5 5 

8 ΩPCTE   0.06 0.02 0.90 1.10 -5 5 

9 ΩPCTE   0.06 0.02 0.90 1.10 -5 5 

10 ΩPCTE   0.045 0.03 0.90 1.10 -5 5 

11 ΩPCTE   0.06 0.035 0.90 1.10 -5 5 

12 ΩPCTE   0.06 0.035 0.90 1.10 -5 5 

13 ΩPCTE   0.12 0.08 0.90 1.10 -5 5 

14 ΩPCTE   0.06 0.01 0.90 1.10 -5 5 

15 ΩPCTE   0.06 0.02 0.90 1.10 -5 5 

16 ΩPCTE   0.06 0.02 0.90 1.10 -5 5 

17 ΩPCTE   0.09 0.04 0.90 1.10 -5 5 

18 ΩPCTE   0.09 0.04 0.90 1.10 -5 5 

19 ΩPCTE   0.09 0.04 0.90 1.10 -5 5 

20 ΩPCTE   0.09 0.04 0.90 1.10 -5 5 

21 ΩPCTE   0.09 0.04 0.90 1.10 -5 5 
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Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

22 ΩPCTE   0.09 0.05 0.90 1.10 -5 5 

23 ΩPCTE   0.42 0.2 0.90 1.10 -5 5 

24 ΩPCTE   0.42 0.2 0.90 1.10 -5 5 

25 ΩPCTE   0.06 0.025 0.90 1.10 -5 5 

26 ΩPCTE   0.06 0.025 0.90 1.10 -5 5 

27 ΩPCTE   0.06 0.02 0.90 1.10 -5 5 

28 ΩPCTE   0.12 0.07 0.90 1.10 -5 5 

29 ΩPCTE   0.2 0.6 0.90 1.10 -5 5 

30 ΩPCTE   0.15 0.07 0.90 1.10 -5 5 

31 ΩPCTE   0.21 0.1 0.90 1.10 -5 5 

32 ΩPCTE   0.06 0.04 0.90 1.10 -5 5 

Table 7.6. Branch data: test system S3 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1000 1 {ΨC\ΨSW} 0.05753 0.02932 0.05 

1 2 {ΨC\ΨSW} 0.3076 0.15667 0.05 

2 3 {ΨC\ΨSW} 0.22836 0.1163 0.05 

3 4 {ΨC\ΨSW} 0.23778 0.1211 0.05 

4 5 {ΨC\ΨSW} 0.51099 0.44112 0.05 

5 6 ΨSW 0.1168 0.38608 0.05 

6 7 ΨSW 0.44386 0.14668 0.05 

7 8 ΨSW 0.64264 0.4617 0.05 

8 9 ΨSW 0.65138 0.4617 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

9 10 ΨSW 0.12266 0.04056 0.05 

10 11 ΨSW 0.2336 0.07724 0.05 

11 12 ΨSW 0.91592 0.72063 0.05 

12 13 ΨSW 0.33792 0.4448 0.05 

13 14 ΨSW 0.36874 0.32818 0.05 

14 15 ΨSW 0.46564 0.34004 0.05 

15 16 ΨSW 0.80424 1.07378 0.05 

16 17 ΨSW 0.45671 0.35813 0.05 

1 18 {ΨC\ΨSW} 0.10232 0.09764 0.05 

18 19 {ΨC\ΨSW} 0.93851 0.84567 0.05 

19 20 {ΨC\ΨSW} 0.2555 0.29849 0.05 

20 21 ΨSW 0.4423 0.58481 0.05 

2 22 {ΨC\ΨSW} 0.28152 0.19236 0.05 

22 23 {ΨC\ΨSW} 0.56028 0.44243 0.05 

23 24 {ΨC\ΨSW} 0.55904 0.43743 0.05 

5 25 ΨSW 0.12666 0.06451 0.05 

25 26 ΨSW 0.17732 0.09028 0.05 

26 27 ΨSW 0.66074 0.58256 0.05 

27 28 ΨSW 0.50176 0.43712 0.05 

28 29 ΨSW 0.31664 0.16128 0.05 

29 30 ΨSW 0.60795 0.60084 0.05 

30 31 ΨSW 0.19373 0.2258 0.05 

31 32 ΨSW 0.21276 0.33081 0.05 

7 20 ΨSW 1.24785 1.24785 0.05 

8 14 ΨSW 1.24785 1.24785 0.05 

11 21 ΨSW 1.24785 1.24785 0.05 

17 32 ΨSW 0.31196 0.31196 0.05 

24 28 ΨSW 0.31196 0.31196 0.05 
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7.1.4 Test system S4 

Table 7.7. Bus data: test system S4 

Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

150 ΩSLACK, ΩREF, ΩROOT  1 0 0 0.95 1.05 -5 5 

1 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

2 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

3 ΩB   0 0 0.95 1.05 -5 5 

4 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

5 ΩZCTE   0.02 0.01 0.95 1.05 -5 5 

6 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

7 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

8 ΩB   0 0 0.95 1.05 -5 5 

9 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

10 ΩZCTE   0.02 0.01 0.95 1.05 -5 5 

11 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

12 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

13 ΩB   0 0 0.95 1.05 -5 5 

14 ΩB   0 0 0.95 1.05 -5 5 

15 ΩB   0 0 0.95 1.05 -5 5 

16 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

17 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

18 ΩB   0 0 0.95 1.05 -5 5 

19 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

20 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

21 ΩB   0 0 0.95 1.05 -5 5 
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Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

22 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

23 ΩB   0 0 0.95 1.05 -5 5 

24 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

25 ΩB   0 0 0.95 1.05 -5 5 

26 ΩB   0 0 0.95 1.05 -5 5 

27 ΩB   0 0 0.95 1.05 -5 5 

28 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

29 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

30 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

31 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

32 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

33 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

34 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

35 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

36 ΩB   0 0 0.95 1.05 -5 5 

37 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

38 ΩZCTE   0.02 0.01 0.95 1.05 -5 5 

39 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

40 ΩB   0 0 0.95 1.05 -5 5 

41 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

42 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

43 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

44 ΩB   0 0 0.95 1.05 -5 5 

45 ΩZCTE   0.02 0.01 0.95 1.05 -5 5 

46 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

47 ΩZCTE   0.035 0.025 0.95 1.05 -5 5 

48 ΩZCTE   0.07 0.05 0.95 1.05 -5 5 
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Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

49 ΩPCTE   0.0466667 0.0316667 0.95 1.05 -5 5 

50 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

51 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

52 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

53 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

54 ΩB   0 0 0.95 1.05 -5 5 

55 ΩZCTE   0.02 0.01 0.95 1.05 -5 5 

56 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

57 ΩB   0 0 0.95 1.05 -5 5 

58 ΩZCTE   0.02 0.01 0.95 1.05 -5 5 

59 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

60 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

61 ΩB   0 0 0.95 1.05 -5 5 

62 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

63 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

64 ΩZCTE   0.075 0.035 0.95 1.05 -5 5 

65 ΩZCTE   0.0466667 0.0333333 0.95 1.05 -5 5 

66 ΩPCTE   0.075 0.035 0.95 1.05 -5 5 

67 ΩB   0 0 0.95 1.05 -5 5 

68 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

69 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

70 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

71 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

72 ΩB   0 0 0.95 1.05 -5 5 

73 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

74 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

75 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 
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Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

76 ΩZCTE   0.0816667 0.06 0.95 1.05 -5 5 

77 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

78 ΩB   0 0 0.95 1.05 -5 5 

79 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

80 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

81 ΩB   0 0 0.95 1.05 -5 5 

82 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

83 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

84 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

85 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

86 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

87 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

88 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

89 ΩB   0 0 0.95 1.05 -5 5 

90 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

91 ΩB   0 0 0.95 1.05 -5 5 

92 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

93 ΩB   0 0 0.95 1.05 -5 5 

94 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

95 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

96 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

97 ΩB   0 0 0.95 1.05 -5 5 

98 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

99 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

100 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

101 ΩB   0 0 0.95 1.05 -5 5 

102 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 
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Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

103 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

104 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

105 ΩB   0 0 0.95 1.05 -5 5 

106 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

107 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

108 ΩB   0 0 0.95 1.05 -5 5 

109 ΩPCTE   0.04 0.02 0.95 1.05 -5 5 

110 ΩB   0 0 0.95 1.05 -5 5 

111 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

112 ΩZCTE   0.02 0.01 0.95 1.05 -5 5 

113 ΩZCTE   0.04 0.02 0.95 1.05 -5 5 

114 ΩPCTE   0.02 0.01 0.95 1.05 -5 5 

135 ΩB   0 0 0.95 1.05 -5 5 

149 ΩB   0 0 0.95 1.05 -5 5 

151 ΩB   0 0 0.95 1.05 -5 5 

152 ΩB   0 0 0.95 1.05 -5 5 

160 ΩB   0 0 0.95 1.05 -5 5 

197 ΩB   0 0 0.95 1.05 -5 5 

250 ΩB   0 0 0.95 1.05 -5 5 

251 ΩB   0 0 0.95 1.05 -5 5 

300 ΩB   0 0 0.95 1.05 -5 5 

350 ΩB   0 0 0.95 1.05 -5 5 

450 ΩB   0 0 0.95 1.05 -5 5 

451 ΩB   0 0 0.95 1.05 -5 5 

610 ΩB   0 0 0.95 1.05 -5 5 

883 ΩZCTE   0 -0.2 0.95 1.05 -5 5 

888 ΩZCTE   0 -0.05 0.95 1.05 -5 5 
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Bus # Set(s) to which bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

890 ΩZCTE   0 -0.05 0.95 1.05 -5 5 

892 ΩZCTE   0 -0.05 0.95 1.05 -5 5 

Table 7.8. Branch data: test system S4 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1 2 {ΨC\ΨSW} 0.08486 0.08603 0.05 

1 3 {ΨC\ΨSW} 0.12122 0.12289 0.05 

1 7 {ΨC\ΨSW} 0.10049 0.20587 0.05 

3 4 {ΨC\ΨSW} 0.09698 0.09831 0.05 

3 5 {ΨC\ΨSW} 0.15759 0.15976 0.05 

5 6 {ΨC\ΨSW} 0.12122 0.12289 0.05 

7 8 {ΨC\ΨSW} 0.06699 0.13725 0.05 

8 12 {ΨC\ΨSW} 0.1091 0.1106 0.05 

8 9 {ΨC\ΨSW} 0.1091 0.1106 0.05 

8 13 {ΨC\ΨSW} 0.10049 0.20587 0.05 

9 14 {ΨC\ΨSW} 0.20608 0.20892 0.05 

13 34 {ΨC\ΨSW} 0.07273 0.07374 0.05 

13 18 {ΨC\ΨSW} 0.27634 0.56614 0.05 

14 11 {ΨC\ΨSW} 0.12122 0.12289 0.05 

14 10 {ΨC\ΨSW} 0.12122 0.12289 0.05 

15 16 {ΨC\ΨSW} 0.18184 0.18434 0.05 

15 17 {ΨC\ΨSW} 0.16971 0.17205 0.05 

18 19 {ΨC\ΨSW} 0.12122 0.12289 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

18 21 {ΨC\ΨSW} 0.10049 0.20587 0.05 

19 20 {ΨC\ΨSW} 0.15759 0.15976 0.05 

21 22 {ΨC\ΨSW} 0.25457 0.25808 0.05 

21 23 {ΨC\ΨSW} 0.08374 0.17156 0.05 

23 24 {ΨC\ΨSW} 0.26669 0.27037 0.05 

23 25 ΨSW 0.09211 0.18871 0.05 

25 26 {ΨC\ΨSW} 0.09775 0.22449 0.05 

25 28 {ΨC\ΨSW} 0.06699 0.13725 0.05 

26 27 {ΨC\ΨSW} 0.07681 0.17638 0.05 

26 31 {ΨC\ΨSW} 0.1091 0.1106 0.05 

27 33 {ΨC\ΨSW} 0.24245 0.24579 0.05 

28 29 {ΨC\ΨSW} 0.10049 0.20587 0.05 

29 30 {ΨC\ΨSW} 0.11724 0.24018 0.05 

30 250 {ΨC\ΨSW} 0.06699 0.13725 0.05 

31 32 {ΨC\ΨSW} 0.14547 0.14747 0.05 

34 15 {ΨC\ΨSW} 0.04849 0.04916 0.05 

35 36 {ΨC\ΨSW} 0.18154 0.41691 0.05 

35 40 {ΨC\ΨSW} 0.08374 0.17156 0.05 

36 37 {ΨC\ΨSW} 0.14547 0.14747 0.05 

36 38 {ΨC\ΨSW} 0.12122 0.12289 0.05 

38 39 {ΨC\ΨSW} 0.15759 0.15976 0.05 

40 41 {ΨC\ΨSW} 0.15759 0.15976 0.05 

40 42 {ΨC\ΨSW} 0.08374 0.17156 0.05 

42 43 {ΨC\ΨSW} 0.24245 0.24579 0.05 

42 44 ΨSW 0.06699 0.13725 0.05 

44 45 {ΨC\ΨSW} 0.09698 0.09831 0.05 

44 47 {ΨC\ΨSW} 0.08374 0.17156 0.05 

45 46 {ΨC\ΨSW} 0.14547 0.14747 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

47 48 {ΨC\ΨSW} 0.05024 0.10293 0.05 

47 49 {ΨC\ΨSW} 0.08374 0.17156 0.05 

49 50 {ΨC\ΨSW} 0.08374 0.17156 0.05 

50 51 {ΨC\ΨSW} 0.08374 0.17156 0.05 

52 53 {ΨC\ΨSW} 0.06699 0.13725 0.05 

53 54 {ΨC\ΨSW} 0.04187 0.08578 0.05 

54 55 {ΨC\ΨSW} 0.09211 0.18871 0.05 

54 57 {ΨC\ΨSW} 0.11724 0.24018 0.05 

55 56 {ΨC\ΨSW} 0.09211 0.18871 0.05 

57 58 {ΨC\ΨSW} 0.12122 0.12289 0.05 

57 60 {ΨC\ΨSW} 0.25122 0.51467 0.05 

58 59 {ΨC\ΨSW} 0.12122 0.12289 0.05 

60 61 {ΨC\ΨSW} 0.18423 0.37743 0.05 

60 62 {ΨC\ΨSW} 0.2775 0.13221 0.05 

62 63 {ΨC\ΨSW} 0.19425 0.09255 0.05 

63 64 {ΨC\ΨSW} 0.3885 0.1851 0.05 

64 65 {ΨC\ΨSW} 0.47175 0.22476 0.05 

65 66 {ΨC\ΨSW} 0.36075 0.17188 0.05 

67 68 {ΨC\ΨSW} 0.09698 0.09831 0.05 

67 72 {ΨC\ΨSW} 0.09211 0.18871 0.05 

67 97 {ΨC\ΨSW} 0.08374 0.17156 0.05 

68 69 {ΨC\ΨSW} 0.13335 0.13518 0.05 

69 70 {ΨC\ΨSW} 0.15759 0.15976 0.05 

70 71 {ΨC\ΨSW} 0.13335 0.13518 0.05 

72 73 {ΨC\ΨSW} 0.13335 0.13518 0.05 

72 76 {ΨC\ΨSW} 0.06699 0.13725 0.05 

73 74 {ΨC\ΨSW} 0.16971 0.17205 0.05 

74 75 {ΨC\ΨSW} 0.19396 0.19663 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

76 77 {ΨC\ΨSW} 0.13399 0.27449 0.05 

76 86 {ΨC\ΨSW} 0.23447 0.48036 0.05 

77 78 {ΨC\ΨSW} 0.0335 0.06862 0.05 

78 79 {ΨC\ΨSW} 0.07537 0.1544 0.05 

78 80 {ΨC\ΨSW} 0.15911 0.32596 0.05 

80 81 {ΨC\ΨSW} 0.15911 0.32596 0.05 

81 82 {ΨC\ΨSW} 0.08374 0.17156 0.05 

81 84 {ΨC\ΨSW} 0.32731 0.33181 0.05 

82 83 {ΨC\ΨSW} 0.08374 0.17156 0.05 

84 85 {ΨC\ΨSW} 0.23033 0.2335 0.05 

86 87 ΨSW 0.15073 0.3088 0.05 

87 88 {ΨC\ΨSW} 0.08486 0.08603 0.05 

87 89 {ΨC\ΨSW} 0.09211 0.18871 0.05 

89 90 {ΨC\ΨSW} 0.1091 0.1106 0.05 

89 91 {ΨC\ΨSW} 0.07537 0.1544 0.05 

91 92 {ΨC\ΨSW} 0.14547 0.14747 0.05 

91 93 {ΨC\ΨSW} 0.07537 0.1544 0.05 

93 94 {ΨC\ΨSW} 0.13335 0.13518 0.05 

93 95 {ΨC\ΨSW} 0.10049 0.20587 0.05 

95 96 {ΨC\ΨSW} 0.09698 0.09831 0.05 

97 98 {ΨC\ΨSW} 0.09211 0.18871 0.05 

98 99 {ΨC\ΨSW} 0.18423 0.37743 0.05 

99 100 {ΨC\ΨSW} 0.10049 0.20587 0.05 

100 450 {ΨC\ΨSW} 0.26797 0.54899 0.05 

101 102 {ΨC\ΨSW} 0.1091 0.1106 0.05 

101 105 {ΨC\ΨSW} 0.09211 0.18871 0.05 

102 103 {ΨC\ΨSW} 0.15759 0.15976 0.05 

103 104 {ΨC\ΨSW} 0.33943 0.3441 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

105 106 {ΨC\ΨSW} 0.1091 0.1106 0.05 

105 108 {ΨC\ΨSW} 0.10886 0.22303 0.05 

106 107 {ΨC\ΨSW} 0.27882 0.28265 0.05 

108 109 {ΨC\ΨSW} 0.2182 0.22121 0.05 

108 300 {ΨC\ΨSW} 0.33496 0.68623 0.05 

109 110 {ΨC\ΨSW} 0.14547 0.14747 0.05 

110 111 {ΨC\ΨSW} 0.27882 0.28265 0.05 

110 112 {ΨC\ΨSW} 0.06061 0.06145 0.05 

112 113 {ΨC\ΨSW} 0.25457 0.25808 0.05 

113 114 {ΨC\ΨSW} 0.15759 0.15976 0.05 

135 35 {ΨC\ΨSW} 0.12561 0.25734 0.05 

149 1 {ΨC\ΨSW} 0.13399 0.27449 0.05 

152 52 {ΨC\ΨSW} 0.13399 0.27449 0.05 

160 67 {ΨC\ΨSW} 0.11724 0.24018 0.05 

197 101 {ΨC\ΨSW} 0.08374 0.17156 0.05 

13 152 ΨSW 0 0.001 0.05 

18 135 ΨSW 0 0.001 0.05 

60 160 ΨSW 0 0.001 0.05 

61 610 ΨSW 0 0.001 0.05 

97 197 ΨSW 0 0.001 0.05 

250 251 ΨSW 0 0.001 0.05 

450 451 ΨSW 0 0.001 0.05 

54 94 ΨSW 0 0.001 0.05 

151 300 ΨSW 0 0.001 0.05 

300 350 ΨSW 0 0.001 0.05 

150 149 ΨSW 0.001 0.008 0.05 

83 883 {ΨC\ΨSW} 0 0.001 0.05 

88 888 {ΨC\ΨSW} 0 0.001 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

90 890 {ΨC\ΨSW} 0 0.001 0.05 

92 892 {ΨC\ΨSW} 0 0.001 0.05 

33 149 ΨSW 0 0.001 0.05 

25 44 ΨSW 0 0.001 0.05 

 



 

                                                                                                                                                                                                                                                                    200 

 

7.2 Input data for distribution systems used in section 5.2 

7.2.1 Test system S5 

Table 7.9. Bus data: test system S5 

Bus # 
Set(s) to which bus 

pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Cost 

coefficient 

for load 

shedding 

[$/MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

1000 ΩSLACK, ΩREF, ΩROOT  1 0 0   0.95 1.05 -5 5 

1 ΩPCTE   0.1 0.06   0.95 1.05 -5 5 

2 ΩPCTE, ΩSHED   0.09 0.04 1200 0.95 1.05 -5 5 

3 ΩPCTE, ΩSHED   0.12 0.08 1200 0.95 1.05 -5 5 

4 ΩPCTE   0.06 0.03   0.95 1.05 -5 5 

5 ΩPCTE   0.06 0.02   0.95 1.05 -5 5 

6 ΩPCTE, ΩSHED   0.2 0.1 900 0.95 1.05 -5 5 

7 ΩPCTE   0.2 0.1   0.95 1.05 -5 5 

8 ΩPCTE   0.06 0.02   0.95 1.05 -5 5 

9 ΩPCTE, ΩSHED   0.06 0.02 1100 0.95 1.05 -5 5 

10 ΩPCTE   0.045 0.03   0.95 1.05 -5 5 

11 ΩPCTE   0.06 0.035   0.95 1.05 -5 5 

12 ΩPCTE, ΩSHED   0.06 0.035 1100 0.95 1.05 -5 5 

13 ΩPCTE   0.12 0.08   0.95 1.05 -5 5 

14 ΩPCTE   0.06 0.01   0.95 1.05 -5 5 

15 ΩPCTE, ΩSHED   0.06 0.02 950 0.95 1.05 -5 5 

16 ΩPCTE   0.06 0.02   0.95 1.05 -5 5 

17 ΩPCTE, ΩSHED   0.09 0.04 1150 0.95 1.05 -5 5 

18 ΩPCTE   0.09 0.04   0.95 1.05 -5 5 
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Bus # 
Set(s) to which bus 

pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Cost 

coefficient 

for load 

shedding 

[$/MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

19 ΩPCTE, ΩSHED   0.09 0.04 950 0.95 1.05 -5 5 

20 ΩPCTE   0.09 0.04   0.95 1.05 -5 5 

21 ΩPCTE, ΩSHED   0.09 0.04 1100 0.95 1.05 -5 5 

22 ΩPCTE   0.09 0.05   0.95 1.05 -5 5 

23 ΩPCTE, ΩSHED   0.42 0.2 1100 0.95 1.05 -5 5 

24 ΩPCTE   0.42 0.2   0.95 1.05 -5 5 

25 ΩPCTE   0.06 0.025   0.95 1.05 -5 5 

26 ΩPCTE, ΩSHED   0.06 0.025 900 0.95 1.05 -5 5 

27 ΩPCTE, ΩSHED   0.06 0.02 1200 0.95 1.05 -5 5 

28 ΩPCTE   0.12 0.07   0.95 1.05 -5 5 

29 ΩPCTE, ΩSHED   0.2 0.6 900 0.95 1.05 -5 5 

30 ΩPCTE, ΩSHED   0.15 0.07 950 0.95 1.05 -5 5 

31 ΩPCTE, ΩSHED   0.21 0.1 1050 0.95 1.05 -5 5 

32 ΩPCTE, ΩSHED   0.06 0.04 1100 0.95 1.05 -5 5 

Table 7.10. Branch data: test system S5 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1000 1 {ΨC\ΨSW} 0.05753 0.02932 0.05 

1 2 {ΨC\ΨSW} 0.3076 0.15667 0.05 

2 3 {ΨC\ΨSW} 0.22836 0.1163 0.05 

3 4 {ΨC\ΨSW} 0.23778 0.1211 0.05 

4 5 {ΨC\ΨSW} 0.51099 0.44112 0.05 

6 7 ΨSW 0.44386 0.14668 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

7 8 {ΨC\ΨSW} 0.64264 0.4617 0.05 

8 9 ΨSW 0.65138 0.4617 0.05 

9 10 {ΨC\ΨSW} 0.12266 0.04056 0.05 

10 11 {ΨC\ΨSW} 0.2336 0.07724 0.05 

11 12 {ΨC\ΨSW} 0.91592 0.72063 0.05 

12 13 {ΨC\ΨSW} 0.33792 0.4448 0.05 

13 14 ΨSW 0.36874 0.32818 0.05 

14 15 {ΨC\ΨSW} 0.46564 0.34004 0.05 

15 16 {ΨC\ΨSW} 0.80424 1.07378 0.05 

16 17 ΨSW 0.45671 0.35813 0.05 

1 18 {ΨC\ΨSW} 0.10232 0.09764 0.05 

18 19 {ΨC\ΨSW} 0.93851 0.84567 0.05 

19 20 {ΨC\ΨSW} 0.2555 0.29849 0.05 

20 21 {ΨC\ΨSW} 0.4423 0.58481 0.05 

2 22 {ΨC\ΨSW} 0.28152 0.19236 0.05 

22 23 {ΨC\ΨSW} 0.56028 0.44243 0.05 

23 24 {ΨC\ΨSW} 0.55904 0.43743 0.05 

25 26 {ΨC\ΨSW} 0.17732 0.09028 0.05 

26 27 {ΨC\ΨSW} 0.66074 0.58256 0.05 

27 28 ΨSW 0.50176 0.43712 0.05 

28 29 {ΨC\ΨSW} 0.31664 0.16128 0.05 

29 30 {ΨC\ΨSW} 0.60795 0.60084 0.05 

30 31 ΨSW 0.19373 0.2258 0.05 

31 32 ΨSW 0.21276 0.33081 0.05 

7 20 ΨSW 1.24785 1.24785 0.05 

8 14 ΨSW 1.24785 1.24785 0.05 

11 21 ΨSW 1.24785 1.24785 0.05 

17 32 ΨSW 0.31196 0.31196 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

24 28 ΨSW 0.31196 0.31196 0.05 
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7.2.2 Test system S6 

Table 7.11. Bus data: test system S6 

Bus # 
Set(s) to which 

bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active 

load 

[MW] 

Nominal 

value of 

reactive 

load 

[MW] 

(Fixed) 

active 

power 

generation 

[MW] 

Lower 

bound for 

reactive 

power 

generation 

[MVAr] 

Upper 

bound for 

reactive 

power 

generation 

[MVAr] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound 

for 

voltage 

angle 

[°] 

Upper 

bound 

for 

voltage 

angle 

[°] 

1000 

ΩSLACK, ΩREF, 

ΩROOT  1.05 0 0       0.95 1.05 -5 5 

1 ΩPCTE   0.03 0.018       0.95 1.05 -5 5 

2 ΩPCTE, ΩCURT   0.027 0.012 0.09 -0.018 -0.018 0.95 1.05 -5 5 

3 ΩPCTE, ΩCURT   0.036 0.024 0.089 -0.018 -0.018 0.95 1.05 -5 5 

4 ΩPCTE   0.018 0.009       0.95 1.05 -5 5 

5 ΩPCTE   0.018 0.006       0.95 1.05 -5 5 

6 ΩPCTE, ΩCURT   0.06 0.03 0.058 -0.012 -0.012 0.95 1.05 -5 5 

7 ΩPCTE, ΩCURT   0.06 0.03 0.062 -0.013 -0.013 0.95 1.05 -5 5 

8 ΩPCTE, ΩCURT   0.018 0.006 0.138 -0.028 -0.028 0.95 1.05 -5 5 

9 ΩPCTE, ΩCURT   0.018 0.006 0.068 -0.014 -0.014 0.95 1.05 -5 5 

10 ΩPCTE   0.0135 0.009       0.95 1.05 -5 5 

11 ΩPCTE, ΩCURT   0.018 0.0105 0.088 -0.018 -0.018 0.95 1.05 -5 5 

12 ΩPCTE, ΩCURT   0.018 0.0105 0.065 -0.013 -0.013 0.95 1.05 -5 5 

13 ΩPCTE   0.036 0.024       0.95 1.05 -5 5 

14 ΩPCTE   0.018 0.003       0.95 1.05 -5 5 

15 ΩPCTE, ΩCURT   0.018 0.006 0.075 -0.015 -0.015 0.95 1.05 -5 5 

16 ΩPCTE   0.018 0.006       0.95 1.05 -5 5 

17 ΩPCTE   0.027 0.012       0.95 1.05 -5 5 

18 ΩPCTE, ΩCURT   0.027 0.012 0.1 -0.02 -0.02 0.95 1.05 -5 5 

19 ΩPCTE, ΩCURT   0.027 0.012 0.069 -0.014 -0.014 0.95 1.05 -5 5 
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Bus # 
Set(s) to which 

bus pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active 

load 

[MW] 

Nominal 

value of 

reactive 

load 

[MW] 

(Fixed) 

active 

power 

generation 

[MW] 

Lower 

bound for 

reactive 

power 

generation 

[MVAr] 

Upper 

bound for 

reactive 

power 

generation 

[MVAr] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound 

for 

voltage 

angle 

[°] 

Upper 

bound 

for 

voltage 

angle 

[°] 

20 ΩPCTE   0.027 0.012       0.95 1.05 -5 5 

21 ΩPCTE, ΩCURT   0.027 0.012 0.168 -0.034 -0.034 0.95 1.05 -5 5 

22 ΩPCTE, ΩCURT   0.027 0.015 0.146 -0.03 -0.03 0.95 1.05 -5 5 

23 ΩPCTE, ΩCURT   0.126 0.06 0.123 -0.025 -0.025 0.95 1.05 -5 5 

24 ΩPCTE   0.126 0.06       0.95 1.05 -5 5 

25 ΩPCTE, ΩCURT   0.018 0.0075 0.153 -0.031 -0.031 0.95 1.05 -5 5 

26 ΩPCTE   0.018 0.0075       0.95 1.05 -5 5 

27 ΩPCTE   0.018 0.006       0.95 1.05 -5 5 

28 ΩPCTE, ΩCURT   0.036 0.021 0.126 -0.026 -0.026 0.95 1.05 -5 5 

29 ΩPCTE, ΩCURT   0.06 0.18 0.085 -0.017 -0.017 0.95 1.05 -5 5 

30 ΩPCTE, ΩCURT   0.045 0.021 0.094 -0.019 -0.019 0.95 1.05 -5 5 

31 ΩPCTE, ΩCURT   0.063 0.03 0.089 -0.018 -0.018 0.95 1.05 -5 5 

32 ΩPCTE, ΩCURT   0.018 0.012 0.114 -0.023 -0.023 0.95 1.05 -5 5 

Table 7.12. Branch data: test system S6 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1000 1 {ΨC\ΨSW} 0.05753 0.02932 0.05 

1 2 {ΨC\ΨSW} 0.3076 0.15667 0.05 

2 3 {ΨC\ΨSW} 0.22836 0.1163 0.05 

3 4 {ΨC\ΨSW} 0.23778 0.1211 0.05 

4 5 {ΨC\ΨSW} 0.51099 0.44112 0.05 

5 6 ΨSW 0.1168 0.38608 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

6 7 {ΨC\ΨSW} 0.44386 0.14668 0.05 

7 8 ΨSW 0.64264 0.4617 0.05 

8 9 {ΨC\ΨSW} 0.65138 0.4617 0.05 

9 10 {ΨC\ΨSW} 0.12266 0.04056 0.05 

10 11 {ΨC\ΨSW} 0.2336 0.07724 0.05 

11 12 {ΨC\ΨSW} 0.91592 0.72063 0.05 

12 13 ΨSW 0.33792 0.4448 0.05 

13 14 {ΨC\ΨSW} 0.36874 0.32818 0.05 

14 15 {ΨC\ΨSW} 0.46564 0.34004 0.05 

15 16 {ΨC\ΨSW} 0.80424 1.07378 0.05 

16 17 {ΨC\ΨSW} 0.45671 0.35813 0.05 

1 18 {ΨC\ΨSW} 0.10232 0.09764 0.05 

18 19 {ΨC\ΨSW} 0.93851 0.84567 0.05 

19 20 {ΨC\ΨSW} 0.2555 0.29849 0.05 

20 21 {ΨC\ΨSW} 0.4423 0.58481 0.05 

2 22 {ΨC\ΨSW} 0.28152 0.19236 0.05 

22 23 {ΨC\ΨSW} 0.56028 0.44243 0.05 

23 24 {ΨC\ΨSW} 0.55904 0.43743 0.05 

5 25 {ΨC\ΨSW} 0.12666 0.06451 0.05 

25 26 ΨSW 0.17732 0.09028 0.05 

26 27 {ΨC\ΨSW} 0.66074 0.58256 0.05 

27 28 {ΨC\ΨSW} 0.50176 0.43712 0.05 

28 29 {ΨC\ΨSW} 0.31664 0.16128 0.05 

29 30 ΨSW 0.60795 0.60084 0.05 

30 31 ΨSW 0.19373 0.2258 0.05 

31 32 ΨSW 0.21276 0.33081 0.05 

7 20 ΨSW 1.24785 1.24785 0.05 

8 14 ΨSW 1.24785 1.24785 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

11 21 ΨSW 1.24785 1.24785 0.05 

17 32 ΨSW 0.31196 0.31196 0.05 

24 28 ΨSW 0.31196 0.31196 0.05 
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7.2.3 Test system S7 

Table 7.13. Bus data: test system S7 

Bus 

# 

Set(s) 

to 

which 

bus 

pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active 

load 

[MW] 

Nominal 

value of 

reactive 

load 

[MW] 

Lower 

bound for 

active 

power 

generation 

[MW] 

Upper 

bound for 

active 

power 

generation 

[MW] 

Lower 

bound for 

reactive 

power 

generation 

[MVAr] 

Upper 

bound for 

reactive 

power 

generation 

[MVAr] 

Variable 

generation 

costs 

[$/MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound 

for 

voltage 

angle 

[°] 

Upper 

bound 

for 

voltage 

angle 

[°] 

1000 

ΩSLACK, 

ΩREF, 

ΩROOT  1.025 0 0           0.95 1.05 -5 5 

1 ΩPCTE   0.11 0.066           0.95 1.05 -5 5 

2 ΩPCTE   0.099 0.044           0.95 1.05 -5 5 

3 ΩPCTE   0.132 0.088           0.95 1.05 -5 5 

4 ΩPCTE   0.066 0.033           0.95 1.05 -5 5 

5 ΩPCTE   0.066 0.022           0.95 1.05 -5 5 

6 ΩPCTE   0.22 0.11           0.95 1.05 -5 5 

7 

ΩPCTE, 

ΩCTRPQ   0.22 0.11 0 0.5 0 0.1643 110 0.95 1.05 -5 5 

8 ΩPCTE   0.066 0.022           0.95 1.05 -5 5 

9 ΩPCTE   0.066 0.022           0.95 1.05 -5 5 

10 ΩPCTE   0.0495 0.033           0.95 1.05 -5 5 

11 ΩPCTE   0.066 0.0385           0.95 1.05 -5 5 

12 ΩPCTE   0.066 0.0385           0.95 1.05 -5 5 

13 ΩPCTE   0.132 0.088           0.95 1.05 -5 5 

14 

ΩPCTE, 

ΩCTRPQ   0.066 0.011 0 0.3 0 0.0986 118 0.95 1.05 -5 5 

15 ΩPCTE   0.066 0.022           0.95 1.05 -5 5 

16 ΩPCTE   0.066 0.022           0.95 1.05 -5 5 
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Bus 

# 

Set(s) 

to 

which 

bus 

pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active 

load 

[MW] 

Nominal 

value of 

reactive 

load 

[MW] 

Lower 

bound for 

active 

power 

generation 

[MW] 

Upper 

bound for 

active 

power 

generation 

[MW] 

Lower 

bound for 

reactive 

power 

generation 

[MVAr] 

Upper 

bound for 

reactive 

power 

generation 

[MVAr] 

Variable 

generation 

costs 

[$/MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound 

for 

voltage 

angle 

[°] 

Upper 

bound 

for 

voltage 

angle 

[°] 

17 

ΩPCTE, 

ΩCTRPQ   0.099 0.044 0 0.3 0 0.0986 118 0.95 1.05 -5 5 

18 ΩPCTE   0.099 0.044           0.95 1.05 -5 5 

19 ΩPCTE   0.099 0.044           0.95 1.05 -5 5 

20 ΩPCTE   0.099 0.044           0.95 1.05 -5 5 

21 ΩPCTE   0.099 0.044           0.95 1.05 -5 5 

22 ΩPCTE   0.099 0.055           0.95 1.05 -5 5 

23 ΩPCTE   0.462 0.22           0.95 1.05 -5 5 

24 ΩPCTE   0.462 0.22           0.95 1.05 -5 5 

25 ΩPCTE   0.066 0.0275           0.95 1.05 -5 5 

26 ΩPCTE   0.066 0.0275           0.95 1.05 -5 5 

27 ΩPCTE   0.066 0.022           0.95 1.05 -5 5 

28 ΩPCTE   0.132 0.077           0.95 1.05 -5 5 

29 

ΩPCTE, 

ΩCTRPQ   0.22 0.66 0 0.3 0 0.0986 145 0.95 1.05 -5 5 

30 ΩPCTE   0.165 0.077           0.95 1.05 -5 5 

31 ΩPCTE   0.231 0.11           0.95 1.05 -5 5 

32 ΩPCTE   0.066 0.044           0.95 1.05 -5 5 

Table 7.14. Branch data: test system S7 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1000 1 ΨSW 0.05753 0.02932 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1 2 {ΨC\ΨSW} 0.3076 0.15667 0.05 

2 3 {ΨC\ΨSW} 0.22836 0.1163 0.05 

3 4 {ΨC\ΨSW} 0.23778 0.1211 0.05 

4 5 {ΨC\ΨSW} 0.51099 0.44112 0.05 

5 6 ΨSW 0.1168 0.38608 0.05 

6 7 {ΨC\ΨSW} 0.44386 0.14668 0.05 

7 8 ΨSW 0.64264 0.4617 0.05 

8 9 {ΨC\ΨSW} 0.65138 0.4617 0.05 

9 10 {ΨC\ΨSW} 0.12266 0.04056 0.05 

10 11 {ΨC\ΨSW} 0.2336 0.07724 0.05 

11 12 {ΨC\ΨSW} 0.91592 0.72063 0.05 

12 13 ΨSW 0.33792 0.4448 0.05 

13 14 {ΨC\ΨSW} 0.36874 0.32818 0.05 

14 15 {ΨC\ΨSW} 0.46564 0.34004 0.05 

15 16 {ΨC\ΨSW} 0.80424 1.07378 0.05 

16 17 {ΨC\ΨSW} 0.45671 0.35813 0.05 

1 18 {ΨC\ΨSW} 0.10232 0.09764 0.05 

18 19 {ΨC\ΨSW} 0.93851 0.84567 0.05 

19 20 {ΨC\ΨSW} 0.2555 0.29849 0.05 

20 21 {ΨC\ΨSW} 0.4423 0.58481 0.05 

2 22 {ΨC\ΨSW} 0.28152 0.19236 0.05 

22 23 {ΨC\ΨSW} 0.56028 0.44243 0.05 

23 24 {ΨC\ΨSW} 0.55904 0.43743 0.05 

5 25 {ΨC\ΨSW} 0.12666 0.06451 0.05 

25 26 ΨSW 0.17732 0.09028 0.05 

26 27 {ΨC\ΨSW} 0.66074 0.58256 0.05 

27 28 {ΨC\ΨSW} 0.50176 0.43712 0.05 

28 29 {ΨC\ΨSW} 0.31664 0.16128 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

29 30 ΨSW 0.60795 0.60084 0.05 

30 31 ΨSW 0.19373 0.2258 0.05 

31 32 ΨSW 0.21276 0.33081 0.05 

7 20 ΨSW 1.24785 1.24785 0.05 

8 14 ΨSW 1.24785 1.24785 0.05 

11 21 ΨSW 1.24785 1.24785 0.05 

17 32 {ΨC\ΨSW} 0.31196 0.31196 0.05 

24 28 {ΨC\ΨSW} 0.31196 0.31196 0.05 
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7.2.4 Test system S8 

Table 7.15. Bus data: test system S8 

Bus # 
Set(s) to which bus 

pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Annualized 

cost of 

candidate 

capacitor 

[$] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

1000 ΩSLACK, ΩREF, ΩROOT  1       0.95 1.05 -5 5 

1 ΩPCTE   0.125 0.075   0.95 1.05 -5 5 

2 ΩPCTE   0.1125 0.05   0.95 1.05 -5 5 

3 ΩPCTE   0.15 0.1   0.95 1.05 -5 5 

4 ΩPCTE   0.075 0.0375   0.95 1.05 -5 5 

5 ΩPCTE   0.075 0.025   0.95 1.05 -5 5 

6 ΩPCTE   0.25 0.125   0.95 1.05 -5 5 

7 ΩPCTE   0.25 0.125   0.95 1.05 -5 5 

8 ΩPCTE   0.075 0.025   0.95 1.05 -5 5 

9 ΩPCTE   0.075 0.025   0.95 1.05 -5 5 

10 ΩPCTE   0.05625 0.0375   0.95 1.05 -5 5 

11 ΩPCTE   0.075 0.04375   0.95 1.05 -5 5 

12 ΩPCTE   0.075 0.04375   0.95 1.05 -5 5 

13 ΩPCTE   0.15 0.1   0.95 1.05 -5 5 

14 ΩPCTE   0.075 0.0125   0.95 1.05 -5 5 

15 ΩPCTE   0.075 0.025   0.95 1.05 -5 5 

16 ΩPCTE   0.075 0.025   0.95 1.05 -5 5 

17 ΩPCTE   0.1125 0.05   0.95 1.05 -5 5 

18 ΩPCTE   0.1125 0.05   0.95 1.05 -5 5 

19 ΩPCTE   0.1125 0.05   0.95 1.05 -5 5 

20 ΩPCTE   0.1125 0.05   0.95 1.05 -5 5 

21 ΩPCTE   0.1125 0.05   0.95 1.05 -5 5 
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Bus # 
Set(s) to which bus 

pertain 

Reference 

voltage 

magnitude 

[p.u.] 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Annualized 

cost of 

candidate 

capacitor 

[$] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

22 ΩPCTE   0.1125 0.0625   0.95 1.05 -5 5 

23 ΩPCTE   0.525 0.25   0.95 1.05 -5 5 

24 ΩPCTE   0.525 0.25   0.95 1.05 -5 5 

25 ΩPCTE   0.075 0.03125   0.95 1.05 -5 5 

26 ΩPCTE   0.075 0.03125   0.95 1.05 -5 5 

27 ΩPCTE   0.075 0.025   0.95 1.05 -5 5 

28 ΩPCTE   0.15 0.0875   0.95 1.05 -5 5 

29 ΩPCTE   0.25 0.75   0.95 1.05 -5 5 

30 ΩPCTE   0.1875 0.0875   0.95 1.05 -5 5 

31 ΩPCTE   0.2625 0.125   0.95 1.05 -5 5 

32 ΩPCTE   0.075 0.05   0.95 1.05 -5 5 

2000 ΩSLACK, ΩREF, ΩROOT  1       0.95 1.05 -5 5 

200 ΩPCTE         0.95 1.05 -5 5 

805 ΩZCTE, ΩCAP   0 -0.2 9000 0.95 1.05 -5 5 

811 ΩZCTE, ΩCAP   0 -0.2 9000 0.95 1.05 -5 5 

831 ΩZCTE, ΩCAP   0 -0.2 9000 0.95 1.05 -5 5 

Table 7.16. Branch data: test system S8 

FROM 

bus 

TO  

bus 
Set(s) to which branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

Annualized 

cost of 

candidate 

facility [$] 

1000 1 {ΨC\{ΨSW ΨCD}} 0.05753 0.02932 0.05   

1 2 {ΨC\{ΨSW ΨCD}} 0.3076 0.15667 0.04   

2 3 {ΨC\{ΨSW ΨCD}} 0.22836 0.1163 0.04   

3 4 {ΨC\{ΨSW ΨCD}} 0.23778 0.1211 0.04   



 

                                                                                                                                                                                                                                                                    214 

 

FROM 

bus 

TO  

bus 
Set(s) to which branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

Annualized 

cost of 

candidate 

facility [$] 

4 5 {ΨC\{ΨSW ΨCD}} 0.51099 0.44112 0.035   

5 6 {ΨC\{ΨSW ΨCD}} 0.1168 0.38608 0.035   

6 7 ΨSW 0.44386 0.14668 0.035   

7 8 {ΨC\{ΨSW ΨCD}} 0.64264 0.4617 0.035   

8 9 ΨSW 0.65138 0.4617 0.035   

9 10 {ΨC\{ΨSW ΨCD}} 0.12266 0.04056 0.03   

10 11 {ΨC\{ΨSW ΨCD}} 0.2336 0.07724 0.03   

11 12 {ΨC\{ΨSW ΨCD}} 0.91592 0.72063 0.03   

12 13 {ΨC\{ΨSW ΨCD}} 0.33792 0.4448 0.03   

13 14 ΨSW 0.36874 0.32818 0.03   

14 15 {ΨC\{ΨSW ΨCD}} 0.46564 0.34004 0.03   

15 16 {ΨC\{ΨSW ΨCD}} 0.80424 1.07378 0.03   

16 17 {ΨC\{ΨSW ΨCD}} 0.45671 0.35813 0.03   

1 18 {ΨC\{ΨSW ΨCD}} 0.10232 0.09764 0.04   

18 19 {ΨC\{ΨSW ΨCD}} 0.93851 0.84567 0.04   

19 20 {ΨC\{ΨSW ΨCD}} 0.2555 0.29849 0.04   

20 21 {ΨC\{ΨSW ΨCD}} 0.4423 0.58481 0.035   

2 22 {ΨC\{ΨSW ΨCD}} 0.28152 0.19236 0.04   

22 23 {ΨC\{ΨSW ΨCD}} 0.56028 0.44243 0.04   

23 24 {ΨC\{ΨSW ΨCD}} 0.55904 0.43743 0.035   

5 25 ΨSW 0.12666 0.06451 0.035   

25 26 {ΨC\{ΨSW ΨCD}} 0.17732 0.09028 0.035   

26 27 {ΨC\{ΨSW ΨCD}} 0.66074 0.58256 0.035   

27 28 ΨSW 0.50176 0.43712 0.035   

28 29 {ΨC\{ΨSW ΨCD}} 0.31664 0.16128 0.035   

29 30 {ΨC\{ΨSW ΨCD}} 0.60795 0.60084 0.035   

30 31 {ΨC\{ΨSW ΨCD}} 0.19373 0.2258 0.03   
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FROM 

bus 

TO  

bus 
Set(s) to which branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

Annualized 

cost of 

candidate 

facility [$] 

31 32 ΨSW 0.21276 0.33081 0.03   

7 20 ΨSW 1.24785 1.24785 0.035   

8 14 ΨSW 1.24785 1.24785 0.035   

11 21 ΨSW 1.24785 1.24785 0.03   

17 32 ΨSW 0.31196 0.31196 0.03   

24 28 ΨSW 0.31196 0.31196 0.035   

2000 200 ΨCD 0.05292 0.03226 0.05 48000 

200 13 ΨCD 0.36593 0.30952 0.04 7800 

200 15 ΨCD 0.33778 0.28571 0.04 7200 

13 8 ΨCD 0.42223 0.35713 0.04 9000 

9 21 ΨCD 0.54748 0.4742 0.035 8400 

15 26 ΨCD 0.56297 0.47618 0.04 12000 

15 30 ΨCD 0.60125 0.52856 0.05 11000 

5 805 ΨSW 0 0.001 0.05   

11 811 ΨSW 0 0.001 0.05   

31 831 ΨSW 0 0.001 0.05   
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7.2.5 Test system S9 

Table 7.17. Bus data: test system S9 

Bus # 
Set(s) to which bus 

pertain 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

1000 ΩSLACK, ΩREF, ΩROOT      0.8 1.05 -5 5 

1 ΩZCTE 0.1 0.06 0.8 1.05 -5 5 

2 ΩICTE 0.09 0.04 0.8 1.05 -5 5 

3 ΩZCTE 0.12 0.08 0.8 1.05 -5 5 

4 ΩZCTE 0.06 0.03 0.8 1.05 -5 5 

5 ΩPCTE 0.06 0.02 0.8 1.05 -5 5 

6 ΩPCTE 0.2 0.1 0.8 1.05 -5 5 

7 ΩZCTE 0.2 0.1 0.8 1.05 -5 5 

8 ΩZCTE 0.06 0.02 0.8 1.05 -5 5 

9 ΩPCTE 0.06 0.02 0.8 1.05 -5 5 

10 ΩZCTE 0.045 0.03 0.8 1.05 -5 5 

11 ΩICTE 0.06 0.035 0.8 1.05 -5 5 

12 ΩPCTE 0.06 0.035 0.8 1.05 -5 5 

13 ΩZCTE 0.12 0.08 0.8 1.05 -5 5 

14 ΩPCTE 0.06 0.01 0.8 1.05 -5 5 

15 ΩPCTE 0.06 0.02 0.8 1.05 -5 5 

16 ΩPCTE 0.06 0.02 0.8 1.05 -5 5 

17 ΩICTE 0.09 0.04 0.8 1.05 -5 5 

18 ΩZCTE 0.09 0.04 0.8 1.05 -5 5 

19 ΩPCTE 0.09 0.04 0.8 1.05 -5 5 
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Bus # 
Set(s) to which bus 

pertain 

Nominal 

value of 

active load 

[MW] 

Nominal 

value of 

reactive 

load [MW] 

Lower 

bound for 

voltage 

magnitude 

[p.u.] 

Upper 

bound for 

voltage 

magnitude 

[p.u.] 

Lower 

bound for 

voltage 

angle [°] 

Upper 

bound for 

voltage 

angle [°] 

20 ΩZCTE 0.09 0.04 0.8 1.05 -5 5 

21 ΩZCTE 0.09 0.04 0.8 1.05 -5 5 

22 ΩZCTE 0.09 0.05 0.8 1.05 -5 5 

23 ΩPCTE 0.42 0.2 0.8 1.05 -5 5 

24 ΩZCTE 0.42 0.2 0.8 1.05 -5 5 

25 ΩPCTE 0.06 0.025 0.8 1.05 -5 5 

26 ΩICTE 0.06 0.025 0.8 1.05 -5 5 

27 ΩICTE 0.06 0.02 0.8 1.05 -5 5 

28 ΩZCTE 0.12 0.07 0.8 1.05 -5 5 

29 ΩICTE 0.2 0.6 0.8 1.05 -5 5 

30 ΩICTE 0.15 0.07 0.8 1.05 -5 5 

31 ΩZCTE 0.21 0.1 0.8 1.05 -5 5 

32 ΩPCTE 0.06 0.04 0.8 1.05 -5 5 

Table 7.18. Branch data: test system S9 

FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

1000 1 {ΨC\ΨSW} 0.05753 0.02932 0.05 

1 2 {ΨC\ΨSW} 0.3076 0.15667 0.05 

2 3 {ΨC\ΨSW} 0.22836 0.1163 0.05 

3 4 {ΨC\ΨSW} 0.23778 0.1211 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

4 5 {ΨC\ΨSW} 0.51099 0.44112 0.05 

5 6 {ΨC\ΨSW} 0.1168 0.38608 0.05 

6 7 ΨSW 0.44386 0.14668 0.05 

7 8 {ΨC\ΨSW} 0.64264 0.4617 0.05 

8 9 ΨSW 0.65138 0.4617 0.05 

9 10 {ΨC\ΨSW} 0.12266 0.04056 0.05 

10 11 {ΨC\ΨSW} 0.2336 0.07724 0.05 

11 12 {ΨC\ΨSW} 0.91592 0.72063 0.05 

12 13 {ΨC\ΨSW} 0.33792 0.4448 0.05 

13 14 ΨSW 0.36874 0.32818 0.05 

14 15 {ΨC\ΨSW} 0.46564 0.34004 0.05 

15 16 {ΨC\ΨSW} 0.80424 1.07378 0.05 

16 17 {ΨC\ΨSW} 0.45671 0.35813 0.05 

1 18 {ΨC\ΨSW} 0.10232 0.09764 0.05 

18 19 {ΨC\ΨSW} 0.93851 0.84567 0.05 

19 20 {ΨC\ΨSW} 0.2555 0.29849 0.05 

20 21 {ΨC\ΨSW} 0.4423 0.58481 0.05 

2 22 {ΨC\ΨSW} 0.28152 0.19236 0.05 

22 23 {ΨC\ΨSW} 0.56028 0.44243 0.05 

23 24 {ΨC\ΨSW} 0.55904 0.43743 0.05 

5 25 ΨSW 0.12666 0.06451 0.05 

25 26 {ΨC\ΨSW} 0.17732 0.09028 0.05 

26 27 {ΨC\ΨSW} 0.66074 0.58256 0.05 

27 28 ΨSW 0.50176 0.43712 0.05 

28 29 {ΨC\ΨSW} 0.31664 0.16128 0.05 
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FROM 

bus 

TO  

bus 

Set(s) to which 

branch pertain 

Branch 

resistance 

[p.u.] 

Branch 

reactance 

[p.u.] 

Maximum 

admissible 

current 

[p.u.] 

29 30 {ΨC\ΨSW} 0.60795 0.60084 0.05 

30 31 {ΨC\ΨSW} 0.19373 0.2258 0.05 

31 32 ΨSW 0.21276 0.33081 0.05 

7 20 ΨSW 1.24785 1.24785 0.05 

8 14 ΨSW 1.24785 1.24785 0.05 

11 21 ΨSW 1.24785 1.24785 0.05 

17 32 ΨSW 0.31196 0.31196 0.05 

24 28 ΨSW 0.31196 0.31196 0.05 
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8 APPENDIX B: AN ALTERNATIVE MILP 

REFORMULATION OF THE ACOPF IN 

DISTRIBUTION SYSTEMS 

In the course of the research activities that led to the present dissertation, an 

alternative MILP reformulation of the ACOPF in distribution systems has been 

investigated. This alternative formulation has been abandoned at early stages of the 

research activities due to its performance being inferior, with respect to accuracy and 

computational requirements, to the formulation presented in sections 4.1 to 4.3 of this 

document. For the sake of didactics, the alternative formulation is thoroughly presented 

below. The nomenclature used for the presentation of the alternative formulation is 

consistent with that used in chapter 4, except when otherwise noted. 

8.1 Main differences with respect to the formulation 

presented in chapter 4 

The alternative MILP reformulation of the ACOPF in distribution systems is 

similar to that presented in chapter 4 in various aspects, but differs from it mainly with 

respect to the construction of piecewise-linear approximations of non-linear, non-

convex functions. Each and every segment of the piecewise-linear approximations of 

non-linear functions in the formulation presented in chapter 4  is obtained by affine 

combinations of its vertices. In the alternative formulation, each segment of the 

piecewise-linear approximation consists of a constant value, which is deemed as 

representative of the values that the non-linear function assumes between the vertices of 

a partition of its domain. Figure 8.1 provides the reader with insight about the 

differences among the piecewise-linearization with affine combinations of the vertices 

and the piecewise-linearization considering constant values of the non-linear function. 

From this figure, it is clear that the piecewise piecewise-linearization obtained by 

considering constant values of the function within a partition of its domain has the 

approximate shape of a staircase. For that reason, we will refer to this as a staircase-

shaped piecewise-linear approximation – or simply SSPL approximation. 
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Figure 8.1: Non-linear function fNL(x) (a); piecewise-linearization f(x) via affine combination of  

vertices (b); piecewise-linearization f(x) considering constant values within the vertices of a  

partition of the domain (SSPL approximation) (c). 

Figure 8.1 also points to a difference in the nomenclature used for defining the 

piecewise-linear approximations. In previous chapters of this dissertation we referred to 

the values  ̂  –  ̂  to  ̂  in part (b) of Figure 8.1 – as evaluated values (the vertices of 

the linear segments). The SSPL approximation defined in this chapter no longer makes 

use of affine combinations of evaluated values, but rather employs constant values 

through which the function fNL(x) is represented within the partition of the domain. 

These constant values will be referred to as representative values in this chapter, and 

will be denoted by  ̃ . As indicated in Figure 8.1, the representative value  ̃  is a single 

value chosen within the interval    ( ̂
 )   ̃     ( ̂

   ), where    ( ) is the non-

linear function to be approximated. 

This difference in the approximation of the non-linear functions requires the 

rewriting of several constraints of the ACOPF problem presented in chapter 4 – notably, 

those that relate power injections at buses with the correspondent current injections. By 

inspection of the constraints presented in this chapter 8, the reader will notice that the 

approximation of non-linear functions by constant values allows that the very nature of 

the functions being approximated changes: some of the functions for which piecewise-

linear approximation were used in chapter 4 (such as    and   ) need no longer to be 

approximated, as the (linear) constraints in which these functions were used are 

rewritten with a different arrangement of the decision variables. Particularly, as shown 

in section 8.2, the alternative MILP reformulation requires only the approximation of 

non-linear functions of a single decision variable in order to obtain the current injections 

demanded by constant-power loads and generators. 
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8.2 Mathematical formulation 

Analogously to section 4.2, this section begins with the presentation of the 

constraints employed for modeling the behavior of the network and enforcing operating 

limits (subsection 8.2.1). For the constraints that do not demand any modification with 

respect to the formulation presented in chapter 4, we will simply make direct reference 

to the associated equations of section 4.2.1. 

Objective functions for selected distribution system operations and expansion 

planning applications will be dealt with in subsection 8.2.2. 

8.2.1 Constraints: modeling electrical behavior and enforcing 

operating limits 

8.2.1.1 Kirchhoff’s Laws 

The alternative formulation requires no modifications to the constraints 

presented in subsection 4.2.1.1. Thus, those constraints may be promptly incorporated 

to the alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.1.2 Operating limits 

8.2.1.2.1 Bounds on bus voltage magnitudes 

The magnitude of the voltage at bus k,   , is a non-linear, non-convex function 

of the real and imaginary components of the voltage at this bus. Analogously, the 

squared value of the bus voltage magnitude,   
 , is also a non-linear, non-convex 

function of the associated real and imaginary components. As    may only assume non-

negative values, and as the square function is strictly monotonically increasing in the 

non-negative domain, bounding   
  within the interval (  )

     (  )
  equals 

bounding    within the interval         . This fact will be explored in the 

alternative MILP reformulation of the ACOPF for distribution systems – as the term   
  

will be used for the formulation of other constraints of the alternative MILP 
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formulation, a choice is made to use a constraint analogous to (  )
     (  )

  to 

bound the bus voltage magnitudes. 

In order to do that, the non-linear term   
  will be substituted by an auxiliary 

continuous decision variable,   . It is thus needed to approximate the following non-

linear function: 

 

   (  
  )  (  

  )
 
 ,   *         + (357) 

 

It is clear that the non-linear function presented above is separable, and may be 

rewritten as: 

 

     
     

   ,   *         + (358) 

  
   (  

  )  ,   *         + (359) 

  
   (  

  )
 
 ,   *         + (360) 

 

where: 

  
   ;   

   Auxiliary, continuous decision variables. 

 

Thus, instead of approximating the non-linear function of two decision variables 

expressed by equation (357), it is only required to separately approximate each of the 

functions of a single variable expressed by equations (359) and (360), and to summate 

them to obtain   , as indicated in equation (358). 

The approximation of the function   
   (  

  )  will be dealt with first. A SSPL 

approximation will be used for the reformulation of this function. The first step for 

using a SSPL approximation is to discover which partition of the domain (which 

partition comprised within two consecutive vertices that correspond to evaluation 

points) corresponds to the value of the decision variable   
   (the argument of the non-

linear function) at a given solution. In order to do that, the following constraints are 

employed: 

 

∑   
      ̂ 

    
        

   ,    *         +  (361) 

∑   
    

        ,    *         + (362) 
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∑   
 

        ,    *         + (363) 

  
       

  ,    *         + (364) 

  
       

      
  ,    {      * +}   *         + (365) 

 

where: 

    Set of indices for evaluation points   ̂ 
    

 and associated variables; 

 ̂ 
    

  Evaluation points of real component of voltage at bus k; 

  
    

 Weights used for expressing the value of the argument   
   as an affine 

combination of the evaluation points; 

  
  Auxiliary binary decision variable. 

 

The reader will notice that the previous equations are very similar to those used 

in chapter 4 to ensure that the set of weights   
   

 corresponds to a SOS2. Whenever 

these equations are enforced, it is possible to use the information of the auxiliary 

variables   
  to check in which partition of the domain the variable   

   is:  

 

∙ If   
   , with   {      *|   |+},   

   is within the partition defined by 

the interval  ̂ 
       

    ̂ 
      

; 

∙ If   
|   |   , then   

    ̂ 
   |   |

. 

 

By using the information of the partition of the domain within which the 

argument   
   is located, it is possible to employ the following disjunctive constraints to 

construct a SSPL approximation of the function   
   (  

  ) : 

 

  
       (    

 )    
    ̃ 

       
       (    

 )

 ,    {      *(|   |   ) |   |+}   *         + (366) 

  
(|   |  )      .    

(|   |  )    
|   |/    

    ̃ 
   (|   |  )   

   
(|   |  )      .    

(|   |  )    
|   |/ ,    *         + (367) 

 

where: 

  
      

 ;   
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 Disjunctive constants. These parameters need to be defined only for  

  {      *|   |+}; 

 ̃ 
    

  Representative values of the function   
   (  

  ) , deemed as 

representative of the interval ( ̂ 
    )    

   ( ̂ 
      ) . These parameters 

need to be defined only for   {      *|   |+}. 

 

Due to the specific characteristics of the distribution system, the decision 

variable   
   may only assume positive values for all buses in the system. Keeping this 

in mind, it is possible to define the following tight values for the disjunctive constants 

employed above: 

 

  
        ̃ 

      ̃ 
    

 ,    {      *|   |+}   *         + (368) 

  
        ̃ 

   (|   |  )   ̃ 
    

 ,    {      *|   |+}   *         + (369) 

 

Now, the approximation of the function   
   (  

  )  is dealt with. A SSPL 

approximation will also be constructed for this function. Analogously to what has been 

done above, it is first necessary to discover which partition of the domain corresponds 

to the value of the decision variable   
   (the argument of the non-linear function). This 

is done with help of the following constraints: 

 

∑   
      ̂ 

    
        

   ,    *         +  (370) 

∑   
    

        ,    *         + (371) 

∑   
 

        ,    *         + (372) 

  
       

  ,    *         + (373) 

  
       

      
  ,    2      * +3    *         + (374) 

 

where: 

    Set of indices for evaluation points   ̂ 
    

 and associated variables; 

 ̂ 
    

  Evaluation points of imaginary component of voltage at bus k; 

  
    

 Weights for expressing the value of the argument   
   as an affine 

combination of the evaluation points; 
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  Auxiliary, binary decision variable. 

 

It is possible to use the information of the auxiliary variables   
  to check in 

which partition of the domain the variable   
   is:  

 

∙ If   
   , with   2      {|   |}3,   

   is within the partition defined 

by the interval  ̂ 
       

    ̂ 
      

; 

∙ If   
|   |

  , then   
    ̂ 

   |   |
. 

 

With this information at hand, it is possible to use the following disjunctive 

constraints to construct a SSPL approximation of the function   
   (  

  ) : 

 

  
       (    

 )    
    ̃ 

       
       (    

 )

 ,    2      {(|   |   ) |   |}3    *         + (375) 

  
(|   |  )     

 .    
(|   |  )

   
|   |

/    
    ̃ 

   (|   |  )
  

   
(|   |  )     

 .    
(|   |  )

   
|   |

/      *         + (376) 

 

where: 

  
      

 ;   
      

 

 Disjunctive constants. These parameters need to be defined only for  

  2      {|   |}3; 

 ̃ 
    

  Representative values of the function   
   (  

  ) , deemed as 

representative of the interval ( ̂ 
    )   ̃ 

     ( ̂ 
      ) . These 

parameters need to be defined only for   2      {|   |}3. 

 

Keeping in mind that the decision variable   
   may assume negative and 

positive values (and also the value zero), but that the function (  
  )  may only assume 

non-negative values, it is possible to define the following tight values for the disjunctive 

constants: 
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          ̃ 

    
 ,    2      {|   |}3    *         + (377) 

  
          2 ̃ 

      ̃ 
   (|   |  )

3   ̃ 
    

 ,    2      {|   |}3    *         + (378) 

 

Finally, having obtained the values of   
   and   

  , bounds on bus voltage 

magnitudes can be enforced with help of the following set of constraints: 

 

(  )
    

     
   (  )

  ,   *         + (379) 

 

8.2.1.2.2 Bounds on the magnitude of branch currents 

In section 4.2.1.4.2 of chapter 4, bounds on branch current magnitudes have 

been indirectly enforced by imposing bounds on the square root of the sum of the 

squared values of the decision variables    
   and    

  , which have been defined so as to 

be at least as high as    
   and    

  , respectively. 

For the alternative MILP reformulation of the ACOPF in distribution systems, it 

is possible to defined an auxiliary decision variable,    , such that     (   )
 . As 

    may only assume non-negative values, and as the square function is strictly 

monotonically increasing in the non-negative domain, ensuring that     (   )
  is 

the same as ensuring that        . 

Also, it is possible to define     as: 

 

       
      

   ,       (380) 

   
   (   

  )  ,       (381) 

   
   (   

  )  ,       (382) 

 

It is clear that both    
   and    

   are non-linear functions of a single variable. 

Thus, for the alternative formulation presented in this chapter, it is possible to construct 

SSPL approximations of these two functions, by writing equations analogous to those 
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indicated in section 8.2.1.2.1. For the sake of conciseness, these equations, which are 

entirely analogous to the ones employed in section 8.2.1.2.1 to approximate  

  
   (  

  )  and   
   (  

  )
 
, will not be presented here. 

After obtaining the SSPL approximations of    
   and    

  , the branch current 

magnitude is bounded with help of the following set of constraints: 

 

   
      

   (   )
  ,       (383) 

 

8.2.1.2.3 Bounds on active and reactive power output of generators 

The alternative formulation requires no modifications to the constraints 

presented in subsection 4.2.1.4.3, which may thus be promptly incorporated to the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.1.3 Loads 

8.2.1.3.1 Constant-power loads that cannot be shed 

Before presenting the linearized equations to be incorporated to the alternative 

MILP reformulation of the ACOPF for distribution systems, it is worth presenting an 

alternative formulation of the corresponding non-linear equations, in order to provide 

the reader with a better comprehension of the reformulation procedure employed here. 

In the following, equations (9) and (10) of section 2.2.1.3.1 are rewritten, with the 

substitution of the auxiliary variables    and    by the corresponding functions of   
   

and   
  : 

 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,         (384) 

    
   (  

     
    

     
 
) .  

      
   /⁄  ,         (385) 

 

By substituting (  
  )    

   and (  
  )    

   in the above equations and 

manipulating the expressions algebraically, we obtain the following, still non-linear, 

equations: 
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 ,         (386) 

    
     

       
     

     
     

    
     

 
 ,         (387) 

 

The products of decision variables     
          

     
  ,     

          
     

  , 

    
          

     
   and     

           
     

   need to be reformulated before the equations 

above can be incorporated into the alternative MILP formulation. For the reformulation 

of these products, we may take advantage of the fact that the variables   
   and   

   

assume only values in a discretized values, which correspond to the representative 

values of the SSPL approximation described in section 8.2.1.2.1. Thus, the products 

above may be interpreted as products of a continuous variable (the current component) 

by a constant (the value assumed by   
   or   

  ). However, it is important to notice that 

this may assume different representative values (the representative values of the SSPL 

approximation for   
   and   

  , as described in section 8.2.1.2.1), depending on the 

partition of the domain in which the variables   
   and   

   are. Clearly, we have once 

again disjunctions (partitions) of the decision space.  

Thus, the following set of disjunctive constraints may be used to define     
     

, 

    
     

,     
     

 and     
     

: 

 

  
          (    

 )      
          

    ̃ 
       

          (    
 )

 ,    {      *(|   |   ) |   |+}   *             + (388) 

  
(|   |  )         .    

(|   |  )    
|   |/      

          
    ̃ 

   (|   |  )   

   
(|   |  )         .    

(|   |  )    
|   |/ ,    *             + (389) 

  
          (    

 )      
          

    ̃ 
       

          (    
 )

 ,    2      {(|   |   ) |   |}3    *             + (390) 

  
(|   |  )        

 .    
(|   |  )

   
|   |

/      
          

    ̃ 
   (|   |  )

  

   
(|   |  )        

 .    
(|   |  )

   
|   |

/  ,    *             + (391) 

  
          (    

 )      
          

    ̃ 
       

          (    
 )

 ,    {      *(|   |   ) |   |+}   *             + (392) 
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(|   |  )         .    

(|   |  )    
|   |/      

          
    ̃ 

   (|   |  )   

   
(|   |  )         .    

(|   |  )    
|   |/  ,    *             + (393) 

  
          (    

 )      
          

    ̃ 
       

          (    
 )

 ,    2      {(|   |   ) |   |}3    *             + (394) 

  
(|   |  )        

 .    
(|   |  )

   
|   |

/      
          

    ̃ 
   (|   |  )

  

   
(|   |  )        

 .    
(|   |  )

   
|   |

/  ,    *             + (395) 

 

where: 

  
         

 ;   
         

 ;   
         

 ;   
         

 ;   
         

 ;   
         

 ;   
         

 ;   
         

 

 Disjunctive constants. 

    
     

 ;     
     

 ;     
     

 ;     
     

 

  Auxiliary, continuous variables used for approximating the products 

    
          

     
  ,     

          
     

  ,     
          

     
   and 

    
           

     
    

 

The definition of the disjunctive constants introduced above will not be dealt 

with here, for the sake of conciseness. Having defined the auxiliary variables     
     

, 

    
     

,     
     

, and     
     

, the constraints through which the current injections from 

constant-power loads that cannot be shed are related to the associated power injections 

may be written as: 

 

    
          

        
     

    
     

 
 ,   *             + (396) 

    
          

        
     

    
     

 
 ,   *             + (397) 

 

8.2.1.3.2 Constant-power loads that can be shed 

As indicated in chapter 4, load shedding is considered to be a discrete decision: 

the load at bus k will be considered to be either energized (    ) or de-energized 
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(    ). When the load at bus k is shed, it is obviously necessary to ensure that the 

current components     
   and     

   will be forcefully set to zero. 

In order to do that and still be able to use constraints similar to these employed 

in section 8.2.1.3.1 in the alternative formulation, the auxiliary variables     
   and     

  , 

which correspond to the values of the load currents “before load shedding is taken into 

account”, are defined. Also, disjunctive constraints that ensure that     
       

   and 

    
       

   when     , but that     
     and     

     when     , will be introduced 

to the alternative MILP formulation. Before doing that it is necessary to deal with the 

definition of the auxiliary variables     
   and     

  . 

In order to define the auxiliary variables     
   and     

  , a procedure similar to that 

employed in section 8.2.1.3.1 for the definition of     
   and     

   will be used. That is to 

say, for each    *           +, the auxiliary variables     
     

,     
     

,     
     

 and 

    
     

 will be defined. These auxiliary decision variables will be used to approximate 

the products     
          

     
  ,     

          
     

  ,     
          

     
   and     

       

    
     

   – analogously  to what has been done for the products     
          

     
  , 

    
          

     
  ,     

          
     

  and     
           

     
   in equations (388) to 

(395). The constraints used for the definition of the auxiliary variables     
     

,     
     

, 

    
     

 and     
     

 will not be written here, as they are absolutely analogous to equations 

(388) to (395). 

Then, the following constraints will implicitly relate the values of     
   and     

   to 

the power injections of constant-power loads that can be shed: 

 

    
          

        
     

    
     

 
 ,   *           + (398) 

    
          

        
     

    
     

 
 ,   *           + (399) 

 

where: 

    
     

 ;     
     

 ;     
     

 ;     
     

 

  Auxiliary, continuous decision variables used for approximating the products 

    
          

     
  ,     

          
     

  ,     
          

     
   and     
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Finally, the following disjunctive constraints ensure that     
       

   and  

    
       

   when     , but that     
     and     

     when     : 

 

  
                   

       
     

                

 ,    *           + (400) 

  
            (    )      

     
            (    )  

 ,    *           + (401) 

  
                   

       
     

                

 ,    *           + (402) 

  
            (    )      

     
            (    )  

 ,    *           + (403) 

 

where: 

  
           

 ;   
           

 ;   
           

 ;   
           

  

  
           

 ;   
           

 ;   
           

 ;   
           

  

Disjunctive constants, whose definition will not be dealt with here, for the 

sake of conciseness. 

 

8.2.1.3.3 Constant-current loads that cannot be shed 

The investigation of the alternative MILP reformulation presented in this chapter 

has been interrupted before the treatment of loads of the constant-current type, and 

therefore no definition of constraints for obtaining the current injections corresponding 

to these types of loads is currently available. 

8.2.1.3.4 Constant-current loads that can be shed 

The investigation of the alternative MILP reformulation presented in this chapter 

has been interrupted before the treatment of loads of the constant-current type, and 

therefore no definition of constraints for obtaining the current injections corresponding 

to these types of loads is currently available. 



 

                                                                                                                                                                                                                                                                    

233 

 

8.2.1.3.5 Constant-impedance loads that cannot be shed 

The alternative formulation requires no modifications to the constraints 

presented in subsection 4.2.1.3.5, which may thus be promptly incorporated to the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.1.3.6 Constant-impedance loads that can be shed 

The alternative formulation requires no modifications to the constraints 

presented in subsection 4.2.1.3.6, which may thus be promptly incorporated to the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.1.4 Generation 

8.2.1.4.1 Non-curtailable generators with no control over the active power output 

Similarly to what has been done for loads, the first step for obtaining the 

constraints that will be used in the alternative MILP reformulation of the ACOPF is to 

rewrite the original, non-linear equations that relate the current injections with the active 

and reactive power output of generators, substituting the auxiliary variables    and    

by the corresponding functions of   
   and   

  : 

 

    
   (  

     
    

     
 
) .  

      
   /⁄  ,        (404) 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,        (405) 

 

By substituting (  
  )    

   and (  
  )    

   in the above equations and 

manipulating the expressions algebraically, we obtain the following, still non-linear 

equations: 

 

    
     

       
     

     
     

    
     

 
 ,        (406) 

    
     

       
     

     
     

    
     

 
 ,        (407) 
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The products of decision variables     
          

     
  ,     

          
     

  , 

    
          

     
   and     

           
     

   need to be reformulated before the previous 

equations can be incorporated into the alternative MILP formulation. For the 

reformulation of these products, it suffices to define constraints analogous to those 

represented by equations (388) to (395). Then, the following constraints will implicitly 

relate the values of     
   and     

   to the power injections of constant-power loads that can 

be shed: 

 

    
          

        
     

    
     

 
 ,   {              } (408) 

    
          

        
     

    
     

 
 ,   {             } (409) 

 

The reader will notice that equations (408) and (409) are still nonlinear, due to 

the products of decision variables
14

   
     

 
 and   

     
 

. In order to reformulate these 

equations and allow their incorporation to the alternative MILP formulation of the 

ACOPF for distribution systems, these products are substituted respectively by the 

auxiliary decision variables    
    

 and    
    

, and the equations (408) and (409) are 

reformulated as: 

 

    
          

        
     

     
    

 ,   {              } (410) 

    
          

        
     

     
    

 ,   {             } (411) 

 

where: 

    
     

 ;     
     

 ;     
     

 ;     
     

 

  Auxiliary, continuous variables used for approximating the products 

    
          

     
  ,     

          
     

  ,     
          

     
   and  

    
           

     
    

   
    

 Auxiliary decision variable for modeling the product   
     

 
; 

   
    

 Auxiliary decision variable for modeling the product   
     

 
. 

                                                 
14

 It is important to keep in mind that, for generators in {              }, the active power output is a 

parameter of the optimization problem. 
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Finally, it is necessary to define the linear constraints through which the 

auxiliary variables    
    

 and    
    

 are bounded within the convex envelopes (more 

precisely, McCormick’s envelopes) of the original products: 

 

   
       

         
    

     
    

         
 

 ,        (412) 

   
       

         
    

    
 

 
   

        
 

 
 ,        (413) 

   
       

         
    

    
 

 
   

        
 

 
 ,        (414) 

   
       

         
    

     
    

         
 

 ,        (415) 

   
       

         
    

     
    

         
 

 ,        (416) 

   
       

         
    

    
 

 
   

        
 

 
 ,        (417) 

   
       

         
    

    
 

 
   

        
 

 
 ,        (418) 

   
       

         
    

     
    

         
 

 ,        (419) 

 

8.2.1.4.2 Curtailable generators with no control over the active power output 

As indicated in chapter 4, generation curtailment is considered to be a discrete 

decision in the proposed formulation: the generator at bus k will be considered to be 

either energized (    ) or de-energized (    ). Therefore, it is necessary to ensure 

that, if the generator connected to bus k is curtailed,     
   and     

   will be forcefully set to 

zero. 

In order to do that, the auxiliary variables     
   and     

  , which correspond to the 

values of the generator currents “before generation curtailment is taken into account”, 

are defined. Also, disjunctive constraints that ensure that     
       

   and     
       

   

when     , but that     
     and     

     when     , will be incorporated to the 

alternative MILP formulation. Before doing that, it is necessary to deal with the 

definition of the auxiliary variables     
   and     

  . 

This is done by defining the auxiliary variables     
     

,     
     

,     
     

 and     
     

, 

and utilizing equations analogous to (388) to (395) to ensure that these auxiliary 
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variables correspond, respectively, to approximations of the products     
     

  ,  

    
     

  ,     
     

   and     
     

  . After that, the following equations are defined: 

 

    
          

        
     

     
    

 ,   {            } (420) 

    
          

        
     

     
    

 ,   {            } (421) 

 

where the auxiliary decision variables    
    

 and    
    

 have already been defined  

– see equations (412) to (419).  

Finally, the following disjunctive constraints ensure that     
       

   and  

    
       

   when     , but that     
     and     

     when     : 

 

  
              

       
     

           

 ,   {           } (422) 

  
       (    )      

     
       (    )  

 ,   {           } (423) 

  
              

       
     

           

 ,   {           } (424) 

  
       (    )      

     
       (    )  

 ,   {           } (425) 

 

where: 

  
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

 ;   
      

  

Disjunctive constants, whose definition will not be dealt with here, for the 

sake of conciseness. 

 

8.2.1.4.3 Generators with control over the active power output 

In order to model these generators, it suffices to define the auxiliary variables 

    
     

,     
     

,     
     

 and     
     

 and use equations analogous to (388) to (395) to ensure 

that these auxiliary variables correspond, respectively, to approximations of the 
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products     
     

  ,     
     

  ,     
     

   and     
     

  . After that, the following equations 

are defined: 

 

    
          

         
        

    
 ,          (426) 

    
          

         
        

    
 ,          (427) 

 

where the auxiliary variables    
    

 and    
    

 have already been defined, and: 

   
    

 Auxiliary decision variable for modeling the product   
     

 ; 

   
    

 Auxiliary decision variable for modeling the product   
     

 . 

 

The following constraints are then employed to bound the auxiliary decision 

variables    
    

 and    
    

 within the convex envelope of the original products: 

 

   
       

         
    

     
    

         
  ,          (428) 

   
       

         
    

    
 

 
   

        
 

 
 ,          (429) 

   
       

         
    

    
 

 
   

        
 

 
 ,          (430) 

   
       

         
    

     
    

         
  ,          (431) 

   
       

         
    

     
    

         
  ,          (432) 

   
       

         
    

    
 

 
   

        
 

 
 ,          (433) 

   
       

         
    

    
 

 
   

        
 

 
 ,          (434) 

   
       

         
    

     
    

         
  ,          (435) 

 

8.2.1.5 Voltage reference buses 

The alternative formulation requires no modifications to the constraints  

(145)-(148) presented in subsection 4.2.1.5, which may thus be promptly incorporated 

to the alternative MILP reformulation of the ACOPF in distribution systems. 
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8.2.1.6 Slack buses and buses without generators and/or loads 

The alternative formulation requires no modifications to the constraints 

presented in subsection 4.2.1.6, which may thus be promptly incorporated to the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.1.7 Radiality constraints 

The alternative formulation requires no modifications to the constraints 

presented in subsection 4.2.1.7, which may thus be promptly incorporated to the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.2 Objective functions for selected distribution system 

operations and expansion planning applications 

8.2.2.1 Minimization of costs of load shedding 

The alternative formulation requires no modifications to the objective function 

presented in subsection 4.2.2.1, which can therefore be promptly employed with the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.2.2 Minimization of curtailment of non-controllable generation 

The alternative formulation requires no modifications to the objective function 

presented in subsection 4.2.2.2, which can therefore be promptly employed with the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.2.3 Minimization of generation costs 

The alternative formulation requires no modifications to the objective function 

presented in subsection 4.2.2.3, which can therefore be promptly employed with the 

alternative MILP reformulation of the ACOPF in distribution systems. 
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8.2.2.4 Minimization of costs of power imports 

If the magnitudes of the bus voltages at the buses at the interface with the 

external system,   
   
          , are parameters of the optimization problem, 

equation (199) of section 4.2.2.4 may be promptly used in the alternative MILP 

reformulation of the ACOPF for distribution systems. 

However, if this voltage magnitude is to be considered as a decision variable, it 

would be required to obtain approximations of the decision variables   ,          , 

before modeling the objective function related to the minimization of the costs of power 

imports. The reader will notice that, in the alternative MILP formulation presented in 

this chapter, the bounds on bus voltage magnitudes were enforced via the constraint 

(  )
    

     
   (  )

  – see equation (358) of section 8.2.1.2.1. Thus, no 

approximation of the bus voltage magnitudes,   , has yet been defined for the 

alternative MILP reformulation. The investigation of the alternative MILP 

reformulation presented in this chapter has been interrupted before any approximations 

for    were defined, and therefore no formulation of the objective function of 

minimization of the costs of power imports has been defined for the case in which the 

voltage magnitude at the interfaces with the external system are considered as decision 

variables. 

8.2.2.5 Minimization of costs of ohmic losses 

In section 4.2.2.5, two alternative formulations of the objective function for the 

problem of minimization of ohmic losses have been defined. 

The formulation of the objective function corresponding to equation (215) may 

be modified for its use with the alternative MILP reformulation of the ACOPF, as 

follows: 

∙ It is necessary to recall that the investigation of the alternative MILP 

reformulation presented in this chapter has been interrupted before 

constant-current loads had been treated. Therefore, it is necessary to 

remove the terms that relate to loads of the constant-current type from 

equation (215). 
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Also, the formulation of the objective function corresponding to equation (225) 

may be modified for its use within the alternative MILP reformulation of the ACOPF, 

as follows: 

∙ First, it is necessary to remove the terms that relate to loads of the 

constant-current type from equation (225), as the investigation of the 

alternative MILP reformulation presented in this chapter has been 

interrupted before these loads had been treated. 

∙ Then, it is necessary to recall the approximation      
     

     
  

has already been defined for the alternative MILP reformulation 

presented in this chapter. This term, which is employed in several 

equations of section 4.2.2.5, will be readily available when the 

alternative MILP reformulation is used.  

8.2.2.6 Minimization of costs of reinforcements to the distribution system 

The alternative formulation requires no modifications to the objective function 

presented in subsection 4.2.2.6, which can therefore be promptly employed with the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.2.7 Minimization of costs of capacitor placement 

The alternative formulation requires no modifications to the objective function 

presented in subsection 4.2.2.7, which can therefore be promptly employed with the 

alternative MILP reformulation of the ACOPF in distribution systems. 

8.2.2.8 Minimization of circuit switching costs 

The alternative formulation requires no modifications to the objective function 

presented in subsection 4.2.2.8, which can therefore be promptly employed with the 

alternative MILP reformulation of the ACOPF in distribution systems. 
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9 APPENDIX C: PIECEWISE-LINEAR 

APPROXIMATIONS OF GENERATOR 

CURRENTS 

Constraints used for obtaining the currents injected into the network by 

generators have been presented in section 4.2.1.2 of this dissertation. The constraints 

presented in section 4.2.1.2 employ McCormick’s envelopes to reformulate (and 

approximate) products of two decision variables. As discussed in previous sections of 

this dissertation, it is not possible to achieve an arbitrarily accurate approximation of 

bilinear products when McCormick’s envelopes are used – the approximation accuracy 

is implicitly dictated by the bounds on the continuous variables that form the products. 

However, it is possible to employ alternative formulations of the constraints 

used for obtaining the generator currents, completely eliminating the need to employ 

McCormick’s envelopes. This alternative formulation is based in constructing 

piecewise-linear approximations of the generator currents with help of SOS2. This 

allows the user to arbitrate the accuracy of the approximation of the generation currents 

while determining the number and location of the evaluation points. However, it should 

be kept in mind that enhancing the accuracy of the piecewise-linear approximation by 

augmenting the number of evaluation points may result in additional computational 

requirements. 

The alternative formulation for the constraints used for obtaining the generator 

currents are presented in the following sections. Section 9.1 deals with the generators 

with no control over their active power output, whereas generators that do control their 

active power output are treated in section 9.2. 

 

9.1 Generators with no control over the active power 

output 

The formulation presented below is based on treating the generator currents  

    
   and     

   as functions of three decision variables – i.e.,     
  (  

     
     

 ) and 

    
  (  

     
     

 ) – and then constructing piecewise-linear approximations of these 
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functions with help of SOS2. In order to better understand why the currents of 

generators with no control over the active power output may be treated as functions of 

three (continuous) decision variables, the reader may refer to the following equations, 

which correspond to equations (75) and (76) of section 4.2.1.2.1: 

 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,   {           } (436) 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,   {           } (437) 

 

It is clear that, as   
  is a fixed value (a parameter) for generators that do not 

control their active power output,     
   and     

   are functions of three decision variables. 

In the following, the constraints used for constructing piecewise-linear approximations 

of these functions are presented: 

 

∑ ∑ ∑   
      [

 ̂   
        

 ̂   
        

]               [
    
  

    
  ] ,    {           }  (438) 

∑ ∑ ∑   
      [

 ̂ 
    

 ̂ 
    

 ̂ 
   

]               [

  
  

  
  

  
 

] ,    {           }  (439) 

∑ ∑ ∑   
     

                 ,    {           } (440) 

 

where: 

   Set of indices for evaluation points   ̂ 
   

 and associated variables; 

 ̂ 
   

  Evaluation points of reactive power output of generator at bus k; 

 ̂   
        

  Evaluated values of function     
  (  

     
     

 ), for bus k; 

 ̂   
        

  Evaluated values of function     
  (  

     
     

 ), for bus k; 

  
     

 Weights for constructing piecewise-linear approximation of non-convex, 

non-linear functions. 

 

∑    
 

        ,    {           } (441) 

  
         

  ,               {           } (442) 
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 ,    {      * +}              {           } (443) 

∑    
 

        ,    {           } (444) 

  
         

  ,               {           } (445) 

  
         

       
   

 ,          2    * +3         {           } (446) 

∑    
 

       ,    {           } (447) 

  
         

  ,                {           } (448) 

  
         

       
   

 ,                {   * +}   {           } (449) 

 

where    
 ,    

  and    
  are auxiliary binary decision variables. 

9.2 Generators with control over the active power output 

The formulation presented below is based on treating the generator currents  

    
   and     

   as functions of four decision variables – i.e.,     
  (  

     
     

    
 ) and 

    
  (  

     
     

 
   
 ) – and then constructing piecewise-linear approximations of these 

functions with help of SOS2. In order to better understand why the currents of 

generators with control over the active power output are treated as functions of four 

decision variables, the reader may refer to the following equations, which correspond to 

equations (98) and (99) of section 4.2.1.2.3: 

 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,          (450) 

    
   (  

     
    

     
 ) .  

      
   /⁄  ,          (451) 

 

In the following, the constraints used for constructing piecewise-linear 

approximations of     
   and     

   are presented: 
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∑ ∑ ∑ ∑   
       

 [
 ̂   
          

 ̂   
          

]                   [
    
  

    
  ] ,            (452) 

∑ ∑ ∑ ∑   
       

 

[
 
 
 
 
 ̂ 
    

 ̂ 
    

 ̂ 
   

 ̂ 
   
]
 
 
 
 

                   

[
 
 
 
 
  
  

  
  

  
 

  
 ]
 
 
 
 

 ,            (453) 

∑ ∑ ∑ ∑   
       

                     ,           (454) 

 

where: 

   Set of indices for evaluation points  ̂ 
   

 and associated variables; 

 ̂ 
   

  Evaluation points of active power output of generator at bus k; 

 ̂   
          

 Evaluated values of function     
  (  

     
     

    
 ), for bus k; 

 ̂   
          

  Evaluated values of function     
  (  

     
     

    
 ), for bus k; 

  
       

 Weights for constructing piecewise-linear approximation of non-convex, 

non-linear functions. 

 

∑    
 

        ,           (455) 
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where    
 ,    

 ,    
  and    

  are auxiliary binary decision variables. 

 


