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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

DETECÇÃO E MITIGAÇÃO DE INTERFERÊNCIA DE RÁDIO

FREQUÊNCIA PARA APLICAÇÕES DE GNSS E RÁDIO ASTRONOMIA

Felipe Barboza da Silva

Abril/2022

Orientadores: Wallace Alves Martins

Ediz Cetin

Programa: Engenharia Elétrica

Neste trabalho nós investigamos técnicas para detecção e mitigação de interfer-

ência de rádio frequência (RFI, do inglês radio frequency interference) em sistemas

globais de navegação por satélite (GNSS, do inglês global navigation satellite sys-

tems) e aplicações de rádio astronomia. No contexto de GNSS, a tese propõe um

detector baseado na fatoração de matrizes não-negativas (NMF, do inglês nonneg-

ative matrix factorisation) o qual proporciona capacidade de detecção competitiva

e baixas taxas de falso-alarme para sinais de RFI de faixas estreita e larga. Esque-

mas baseados em NMF para mitigação de RFI também são propostos, superando

técnicas clássicas comumente utilizadas na literatura em cenários com interferên-

cia forte. Além disso, a proposta é capaz de suprimir diferentes tipos de RFI sem

informação prévia sobre a interferência. Com respeito à aplicação de rádio astrono-

mia, nosso detector em tempo-frequência atinge altas taxas de detecção com poucos

falso-alarmes, com desempenho superior usando sinais reais quando comparado com

métodos amplamente utilizados nesse domínio. Além do mais, a tese propõe três

esquemas baseados em NMF para supressão de RFI para aplicações de rádio as-

tronomia. Resultados indicam que um desempenho promissor em mitigação de RFI

pode ser alcançados com mínima degradação na observação de pulsares, sinalizando

que NMF pode ser uma potencial ferramenta no campo de rádio astronomia.

ix
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requirements for the degree of Doctor of Science (D.Sc.)

RADIO FREQUENCY INTERFERENCE DETECTION AND MITIGATION

FOR GNSS AND RADIO ASTRONOMY APPLICATIONS

Felipe Barboza da Silva

April/2022

Advisors: Wallace Alves Martins

Ediz Cetin

Department: Electrical Engineering

In this work, we investigate techniques to detect and mitigate radio frequency in-

terference (RFI) in global navigation satellite systems (GNSS) and radio astronomy

applications. In the context of GNSS, a nonnegative matrix factorisation (NMF)-

based detector is proposed which provides competitive detection capability and low

false alarm rates for narrow and wideband RFI signals. NMF-based frameworks

for RFI mitigation are also proposed, outperforming techniques commonly used in

the literature in strong interference scenarios. Further, the proposed technique is

able to suppress multiple, di�erent types of RFI without any prior information on

the interference. Concerning the radio astronomy application, the proposed time-

frequency detector achieves high detection rates with low false alarms, with superior

performance using real-life signals when compared with methods widely used in this

domain. Moreover, three NMF-based schemes for RFI suppression for radio as-

tronomy applications are proposed. Results show that promising RFI mitigation

performance can be achieved with minimal degradation on the pulsar observation,

signalling that NMF can be a potential tool in the radio astronomy �eld.
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Chapter 1

Introduction

Global navigation satellite systems (GNSS) increasingly play an important role in

functioning of our modern society. In addition to enabling the determination of

a user's position at any location at any time around the world, they are used in

transportation services enabling the real-time tracking of location of buses and other

means of public transport [1�3]. Their low received signal power levels, however,

make GNSS signals vulnerable to radio frequency interference (RFI) [4�7], which can

either be generated by intentional sources such as low-cost jammers sold as �personal

privacy� devices [4, 8], widely present around the globe [9], or by unintentional

ones like the harmonics of UHF-, VHF-, and TV-signals [10, 11]. The presence

of RFI may cause large biases in the navigation solution or even complete loss of

tracking [5, 6, 12]. Therefore, the development of techniques that address the RFI

vulnerability of GNSS receivers is of paramount importance.

In order to ensure the integrity of systems that rely on the services provided by

the GNSS infrastructure, any RFI source must be detected quickly and preferably

at power levels low enough so that it can be detected before disrupting the operation

of the GNSS equipment [4, 13, 14]. The presence of RFI must then conveyed to the

end-users, and/or used to trigger further downstream processing. In the context of

RFI geo-location systems, detailed in [4] and references therein, the geo-localisation

process can be triggered by the RFI detection unit before the operation of the GNSS

receivers is impacted by the RFI, resulting in increased coverage area. Further, when

a network of sensors is used to locate RFI, the received signal strengths at the sensors

will vary across the network. Therefore, it may be necessary to use a sensor at some

distance from the RFI source, with a low received signal level, in order to undertake

interference geo-localisation. Hence, weak RFI detection and subsequent processing

is important for RFI geo-location.

The GNSS interference detection techniques reported in the literature can be

broadly divided into two main categories based on where they are applied in the

receiver processing �ow: RF analogue front-end, and Digital back-end based. In
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the former category, techniques such as automatic gain control (AGC) [15�17] are

employed to detect RFI sources. The performance of AGC based approaches, how-

ever, degrades signi�cantly while detecting low-power RFI sources [15, 16]. In the

latter category, beamforming [12, 18�20] techniques are used. These approaches

require antenna arrays and hence have increased hardware complexity and reduced

�exibility.

The digital back-end based approaches can be further split into two sub-

categories: pre- and post-GNSS processing based. Considering the latter, although

generally less e�ective than the pre-GNSS processing techniques, the RFI can be de-

tected indirectly by monitoring the many observables generated from normal satellite

and navigation processing. In this category, carrier-to-noise ratio (C/N0) estimates

have been used for RFI detection in [21, 22]. In the pre-GNSS processing category,

there are a number of detection techniques that perform signal processing on the

samples coming from the RF front-end. The RFI detection and mitigation can be

performed in both time [7], [11], [23], [24, 25], and transformed [7], [26�28] domains.

The RFI detection and mitigation can also be performed by using statistical analysis

in the aforementioned domains [11, 29], [30]. Most time domain techniques are based

on either the sample or power magnitudes of the received signal [24, 25]. Transform-

domain methods aim to project the received signal in a domain such that the RFI's

features are more prominent. For instance, narrowband signals yield peaks in the

frequency domain [26], which makes them easy to detect. Further, chirp signals can

be better described when working in the time-frequency (TF) plane via short-time

Fourier transform (STFT) [31], Wigner-Ville decomposition [27] or wavelets [28],

to name a few. Moreover, the RFI detection can also be performed by considering

the statistical properties of the received signal. Such techniques usually rely on the

Gaussianity tests of the received signal [11], and goodness-of-�t approaches in the

time [32], and TF domains [29].

In the context of RFI mitigation for GNSS, a number of approaches have been

reported in the literature to deal with RFI in GNSS receivers [25, 27, 30, 33, 34].

Pulse blanking methods, such as the one in [25], simply zero out samples of the

received signal whose magnitude is greater than a prede�ned threshold. While sim-

ple to implement, these techniques are better suited to pulsed-type RFI, since they

may zero out a considerable number of samples at the receiver in the case of long

time duration interference, which may degrade the GNSS signal quality. Notch �l-

ter (NF)-based techniques [27] are typically employed to mitigate continuous-wave-

(CW) and chirp-type RFI. In the case of CW-type RFI, NF-based approaches sup-

press the interference by �ltering out the CW frequency component, whereas in the

case of chirp-type RFI, they cancel out the e�ect of the RFI by �dechirping� the

interference, resulting in a CW signal at DC, which is then �ltered out. However,
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NF-based approaches are quite sensitive to the interference type and usually require

a priori information about the RFI parameters such as the CW frequency or chirp

instantaneous frequency (IF). In addition, while mitigating chirp-type RFI, a sig-

ni�cant part of the GNSS signal spectrum along with the RFI may be �ltered out

as well. In a bid to alleviate this issue, the use of Kalman �lters has been proposed

in [30], whereby the interference samples are tracked for further subtraction in the

time domain. This approach, however, is best suited to chirp-type RFI, requiring a

priori IF information. Further, IF mismatches may result in large errors in the RFI

signal estimation, which may lead to further GNSS signal degradation. Wavelet-

based techniques [33, 34] have also been widely used in the literature to mitigate

RFI. The wavelet transform decomposes the received signal into sub-bands with

di�erent frequency resolutions. In the presence of interference, the transformed-

domain samples spread across the sub-bands, whose samples are set to zero if their

magnitude is greater than a prede�ned threshold. The remaining samples are then

resynthesized into the time domain. This method is more applicable to narrow-

band RFI since only a few sub-bands would be a�ected and hence fewer samples are

discarded.

The presence of RFI signals is also a threat to radio astronomy observations.

Due to very low power and diversi�ed spectrum characteristics of the signals from

outer space, modern radio telescopes provide high sensitivity and wide frequency

coverage [35�37]. While the capability of observing cosmic events is enhanced, the

susceptibility to RFI is also increased. Further, the presence of RFI may saturate

the receiver's ampli�er [38], resulting in data discarding, and may induce larger

uncertainties [37, 39].

Many radio frequency systems transmit signals at the radio astronomy spectrum,

such as mobile phone networks, GNSS, automatic dependent surveillance-broadcast

(ADS-B) from aircraft [40], distance measuring equipment (DME) signals, just to

mention a few. ADS-B is used by aircraft to broadcast key �ight information in real

time and it is required in the majority of airspace by aviation regulatory bodies such

as the FAA, EuroControl and CASA. This makes ADS-B one of the major sources

of RFI for radio astronomy applications [40]. Despite its importance to the aviation

sector, this system may hamper the observation of pulsars or other short-duration

astronomical events by concealing or even emulating their signature [39]. Therefore,

it is of vital importance to detect this type of signal in the radio astronomy �eld, so

that further RFI mitigation processing can be triggered.

In the context of radio astronomy applications, the RFI detection can be per-

formed in two di�erent stages: pre- and post-folding. The former detects interference

using the raw input voltage levels, where the detectors are usually implemented in

hardware [41]. In the post-folding case, the detection occurs after an integration
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process, where the time resolution is reduced [42], and may be considerably labour

intensive [43]. Considering the pre-folding techniques typically employed for detec-

tion, they can be classi�ed as threshold-based, where the raw input voltage levels

are compared with a prede�ned threshold in the time, frequency, and time-frequency

domains [41, 43], and statistical-based, which analyses statistical moments, such as

kurtosis, to determine the presence of interference [41]. For RFI mitigation, the

standard procedure widely employed in the consists in zeroing out some frequency

channels corrupted by interference [44, 45]. However, this may discard useful as-

tronomical data, hindering the observation of astronomical events. Moreover, the

transient properties of some cosmic events, such as pulsars, may be a�ected [45].

1.1 Research Goals

The main objective of this research is to devise new solutions for RFI detection and

mitigation, with focus on, but not limited to, GNSS and radio astronomy applica-

tions. Considering the former, the main goals are:

� Detect very weak RFI, considering narrowband and wideband sources, without

prior knowledge about the RFI.

� Mitigate strong RFI sources with di�erent time and frequency characteristics.

In the radio astronomy domain, this thesis addresses the following topics:

� Devise an ADS-B RFI detector using real-life signals.

� Mitigate RFI while not harming the signals from the outer space.

1.2 Thesis Contributions

In order to detect weak RFI, we propose a new RFI detection scheme based on

nonnegative matrix factorisation (NMF) [46�48]. With the proposed approach, the

spectral shape of the interference is estimated by applying NMF on the power spec-

trogram (modulus square of STFT) of the received signal. This shape is then com-

pared with the spectrogram's time slices by means of a similarity function to detect

RFI. Intuitively, in the absence of interference the received signal is solely comprised

of noise and GNSS signals, which are well below the receiver noise �oor, resulting

in noise like spectral shape estimated via NMF. Hence, the similarity between the

NMF estimated spectral shape and the spectrogram's time slices will be low. The

proposed approach exploits this di�erent similarity levels to detect the presence of

interference. The performance and the computational complexity of the proposed
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approach is compared against a TF-domain statistical approach in [29], which we

refer to as the baseline method, which used speci�c �ne-tuned parameters for de-

tecting narrow and wideband RFI types assuming a priori knowledge of the RFI

source type. Results show the e�cacy and the versatility of the proposed approach

in detecting weak RFI with minimal tuning and computational complexity, albeit

with slight reduction in detection performance for some scenarios when compared

with [29].

In order to devise a mitigation technique robust to the RFI type and to the

multiple interference corrupting the received signal in GNSS receivers, we propose a

new framework based on NMF to suppress RFI. NMF [46, 47, 49] is employed in a

multitude of applications, such as acoustic signal processing [49�51], where NMF is

used for blind source separation. In the context of GNSS, our NMF-based method

separates the RFI signals from the GNSS signals embedded in noise. The proposal

can be tailored to the RFI at hand, where the interference type is assumed known

beforehand (supervised NMF), or it can be completely blind, where no information

about the RFI is provided (semi-blind NMF). Further, the proposed approach can

mitigate multiple RFI signals concurrently without requiring the use of antenna

arrays and associated array processing for null steering. Most techniques in the

literature make use of antenna arrays for such [12, 20], which have increased hard-

ware complexity and reduced �exibility. Results show that both supervised and

semi-blind NMF frameworks are able to suppress distinct RFI types, such as DME

signals, and CW and chirp interference with distinct bandwidths, outperforming

pulse blanking techniques, broadly used for DME, techniques based on the notch

and Kalman �lters [27, 30], which are devised to work with chirp-type RFI, and a

wavelet-based RFI method [33]. Further, we evaluate the performance in scenarios

where the received signal is corrupted by both chirp- and CW-type RFI at the same

time, with the NMF-based framework yielding superior results.

In the context of ADS-B detection for radio astronomy applications, we propose

a pre-folding detector based on TF analysis. Since the ADS-B signal features are

known a priori, it is possible to design a frequency template and compare it with the

received signal's spectrogram time slices through a similarity function. The proposed

technique relies on the fact that in the presence of ADS-B RFI larger similarity

values are observed which can be used to detect the presence of interference. The

performance of the proposed detector is assessed using signals captured by the Parkes

radio telescope, situated in Parkes, Australia, which is continuously a�ected by

signals from aircraft, due to its proximity to a nearby airport. The proposed method

outperforms classic techniques widely used in the radio astronomy domain [41, 43]

in terms of detection and false alarm rates.

Lastly, we propose three NMF-based frameworks for RFI mitigation using the
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Parkes dataset. Building on our work in GNSS, we employ the supervised and semi-

blind NMF, along with a template-based NMF, which uses the ADS-B's frequency

template for further suppression. Also, we describe how to train NMF so that a

better representation of ADS-B signals is achieved. We evaluate the performance

over the spectrograms of the reconstructed signal of interest, with good mitigation

performance. Further, we make use of software for radio astronomy to analyse the

impacts of the NMF-based schemes on the pulsar observation.

1.3 Summary of Publications

This section lists published papers, and those under review which resulted from this

thesis:

� F.B. da Silva, E. Cetin and W.A. Martins, �Radio frequency interference

detection using nonnegative matrix factorization,� IEEE Transactions on

Aerospace and Electronic Systems, doi: 10.1109/TAES.2021.3111730. The

main content of this paper is described in Chapter 2.

� F.B. da Silva, E. Cetin and W.A. Martins, �ADS-B signal detection via time-

frequency analysis for radio astronomy applications,� 2021 IEEE International

Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1�4.

This paper forms Chapter 3.

� F.B. da Silva, E. Cetin and W.A. Martins, �DME Interference Mitigation

for GNSS Receivers via Nonnegative Matrix Factorization,� 2021 XXXIVth

General Assembly and Scienti�c Symposium of the International Union of

Radio Science (URSI GASS), Rome, Italy, 2021, pp. 1�4. Its main content is

detailed in Chapter 4, with focus on DME RFI mitigation.

� F.B. da Silva, E. Cetin and W.A. Martins, �Radio Frequency Interference

Mitigation via Nonnegative Matrix Factorization for GNSS,� under review

IEEE Transactions on Aerospace and Electronic Systems, The main content

of this paper is described in Chapter 4, focusing on chirp- and CW-type inter-

ference.

In addition, the following papers whose main topics are not strictly related to

this research but were accepted or published within the doctorate term:

� I.M. Quintanilha, V.R.M. Elias, F.B. da Silva, et al., �A fault detector/-

classi�er for closed-ring power generators using machine learning,� Reliability

Engineering & System Safety, v. 212, 2021, pp. 107614.
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� F.B. da Silva, W.A. Martins, �Semi-blind data-selective and multiple thresh-

old Volterra adaptive �ltering,� Circuits, Systems, and Signal Processing, v.

39, 2020, pp. 1509�1532.

1.4 Thesis Organisation

The thesis is organised as follows:

Chapter 2 describes the proposed NMF-based framework to detect narrow and

wideband RFI in GNSS. It describes how NMF extracts information about the

interference and details the proposed detector's functional blocks.

In Chapter 3, we discuss RFI detection for radio astronomy applications. Build-

ing on the RFI detector for GNSS, we propose a detection technique for ADS-B

interference from aircraft, which poses a considerable threat to astronomical obser-

vations. We also describe the characteristics of the dataset employed for detection,

acquired from the Parkes radio telescope in Australia.

Chapter 4 details how NMF can be employed to mitigate RFI in the context

of GNSS. Two di�erent frameworks based on NMF are proposed: supervised NMF

assumes prior knowledge about the RFI whereas its semi-blind counterpart does not

require any information about the interference. Further, we detail each processing

block within the interference mitigation scheme. First, we address the RFI issue

considering DME signals.

In Chapter 5, we adapt the developed NMF-based schemes to mitigate RFI in

GNSS to work with ADS-B signals. We also describe the signal processing performed

in order to observe pulsars. Using the signals from the Parkes radio telescope dataset,

we propose three di�erent frameworks to suppress RFI, assessed via a qualitative

analysis of the reconstructed spectrograms of the signal of interest.

In Chapter 6, we draw our conclusions about the techniques presented in this

thesis and the goals that we have reached, along with future works that can make

use of this document for further developments and enhancements.
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Chapter 2

Radio Frequency Interference

Detection for GNSS

In this chapter we propose a new framework based on the nonnegative matrix factori-

sation (NMF) to detect radio frequency interference (RFI), focusing on low-power

continuous wave (CW) and chirp signals. Throughout this text, we describe the

GNSS received signal and RFI models, which will be used in further chapters. Fur-

ther, we describe NMF mathematical aspects and how it can be employed to detect

RFI, with further detailing of the main processing blocks of the proposed detector.

This work has been accepted for publication in IEEE Transactions on Aerospace

and Electronic Systems (TAES) [52].

2.1 Received Signal Model

De�ning sp(t) ∈ R as the signal from the pth-in-view satellite, jg(t) ∈ R as the gth-

RFI signal (jammer), and n(t) ∈ R as an additive white Gaussian noise (AWGN),

the received signal r(t) can be described as

r(t) =
P∑

p=1

sp(t) +
G∑

g=1

jg(t) + n(t), (2.1)

where P represents the number of in-view satellites. The received pth-GNSS signal,

sp(t), can be expressed as:

sp(t)=
√
2Epcp(t− τp)dp(t− τp)cos (2π(fc + fd,p)t+ ϕp), (2.2)

where Ep is the pth GNSS signal power, cp(t) and dp(t) are the spreading code and

navigation data of the pth-satellite respectively; τp is the code delay introduced by

the propagation channel; fc denotes the carrier frequency; fd,p and ϕp are the carrier
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Doppler frequency and phase respectively.

In the receiver's front-end, the received signal is down-converted into in-phase

and quadrature components through two local oscillators, whose phases are 90◦

degrees apart. Next, sampling and digitisation stages are performed by an analogue-

to-digital converter (ADC) with sampling frequency Fs, generating the baseband

signal r[i] ∈ C, described as

r[i] =
P∑

p=1

sp[i] +
G∑

g=1

jg[i] + n[i], (2.3)

where

sp[i] =
√

2Epcp [i− ⌊τpFs⌉] dp [i− ⌊τpFs⌉] ej(2πfd,p
i
Fs

+ϕp). (2.4)

where ⌊·⌉ rounds to the nearest integer. Further, (2.3) can be written in vector

form as

r[i] = [ r[i] r[i− 1] · · · r[i−Q+ 1] ]⊺, (2.5)

where Q denotes the sampled data-length. As seen in (2.3), the received signal can

be interpreted as the sum of an undesired term, i.e., the jamming signals, and the

signal of interest (SOI), composed by the spreading codes embedded in noise.

Interference sources can be classi�ed as narrowband and wideband with respect

to the bandwidth of the desired GNSS signal. Narrowband interference sources oc-

cupy much less frequency spectrum than the satellite signals, and typically originate

from the harmonics of other radio or communication systems such as UHF, VHF,

and TV [11]. Continuous wave (CW) interference is the narrowest type of inter-

ference consisting of a single un-modulated carrier. Wideband interference sources,

on the other hand, have spectral energy spread over a wider bandwidth of which

majority is captured by the GNSS receiver front-end. They are the most common

interference signal types emitted from commercial jammers sold as �personal pri-

vacy� devices [8], and are normally represented as chirps [9], whose main features

such as the period T and bandwidth B, are given by a sawtooth function [8]. In

this work, both CW- and chirp-type type RFI are considered and modelled using a

uni�ed framework, which can be described as

j[i] = A[i]ej2πF [i]i, j2 = −1, (2.6)
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where

F [i] =
1

Fs

[
B

(
i

TFs

−
⌊

i

TFs

⌋)
+ foff

]
, (2.7)

with A[i] representing the instantaneous amplitude, ⌊·⌋ denoting rounding to the

nearest integer towards −∞, and foff the frequency o�set from DC. Figure 2.1

describes the instantaneous frequency F as a function of time for chirp-type RFI

signals. When f0 denotes a given frequency component and B is set to zero, (2.6)

degenerates into a CW-type RFI. Considering the noise variance as σ2, and the

total GNSS signal power as E, the signal-to-noise ratio (SNR) can be expressed as

E/σ2. Analogously, assuming the total jammer power as A, the jammer-to-noise

ratio (JNR) can be de�ned as JSR = A/σ2, with the jammer-to-signal ratio (JSR)

being described as JSR = A/E.

Time

foff

B

T

F

Figure 2.1: Instantaneous frequency vs. time of a typical chirp signal.

2.2 Nonnegative Matrix Factorisation

The NMF is a technique employed to extract features from a set of nonnegative data

represented by X ∈ RN×M
+ . NMF was �rst proposed in [46], and became quite popu-

lar after the work in [47]. NMF works as an alternative to other low-rank decompo-

sition techniques such as principal and independent component analysis, PCA and

ICA respectively. Unlike PCA and ICA, however, NMF's inherent nonnegativeness

constraint allows for physical interpretation of the resulting decomposed matrices.

Many problems in the literature such as acoustic source separation [49, 50, 53�55],

and image processing [47, 56, 57], have input data matrices whose entries are non-

negative. For instance, when X is a power spectrogram, NMF decomposes it as

a product of two lower-rank matrices: X ≈ WH, W ∈ RN×S
+ , H ∈ RS×M

+ , with
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S < min(N,M), where W and H represent time and frequency information respec-

tively, and S denotes the prede�ned number of components. The decomposition is

achieved by means of an optimisation problem given as:

min
W,H

L (X, [W,H])

subject toW ⪰ 0,H ⪰ 0, (2.8)

where L(·) represents a generic distance function between X and [W,H], and the

symbol �⪰� denotes entry-wise nonnegativeness. This distance is usually measured

by means of the β-divergence. Considering a,b ∈ R+, the β-divergence between a

and b can be described as [58]

dβ(a|b) =


1

β(β−1)

(
aβ + (β − 1)bβ − βabβ−1

)
if β ∈ R\{0, 1},

a(log a− log b) + (b− a) if β = 1,

a
b
− log a

b
− 1 if β = 0,

(2.9)

The most popular β-divergences are the Euclidean (β = 2), generalised Kullback-

Leibler (KL) divergence (β = 1), and Itakura-Saito (β = 0) distances [53, 59]. The

update equations for the matrices H and W as a function of β can be described

as [58]

H[k + 1] = H[k]⊗

[
W⊺[k]

[
(W[k]H[k])⊚(β−2) ⊗X

]
W⊺[k](W[k]H[k])⊚(β−1)

]
, (2.10)

W[k + 1] = W[k]⊗

[[
(W[k]H[k + 1])⊚(β−2) ⊗X

]
H⊺[k + 1]

(W[k]H[k + 1])⊚(β−1)H⊺[k + 1]

]
, (2.11)

where ⊗ and ⊚ represent the element-wise product and exponentiation operators

respectively, and the division between the numerator and denominator in (2.10) and

in (2.11) is also performed element-wise. It is worth noting that the initialisation of

W and H can be performed in several ways e.g. nonnegative random initialisation,

and nonnegative double singular value decomposition (NNDSVD) [60].

2.3 NMF-Based RFI Feature Extraction

In the context of RFI detection, X represents the power spectrogram matrix of the

received signal containing the GNSS signals contaminated by RFI and AWGN as

given in (2.3). Setting S = 1 results inW[k] andH[k] degenerating to vectorsw[k] ∈
RN×1 and h[k] ∈ R1×M , which we will refer to as dictionary (w) and activation (h)

vectors respectively.
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In order to demonstrate the physical correspondence of w and h, Figure 2.2

depicts the spectrogram of a 100µs-length chirp signal with period T = 8.62 µs,

frequency o�set f0 = 2 MHz, and bandwidth B = 8 MHz. The JNR is set to

10 dB, while the spectrogram parameters are set as follows: N = 64 discrete Fourier

transform (DFT) bins, rectangular window length L = N = 64, and N − 1 over-

lapping samples between consecutive windows. It is worth highlighting that zero

valued samples were concatenated prior and after the chirp signal to emulate the

onset (25 µs) and o�set (125 µs) of the interference source. Figures 2.3(a) and 2.3(b)

show the resulting dictionary and activation vectors.

Figure 2.2: Spectrogram of chirp signal with period T = 8.62 µs, and bandwidth
B = 8 MHz.

(a) NMF dictionary vector (w). (b) NMF activation vector (h).

Figure 2.3: NMF output vectors for a chirp signal with period T = 8.62 µs, and
bandwidth B = 8 MHz.

As can be observed, Figure 2.3(a) precisely describes the chirp signal's band-

width information, which ranges from 2 � 10 MHz, while Figure 2.3(b) accurately
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represents the chirp signal's time properties. This information can be exploited for

RFI detection using NMF, and in the next section we describe an NMF-based RFI

detector.

2.4 NMF-Based RFI Detection

The main contribution of this work relies on using the features extracted from the

received signal by NMF to detect the presence of RFI. In the following, each of

the functional blocks of the proposed NMF-based detector are detailed. However,

prior to this, some mathematical de�nitions should be stated. Considering N DFT

points, M time instants, a window f [i] with length L, and hop size of R samples,

the (n,m)th-element of short-time Fourier transform (STFT) matrix S is de�ned as

[S]n,m =
L−1∑
l=0

r[mR + l]f [l]e−j 2π
N

nl, (2.12)

with the (n,m)th-element of the power spectrogram matrix X computed as

[X]nm =
∣∣ [S]n,m ∣∣2. (2.13)

Thus, X = [x1 x2 · · · xM ], where the nth-entry of xm ∈ RN
+ is [X]nm in (2.13).

As discussed in Section 2.3, the NMF method generates the output vectors w

and h according to the input matrix X. The proposed RFI detection technique

is performed using the levels of similarity between w and the mth-column, m ∈
{1, 2, . . . ,M}, of X. In order to avoid a biased similarity evaluation, the z-score [61]

normalisation process is applied, which removes the sample mean of a given data,

followed by scaling by its standard deviation. This process, applied to vector a, can

be expressed as:

Z(a) =
a− µa ·1N×1

σa

, (2.14)

where µa and σa denote the sample mean and standard deviation of a respectively.

Accordingly, the z-score processing is also performed over w, generating w = Z(w),

and over each column of X which yields X = [x1 x2 · · · xM ]. The similarity evalu-

ation is done using the cosine between vectors, which has low computational com-

plexity and does not require setting prede�ned parameters. It is worth noting that

other similarity functions such as Gaussian and polynomial kernels [62] can also be

employed. However, these have higher computational burden and require parame-

ter setting. We have carried out simulations employing these kernels as well, with

resulting performances very akin to that of the cosine function and hence they were
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not further considered. Thus, the similarity between xm and w is de�ned as

sm =
x⊺
mw

∥xm∥∥w∥
, (2.15)

with s = [ s1 s2 · · · sM ]⊺. The elements of s tend to 1 as more identical w is to xm,

and tend to 0 otherwise. In the presence of RFI, the shape of w is well-de�ned, as

observed in Figure 2.3(a), resulting in high similarity levels. On the other hand, in

the absence of interference, the columns of the power spectrogram and w tend to

be noise-like with very low similarity levels. Hence, by using a detection threshold

γ̄, the presence of RFI can be detected as:

dm =

1, if sm > γ̄ (RFI present),

0, otherwise (noRFI present).
(2.16)

with d = [ d1 d2 · · · dM ]⊺. The detection threshold γ̄ can be chosen in a variety of

ways. For instance, it can be set according to a prede�ned level of false alarm rate,

or by minimising a �gure of merit, such as accuracy, or precision. The choice of γ̄

is discussed further in Section 2.5.1.

Since the detection is performed column-wise on the power spectrogram, in low-

JNR scenarios the entries of d tend to present spikes i.e. abrupt variations from 0 to

1 and vice-versa, even though the RFI source is present across all theM spectrogram

columns. In order to address this issue, a majority voting scheme is applied, which

is implemented as the sample median of d, de�ned as M(d). Hence, if more than

half of the elements of d are comprised of 1s, the proposed detector indicates the

presence of interference. The functional block diagram of the proposed NMF-based

RFI detection is given in Figure 2.4. It is worth mentioning that the vector h can also

be employed for detecting RFI. However, based on prior simulations, the detection

performance in low-JNR scenarios was poor, which motivated the use of the cosine

similarity along with the z-score scheme and the median operator. Further, vectors

w,h are by-products of the NMF decomposition, which is not unique. Considering

δ ∈ R+ as a scaling factor, the power spectrogram matrix X can be decomposed as

X ≈ wh =
(
w
δ

)
(hδ) = (δw)

(
h
δ

)
. Therefore, the nonuniqueness of NMF impairs

the detection threshold setting.

2.5 Performance Assessment

In this section the performance of the proposed technique is evaluated and com-

pared against the baseline method described in [29]. This technique, to the best of

our knowledge, is the state-of-the-art method for detection in low-JNR scenarios,
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Figure 2.4: Block diagram of the proposed detection framework.

which is why it was chosen as baseline for performance comparison. The method

in [29] evaluates the statistical distribution of the spectrogram's frequency slices via

a goodness-of-�t test. It must be mentioned that the proposed technique is com-

pared against the block-wise version of the method given in [29] where the STFT is

evaluated using non-overlapped samples. To verify the e�ectiveness of the proposed

method, chirp signals with varying bandwidths and periods along with CW signals

are used as RFI sources. The chirp parameters in this work follow the most common

RFI captured in di�erent regions of the world, as reported in [9], thus well repre-

senting real jamming signals. Further, di�erent JNR scenarios are considered, which

allows for performance evaluation under various noisy environments. A qualitative

analysis of the computational complexity of the proposed and baseline techniques is

also presented.

2.5.1 Figures of Merit

In order to properly assess the performance of the proposed technique and contrast

it to that of the baseline's, one needs to quantify it by means of �gures of merit.

Considering a detection application, which is regarded as a binary problem (RFI

source present or absent), the �gures of merit are usually described as a function of

the following conditions:

� True positive (TP): if detector's output indicates the presence of interference

when there are RFI samples in the received signal;

� True negative (TN): if detector's output indicates absence of interference when

there are no RFI samples in the received signal.

Conversely, the false positive (FP), and false negative (FN) conditions can also

be de�ned. Table 2.1 summarises the relationship between the detector's output

(predicted condition) and the actual condition. In Boolean representation, the pos-

itive and negative conditions are associated with the values 1 and 0 respectively.
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Table 2.1: Relation between the actual and predicted conditions for a binary detec-
tor.

True condition
Positive Negative

Detector's
output

Positive TP FP
Negative FN TN

Subsequently, the true positive rate (TPR), which is de�ned by the ratio between

the true positive occurrences and sum of all positive occurrences (TPs and FNs) is

given as:

TPR =

∑
TP∑

TP +
∑

FN
. (2.17)

Analogously, the false positive rate (FPR) can be de�ned as:

FPR =

∑
FP∑

FP +
∑

TN
. (2.18)

Hence, the performance of the detector can be assessed by means of true positive

and false positive rates, which, in RFI detection applications, are also referred to

as detection rate (Rd) and false alarm rate (Rfa) respectively. In this sense, the

receiver operating characteristic (ROC) curve is one of the most common tools used

to analyse the relationship between Rfa, Rd and the detection threshold γ̄ for a given

JNR. Also, it is possible to de�ne the Euclidean distance between a given point of the

ROC curve and the optimal detection point (Rd = 1, Rfa = 0). Thus, the minimum

distance to the optimal point is described as [52]

Cmin = min
γ̄

√
R2

fa + (1−Rd)2. (2.19)

We evaluate the performance of the detectors in terms of estimated Rfa and Rd

as a function of the detection threshold γ̄ by analysing the ROC curve. Each data

point of the ROC curve corresponds to a value of false alarm and detection rates for

a given threshold. The �gure of merit employed in this work to compare di�erent

detectors is the Cmin, which is the minimum distance from the ROC curve to the

optimal detection point (Rd = 1, Rfa = 0), i.e., perfect detection without false

alarms. In e�ect, Cmin is a way to assess the performance via the ROC information

(and consequently the corresponding values of Rd and Rfa). Cmin is adopted to

simplify the analysis considering di�erent scenarios, such as distinct JNR levels and

RFI-types.
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2.5.2 Experimental Setup

The experimental setup used follows the one in [29]. The sampling frequency

employed is Fs = 32.768 MHz, the CW interference signal frequency is �xed

at Fs × 0.12 = 3.93 MHz, while the chirp interference bandwidth varies from

B ∈ {2, 8, 14} MHz, and period from T ∈ [8.62, 17.50]µs, with step-size of 2.96µs.

A set of �ve GPS signals with signal-to-noise ratios (SNRs) of −25 dB is employed in

the simulations. The JNR is varied between −25 to 0 dB, with the detection thresh-

old for the proposed technique varying from γ̄ ∈ [0, 0.2], and the baseline's one

ranging from γ̄ ∈ [10−8, 10−2]. Further, 1,000 independent runs are used to compute

the false alarm and detection rates, with each run using 4,096 complex baseband

samples to calculate the power spectrogram of the received signal. The Cmin evalu-

ation is repeated for 10 Monte Carlo loops, so that the statistical properties of the

detection results can be assessed.

For the STFT computation, a rectangular window of length L = 16 is used

for the proposed technique providing a reasonable performance for both CW- and

chirp-type interference, whereas the baseline technique presented in [29], wherein

the RFI type is assumed to be known a priori, used �ne-tuned window length of

L = 19 for CW and L = 3 for chirp-type interference respectively. To provide a fair

comparison, both window lengths were used i.e. L ∈ {3, 19} while evaluating the

performance of the baseline technique considering both interference types.

The number of DFT points is set to N = 16, for the proposed technique, and

N ∈ {1365, 215} for L ∈ {3, 19} respectively for the baseline technique. In addition,
the hop size is set to R = 1 and R = L for the proposed and the baseline techniques

respectively. For the proposed technique, the window length L was chosen based

on simulations using a similar setup as previously described in this section, with

L ∈ {8, 16, 32, 64, 128}. Figure 2.5 shows the Cmin levels for CW- and chirp-type

interference signals. As it can be observed, the value of L that yields the lowest

Cmin values for CW is L = 128. However, this L value leads to the highest Cmin

levels for chirp-type interference signals. For chirp-type RFI, the window lengths

that lead to the lowest Cmin values are L ∈ {16, 32}. Nonetheless, the use of L = 16

results in a slightly degraded performance for CW, whereas L = 32 yields increased

computational complexity when compared to L = 16. Considering the performance

for both RFI types, and the computational burden trade-o�, L = 16 is chosen as

the window length. The number of overlapping samples is chosen as L − 1 so that

a good time resolution can be achieved to appropriately represent the chirp-type

RFI in the time-frequency domain. Also, the number of DFT points was chosen as

N = L to minimise the computational burden. Regarding the baseline method, the

parameters were set as in [29].
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Figure 2.5: Cmin values for di�erent L's for both CW- and chirp-type RFI.

Lastly, regarding the NMF parameters, the Kullback-Leibler divergence cost func-

tion is used, with w and h randomly initialised. The proposed and the baseline tech-

niques are hereafter referred to as NMF-based, and statistical-based respectively.

2.5.3 CW-type RFI

The ROC curves for −15 dB JNR, which represents a quite low JNR scenario,

are depicted in Figure 2.6, where the dashed line represents the case of Rfa = Rd,

i.e. a random guess. As shown, the proposed NMF-based technique outperforms

the statistical-based detector in terms of Rd, Rfa when L = 3, which is the �ne-

tuned parameter value for a chirp-type RFI for [29], is used and yields degraded

performance when L = 19, which is the �ne-tuned parameter value for a CW-type

RFI for [29], is used. It can be observed that, for the statistical-approach, the

performance degrades signi�cantly when L tuned for the chirp-type RFI is used

for detecting the presence of a CW-type interference. Results in terms of Cmin

considering Rd and Rfa values for various JNR levels are shown in Figure 2.7, with

the sub-�gure depicting the performance from −17 to −13 dB JNR, and the error

bars denoting the standard deviation of Cmin calculated across the Monte Carlo

loops. As it can be observed, the proposed technique yields lower Cmin values for all

of the JNR values when compared to the statistical-based one for L = 3. Considering

L = 19, it outperforms the statistical-based one for JNR levels −25 to −18 dB, and

performs slight worse for other JNR values. Further, for JNR values −25 to −18 dB,

the proposed technique has lower Cmin values than the statistical one regardless of

the window length used.
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Figure 2.6: ROC curves for the NMF- and statistical-based detectors for di�erent
L's under −15 dB JNR for CW-type interference signal.

2.5.4 Chirp-type RFI

The performance of the proposed NMF-based technique is evaluated for chirp type

RFI with varying period and bandwidths under a variety of JNR levels.

Detection vs. Period

Figure 2.8 shows the performance in terms of Cmin for the NMF-based detector

considering di�erent chirp period values for B = 14MHz, whereas Figure 2.9 depicts

the baseline statistical-based technique's performance using L = 3 for the same

bandwidth value. It can be observed that the performance of both techniques is not

impacted by varying chirp period since, for each JNR, the Cmin values are roughly

constant for di�erent periods. In e�ect, given that the number of samples employed

to evaluate the spectrogram is �xed, varying chirp period simply alters the number

of replicas observed in the spectrogram. Moreover, the period-invariant behaviour

can be explained by the high time resolution provided by the short-length windows

employed in both techniques ({0.09, 0.48}µs, for L ∈ {3, 16} respectively).

Detection vs. Bandwidth

In this subsection the performance of the proposed technique is compared with

baseline's considering a wide range of bandwidths. Figures 2.10(a) � (c) display

the ROC curves for JNR = −15 dB for a bandwidth ranging from 2 � 14 MHz,

and T = 8.62µs. It can be observed that, except for B = 2 MHz, the NMF-based

proposed technique outperforms the baseline statistical-based one when L = 19,

which implies that larger detection rates can be achieved at smaller false alarm
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Figure 2.7: Cmin for di�erent JNR levels for the proposed and baseline techniques
considering various window lengths for CW-type interference signal.

rates. Further, considering L = 3, which is the optimal window length for the

baseline technique for a chirp-type RFI, the performance of the proposed technique

is slightly better for B = 2 MHz, slightly degraded for B = 8 MHz and degraded

for B = 14 MHz when compared with that of the baseline's.

Figures 2.11(a) � (c) display the Cmin values for varying bandwidths. Overall, as

the bandwidth increases, the performance of both techniques worsens. For instance,

considering Figure 2.11(a), the Cmin values for the proposed technique are quite

similar to the baseline's, whereas in Figures 2.11(b), and 2.11(c) the NMF-based

detector outperforms its statistical counterpart for L = 19 and presents similar or

reasonably close performance for L = 3. It should be highlighted that the proposed

detector yields good performance for a given L regardless of the interference type.

On the other hand, the performance of the statistical-based detector is considerably

a�ected by the window length as it can be seen from the corresponding Cmin values

for L = 3 and L = 19 in Figures 2.11(a) � (c). In fact, when the optimal window

length value for CW-type RFI of L = 19 is used for chirp-type RFI, the performance

of the baseline method degrades signi�cantly, highlighting the sensitivity of the

baseline method to the choice of L, hence, its reliance on a priori knowledge of the

RFI type. This occurs due to the fact that the statistical-based detector relies on

using short window length L when computing the spectrogram, resulting in lower

frequency resolution and spectral leakage. This alters the statistical properties of the

frequency slices of the spectrogram, thereby, the detection capability of the baseline

method.
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Figure 2.8: NMF-based detector Cmin values for di�erent periods considering chirp-
type interference signal for B = 14 MHz.

Detection vs. Fixed Sweep Rate

The detection performance can also be analysed by �xing the chirp sweep rate, de-

�ned as Sw = B
T
. In Section 2.5.4 we describe the performance for a �xed bandwidth,

while varying the period and sweep rate. The results in Subsection 2.5.4 consider

a single T with varying B and Sw values. In this subsection, we describe the re-

sults considering a �xed sweep rate, with distinct B and T values. Figure 2.12 and

Figure 2.13 show the ROC curves for B = 8 MHz, T = 8 µs, and B = 10 MHz,

T = 10 µs respectively, with Figure 2.14 and Figure 2.15 depicting the corresponding

results in terms of Cmin. Similar to what was observed in the previous subsections,

the proposed technique outperforms the baseline for L = 19, and leads to similar

performance for L = 3. In fact, as concluded in Subsection 2.5.4, both techniques

are robust to variations of T , with B being the major RFI parameter. Hence, the

�xed sweep rate and bandwidth analyses yield very similar results and discussions.

In general, the NMF-based detection technique presents good performance for

both RFI types. In most cases, it outperforms the baseline method when the �ne-

tuned window length L for a speci�c RFI type is not used, highlighting the robust-

ness of the proposed technique to the RFI type.Further, considering the chirp-type

RFI results, the proposed technique is able to detect interference with time-varying

characteristics. This is brought about by using the time-frequency representation of

the received signal and the extraction of its features by NMF.
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Figure 2.9: Statistical-based detector Cmin values for di�erent periods considering
chirp-type interference signal for B = 14 MHz.

(a) B = 2 MHz. (b) B = 8 MHz. (c) B = 14 MHz.

Figure 2.10: ROC curves for chirp interference signal, JNR = −15 dB, T = 8.62µs,
and various bandwidths for the NMF- and statistical-based detectors.

2.5.5 Computational Complexity

Computational complexity is another key metric when comparing the proposed and

the baseline techniques. Considering the statistical-based approach, since it relies

on a goodness-of-�t test, it involves sorting operations and cumulative density func-

tion (CDF) estimation, thus, it is not straightforward to analyse its computational

complexity via traditional number of additions and multiplications. Therefore, the

computational complexity comparison is performed qualitatively in terms of execu-

tion time. This assessment was carried out on a PC with the following speci�cations:

Intel© Core� i5-8350U, 8 GB of RAM, and 256 GB-SSD storage. Table 2.2 dis-

plays the average execution time considering 100 independent runs of the NMF-

and statistical-based methods. As shown, the proposed technique's execution time

is much lower than the baseline's. For instance, for L = 3, which yields the best

results for the statistical-based detector for a chirp-type RFI, the corresponding ex-

ecution time is roughly 35× larger than that of the NMF-based one, even though
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(a) B = 2 MHz. (b) B = 8 MHz. (c) B = 14 MHz.

Figure 2.11: Cmin values for chirp-type interference signal, T = 8.62µs, and various
bandwidths for the NMF- and statistical-based detectors.

Figure 2.12: ROC curve for the NMF- and statistical-based detectors for di�erent
L's under −15 dB JNR for B = 8 MHz, T = 8 µs.

their performances are very similar. As for L = 19 the computational complexity

of the baseline technique reduces but it is still considerably larger than that of the

proposed NMF-based technique's.

Table 2.2: Average execution time of the NMF- and statistical-based techniques.
Execution time [ms]

NMF-based 13.96
Statistical-based, L = 3 496.01
Statistical-based, L = 19 57.90

2.6 Conclusions

The results of Section 2.5 show that the proposed NMF-based technique provides

high levels of detection rate with low levels of false alarm rate, even in highly noisy
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Figure 2.13: ROC curve for the NMF- and statistical-based detectors for di�erent
L's under −15 dB JNR for B = 10 MHz, T = 10 µs.

scenarios for both narrowband and wideband interference sources. Compared with

the baseline statistical-based technique, the proposed approach yielded good detec-

tion results for di�erent RFI-types and low JNRs with signi�cantly reduced compu-

tational complexity.

In the next chapter it is described the proposed detection technique for radio

astronomy applications, more speci�cally, ADS-B signals, which play an important

role in the aviation sector, though they corrupt the weak signals captured by radio

telescopes.
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Figure 2.14: Cmin values for chirp-type interference signal, for B = 8 MHz, T = 8 µs
for the NMF- and statistical-based detectors.

Figure 2.15: Cmin values for chirp-type interference signal, for B = 10 MHz, T =
10 µs for the NMF- and statistical-based detectors.
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Chapter 3

Radio Frequency Interference

Detection for Radio Astronomy

RFI signals pose serious risks to the observation of astronomical events. Essentially,

the signals captured by radio telescopes are severely corrupted by interference due

to increasing usage of the radio frequency spectrum. Therefore, it is of paramount

importance to address the RFI issue. In this chapter, a framework based on time-

frequency (TF) to detect ADS-B signals is proposed with a view to triggering down-

stream mitigation strategies which are described in Chapter 5. We apply this scheme

to real-life data from Parkes radio telescope, located in Parkes, New South Wales,

Australia, to demonstrate its performance and e�cacy in detecting RFI. The main

content of this chapter was presented and published in the proceedings of the 2021

IEEE International Symposium on Circuits and Systems (ISCAS) [63].

3.1 ADS-B Signal Description

The ADS-B is a surveillance system for tracking aircraft that provides several impor-

tant measurements in the context of aviation, such as altitude, position, and velocity

among others. The communication can occur between a ground station and aircraft,

aircraft-to-aircraft, and aircraft-to-satellite. The most used ADS-B con�gurations

are the squitter (S) and the extended squitter (ES) modes. The ADS-B message

consists of a preamble of 8µs and a data length of 56 or 112µs (mode S, mode

ES respectively), and it is modulated using pulse position modulation (PPM), as

depicted in Figure 3.1. The message is transmitted every second with each aircraft

randomly jittering its transmission around 1 s to avoid message collisions. As for

the spectral characteristics, the ADS-B signal has a centre frequency of 1,090 MHz,

and a bandwidth of 4.6 MHz [64].
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Preamble Data block

Figure 3.1: ADS-B message.

3.2 Parkes Dataset

The dataset employed in this work was acquired at the Parkes radio telescope,

located in Parkes, New South Wales, Australia. The radio receiver uses a dual-

polarised antenna, with corresponding polarisations named polA and polB respec-

tively. The system is capable of receiving signals from 704 to 4,032 MHz, covering

a bandwidth of 3,328 MHz divided into 26 sub-bands of 128 MHz. Each sub-band

signal is complex sampled using 16 bits, down-converted to DC, and down-sampled

to 128 Msamples/s. Further details can be found in [40]. The ADS-B signal falls

into sub-band 3, which spans [1,088, 1,216]MHz. According to [40], 58% of sub-band

3's spectrum has useful data for astronomy purposes. Therefore, it is of paramount

importance to detect the ADS-B signals so that further downstream interference

mitigation processing can be triggered. In addition to ADS-B, there are other inter-

ference sources that fall into sub-band 3. One such interference source is the distance

measuring equipment (DME) signals used for aircraft guidance, whose characteris-

tics and mitigation are described in Chapter 4. Parkes radio telescope data can be

accessed through the Australia Telescope Online Archive (ATOA) [65].

3.2.1 Data Characteristics

The 10.02-s long sub-band 3 signal from the Parkes radio telescope was divided into

non-overlapped frames of 10 ms each resulting in 1,003 frames in total. Each of these

frames were then manually labelled and classi�ed into 7 di�erent groups with the

assistance of a specialist in radio astronomy. Table 3.1 depicts these groups, along

with the number of frames per group. Group 1 corresponds to the signal frames with

no RFI; Groups 2 and 3 are related to the signal frames corrupted either by ADS-B

or DME signals only respectively. Group 4 represents the signal frames corrupted

by both ADS-B and DME RFI, while Group 5 is reserved for the signal frames

with unknown RFI types. Signal frames in Group 5 were classi�ed as such since no

known source could be attributed to them by the team and the specialist in radio

astronomy. Lastly, Group 6 corresponds to the signal frames corrupted with only

ADS-B and unknown RFI, and Group 7 represents the signal frames corrupted by

all RFI types (ADS-B, DME and unknown RFI).
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Table 3.1: Groups used to label the Parkes dataset.
Groups #signal frames
1. No RFI 63
2. ADS-B 166
3. DME 200
4. ADS-B & DME 572
5. Unknown RFI 0
6. ADS-B & Unknown RFI 1
7. ADS-B & DME & Unknown RFI 1

For the purpose of ADS-B signal detection, 740 signal frames from Groups 2,

4, 6, and 7 were used, with 263 signal-frames from Groups 1, 3, and 5 without

ADS-B used to evaluate the false alarm rate. Figure 3.2 illustrates the magnitude

STFT spectrograms of four signal frames from the Parkes dataset in polA, with the

ADS-B RFI highlighted by black rectangles. Figures 3.2(a � b) are from Group 2,

with the former representing weak ADS-B occurrences, while the latter is for the

case where the signal is corrupted by strong ADS-B interference. It is important

to highlight that in Figure 3.2(b) it is possible to observe the ADS-B signal aliased

around 1,216 MHz, due to the design of the polyphase �lter banks in the receiver.

The spectrogram in Figure 3.2(c) is zoomed in so that the unknown RFI within the

blue rectangle can be better visualised, with that of the ADS-B RFI visible inside

the black rectangle. Despite being located near the ADS-B centre frequency, that

signal was deemed as �unknown� due to its shorter time duration than that of the

ADS-B's. Figure 3.2(d), on the other hand, displays a spectrogram from Group

7 with the red rectangle highlighting an �unknown RFI�, which is related to data

bu�ering issues at the receiver, along with the ADS-B occurrences in black rectangles

as usual. Further, there is also a DME signal present at 1,209 MHz, albeit it is not

visible given the scale of the �gure.

3.3 TF-Based detector

In Chapter 2, a detector that extracts the interference features via nonnegative ma-

trix factorisation (NMF) and performs a similarity evaluation between the received

signal's spectrogram's time slices and the RFI's characteristics was proposed. The

work detailed in this chapter builds on from this work and extends it to tackle ADS-

B signals where the signal characteristics such as pulse duration and bandwidth are

determined by international standards [64] and are known a priori and hence can be

used in the detection process. This eliminates the need for the NMF-based feature

extraction used in Chapter 2.

The block diagram of the proposed TF-based detector is illustrated in Figure 3.3.
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(a) (b)

(c) (d)

Figure 3.2: Spectrogram of four signal frames corrupted by ADS-B interference from
the Parkes dataset.

The power spectrogram matrix Xp of the pth-signal frame rp[i] from the Parkes

dataset is evaluated via the STFT using (2.12).

As mentioned at the beginning of this section, a priori information about the

ADS-B signals can be used to determine their characteristics, which are represented

by the frequency template vector f ∈ NN×1, whose non-zero entries de�ne the ADS-

B signal's bandwidth, as shown in Figure 3.4(a).1 The next step consists of using

the z-score operator Z(·) [61] in both the spectrogram's time slices (columns of Xp),

and the template f to avoid anomalous similarity values, resulting in f = Z(f), and

Xp = Z(Xp) = [xp
1 x

p
2 · · · xp

M ]. Analogously to Section 2.4, the similarity between

xp
m and f is assessed by means of the cosine function, which can be described as

spm =
f
T
xp
m

∥f∥∥xp
m∥

, (3.1)

1The frequency axis in Figure 3.4(a) varies from 0�2π as opposed to −π�π. This was set so
that to achieve a continuous spectrum since the aliasing when representing the ADS-B signals may
occur, as observed in Figure 3.2(c).
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Figure 3.3: Block diagram of the proposed detection framework.

with sp = [ sp1 s
p
2 · · · spM ]T. Figure 3.4(b) shows the corresponding similarity vector

for the spectrogram described in Figure 3.2(a) and f . It can be observed that

the similarity values are higher at the time instants where the ADS-B signal is

active. Thus, if spm, m ∈ {1, . . . ,M}, is larger than the prede�ned threshold γ̄, the

corresponding sample is �agged as corrupted by RFI. Evaluation of this threshold

is discussed in Section 3.4. The output of the threshold comparison is vector dp ∈
NM×1, whose mth-sample is 1 if RFI is detected and 0 otherwise. Lastly, the voting

scheme, G : NM×1 → {0, 1}, determines whether the pth-signal frame is corrupted by
interference. G(dp) plays the role of a majority process, which can be implemented

by di�erent functions, such as the median, where the presence of interference is

declared if more than 50% of the samples of dp indicates the presence of RFI, the

logical OR, which �ags the RFI corruption if one or more samples of dp are 1. The

time domain properties of the RFI must be taken into account when choosing G. For

instance, the median function is better suited for long-duration interference, whereas

the OR function is more applicable when detecting pulsed-type interference, which

span only a few samples of the spectrogram.

3.4 Performance Assessment

In this section the performance of the proposed method is compared against

frequency- and TF-based detectors, which are widely used in radio astronomy [41,

43]. These methods evaluate the magnitude of the frequency bin that corresponds

to the ADS-B centre frequency (1,090 MHz), �agging the presence of interference

in the pth-signal frame if the calculated value is above a prede�ned threshold. For

the TF-based technique, the magnitude of the 1,090-MHz bin is assessed for each

time slice of the spectrogram. Given the short time duration of the ADS-B signals,

both the proposed and the TF-based techniques make use of the logical OR as the

voting scheme to generate the single bit detection output per signal frame. The
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(a) (b)

Figure 3.4: ADS-B frequency template f (a) and the similarity sp between the
magnitude spectrogram in Figure 3.2(a) and f (b).

Parkes dataset was split into training and test signal frames. The thresholds for the

proposed, frequency- and TF-based detectors were established based on the training

dataset and the performance evaluated using the signal frames from the test dataset.

In order to have a fair comparison, the performance of the time-domain based tech-

niques is not presented since they do not make use of ADS-B frequency information,

such as the centre frequency. The proposed, frequency- and TF-based techniques

are hereafter named as Template-, Frequency-, and TF-based respectively. The per-

formance of the techniques in this chapter is assessed via Cmin and ROC curves as

in Chapter 2.

3.4.1 Experimental Setup

The sampling frequency employed to acquire the Parkes dataset, as described in

Section 3.2.1, is 128 MHz. The signals from the Parkes dataset corresponding to

polA are used for detection. The detection threshold used in the Template-based

technique varies in the interval [0, 1], while the Frequency- and TF-based detectors'

ones vary in the intervals [0, 20× 104] and [200, 3000] respectively. As for the STFT

parameters, the number of DFT points and the length of the rectangular window

are N = L = 256, with a hop size of R = L/2 = 128 samples.

The training and test datasets were generated randomly using a proportion of

60% of the signal frames for training, and 40% for test. This represents 444 frames

with ADS-B and 158 without ADS-B signals for training, and 296 with and 105

without ADS-B signals for test datasets.
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3.4.2 Training Results

The performance of the proposed Template-, the Frequency- and TF-based detectors

using the training dataset is shown in Figure 3.5, with the sub-�gure depicting

the performance of the Template- and TF-based methods using logarithmic scale

to better visualise the performance di�erences for lower false alarm rates. It can

be observed that the proposed Template-based method outperforms the baseline

techniques, providing a higher detection rate at a lower false alarm rate. Table 3.2

describes the corresponding �gures of merit and detection thresholds obtained by

the minimisation in (2.19). As can be observed, the proposed detector achieves the

smallest Cmin value among all the techniques, detecting ADS-B in 398 out of 444

signal frames corrupted by such interference, with only 10 false alarms out of 158

frames.

The Frequency-based detector achieved detection and false alarm rates of 0.7095

and 0.3291 respectively. Whereby it was not able to detect the presence of ADS-

B interference in 129 out of 444 signal frames, with 52 out of 158 signal frames

wrongly �agged as corrupted by ADS-B signals, despite their absence. The TF-

based method, on the other hand, was not able to detect the presence of ADS-B

signals in 90 signal frames, with 12 of them detected incorrectly.

Figure 3.5: ROC curves of the proposed, Frequency-, and TF-based detectors.

Table 3.2: Detection results for the training dataset.
Proposed Frequency-based TF-based

Cmin 0.1214 0.4390 0.2165
Rd 0.8964 0.7095 0.7973
Rfa 0.0633 0.3291 0.0756
γ̄ 0.1545 1.1900× 104 540.2000
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For lower false alarm rates, referring to the logarithmic scale sub-�gure in Fig-

ure 3.5, overall the proposed method yields higher detection rates with lower false

alarm rates. Considering radio astronomy applications, a higher Rd might be priori-

tised, over false alarm rate. As such, for Rd around = 0.9, the corresponding false

alarm rate of the proposed technique is Rfa = 0.0823, whereas the TF-Based one is

around Rfa = 0.3670, more than 4 times higher.

3.4.3 Test Results

The results in this section use the threshold that was obtained via (2.19) using the

training dataset. This is done to investigate whether the optimised threshold γ̄ is

generic enough to yield similar detection results when using the signal frames from

the test dataset. Table 3.3 shows the performance of the proposed and baseline

techniques using their corresponding thresholds from Table 3.2, where C denotes

the distance from the resulting point (Rfa, Rd) achieved using the threshold from

the training dataset to (0, 1). As in Section 3.4.2, the proposed Template-based

technique outperforms the baseline methods, achieving higher detection rate with

few false alarms.2

Table 3.3: Detection results for the test dataset.
Proposed Frequency-based TF-based

C 0.1792 0.3913 0.2017
Rd 0.8918 0.7669 0.8277
Rfa 0.1429 0.3143 0.1048

It is important to mention that the improved detection capability o�ered by the

proposed approach is achieved at the expense of increased computational complexity.

The additional computational burden of the proposal, when compared to the TF-

based method, is the cosine similarity and z-score evaluation, which can be cast as

low complexity inner products.

3.5 Conclusions

In this chapter a new TF-based detector for radio astronomy signals was proposed.

Inspired by the technique described in Chapter 2, the proposed method outper-

formed classic techniques used in the radio astronomy �eld, yielding higher detection

rates with few false alarm events. In the next chapter we discuss RFI mitigation in

2The results presented in Sections 3.4.2 and 3.4.3 are slightly di�erent from the ones in [63].
This is due to formatting issues when reading the Parkes dataset, which were later �xed by the
expert in radio astronomy signals who collaborated in this research project.
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the context of GNSS, describing the proposed frameworks in detail and comparing

their performance against techniques commonly used in the literature.
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Chapter 4

Radio Frequency Interference

Mitigation for GNSS

In Chapter 2 we described the mathematical de�nitions of NMF and how it performs

the decomposition of a nonnegative matrix X into WH. Throughout the text, we

show how to estimate W in order to promote the separation between interference

and the GNSS signals. The proposal can be tailored to the RFI at hand, where the

interference type is assumed known beforehand (supervised NMF), or it can be com-

pletely blind, where no information about the RFI is provided (semi-blind NMF).

In addition, the proposed framework is able to mitigate multiple RFI signals with

a single receiver. Distinct types of RFI are used for performance evaluation, such

as CW and chirp interference, and distance measuring equipment (DME) signals,

employed for aircraft guidance. We compare the performance of the NMF-based

technique with classic methods from the literature, with the proposal yielding su-

perior results in strong RFI scenarios. The NMF scheme for DME signals was

presented and published in the proceedings of the 2021 XXXIVth General Assem-

bly and Scienti�c Symposium of the International Union of Radio Science (URSI

GASS) [66]. An extended version of this work which covers the CW- and chirp-type

RFI mitigation with the addition of the semi-blind framework, is currently under

review for publication in IEEE Transactions on Aerospace and Electronic Systems

(TAES) [67].

4.1 NMF-Based RFI Mitigation Scheme

In this section we present the proposed NMF-based frameworks for RFI mitigation.

The main idea is to separate the interference from the so-called signal of interest,

composed by the GNSS signals embedded in noise, using NMF. In (2.3), we describe

the received signal as the sum of an undesired term, i.e., the jamming signals, and
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the signal of interest (SOI), composed by the spreading codes embedded in noise.

Therefore, the received signal can also be described in vector form as

r[i] = rRFI[i] + rSOI[i]. (4.1)

This notation will be useful further in the text when describing the proposed RFI

mitigation frameworks. In the next subsections, we show how to calculate and

use the dictionary matrix W along with the time activation matrix H for further

estimation of rRFI[i] and rSOI[i] as in (4.1).

4.1.1 Supervised NMF for GNSS

The NMF decomposes a matrix X, whose elements are nonnegative, into a product

of two matrices such that X ≈ WH. As described in Chapter 2, the estimation

of W and H is performed via an optimisation problem, whose solution is reached

recursively using (2.10) and (2.11). This assumes no prior knowledge about the

sources at hand, such as their frequency content. However, in some applications such

as audio processing, clean versions of the sources may be available. For instance,

suppose the mixture signal is comprised of a guitar playing along with a piano. It

is possible to obtain clean versions of signals from those instruments and perform

the so-called supervised NMF to separate them [68, 69]. In the context of GNSS,

the RFI signals can be obtained through a prior characterisation process. Also, the

unique spreading code associated with each GNSS signal along with the white noise

assumption can be used to estimate the RFI and GNSS signalW matrices, hereafter

named as WRFI and WSOI respectively, and further employ the NMF algorithm to

estimate the respective activation sub-matrices in H (see (4.2)), while keeping W

�xed. This process can be better described as follows: during the training phase,

a clean version of the RFI, and of the GNSS signals are used to estimate their

respective dictionary matrices WRFI and WSOI using both (2.10) and (2.11). In

the second step, called test phase, those matrices are concatenated so as to have

a single W matrix, W = [WRFI WSOI], which is kept �xed across the iterations,

i.e., W[k] = W, and employed to estimate H using (2.10). This process is further

described in Algorithm 1. The activation matrix can be expressed as

H =

[
HRFI

HSOI

]
. (4.2)

In order to illustrate how NMF decomposes the matrix X, Figure 4.1 shows

the magnitude spectrogram of a chirp signal with B = 8 MHz and T = 8.62 µs

embedded in noise with one GPS L1 signal for 30-dB JSR. (Further details regarding
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Algorithm 1 Pseudo-code for the supervised NMF framework.
1: Initialisation:

Randomly choose W and H.
2: Training phase:

Use clean versions of the signal of interest and RFI.
EstimateWRFI andWSOI to formW and the respectiveH matrices using (2.10)
and (2.11).
Store WRFI and WSOI.

3: Test phase:
Using the received signal, estimate HRFI and HSOI via (2.10) to form H using
the previously computed WRFI and WSOI.

magnitude spectrogram calculation are given in Section 4.1.4.) Figure 4.2 displays

the corresponding S = 5 columns ofWRFI, estimated via (2.10) and (2.11), using the

�clean� version of the chirp signal. As can be observed, the components accurately

represent the spectrum of the chirp signal. Figure 4.3 displays the S rows of the

HRFI matrix, which represent the time evolution of the chirp frequency spectrum,

computed as (2.10) using the previously estimated WRFI. As can be seen from

Figure 4.1, at around 7 µs, the chirp instantaneous frequency wraps around from 4

to −4 MHz, represented by the blue curve in Figure 4.3, which in turn, is related

to the blue curve in Figure 4.2. Similarly, as the chirp instantaneous frequency

evolves over time, the remaining components of H are activated, until the maximum

frequency is reached at around 15 µs.

Figure 4.1: Magnitude spectrogram of the chirp signal with B = 8 MHz and T =
8.62 µs corrupted by noise with one GPS L1 signal.
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Figure 4.2: Columns of WRFI estimated in the training phase for an 8 MHz chirp-
type RFI.

4.1.2 Semi-blind NMF

In the semi-blind NMF framework, the RFI signal is considered unknown. Regard-

ing the GNSS application, the RFI can have distinct time and frequency properties,

with CW- and chirp-type interference being among the most commonly encountered

signals. In order to mitigate RFI with such distinct characteristics and without

any prior knowledge about them, we propose the use of the semi-blind NMF (SB-

NMF) [70]. Similarly to the supervised NMF, the working principle of SBNMF can

also be divided into training and test phases. In the former, only WSOI is estimated

using the GNSS spreading code signal embedded in noise. In the test phase, un-

like supervised NMF, with SBNMF the RFI frequency signature matrix WRFI is

estimated on the �y using (2.11) and (2.10). In high JSR environments, the RFI

component in (4.1) dominates over the signal of interest, which makes the received

signal spectrum very similar to that of the RFI's. In this sense, WRFI estimation

is quite similar to the supervised NMF's. The idea of SBNMF is to separate any

signal in a way distinct from the signal of interest. The SBNMF framework employs

WSOI to aid the estimation of WRFI and the respective time activation matrices

HRFI and HSOI. Figures. 4.4 and 4.5 show the WRFI and HRFI matrices estimated

in the test phase. Close comparison of Figures. 4.2 and 4.4 show that estimated

WRFI matrices are quite similar to one another within the RFI bandwidth for the

supervised and semi-blind cases. While the curves are somewhat di�erent in shape

and magnitude, the overall spectrum represented by them is identical. The small

�uctuations outside of the RFI bandwidth can be attributed to noise.

TheWRFI matrix estimated by the semi-blind NMF framework in the presence of

multiple RFI sources � an 8 MHz chirp- and a CW-type RFI at 2 MHz � corrupting
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Figure 4.3: Rows of HRFI estimated in the training phase for an 8 MHz chirp-type
RFI.

the received signal is shown in Figure 4.6. As can be observed, without any a priori

information about the RFI signals or an RFI characterisation system, the semi-blind

NMF approach is able to estimate the spectrum signature of multiple RFI signals.

Although the supervised NMF method can also do so, previous information about

the chirp bandwidth and CW centre frequency would need to be available for a

proper computation of WRFI. However, in practice, these characteristics may be

unknown or need to be estimated.

Hence, the RFI mitigation problem can be cast as the separation of two sources,

one comprised of the sum of RFI signals (rRFI[i]) and the other containing the

signals of interest (rSOI[i]) � the GNSS signals, as in the signal model in (4.1). In

the supervised NMF framework, RFI characteristics must be know a priori so that

WRFI matrix can be calculated properly. For semi-blind NMF this is not necessary,

since WRFI is calculated directly on-the-�y from the received signal.

4.1.3 Phase Reconstruction

The proposed NMF-based scheme decomposes the input matrix X as X ≈
WRFIHRFI + WSOIHSOI, i.e., the sum of two magnitude time-frequency matrices.

In order to add the phase information of the RFI and signal of interest to enable

reconstruction in the time domain, we employ the Wiener �ltering process [50, 71].

Hence, the complex time-frequency representation of each source can be described
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Figure 4.4: Columns of WRFI estimated in the test phase for an 8 MHz chirp-type
RFI.

as

R̂RFI =
WRFIHRFI

WH
⊗R, (4.3)

R̂SOI =
WSOIHSOI

WH
⊗R, (4.4)

where R represents the complex time-frequency (TF) matrix calculated from the

received signal r. Thus, the inverse time-frequency transform is used to recreate

both the RFI and signal of interest in the time domain, r̂RFI and r̂SOI, respectively.

The block diagram of the proposed NMF-based framework for RFI mitigation is

illustrated in Figure 4.7. The TF matrix R is calculated from the received signal

r. Next, the magnitude of each entry of R forms matrix X, which serves as the

input to the NMF-based framework (supervised or semi-blind) for the calculation

of W and H. These matrices, along with R, are used to compute the complex

time-frequency matrices R̂RFI and R̂SOI. Finally, r̂SOI is obtained via inverse TF

transform. While r̂SOI is used in subsequent GNSS processing, r̂RFI can be used

for further RFI classi�cation, and characterisation as well as for geo-localisation

purposes.

4.1.4 Time-Frequency Transforms

NMF-based techniques require that the input matrixX is nonnegative and it is desir-

able that the underlying TF transform is invertible. Given the RFI characteristics, a

large variety of works in the literature use the STFT, or its magnitude [27, 30, 52, 72].

The STFT is a popular choice as time-frequency (TF) transform, however, it has

some inherent limitations. Its time-frequency resolution is constant, i.e., a higher
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Figure 4.5: Rows of HRFI estimated in the test phase for an 8 MHz chirp-type RFI.

resolution in the time domain is achieved at the expense of a poorer frequency reso-

lution, and vice-versa [73]. Considering a chirp-type RFI, due to its relatively short

period (usually a few microseconds), small window lengths should be used, which

produce low frequency resolutions in the TF domain. As can be observed in Fig-

ure 4.1, the STFT representation of the chirp signal is not well localised, with the

instantaneous frequency spread across a number of adjacent frequency bins. As a

result, the STFT yields noticeably thick lines in the magnitude spectrogram. In

the context of NMF-based techniques, better separation results are obtained when

the overlap in the TF domain between the signal of interest and interference is min-

imised. In order to address this issue, we propose the use of Fourier synchrosqueezed

transform (FSST) [74, 75], which is a modi�ed version of the STFT tailored to work

with multicomponent signals, such as chirps and CW. In fact, the FSST reduces the

spectral leakage amongst the adjacent frequency bins, enhancing the time-frequency

resolution, thus yielding better localised representations in the TF domain. There-

fore, the FSST may help minimising the overlap between the RFI and the signal

of interest in the TF plane, thereby leading to better estimation of r̂SOI and r̂RFI.

Before de�ning the FSST, we modify (2.12) as

[
S̃
]
n,m

=
L−1∑
l=0

r[m+ l]f [l]e−j 2π
N

n(l−m). (4.5)

Thus, the FSST can be expressed as

[T]ñ,m =
1

f0

N−1∑
n=0

S̃n,mδ[ñ− ϕ̂n,m], (4.6)
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Figure 4.6: Columns of WRFI estimated in the test phase for an 8-MHz chirp- and
CW-type RFI at 2 MHz.

| · |
TF

NMF Wiener

W

H

r

X
Inverse TF

R̂RFI

R̂SOI

r̂RFI

r̂SOI

R
Transform

transform

Figure 4.7: Block diagram of the NMF-based framework.

where f0 denotes the middle sample of the window f , δ[i] represents the Kronecker

delta function, and ϕ̂n,m stands for the (n,m)th-local instantaneous frequency esti-

mated as in [75], with R = 1 in (4.5) to ensure perfect reconstruction. Figure 4.8

displays the magnitude FSST spectrogram of an 8MHz chirp-type RFI signal. When

compared to the magnitude spectrogram calculated via STFT in Figure 4.1, it can

be observed that the chirp spectrum is more concentrated around the instantaneous

frequencies due to the �squeezing� process described in (4.6). However, this en-

hanced localisation property is slightly degraded for rapidly time-varying signals,

such as chirps with wide bandwidths and small periods. It is worth pointing out

that the TF transform matrix R can be calculated using STFT as in (2.12) or FSST

as in (4.6). Further, our framework enables the use of any nonnegative TF transform

whose inverse ensures perfect or nearly perfect signal reconstruction.

42



Figure 4.8: Magnitude FSST spectrogram of a chirp signal with B = 8 MHz and
T = 8.62 µs corrupted by noise with one GPS L1 signal.

4.2 DME Signal Mitigation

In Chapter 2 we described the main RFI types in the context of GNSS, i.e., chirp and

CW signals. However, there is a myriad of signals that can be deemed as interference.

For instance, the distance measurement equipment (DME) system operating in the

962�1,213 MHz band [76], sharing frequency spectrum with GPS L5, centred at

1,176.45 MHz is one such interference source. DME is a two-way ranging system

that enables the aircraft to calculate its slant range to a DME ground station. The

aircraft transmits an interrogation signal to the ground station, which then generates

a corresponding reply. The time delay between the interrogation and reply signals

is then used for range calculation. Multiple ground stations can be visible to the

aircraft, thus making DME a potential RFI threat to the GPS L5 signal.

4.2.1 DME Signal Characteristics

The aircraft transponder transmits a pair of 3.5-µs pulses separated by 12 µs whose

power varies between 50 to 2,000 W [77]. Typically, the pulse pair rate ranges

from 1,200 to 1,500 pulses/s. The DME band is divided into 126 channels for reply

(ground-to-air), and 126 channels for interrogation (air-to-ground), with channel

spacing of 1 MHz and signal bandwidth of 100 kHz. The interrogation and reply

frequencies are always ±63 MHz apart. The DME transmission and reception fre-

quency scheme is illustrated in Figure 4.9. For instance, if the aircraft interrogates

at 1,107 MHz, the ground station replies at 1,170 MHz.

The baseband DME signals employed in this work were generated using [78],

which allows us to set a variety of parameters, such as aircraft position, speed,
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Figure 4.9: DME transmission and reception scheme.

and altitude, among others. The simulator employs information of various DME

ground stations spread across Europe to generate the received signal at the air-

craft. Considering �ight level FL390 with altitude 11,800 m, there are 78 visible

ground stations to the aircraft receiver. Figure 4.10(a) depicts a 1-ms snapshot of

the generated DME signal in the time domain with numerous peaks, whereas Fig-

ure 4.10(b) shows the corresponding signal spectrum, with the GPS L5 frequency

band displayed in red highlighting the considerable overlap around 1,176.45 MHz,

the GPS L5 centre frequency.

(a) (b)

Figure 4.10: Generated DME signal in the time (a) and frequency (b) domains.

4.2.2 Performance Evaluation

The performance of the proposed supervised NMF-based technique is evaluated con-

sidering various jammer-to-signal ratios (JSRs), and compared against pulse blank-

ing (PB) methods from the literature. PB techniques zeros out the samples of the

44



received signal in the time or frequency domain whose magnitude exceed a prede�ned

threshold, thus being suitable to pulsed interference, which makes these techniques

widely employed to mitigate DME signals for GNSS [79�81].

Figures of Merit

In the context of GNSS, there are several �gures of merit that can be used to

assess the RFI mitigation performance such as the carrier-to-noise ratio (C/N0),

correlator SNR and generalised SNR, to name a few. The �rst two rely on post-

correlation observables, thus not directly evaluating the impact of RFI on GNSS

signal acquisition process. Acquisition process enables the detection of the in-view

satellite signals and provides coarse estimates of the code delays and Doppler shifts.

The output of the acquisition process is a two-dimensional function of the spreading

code delay (τ) and Doppler frequency (fd) for each in-view satellite signal, which is

called the cross ambiguity function (CAF). Using (2.3) and (2.4), the CAF can be

expressed as

Rrc,p(fd, τ) =

Q−1∑
q=0

r[q]cp[q − τ ]ej
2π
Fs

fdq. (4.7)

Figure 4.11 illustrates a normalised CAF considering a clean GPS signal with code

delay of 500µs and a Doppler shift of 2 kHz. A pronounced peak at around the true

code delay and frequency shift values can be clearly observed from the �gure.

Figure 4.11: CAF of a clean GPS signal.

In order to determine the presence of the pth-satellite's signal, the magnitude

squared value of Rrc,p(fd, τ), de�ned as Src,p(fd, τ) = |Rrc,p(fd, τ)|2, can be com-

pared with a prede�ned detection threshold [82]. Further, the maximum likelihood
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estimates of (fd,p, τp) can be obtained as

(f̂d,p, τ̂p) = argmax
fd, τ

{Src,p(fd, τ)} . (4.8)

Under reasonable SNR conditions and in the absence of interference, the CAF

presents a prominent peak which is used to estimate fd,p, τp, and considerable low

background �noise� level due to low correlation values between the desired and the

actual pseudorandom noise (PRN) codes. The existence of RFI may yield spurious

peaks in the CAF, inducing large estimation errors or even hampering the signal

detection and acquisition. One of the �gures of merit that makes use of the CAF

is the generalised SNR (GSNR) [83], which evaluates the mean square distance of

the CAF's true peak to the noise �oor, normalised by its noise variance. In other

words, GSNR measures the CAF quality, assessing how prominent the main peak is

in relation to the noise level. The GSNR can be described as

GSNR =
(E [Src,p(fd,p, τp)− Src,p(fd ̸= fd,p, τ ̸= τp)])

2

Var [Src,p(fd, τ)]
, (4.9)

where τp and fd,p represent the true code delay and Doppler shift of the signal

from the pth-in-view satellite. Therefore, the performance of the RFI mitigation

techniques can be assessed by means of the GSNR, since it re�ects the level of

corruption of the received signal in the acquisition stage.

Experimental Setup

The sampling frequency is set to Fs = 50 MHz. One GPS L5 signal is generated

using [84], with its power set to achieve an SNR of −20 dB, combined with the

DME signals generated for �ight level FL390, and corrupted by circularly symmetric

additive white Gaussian noise, with variance σ2 = 1. The JSR varies between

[30, 60] dB with 5 dB steps. The discarding threshold for the PB methods (time

and frequency) is set to γ̄ = 2.146 so as to achieve a false alarm probability of 0.01.

The coherent time considered for acquisition is 1 ms, with 200 independent runs.

Overall, 200 ms of DME signals are generated, and at each acquisition time the

aircraft is at a di�erent position, hence the DME interference is di�erent for each

independent run.

Regarding the STFT parameters, rectangular windows of length L = 256 and

L = 1024 are used, with N = L, and a hop size of R = 1 for both cases. Therefore,

the proposed NMF supervised frameworks are hereafter named NMF-256 and NMF-

1024, and the semi-blind schemes called SBNMF-256 and SBNMF-1024 respectively,

with the baseline PB techniques in time and frequency domains denominated as

PB-time and PB-freq respectively. It is worth highlighting that the FSST is not
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employed for mitigation here since it is more suitable to chirp- and CW-type RFI,

thus it would not bring considerable bene�ts in terms of signal representation for

DME. As per the NMF settings, the KL divergence (β = 1 in (2.9)) is employed, with

number of components to represent both DME signal and signal of interest S = 60

for L = 256, and S = 400 for L = 1024, resulting in (WRFI,WSOI) ∈ R256×120
+

and (WRFI,WSOI) ∈ R1024×800
+ respectively. Further, for estimating those matrices,

DME signals are generated using a di�erent aircraft position and hence, they are

di�erent from the ones employed for performance evaluation.

Mitigation Results

The generalised SNR performance of the proposed, and the time- and frequency-

domain blanking techniques along with the case where no mitigation is employed

is shown in Figure 4.12. As can be observed, NMF-1024 outperforms all the tech-

niques considered, with its semi-blind counterpart SBNMF-1024 presenting very

similar performance. Further, NMF-256 and SBNMF-256 outperforms the blank-

ing techniques for JSR∈ [30, 50] dB. In general, the semi-blind framework achieves

akin performance to the supervised scheme, not requiring prior knowledge about the

ground station's transmission frequencies. Furthermore, in most cases, the NMF-

based techniques yield higher GSNR values. This implies larger correlation ambi-

guity function (CAF) peak amplitude with a lower noise �oor, i.e., lower spurious

CAF peak amplitudes, thus improving the GNSS signal detection and subsequent

acquisition performance. Moreover, as expected, when no mitigation technique is

employed, the GSNR decreases as the power of the DME increases, indicating a

higher CAF noise �oor. To illustrate this, Figure 4.13 shows the CAFs for JSR

= 60 dB considering a GPS L5 signal with code delay τ = 10 µs and a Doppler shift

Fd = 1.5 kHz without the employment of a mitigation technique, Figure 4.13(a),

and using, Figure 4.13(b), NMF-1024 based mitigation. In the absence of mitigation

the CAF presents many spurious peaks hindering the GPS signal detection. The

proposed technique, on the other hand, is able to suppress the strong interference,

allowing the detection and subsequent acquisition of the GPS signal.

Another advantage of the NMF-based methods is the RFI suppression without

data discarding. The PB techniques, on the other hand, zero out samples in either

time or frequency domain to mitigate interference. To better illustrate this e�ect,

Figure 4.14 shows the percentage of discarded samples for each JSR value for the

PB-time and PB-freq techniques. For JSR = 60 dB, PB-time discards more than

78% of the received signal samples, whereas PB-freq zeroes out more than 30% of

the frequency bins, which may result in tracking and navigation data losses. It is

important to note that the performance achieved by the proposed technique comes at

the expense of higher computational complexity relative to the blanking techniques.
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Figure 4.12: Generalised SNR with and without mitigation for di�erent JSR values.

(a) No mitigation. (b) NMF-1024.

Figure 4.13: CAF without mitigation (a) and for the NMF-1024 technique (b) for
JSR = 60 dB.

4.3 CW- and Chirp-type RFI Mitigation

In this section we present the mitigation results considering the most common RFI

types found in real life scenarios as described in Section 2.1.

4.3.1 Performance Evaluation

The performance of the proposed techniques is assessed and compared against three

GNSS RFI mitigation methods from the literature, viz.: Kalman [30], notch �l-

ter [27], and wavelet-based [33]. The former tracks the interference samples for

further subtraction in the time domain, whilst the notch �lter scheme cancels out

the RFI, more speci�cally chirp signals, by �dechirping� the interference, resulting

in a CW signal at DC, which is then �ltered out. Both techniques estimate the
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Figure 4.14: Percentage of discarded samples for the PB-time and PB-freq methods
for di�erent JSR values.

chirp instantaneous frequency for mitigation. In the wavelet-based technique, re-

ceived signal is decomposed into sub-bands with distinct frequency resolutions. In

the presence of RFI, its samples spread across the sub-bands, which are zeroed out if

their magnitude surpasses a prede�ned threshold. The remaining samples are then

resynthesized back into the time domain.

In order to determine the e�cacy of the proposed NMF-based framework in deal-

ing with narrow- and wideband RFI sources, chirp-type RFI with di�erent band-

widths, and CW-type RFI with varying frequencies under challenging JSR scenarios

are used. Further, combination of multiple RFI signals are employed to evaluate and

demonstrate the mitigation capabilities of the proposed approach in the presence of

multiple di�erent RFI sources. For the sake of simplicity, the STFT- and FSST-

based techniques are hereafter named NMF-STFT and NMF-FSST respectively,

with their semi-blind counterparts referred to as SBNMF-STFT and SBNMF-FSST.

As for the Kalman, notch �lter, and wavelet-based techniques, they are referred to

as Kalman, NF and Wavelet, respectively.

Figures of Merit

In order to quantify the performance for CW- and chirp-type RFI, we employ the

generalised SNR described in Section 4.2.2. In addition, the GNSS signal detection

capability can also be employed to evaluate the RFI suppression performance. This

process usually relies on the level of Src,p(f̂d,p, τ̂p) to indicate the presence of a given

spreading code in the received signal. In this work, the detection is performed by

comparing the ratio between the highest and the second highest CAF peaks against

a threshold γ̄ as in [82]. Thus, in the presence of GNSS signal, a true positive
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detection occurs if the ratio exceeds γ̄ and the highest CAF peak is the true one

(the corresponding τp and fd,p are known a priori). Analogously, a false positive

detection takes places when the peak ratio is greater than the threshold, despite the

absence of GNSS signal. By calculating the ratio between the true/false positives

and the number of trials, the so-called detection and false alarm rates Rd and Rfa can

be determined. These are employed to evaluate the receiver operating characteristic

(ROC) curve, which describes the detection capability as a function of the threshold

γ̄ and the true CAF peak detection. Further, in order to leverage the information

provided by the ROC, we employ the Cmin as in (2.19).

Ultimately, Cmin translates the e�ectiveness of the RFI mitigation method in

terms of the GNSS signal detection and thus, along with the GSNR, will be the

�gures of merit employed in the forthcoming sections.

Experimental Setup

Chirp-type RFI with bandwidth B ∈ {2, 8, 14} MHz and period T = 8.62µs centred

at DC, and a CW-type RFI with frequency of 2 MHz are used, along with one GPS

L1 signal with an SNR of −20 dB. The JSR for the experiments varies between 25

to 50 dB, with 5 dB steps. The sampling frequency is set to Fs = 32.768 MHz, the

receiver coherence time is 1 ms, hence, the CAFs are evaluated using 32,768 complex

samples. The generalised SNR and Cmin values are averaged over 500 trials.

For the STFT and FSST computation, a Kaiser window [73] with shape factor

60 is employed to ensure that the chirp-type RFI can be better localised in the TF

domain. The number of frequency bins is set to N = 256, with Kaiser window length

L = 256, and hop size R = 1 to ensure good time resolution to properly describe

the time properties of the chirp-type RFI.

For NMF, the number of components to describe both the RFI and the signal of

interest is set to S = 5, hence (WRFI,WSOI) ∈ R256×10
+ . The KL divergence (β = 1

in (2.9)) is used as similarity function. Further, the maximum number of iterations

for NMF is set to 500 so as to ensure convergence.

4.3.2 Chirp-Type RFI Mitigation

In this subsection the mitigation results considering chirp-type RFI with varying

bandwidth are presented. Figure 4.15 displays the generalised SNR results for B ∈
{2, 8, 14} MHz. As can be seen from Figure 4.15(a), NMF-FSST yields the highest

GSNR levels across the JSR values, with GSNR of around 20 dB at JSR = 50 dB. For

higher JSR values, the wavelet-based method leads to similar GSNRs, followed by

the proposed semi-blind techniques, and the NMF-STFT. The Kalman and notch

�lters present the worst performance, since they are very sensitive to parameter
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estimation errors, such as instantaneous frequency mismatch. It is worth mentioning

that in the scenario of B = 2 MHz, in the frequency domain, the GPS sinc-shaped

main lobe is dramatically corrupted by RFI. Therefore, a considerable part of the

GPS spectrum is also �ltered out along with the RFI's.

Figure 4.15(b) depicts the GSNR curves for B = 8 MHz. Similarly as in Fig-

ure 4.15(a), NMF-FSST has the highest GSNR levels, with its STFT-based coun-

terpart NMF-STFT showing similar performance. Further, the performance of the

SBNMF-FSST method is on par with that of NMF-STFT, except for JSR = 50 dB.

The performance of the SBNMF-STFT technique, on the other hand, is slightly

degraded when compared to that of SBNMF-FSST. This is due to the poorer lo-

calisation of chirp signals in the TF domain provided by STFT when compared

with FSST. It is important to re-note that both SBNMF-FSST and SBNMF-STFT

techniques do not require any prior knowledge about the RFI. For the wavelet-based

technique, as the chirp bandwidth spreads across the spectrum, more decomposition

stages are corrupted by the RFI. As a consequence, more samples of those stages

are zeroed out, which a�ects the signal reconstruction.

In Figure 4.15(c), the results for B = 14 MHz are shown. Overall, both su-

pervised and semi-blind NMF frameworks outperform the baseline techniques. For

JSR greater than 40 dB, the performance of the latter is slightly degraded. Further,

the performance of the techniques that make use of the STFT is enhanced, whereas

the performance of those that use FSST-based is slightly deteriorated. This dete-

rioration is related to the chirp rate of the RFI, i.e., the ratio between B and the

chirp period T . As discussed in [75], the FSST yields sharper TF representations

for slowly time-varying signals, hence the worse performance for B = 14 MHz.

(a) B = 2 MHz. (b) B = 8 MHz. (c) B = 14 MHz.

Figure 4.15: Generalised SNR of the proposed and baseline techniques for di�erent
values of B.

In terms of evaluating the performance of detecting the correct CAF peak after

RFI mitigation, Figure 4.16 shows the Cmin results for B ∈ {2, 8, 14} MHz. For

2 MHz, the best performance is yielded by NMF-FSST with near zero Cmin value

for 40 dB JSR, followed by Wavelet, and SBNMF-FSST techniques. In other words,
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a high detection rate was achieved at very low false alarms, despite the presence

of strong RFI. In addition, the Cmin results can be used to establish the minimum

GSNR for successful GNSS signal detection. As previously mentioned, it can be

observed in Figure 4.16(a) that for JSR = 40 dB, the resulting Cmin is near zero

for the NMF-FSST technique, with a corresponding GSNR of ≈ 26 dB. At JSR

= 45 dB, there is a considerable increase in Cmin with GSNR = 23.9 dB. Hence,

we adopt 26 dB as a reasonable GSNR level for GNSS signal detection. In our

experiments, JSR values higher than 50 dB resulted in GSNR values lower than

26 after RFI mitigation and the GPS signal could not be detected and acquired.

From Figure 4.16(b) and Figure 4.16(c), it can be observed that the proposed

techniques outperform the baseline methods, with very low Cmin levels in scenarios

with very strong RFI (50 dB JSR). It is worth mentioning that some Cmin levels

are above the value 1/
√
2 as a result of the respective technique not being able

to detect the true peak in the CAF. Hence, Rd = 0 and Cmin = 1. In order to

further demonstrate the e�ectiveness of the proposed techniques, Figure 4.17 shows

the normalised CAFs for the supervised and semi-blind methods for B = 14 MHz

and JSR = 45 dB, with Figures 4.18(a)-(c) displaying the normalised CAFs for

the baseline techniques, and Figure 4.18(d) the CAF calculated directly from the

received signal in the absence of any RFI mitigation. It can be observed from these

�gures that the NMF-based techniques suppressed the RFI, resulting in a clear peak

in the CAFs, enabling the GNSS signal acquisition and further processing. This is

not the case when the baseline methods are used, or when no RFI mitigation is

applied. Under such cases, the true peak is buried in noise, hampering the signal

detection.

(a) B = 2 MHz. (b) B = 8 MHz. (c) B = 14 MHz.

Figure 4.16: Cmin values of the proposed and baseline techniques for di�erent values
of B.

4.3.3 Multiple RFI Mitigation

In this subsection the mitigation performance of the proposed and baseline methods

is evaluated under the condition of multiple RFI signals � a chirp-type RFI with
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(a) NMF-STFT. (b) NMF-FSST.

(c) SBNMF-STFT. (d) SBNMF-FSST.

Figure 4.17: CAFs for the proposed techniques for B = 14 MHz and a JSR of 45 dB.

B ∈ {2, 8, 14} MHz and CW-type RFI at 2 MHz � corrupting the received GNSS

signal. Performance results are depicted in Figure 4.19, and similar to what was

observed for the single RFI case, the NMF-based frameworks yield the highest GSNR

levels in the case of multi-RFI sources.

Considering B ∈ {8, 14} MHz, the semi-blind techniques lead to on par per-

formance with their supervised counterparts for JSRs between 25 and 50 dB, and

slightly degraded for JSRs = 45 and 50 dB. However, unlike the supervised tech-

niques, they estimate the RFI frequency characteristics directly from the received

signal. Therefore, regardless of the number of RFI corrupting the GNSS signals, the

semi-blind framework attempts to mitigate RFI by calculating the corresponding

WRFI matrix, which is further employed to separate interference from the signal of

interest. This enables the suppression of numerous RFI without a prior characteri-

sation scheme, or the use of antenna arrays.

Figure 4.20 displays the GPS signal detection results for multiple RFI. As before,

the NMF-based methods yield the lowest Cmin levels among all techniques consid-

ered. Similarly as in Section 4.3.2, the proposed NMF-based frameworks present

superior detection performance despite the high JSR values considering two di�er-
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(a) Kalman. (b) NF.

(c) Wavelet. (d) No mitigation.

Figure 4.18: CAFs for the baseline techniques and no mitigation for B = 14 MHz
and a JSR of 45 dB.

ent type RFI signals.

In general, the proposed NMF-based techniques outperform the baseline methods

for distinct values of chirp bandwidth, enabling the GNSS signal acquisition in JSR

levels as high as 50 dB, with the semi-blind NMF frameworks presenting similar or

slightly degraded performance when compared to their supervised counterparts. The

semi-blind NMF approaches however, do not require a priori information regarding

the RFI and do not rely on any RFI characterisation scheme to estimate the RFI

dictionary matrix WRFI. Further, the NMF-based approach is able to suppress

multiple RFI corrupting the received signal simultaneously.

4.4 Conclusions

In this chapter an NMF-based framework for RFI mitigation in GNSS is proposed.

The supervised NMF extracts the RFI and signal of interest frequency features from

clean interference signals prior to a calculation of their time activation properties.

On the other hand, its semi-blind counterpart computes the interference �ngerprint
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(a) B = 2 MHz. (b) B = 8 MHz. (c) B = 14 MHz.

Figure 4.19: Generalised SNR of the proposed and baseline techniques for di�erent
values of B for multiple RFI.

(a) B = 2 MHz. (b) B = 8 MHz. (c) B = 14 MHz.

Figure 4.20: Cmin values of the proposed and baseline techniques for di�erent values
of B for multiple RFI.

directly from the received signal, e.g., it does not require a priori information about

the RFI. The extracted frequency and time characteristics are used to estimate

the RFI signals and signal of interest, which is then used in the GNSS receiver

downstream.

Simulation results indicated that the proposed NMF-based scheme is able to

mitigate narrow and wideband RFI signals in challenging JSR environments, out-

performing techniques tailored to the RFI type (chirp), and classic methods from

the literature, enabling the GNSS signal acquisition and further processing even in

scenarios where the interference is 50 dB stronger than the GNSS signal. Further,

the semi-blind scheme does not require any prior information or characterisation of

the RFI, highlighting the �exibility of the NMF-based framework. Moreover, the

proposed techniques are able to suppress multiple interference signals at the receiver,

improving the reliability of GNSS-based services without requiring antenna arrays.

In the next chapter we adapt the proposed NMF-based schemes for the signals of

the Parkes dataset. We describe how to train NMF to deal with pulsed interference,

such as ADS-B signals, and analyse the impact of the proposed methods on the

observation of cosmic events.
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Chapter 5

Radio Frequency Interference

Mitigation for Radio Astronomy

As discussed in Chapter 3, RFI can interfere with the astronomical observations,

and even mimic the behaviour of pulsed-type events, such as pulsars [39]. To allevi-

ate this, a TF-based RFI detection scheme for ADS-B signals was detailed and its

performance analysed. This detector forms the �rst processing block in the receiver

chain indicating the presence or absence of RFI. In the presence of RFI, the subse-

quent mitigation unit is triggered and further processing takes place to remove the

aforementioned RFI.

One of the cosmic events of considerable interest in radio astronomy is the pul-

sar observation. Pulsars are magnetised rotating neutron stars that emit radio

frequency beams out of their magnetic poles [85]. As the pulsar rotates, the beam

sweeps around the sky, being periodically perceived by radio telescopes whenever

the magnetic poles point towards the Earth, similar to the lighthouse working prin-

ciple. Pulsars have relatively stable spinning periods, and for this reason, attract

great interest for deep space navigation, being able to work as an alternative in the

absence of GNSS-based systems [86, 87].

In this chapter, we brie�y describe how the received signal is processed to observe

the pulsar events. Further, we propose and outline three NMF-based techniques to

suppress RFI in radio astronomy applications, with ADS-B being the major RFI of

concern, while not corrupting underlying signal of interest and hence the observation

of cosmic events.

5.1 Pulsar Processing

In order to analyse the pulsar characteristics, the received signal acquired by the

radio telescopes undertakes a process called pulsar folding [40, 88]. The main idea
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is to integrate the pulsar signals according to the rotational period so that they

can be observed, while compensating for the ionised interstellar medium (IISM).

This frequency-dependent e�ect disperses the emitted waves along the path between

the pulsar and the observer [40], with behaviour similar to multipath, altering the

waves' time of arrival [89], degrading the performance of pulsar-based timing and

synchronisation systems. A software package broadly used by the astronomers for

this post-processing is the DSPSR [88]. Considering the Parkes dataset, the observed

pulsar is the J1939+2134, a double pulsar (two neutron stars in orbit around each

other), with rotational period around 1.56 ms. Using a 1-s long signal from sub-band

3 of the Parkes dataset as input to the software DSPSR, we are able to generate a

spectrogram-like plot, hereafter called DSPSR spectrogram, shown in Figure 5.1(a),

with a zoomed in version around the ADS-B centre frequency (1,090 MHz) in Fig-

ure 5.1(b). These spectrograms are calculated considering the sum of both signal

polarisations. The DSPSR software provides information about the strongest RFI

within the frequency range, highlighting the most powerful RFI at 1,090 MHz, indi-

cating that the ADS-B signals represent a threat to the pulsar observation. Further,

within 1,120�1,140 MHz, very sparse signals can be observed, which are related to

the DME RFI. It is worth mentioning that there are also other interference signals

in the Parkes dataset such as the ones at 1,100 MHz and within the interval 1,160�

1,178 MHz. However, the sources of such RFI are still unknown to the experts in

radio astronomy, with the major interference being �agged as the ADS-B signals

by the software DSPSR. The pulsar pro�le is computed by integrating the frequency

bins of the DSPSR spectrogram, resulting in a curve as shown in Figure 5.2, which

consists of a pulsar phase vs. electromagnetic �ux plot. Ideally, the peaks at around

0.1 and 0.6 would be more pronounced, with lower �noise� levels. However, due to

interference, the pro�le estimation becomes less accurate, which directly impacts

the observation and calculation of the pulsar characteristics.

5.2 NMF-Based RFI Mitigation Techniques

In this section we detail the proposed NMF-based techniques to mitigate RFI, with

a major focus on the ADS-B signals, and analyse the impact of mitigation on the

signal of interest, i.e., the pulsar observation.

5.2.1 Supervised NMF with Frequency Selection

The supervised NMF presented in Section 4.1.1 relies on the availability of clean

versions of the signal of interest and respective RFI sources. Nonetheless, in real

scenarios, including the signal captured by the Parkes radio telescope, these assump-
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(a) (b)

Figure 5.1: DSPSR spectrogram (a) with its zoomed in version at 1,090 MHz (b).

Figure 5.2: Pulsar pro�le without RFI mitigation.

tions rarely hold. Further, due to the short time duration of pulsed-type RFI, the

signal frames labelled as corrupted by interference are mostly composed of the signal

of interest, with only a few samples within each 10-ms signal frame corrupted by

ADS-B. Thus, when estimating WRFI, the majority of its components represent the

signal of interest, which, according to prior simulations, induced a larger disruption

of the signal of interest. In order to alleviate this issue, we manually extract the

excerpts of the Parkes dataset composed mainly of ADS-B signals and use them for

evaluating WRFI. After estimating the RFI frequency content, we employ a post-

processing scheme to eliminate spurious values inWRFI, since the ADS-B bandwidth

is de�ned by international standards [64], we can easily select the appropriate ADS-

B frequency range. Using 20 signal frames corrupted by ADS-B, considering the

Kullback-Leibler divergence as distance function, and S = 10 to compute WRFI

and WSOI, Figures 5.3(a�b) show the estimated WRFI before, and after frequency
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selection respectively, where each line represent a single column of WRFI.

(a) (b)

Figure 5.3: Estimated WRFI before (a) and after (b) frequency selection.

5.2.2 Supervised NMF with RFI Template

One of the drawbacks of the frequency selection detailed in the previous sub-section

is that within the ADS-B signal bandwidth we also have, albeit small amount,

the signal of interest. Therefore, to alleviate this problem, we employ the ADS-B

template described in Section 3.3 as WRFI. Consequently, the ADS-B frequency

content in WRFI is represented by a single component i.e. a vector.

5.2.3 Semi-Blind NMF

In radio astronomy applications, besides not having clean RFI signals, there is also

a considerable number of potential RFI sources due to the high sensitivity and

wide frequency coverage of the receiver. In order to employ the supervised NMF

framework, one would need to have a large variety of �clean� RFI signals to estimate

WRFI properly. In order to address this issue, we propose the use of the semi-blind

NMF to mitigate RFI, as described for the context of GNSS in Chapter 4. This

way, no prior knowledge about the RFI is needed, with WSOI being computed from

the interference free signal frames. Figures 5.4(a) and 5.4(c) show the magnitude

spectrograms of two signal frames from the Parkes dataset and their corresponding

WRFI matrices (Figures 5.4(b) and 5.4(d)) from polarisation A (polA). As mentioned

in Chapter 3, the ADS-B signals are aliased due to their closeness to the channel

edges and the characteristics of the polyphase �lter bank' in the receiver. Hence, the

following magnitude spectrograms' and WRFI's frequency axes are displayed from

[0, 2π] as opposed to the traditional [−π, π] representation. The presence of ADS-B

is highlighted by the black rectangles, whose spectral properties are described by one
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component (column) ofWRFI as shown in Figure 5.4(b). In Figure 5.4(c), ADS-B as

well as DME signals (blue rectangles) are present, with their corresponding spectral

features displayed in Figure 5.4(d).

ADS-B

(a) (b)

DME

ADS-B

(c) (d)

Figure 5.4: Magnitude spectrogram corrupted only by ADS-B (a) and its respective
estimated WRFI (b), and a spectrogram corrupted by ADS-B and DME (c) and its
corresponding calculated WRFI (d).

5.3 Performance Evaluation

In this section we assess the performance of the supervised and semi-blind NMF

techniques presented in Sections 5.2.1, 5.2.2, and 5.2.3 respectively in mitigating

RFI. Further, we also provide a discussion about the impact of the mitigation pro-

cess on the signal of interest (pulsar signals). While supervised and semi-blind

NMF can be used to mitigate ADS-B signals, only the semi-blind method is able to

deal with multiple RFI concurrently, such as ADS-B and DME, without requiring

any modi�cation. In order to achieve the same for the supervised NMF, the train-

ing would have to take into account the DME occurrences as well, with a proper
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frequency selection for such interference. Hence, in this chapter we only evaluate

the performance of ADS-B signal mitigation, although we describe how to suppress

DME signals. The supervised NMF with frequency selection, supervised NMF with

RFI template, and semi-blind NMF technique are hereafter referred to as NMF-Sel,

NMF-Temp, and NMF-Semi respectively.

5.3.1 Figures of Merit

The performance of interference mitigation techniques in the RF-based communica-

tion systems is generally evaluated by means of the signal-to-interference-plus-noise

ratio (SINR) [90]. In this case, one has a certain level of knowledge about the signal

of interest and noise powers. Moreover, the focus is to suppress the RFI, with mod-

erate concern about the signal of interest. In the area of audio processing, where the

�nal goal is to separate di�erent sources, such as instruments and voice, the SINR

is employed along with subjective �gures of merit, which measures the degradation

of the separated signals from the human hearing perspective [91]. In the context

of radio astronomy, the RFI power is rarely known, and the signal of interest is of

major concern, where any artefact introduced by the mitigation algorithm may yield

biased observations of the cosmic events. In [92], a �gure of merit to evaluate the

performance of time-frequency RFI mitigation techniques in radio astronomy signals

was proposed. Nonetheless, it assumes prior knowledge about the RFI power and

does not take into account the degradation to the signal of interest. In [93], the

authors assess the performance of the techniques by analysing the spectrum before

and after mitigation by visual inspection, without an objective �gure of merit. In

fact, the performance evaluation relies on the speci�c science case, with no �gure

of merit being a consensus among the astronomers. For this reason, in this work

we gauge the performance based on two ways: the magnitude spectrograms of the

signal of interest after RFI mitigation, which is here denominated as pre-folding,

and based on pulsar pro�les described in Section 5.1, named post-folding.

5.3.2 Experimental Setup

The data employed for the performance analysis in this chapter is also from the

Parkes dataset, described in Section 3.2. This experimental uses the same dataset

as in Section 3.2.1. The �rst 100 signal frames from the Parkes dataset are used here

to calculate the pulsar pro�les, with 76 of them corrupted by ADS-B and/or other

RFI, and 24 without any interference. Regarding the STFT parameters, we use a

rectangular window of length L = 256, number of DFT bins N = 256 and hop size

of R = L/2 = 128 samples. As in Section 4.2.2, the FSST is not employed in this

chapter due to the RFI time duration characteristics. As for the NMF parameters,
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we employ the KL divergence (β = 1), random initialisation of W and H, and 10

components to represent both signal of interest and RFI signals, except for the case

where we employ the ADS-B template (single component) to represent it. During the

training phase, 20 signal frames are employed to computeWSOI, and 20 signal frames

out of the 76 are used to calculate WRFI (for NMF-Sel). It is worth mentioning that

the NMF-based frameworks are employed on the signals of both polarisations i.e.

polA and polB, and the matrices WRFI and WSOI are calculated considering each

polarisation individually. All proposed frameworks share the same WSOI (computed

considering polA), displayed in Figure 5.5. Moreover, NMF achieves convergence in

our scenario within 300 iterations.

Figure 5.5: Estimated WSOI matrix during the training phase.

5.3.3 Pre-folding Results

In this subsection we describe the mitigation results by means of reconstructed

spectrograms of the signal of interest. For the sake of simplicity, we only display the

spectrograms corresponding to polA. Out of 76 signal frames used for performance

evaluation, we show the corresponding spectrograms of the two most representative

ones here. Figures 5.6(a�b) show two spectrograms corrupted by RFI from the

Parkes dataset, where the black and blue rectangles point out the ADS-B and DME

signals in the TF domain respectively. In those �gures it is possible to observe strong

ADS-B signals, and in Figure 5.6(b) two DME signals at around 1.5π rad/sample

(1,120 MHz).

The NMF-Sel's reconstructed spectrograms are shown in Figures 5.7(a�b). Over-

all, the ADS-B signals are drastically suppressed, with only a residual fraction of

ADS-B RFI within the leftmost rectangle in Figure 5.7(a). Also, the signal of inter-

est does not seem to be attenuated, especially within the ADS-B signal frequency
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(a) (b)

Figure 5.6: Spectrograms corrupted by ADS-B (a) and ADS-B & DME (b).

band. Interestingly, in Figure 5.7(b) the DME signals were not mitigated, although

it is the expected behaviour since the matrix WRFI was calculated only considering

ADS-B signals. Further, this reinforces the fact that the NMF-Sel framework is not

corrupting the signal of interest.

(a) (b)

Figure 5.7: Reconstructed spectrograms of the signal of interest using the NMF-Sel
technique from Figure 5.6(a) and Figure 5.6(b) respectively.

In regard to the NMF-Temp results, Figures 5.8(a�b) display the reconstructed

spectrograms of the signal of interest with respect to Figures 5.6(a�b). As can be

observed, there is signi�cant ADS-B spectrum in the signal of interest, more specif-

ically for the stronger ADS-B signals within the leftmost black rectangles. This is

due to the fact that NMF-Temp employs a simple ADS-B template in WRFI, i.e., a

vector, whereas NMF-Sel uses S = 10 to estimate WRFI (Figure 5.3(b)). Therefore,

NMF-Sel is able to represent the ADS-B signals in a better way than NMF-Temp,
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taking into account ADS-B signals with distinct strength and bandwidths. As a

matter of fact, this spectrum varies according to numerous factors, such as distance

and angle between aircraft and the radio telescope dish, and the antenna character-

istics of the aircraft. NMF-Temp, however, does not require estimating the ADS-B

signal characteristics from the received signal, nor the frequency selection process

undertaken by NMF-Sel.

(a) (b)

Figure 5.8: Reconstructed spectrograms of the signal of interest using the NMF-
Temp technique from Figure 5.6(a) and Figure 5.6(b) respectively.

Considering the NMF-Semi performance, it is clear in Figures 5.9(a�b) that not

only the ADS-B signals are mitigated but also the DME interference. Nonetheless,

whenever the ADS-B is mitigated, the remaining frequency bins related to those

time instants are also attenuated. This is a consequence of the estimated matrix

WRFI, as in Figure 5.4(b), where the elements outside the ADS-B's spectrum are

nonzero, thus, part of the frequency features of the signal of interest is also embedded

in WRFI. As a result, when the NMF framework separates RFI from the signal of

interest, a fraction of its power is present in the RFI's spectrogram. For instance, the

signal of interest's power in Figures 5.9(a) is around 35 dB, whereas in Figures 5.7(a)

and 5.7(a) is roughly 45 dB.

In general, the NMF-Sel technique presents the best results in terms of RFI

mitigation while not disrupting the signal of interest. The NMF-Temp framework

has poorer RFI suppression performance, however preserving the signal of interest.

Lastly, the NMF-Semi scheme disregards prior knowledge about the interference

sources, thus being able to mitigate multiple RFI. Nonetheless, this is achieved at

the expense of attenuation of the signal of interest.
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(a) (b)

Figure 5.9: Reconstructed spectrograms of the signal of interest using the NMF-
Semi technique from Figure 5.6(a) and Figure 5.6(b) respectively.

5.3.4 Post-folding Results

In this section we describe the mitigation results in terms of the pulsar pro�le, gener-

ated using the DSPSR software. Figure 5.10 shows the pulsar pro�les generated using

the reconstructed signal of interest respective to each of the NMF-based frameworks.

Surprisingly, NMF-Sel and NMF-Temp have very similar pulsar pro�les, despite the

worse ADS-B suppression performance of the latter. One of the hypotheses is that

the residual ADS-B spectrum in the signal of interest is averaged out by the pulsar

folding, hence the similar results. Regarding NMF-Semi, as observed in previous

spectrograms, this method considerably attenuates the signal of interest, which re-

sults in lower �ux levels. As previously mentioned, the main capability of NMF-Semi

is the mitigation of multiple RFI sources without prior knowledge. However, the

main RFI of concern besides ADS-B is the DME interference, which does not corrupt

many samples due to its very short time duration, thus, suppressing DME would

not yield considerable improvements in terms of the pulsar pro�le.

(a) (b) (c)

Figure 5.10: Pulsar pro�les corresponding to NMF-Sel (a), NMF-Temp (b), and
NMF-Semi (c).
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Figure 5.11(a�b) displays the pulsar pro�le calculated from raw data (same as

in Figure 5.2), and from �agged signals. Flagging consists of manually selecting

the frequency channels of the DSPSR spectrogram corrupted by RFI and zeroing

out their samples across all time instants. This way, the pulsar pro�le is generated

neglecting the zeroed frequency channels, with the impact of RFI alleviated [45].

However, discarding samples is undesired since they may contain useful astronomi-

cal data. Moreover, �agging may completely hinder the observation of astronomical

events in the case of other RFI types, such as satellite signals and mobile phone tow-

ers [40], which span much longer time periods, and wider frequencies. Furthermore,

�agging may a�ect the analysis of the transient properties of pulsed-type cosmic

events, e.g., pulsars [45]. Comparing Figures 5.10(a) and 5.11(a), one can note that

the noisy behaviour outside the main peaks region (pulse phase around 0.1 and 0.6)

is alleviated. Further, the leftmost peak in Figure 5.10(a) is more pronounced when

compared to its neighbours, despite having a lower �ux level. On the other hand,

the rightmost peak has been enhanced, also with higher prominence. Considering

Figure 5.11(b), the spurious peaks have been attenuated along with the rightmost

peak. Also, the average level of the pro�le in between the peaks is now larger.

(a) (b)

Figure 5.11: Pulsar pro�le from raw data (a) and from �agged signals (b).

5.4 Conclusions

Overall, the techniques described in this chapter present promising RFI mitigation

performance, while not corrupting the underlying signal of interest. The main target

for mitigation was the interference sources presented in sub-band 3 of the Parkes

dataset, however, the proposed schemes for RFI mitigation can also be employed

to work with signals from other sub-bands, with other RFI types involved. This
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work evaluated the potential of NMF in the context of radio astronomy, indicating

its feasibility and pointing out the need of further research. Moreover, the results

described in this chapter call for a deeper evaluation by experts on radio astronomy,

which will bring more insights about the pulsar pro�les and �gures of merit for

performance assessment.
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Chapter 6

Conclusions and Future Work

In this thesis, we tackled the detection and mitigation of RFI in two applications:

GNSS and radio astronomy. In relation to the RFI detection for GNSS, we inves-

tigated the challenges of detecting very weak narrow and wideband interference.

In order to achieve this, we proposed an NMF-based framework able to extract

the RFI's features from the power spectrogram of the received signal. The NMF

estimated information is then compared with the spectrogram's time slices via a co-

sine similarity function. In the presence of RFI, the similarity achieves higher levels,

which tend to be lower in the absence of RFI. Our framework compares the similarity

values with a prede�ned threshold, followed by a majority voting scheme to aggre-

gate the detection results of each time slice of the spectrogram into a single output,

which enhances the performance under low JNR scenarios. The simulation results

indicated that our NMF-based scheme yields high detection rates with low levels

of false alarm, even in scenarios where the noise is 15 dB more powerful than the

RFI. We also compared the performance with a state-of-the-art detection technique

based on statistical tests. The proposal leads to similar detection results without

a priori information about the RFI type, while maintaining lower computational

complexity.

Considering interference detection for radio astronomy applications, we used

signals captured by the Parkes radio telescope to assess the performance of our

proposed detector. Extensive research on the RFI types present in our sub-band

of interest was performed. Further, intensive manual labelling of the dataset was

undertaken, so that the detection results could be properly inferred. Inspired by the

NMF-based scheme for GNSS, we devised a TF-based detector for ADS-B signals,

whose main characteristics are de�ned by international standards. Bases on them,

we developed a ADS-B frequency template, which plays the role as the estimated

RFI's frequency features by NMF. The proposed TF-based technique achieved high

detection levels with low false alarms, outperforming methods widely employed in

radio astronomy. Considering both GNSS and radio astronomy applications, RFI
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detection forms part of a larger framework, with interference mitigation being the

next processing block in the received signal downstream.

The other main branch of this work is the RFI mitigation. In the context of

GNSS, we studied the e�ects of RFI on the signal acquisition in the GNSS receiver.

To alleviate this issue, we proposed an NMF-based framework with two distinct

operation modes. Supervised NMF, which employs prior knowledge about the in-

terference to estimate its frequency features, and semi-blind NMF, which calculates

the interference frequency features directly from the received signal, and hence does

not require a priori information about the RFI at hand. We assessed the perfor-

mance of our proposed schemes considering two groups of interference, viz.: DME

RFI, which can be classi�ed as radar signals, and CW- and chirp-type RFI signals,

that are commonly encountered in real-life environments. Considering the former,

our proposal outperformed pulse-blanking-based techniques for DME mitigation,

achieving higher levels of generalised SNR even under 60 dB-JSR scenarios. Also,

unlike the pulse-blanking techniques, the proposal suppresses DME without dis-

carding samples, thus preserving the GPS data. Based on the CW- and chirp-type

signals as interference, we conducted studies on how to better represent chirps in

the TF domain so that the overlap between the interference and signal of interest

is minimised, aiding NMF with the separation task. To achieve this, we proposed

the use of FSST, tailored for multicomponent signals such as chirp- and CW-type

RFI, and incorporated it in our framework. Simulation results indicated that the

NMF-based schemes can mitigate strong chirp signals with distinct bandwidth val-

ues, with better performance than techniques tailored to this RFI type, and classic

methods as reported in the literature, enabling the GPS signal acquisition and fur-

ther processing even in scenarios where the interference is 50 dB stronger than the

GNSS signal. Moreover, the proposed techniques are able to suppress multiple in-

terference signals at the receiver, improving the reliability of GNSS-based services

without requiring multiple antennae.

We also investigated the RFI mitigation in the radio astronomy domain. By us-

ing data from the Parkes radio telescope, we were able to adapt the proposed NMF

framework to mitigate ADS-B signals, aiming at minimal corruption of the under-

lying signal of interest. Besides employing the supervised and semi-blind schemes,

we also proposed a supervised NMF using the ADS-B template as estimated RFI

spectrum features. Through a qualitative performance assessment, we achieved

promising results using the supervised NMF frameworks, with good ADS-B sup-

pression. In addition, the pulsar pro�les indicated that NMF appears to be able to

mitigate the interference with minimal impact on the observation of cosmic events.

Future research work in the RFI detection for GNSS will investigate the appli-

cation of denoising techniques so that even weaker RFI can be detected. Further,
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studies on other time-frequency representations more robust to noise should be con-

ducted. In the radio astronomy domain, it is interesting to analyse further sub-bands

of the Parkes dataset and their respective RFI. The number of potential interference

increases on a daily basis and further mitigation work needs to be done. Also, the

computational complexity of the proposed detector should be analysed and min-

imised with a view to hardware implementation.

Regarding RFI mitigation for GNSS, a future research direction would be to

incorporating extra information about the interference, so that the matrices WRFI,

HRFI could be better estimated. For instance, considering a noise-free environment

and chirp signals in the TF domain, at a given time instant only a few frequency bins

are nonzero. Likewise, a given frequency bin has nonzero values only a few times,

depending on its period. As a consequence, the matrices WRFI and HRFI tend to

be orthogonal. Therefore, the NMF's cost function can be modi�ed to leverage this

property, so that enhanced mitigation results could be achieved. The mathematical

details on this topic are described in Appendix A. Lastly, in the context of radio

astronomy, another path that can be followed is the application of NMF after the

pulsar folding. In this work, we operated on the spectrograms calculated from 10-ms

long signal frames. Instead, the NMF matrices could be evaluated over the DSPSR

spectrograms, which can be computed over several seconds, or even minutes worth

of data. This would reduce the overall computational complexity drastically. In

addition, further research on the pulsar pro�les should be taken, so that, along with

experts in the area, objective �gures of merit to evaluate the mitigation performance

can be established.
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Appendix A

NMF with Orthogonal Constraints

Figures A.1 illustrates the corresponding W and H matrices estimated by NMF

considering a chirp signal with B = 8 MHz. As previously mentioned, chirp signals

have orthogonal characteristics in the time and frequency domains. Therefore, one

can modify the NMF cost function to aggregate this prior knowledge about the

interference type. First, we show how to derive the standard update equations from

NMF assuming the KL as distance function.

(a) (b)

Figure A.1: Columns of WRFI (a) and rows of HRFI (b) corresponding to a 8 MHz
chirp-type RFI.

The optimisation problem to minimise the cost function F (W,H) can be ex-

pressed as

min
W,H

1
⊺
(
X⊗ log

(
X

WH

)
+WH−X

)
1

subject toW ⪰ 0,H ⪰ 0, (A.1)

where 1 ∈ NN×1, 1 ∈ NM×1 are vectors whose elements are 1's, and the division

81



betweenX andWH is performed element-wise. In [94], it is shown that the gradient

of F (W,H) with relation to W and H can be described as

∇WF (W,H) = 1′H⊺ − X

WH
H⊺, (A.2)

∇HF (W,H) = W⊺1′ −W⊺ X

WH
, (A.3)

where 1′ ∈ NN×M is a matrix composed of 1's. A simple method to describe the

update equations for W, avoiding subtractions, is to use the positive and negative

terms of the gradient ∇WF (W,H), denoted as [∇WF (W,H)]− , [∇WF (W,H)]+

respectively, as follows [58]:

W[k + 1] = W[k]⊗ [∇WF (W,H)]−

[∇WF (W,H)]+
. (A.4)

Therefore, using (A.2) and (A.4), the update equation for W can be described as

W[k + 1] = W[k]⊗
X

W[k]H[k]
H⊺[k]

1′H⊺[k]
. (A.5)

Conversely, the update equation for H using (A.3) and (A.4) are expressed as

H[k + 1] = H[k]⊗
W⊺[k + 1] X

W[k+1]H[k]

W⊺[k + 1]1′ . (A.6)

In order to impose orthogonal constraints on W and H, (A.1) can be modi�ed as

min
W,H

1
⊺
(
X⊗ log

(
X

WH

)
+WH−X

)
1+ αW

∑
i ̸=j

w⊺
iwj + αH

∑
i ̸=j

hih
⊺
j

subject toW ⪰ 0,H ⪰ 0, (A.7)

where αW ∈ R+, αH ∈ R+ are penalty factors. After cumbersome matrix derivatives,

denoting the modi�ed cost function as F (W,H), the gradients with relation to W

and H can be rewritten as

∇WF (W,H) = 1′H⊺ − X

WH
H⊺ + αW(W(1̌1̌⊺ − IS×S)), (A.8)

∇HF (W,H) = W⊺1′ −W⊺ X

WH
+ αH((1̌1̌

⊺ − IS×S)H), (A.9)

where 1̌ ∈ NS×1 is a vector of 1's, and IS×S stands for a square identity matrix

whose dimensions are de�ned by the number of components S. The resulting update
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equation for W considering (A.8) and (A.4) can be expressed as

W[k + 1] = W[k]⊗

(
X

W[k]H[k]
H⊺[k] + αWW[k]

1′H⊺[k] + αWW[k]1̌1̌⊺

)
. (A.10)

Likewise,

H[k + 1] = H[k]⊗

(
W⊺[k] X

W[k]H[k]
+ αHH[k]

W⊺[k]1′ + αH1̌1̌⊺H[k]

)
. (A.11)

As described in Chapter 4, considering the supervised NMF framework, in the

test phase the matrixH can be written asH = [H⊺
RFIH

⊺
SOI ]

⊺. Therefore, it is desired

to introduce orthogonal constraints only on HRFI. As a consequence, (A.11) should

be adapted accordingly. In this sense, assuming that the number of components for

the RFI and signal of interest is S, a partial update of H is achieved with the use

of the matrix C ∈ NS×S, de�ned as

C = diag ([1S 0S]) , (A.12)

where the operator diag (a) creates a diagonal square matrix whose nonzero elements

are described by a. Then, (A.11) can be rewritten as

H[k + 1] = H[k]⊗

(
W⊺[k] X

W[k]H[k]
+ αHCH[k]

W⊺[k]1′ + αHC1̌1̌⊺CH[k]

)
. (A.13)

This way, only the �rst S rows of H are updated according to the orthogonal con-

straints, hence, only HRFI. Therefore, it is expected that when αW and αH are set

properly during the training phase, a better representation of the chirp's frequency

features is achieved. In addition, in the test phase, if HRFI is estimated considering

the chirp signal time properties, we hope that it will yield a better representation

of such RFI, thereby enhanced suppression performance, especially in the case of

smaller bandwidth values, such as B = 2 MHz.
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