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Lúıs Filipe Rosário Lucas

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

ALGORITMOS DE PREDIÇÃO PARA COMPRESSÃO DE IMAGEM E VÍDEO

COM PERDAS

Lúıs Filipe Rosário Lucas

Janeiro/2016

Orientadores: Eduardo Antônio Barros da Silva

Sérgio Manuel Maciel de Faria

Programa: Engenharia Elétrica

Nesta tese são investigadas técnicas de predição intra para os atuais algoritmos

estado-da-arte de compressão de imagem e v́ıdeo. São propostos vários métodos de

predição que permitem reduzir a redundância espacial presente em v́ıdeos 2D e 3D,

usando algoritmos baseados em diferentes paradigmas de compressão.

A primeira proposta desta tese consiste em um esquema de predição mais eficiente

para o algoritmo Multidimensional Multiscale Parser (MMP) baseado em casamento

de padrões. Com a utilização de um maior número de modos de predição direcional o

algoritmo MMP melhora significativamente, atingindo um desempenho competitivo

com os atuais padrões de codificação baseados em transformada.

O estudo de novos métodos de predição para o MMP levou ao desenvolvimento de

um novo algoritmo de compressão de mapas de profundidade que combina predição

direcional com segmentação flex́ıvel e aproximações lineares. Os resultados expe-

rimentais, baseados na qualidade das vistas sintetizadas, apresentam ganhos taxa-

distorção consistentes sobre o padrão 3D-HEVC (High Efficiency Video Coding).

Em relação à predição linear, são apresentadas novas abordagens que usam mo-

delos lineares com restrições de esparsidade. A predição Locally Linear Embedding é

investigada com sucesso para compressão de imagens holoscópicas usando o padrão

HEVC. É também desenvolvido um novo método de predição linear esparsa, que

melhora o desempenho do HEVC, em particular para imagens com estruturas com-

plexas e repetidas. Por último, é proposto um novo método de predição generalizado

que unifica as predições direcional e linear, com base em modelos esparsos óptimos.

Os resultados experimentais mostram a vantagem do novo esquema de predição em

relação à atual predição intra do padrão HEVC.
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This thesis investigates efficient intra prediction techniques for current state-

of-the-art image and video compression algorithms. Several prediction methods are

proposed to reduce the spatial redundancy present in 2D and 3D video signals, using

several compression algorithms based on different coding paradigms.

The first proposal of this thesis consists in an improved prediction framework

for a pattern-matching-based image encoder known as Multidimensional Multiscale

Parser (MMP). It is demonstrated that the MMP algorithm significantly benefits

from using an increased number of directional prediction modes, achieving a com-

petitive performance in comparison to the transform-based standards.

In the context of the prediction methods investigated for the MMP, a new highly

predictive algorithm is presented for depth map coding, combining directional pre-

diction with flexible block partitioning and linear fitting. Based on the quality of

the synthesised views, the experimental results show consistent rate-distortion gains

relative to the current 3D-HEVC (High Efficiency Video Coding) standard.

Regarding linear prediction, new approaches that enforce sparsity constraints

on linear models are presented. The Locally Linear Embedding-based prediction

method is investigated for holoscopic image coding using the HEVC standard with

successful results. A new sparse linear prediction method is also developed, im-

proving the coding performance of HEVC, particularly for images with complex

and repeated structures. Finally, a new generalised intra prediction framework is

proposed, unifying the directional and linear prediction methods, based on opti-

mal sparse models. Experimental results show the advantage of the new prediction

framework over the current intra prediction of HEVC standard.
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Chapter 1

Introduction

This chapter presents an introduction to the research work developed in this the-

sis. The motivations for proposing new efficient predictive coding techniques are

introduced and the outline of the document structure is briefly presented.

1.1 Motivation

Over the last years, the proliferation of digital devices, associated to the ever grow-

ing bandwidth availability and speed of digital networks, has increased the demand

for digital multimedia contents. Due to the technological advances in consumer elec-

tronics, novel devices that capture, store and display visual information with higher

resolutions are launched everyday. Simultaneously, most of the existing analogue

multimedia systems have migrated to digital technology.

Digital representation presents numerous advantages over the analogue one, in-

cluding easier processing, storage and transmission of multimedia contents. The

amount of digital video applications and services provided through the global Inter-

net network has been increasing continuously, specially with the spread of computer

devices and mobile handsets, such as smartphones and tablets. These devices are

used by millions of users, allowing them to capture visual information in digital

format and immediately publish it into the cloud, for instance, using social net-

works or video sharing websites. Furthermore, the evolution of mobile networks,

that recently entered in fourth generation systems, continues making the Internet

even more accessible for portable devices.

However, digital multimedia systems go beyond the Internet scope. Recently, in

many countries, the traditional analogue television system has been replaced by dig-

ital system television standards, such as the Digital Video Broadcasting - Terrestrial

(DVB-T). In regard to television and home entertainment, digital technology has

brought a more immersive viewing experience, namely through the use of Ultra High

Definition (UHD) and three-dimensional (3D) video systems. Other applications of
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digital multimedia include video telephony, surveillance, virtual libraries or personal

digital cameras and video recorders.

Such a worldwide digital revolution has been enabled not only by the advances

of digital devices and infrastructures, but also by the advent of the image and

video compression standards. The compression algorithms aim to provide reduced

bitrate representations of the multimedia contents with minimum quality losses.

Thus, the research of efficient compression algorithms has been a constant challenge

over the last years, mainly due to the continuous increase of bitrate requirements.

Currently, the UHD and 3D video formats are the most challenging technologies, due

to the higher amount of data associated to higher resolutions and multiple views. In

order to efficiently cope with such increased bitrate requirements, the compression

algorithms exploit the increasingly available processing power and take advantage

of the existing parallel processing architectures.

The High Efficiency Video Coding (HEVC) [1, 2] is the most recent video com-

pression standard, developed with focus on two main issues: the compression of in-

creased video resolutions beyond High Definition (HD) format, and the use of parallel

processing architectures. The ITU-T Video Coding Experts Group (VCEG) and the

ISO/IEC Motion Picture Experts Group (MPEG) are the organisations responsible

for the standardisation of HEVC, as well as the previous developed compression

standards.

Since the H.261 recommendation [3], all the existing video coding standards are

based on a hybrid coding architecture, which consists in the picture prediction,

transform-based residue coding and entropy coding. The designing details of these

techniques is what mainly distinguishes the various video coding standards devel-

oped over the last years. In the case of the most recent compression algorithms,

the coding techniques tend to be more sophisticated and complex, usually providing

a superior rate-distortion performance at the cost of an increased computational

complexity.

Picture prediction is extremely important in the design of video coding algo-

rithms, since it provides the main tools to exploit the redundancy present in video

signals. Prediction methods are classified either as intra or inter methods, depending

whether they exploit the spatial or temporal redundancy, respectively. Neverthe-

less, prediction methods have experienced significant improvements over the various

video coding standard generations. For reducing temporal redundancy, the motion-

compensated prediction based on block-matching algorithm has been the main ap-

proach adopted by video coding standards. Regarding intra prediction methods, the

current solution relies on a directional prediction framework.

Intra prediction methods have been under constant evolution, with the number

of available modes increasing significantly in the most recent video coding stan-
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dard. A noticeable improvement has been observed from the MPEG-2 [4] to the

H.264/AVC (Advanced Video Coding) [5, 6] standards. While MPEG-2 only used

the DC coefficient prediction, H.264/AVC introduced the Plane mode and eight di-

rectional modes in addition to DC prediction. This tendency has been also observed

in the recent H.265/HEVC standard [1, 2], which further increased the number of

intra directional modes to 35. Due to these improvements on prediction methods,

as well as the enhancements on transform-based residue coding and entropy coding

techniques, the recent H.265/HEVC standard has shown approximately 50% of bi-

trate saving, for the same subjective quality, when compared to its predecessor, the

H.264/AVC standard.

The importance of prediction techniques for image compression has been also

demonstrated with alternative coding paradigms proposed in literature, such as the

pattern matching-based Multidimensional Multiscale Parser (MMP) image encoder

[7, 8]. Proposals of efficient prediction methods for the MMP algorithm include

the directional prediction methods similar to the ones of H.264/AVC [7], the Least-

Squares Prediction (LSP) method [9, 10] and the Template Matching (TM) algo-

rithm [11] for intra image coding. Moreover, in the context of a previous research

work on stereo image coding using the MMP algorithm [12], the LSP method and

the TM algorithm were proposed for inter prediction, specifically for disparity com-

pensation.

All these observations, related to the importance and evolution of image and

video prediction methods in the state-of-the-art video compression algorithms, en-

couraged the research of new improved prediction methods, aiming to provide new

performance benchmarks for generic image and video compression, and responding

to the most recent challenges on 3D video compression.

1.2 Main objectives and contributions

With the advent of 3D video formats and higher video resolutions, new video com-

pression algorithms have been developed in the last years and further research con-

tinues targeting new applications and content types. The predictive methods have

shown to be an important component in the design of image and video compres-

sion algorithms, becoming increasingly accurate over the video coding generations,

usually at the cost of a higher computational complexity.

In this context, this research work addresses the increasing necessity to further

compress image and video multimedia contents, including the 2D and recent 3D

content formats. The main objective of this thesis is the investigation of new pre-

diction algorithms for 2D and 3D image coding, using the existing state-of-the-art

image encoders, namely the MMP algorithm and the HEVC standard. The investi-
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gated algorithms are based on directional prediction, as well as on more computa-

tionally complex solutions, namely the linear prediction and sparse representation

techniques. Beyond still image coding application, this research work addresses the

compression of stereo images, holoscopic images, and depth map data as part of the

multiview video plus depth format.

The most relevant contributions of this thesis, related to the presented objective,

can be summarised as follows:

• Improving the MMP algorithm for still and stereo image coding

using predictive methods.

The first contribution of this research work is an improved intra prediction

scheme for the Multidimensional Multiscale Parser algorithm. Previous re-

search works using MMP algorithm have demonstrated the importance of in-

tra predictive methods for this coding paradigm, which has shown a superior

coding performance in comparison to the H.264/AVC standard, for still and

stereo image coding. The recent developments for the HEVC standard, namely

the ones regarding the intra prediction framework, motivated the proposed im-

provements to the MMP algorithm. Instead of the eight directional modes, the

proposed MMP algorithm uses 33 angular prediction modes, based on the ones

of the HEVC standard. A larger block size and improved block partitioning

tree were also investigated for the MMP algorithm.

Experimental results demonstrated the advantage of the coding tools intro-

duced in MMP algorithm for the compression of still images. Regarding the

stereo image coding scenario, the new MMP algorithm presented very com-

petitive results relative to the state-of-the-art MV-HEVC standard. For some

images, mostly synthetic ones, the MMP algorithm was able to overcome the

MV-HEVC standard. This work on predictive methods for the MMP algorithm

resulted in the conference paper C3 and it constitutes part of the submitted

paper S2 (see Appendix B).

• The Predictive Depth Coding: a new highly predictive algorithm

for depth map coding.

In the context of the multiview video plus depth format, a new algorithm,

named by Predictive Depth Coding (PDC), was developed in this thesis for

the compression of depth maps. The PDC algorithm was motivated not only

by the issues of the existing transform-based algorithms for the compression

of depth maps, but also by the efficient predictive capabilities observed for

the directional prediction framework proposed for the MMP algorithm. The

use of directional intra prediction with the flexible block partitioning scheme
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of MMP algorithm, which recursively divides one block either in horizontal or

vertical direction, showed to provide an efficient representation for depth map

signals.

Thus, the proposed PDC algorithm combines a flexible intra predictive scheme

with a straightforward residue coding method based on linear approximation.

Beyond the directional prediction framework based on 33 modes, the PDC

algorithm may use a simplified depth modelling mode that represents depth

edges that cannot be well predicted by angular modes. The whole encoder was

designed to minimise its computational complexity, while keeping an efficient

depth map compression performance.

Experimental results comparing the PDC algorithm relative to the state-of-

the-art 3D-HEVC standard using all-intra configuration for depth map cod-

ing, demonstrated the superiority of PDC when the quality of the texture

views synthesised using the encoded depth maps is evaluated. Furthermore,

an experiment validating the high potential of PDC to improve the 3D-HEVC

standard under the common test conditions was performed by using PDC to

encode the anchor I-frames of 3D-HEVC. This research topic resulted in a

journal paper J1, an MPEG document D1 and conference papers C1, C2, C4

and C6 (see Appendix B).

• Developing an efficient 3D holoscopic image encoder based on HEVC

and sparse representation methods.

The main limitation of directional intra prediction methods is that only the

first line of samples defined along the left and top margins of the block can

be exploited in order to generate the prediction output. Due to these char-

acteristics, directional prediction tends to present some issues for predicting

complex areas made of repeated patterns, such as the high redundant struc-

ture of micro-images observed in 3D holoscopic content. Thus, in order to

exploit useful information from a larger causal region for block prediction,

dictionary-based methods using sparse representations have been proposed in

literature.

One of these prediction methods, studied in this research work is known as

Locally Linear Embedding (LLE). Due to its ability to exploit correlations

between pixels at larger spatial distances, we investigated LLE method for

the compression of 3D holoscopic images. A full encoder based on the HEVC

technology and LLE-based prediction resulted from this work.

Experimental results using the developed method for 3D holoscopic image cod-

ing demonstrated its advantage over other HEVC-based algorithms proposed
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in literature for the same purpose. The developed algorithm and achieved

results were described in the conference paper C5 (see Appendix B).

• The sparse-LSP: a least-squares prediction method using adaptive

sparse models.

In the context of the LLE-based prediction method, an improved linear pre-

diction technique for generic image coding was proposed in this thesis. While

the LLE-based prediction method is able to exploit previously encoded infor-

mation based on patches extracted from a causal search window, it does not

allow to predict one sample from the closer causal neighbouring samples, sim-

ilarly to traditional least-squares-based linear prediction methods. Thus, we

developed the sparse-LSP algorithm as a new linear prediction method based

on adaptive sparse models, that extends the LLE-based prediction method.

The sparse-LSP and LLE-based prediction methods are closely related because

they use the same procedure for predictor selection. The main advantage of

sparse-LSP is the ability to select closer neighbouring predictors in the causal

area, providing a mixed functionality between LLE and traditional LSP meth-

ods. The experimental tests using sparse-LSP method in the HEVC standard,

with a fixed number of predictors, presented significant improvements for still

image coding, specially for images presenting complex textures and repeated

structures. This research work resulted in the conference paper C7 (see Ap-

pendix B).

• Developing a new intra prediction framework based on generalised

optimal sparse predictors.

The last contribution of this thesis is a new intra prediction framework that

generalises the previous investigated prediction methods, namely the direc-

tional prediction and the sparse-LSP. We presented an alternative interpreta-

tion of directional intra prediction, based on first-order linear filters combined

with geometric transformations, which served as basis for the proposed pre-

diction solution.

The result of this research work is a prediction framework based on sparse

models optimally estimated in a causal training area, improved by a geomet-

ric transformation procedure that is explicitly selected and signalled to the

decoder. In order to select and estimate the sparse linear models several algo-

rithms were investigated, such as Matching Pursuit, Least-Angle Regression

(LAR) and Least Absolute Shrinkage and Selection Operator (LASSO).

Experiments using the developed prediction framework in HEVC standard by

replacing the angular prediction modes demonstrated the advantage of this
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method to exploit the causal information in the prediction process. When

compared with other methods, the developed solution provided a superior

coding performance for most images. This investigation work was described

in the submitted paper S1 (see Appendix B).

1.3 Outline

This thesis is organised as follows. The current chapter introduces the main research

topics of this thesis, describing the motivations and objectives to achieve with this

work, as well as the original contributions of this thesis.

Chapter 2 describes some of the most relevant predictive coding techniques re-

ported in the literature for image and video compression and used along this re-

search. These techniques include the current prediction methods used in state-

of-the-art video coding standards, namely the directional intra prediction and the

motion-compensated prediction of the HEVC standard. A description of the most

important linear prediction and sparse representation methods investigated in this

thesis is also presented.

Chapter 3 presents a brief overview of the image and video coding algorithms

used in this thesis, in particular the current state-of-the-art HEVC standard and the

MMP algorithm. In this chapter, the main 3D video technologies are also presented

and the recent standardised 3D-HEVC codec is briefly described. Some benchmark

experiments illustrating the performance of the existing methods for 2D and 3D

video coding are presented.

Chapter 4 investigates an improved intra prediction framework for the MMP

algorithm, for both intra and stereo image coding applications. The motivation for

this work is to increase the prediction accuracy of MMP algorithm, mainly for high

resolution images. The experimental tests for intra image coding demonstrate the

advantage of the proposed methods, that allow for a consistent improvement on

the MMP performance. The proposed MMP algorithm is also compared with the

state-of-the-art transform-based standards for stereo image coding.

Chapter 5 presents a novel algorithm for the compression of depth maps, which

is denominated as Predictive Depth Coding algorithm. In its essence, the PDC al-

gorithm combines the directional intra prediction framework with a highly flexible

block partitioning scheme for efficient representation of depth maps. An additional

depth modelling mode, designed to represent some edges difficult to predict by direc-

tional modes, is used in PDC algorithm. The residual signal of PDC is represented

using a straightforward linear fitting method. Experimental results show the advan-

tage of PDC over the state-of-the-art 3D-HEVC standard for depth map coding. The

compression efficiency is evaluated based on the quality of the synthesised texture
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views using the encoded depth maps.

Chapter 6 proposes new prediction methods based on sparse representation and

least-squares prediction techniques, to improve the intra prediction framework of the

current state-of-the-art HEVC standard. First, we investigate an intra prediction

method for 3D holoscopic image coding using the HEVC standard, known as Locally

Linear Embedding (LLE). Experimental results demonstrate the ability of LLE-

based prediction to exploit the highly redundant structure of 3D holoscopic images

which is based on a regularly spaced array of micro-images. As a second proposal,

this chapter presents a new least-squares-based algorithm that extends the LLE-

based prediction method. The developed prediction method is equivalent to block-

based LSP method using a large filter context, subject to a sparsity constraint

that limits the number of non-null coefficients. The used predictors, i.e. non-null

coefficients, are selected using the same procedure of LLE method. The proposed

sparse-LSP method is implemented in HEVC standard and evaluated for natural

image coding, being compared with other related prediction methods.

Chapter 7 presents a new intra prediction framework that generalises the predic-

tion techniques investigated along this thesis, namely the directional and the sparse

linear prediction methods. We show that intra prediction can be viewed as a par-

ticular case of linear prediction, when first-order linear filters are combined with

geometric transformations. The proposed generalised prediction algorithm depends

on sparse linear models that are optimally estimated using several techniques, such

as Matching Pursuit, Least Angle Regression or LASSO. We evaluate the generalised

intra prediction framework for still image coding, by replacing the directional pre-

diction framework of HEVC standard with the proposed one. Experiments demon-

strate the advantage of the proposed intra predictive solution over the directional

framework, as well as other intra prediction methods proposed in literature.

Chapter 8 presents the main conclusions regarding the developed work, as well

as the main topics considered for future work.

Appendix A illustrates some of the original test signals used in simulations

throughout this thesis, namely test stereo images, grayscale natural test images

and holoscopic test images.

Appendix B presents a summary of the published papers, describing the contri-

butions of the research work of this thesis.
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Chapter 2

Prediction techniques for image

and video coding

Prediction techniques have been widely investigated over the last decades to be used

in efficient image and video compression schemes. Almost all systems for image

and video compression include some kind of predictive coding. For example, the

well-known, 25 year old, Joint Photographic Experts Group (JPEG) image coding

standard, predictively encodes the quantised DC transform coefficients. Also in

the case of video sequences, compression systems typically exploit the temporal

redundancy through the use of motion-compensated prediction.

This chapter describes some of the most important predictive coding techniques

used in this thesis, which have been reported in literature and employed in the

state-of-the-art image and video encoders. Section 2.1 provides some basic concepts

about digital video representation. Section 2.2 presents a general overview on pre-

dictive coding for image compression. In Section 2.3, the most important prediction

techniques used in the current state-of-the-art video coding standards are described.

Section 2.4 presents various linear prediction methods based on least-squares opti-

misation, while Section 2.5 describes some predictive methods inspired on sparse

representation and dimensionality reduction.

2.1 Digital video representation

A digital video sequence is a temporal succession of digital images, also referred to

as pictures or frames, which usually presents a significant amount of temporal and

spatial correlations. Typically, each image has a rectangular dimension, also called

spatial resolution, and it is organised as a matrix of numerical values, denominated

by pixels, which means picture elements.

An important aspect related to digital images is the colour representation. In
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general, image sensing systems generate colour images based on the RGB (Red,

Green and Blue) model. In this model, image colours are generated through a linear

combination of red (R), green (G) and blue (B) primary colours. The colour image

is thus formed by three equally sized pixel matrices, which represent the amount of

each primary colour at each pixel position. This contrasts to the monochromatic

image representation, which only uses one image channel, whose pixels correspond

to the brightness intensity at each position.

One of the main issues of RGB system is the spectral redundancy that usually ex-

ists between pixels of the three primary colour channels. In order to provide a more

efficient representation of colour images, the YCbCr (Luminance, Blue Chrominance

and Red Chrominance) colour system, also known as YUV, has been proposed in

ITU-R BT.601 Recommendation [13]. The idea of the YCbCr system is to con-

centrate the image spatial information in the luminance (Y) component and use

a reduced bandwidth for the chrominance (Cb and Cr) components. This colour

system exploits the fact that the human visual system (HVS) is much more sensi-

tive to luminance (or luma) information than to colour information, represented by

chrominance (or chroma) components.

A common approach used to achieve reduced bandwidth for the chrominance

components is through sub-sampling. Chrominance sub-sampling reduces the spatial

resolution of colour components, providing a more compact representation of image

or video data. Although YCbCr sub-sampling causes unrecoverable loss of colour

information, this should not be noticeable by the HVS since it is less sensitive to

colour information. The most common sub-sampling patterns are the 4:2:2 and the

4:2:0. The 4:2:2 pattern uses two Cb and two Cr samples for each group of four luma

samples, while the 4:2:0 pattern uses one Cb and one Cr samples for each group of

four luma samples. In this thesis, we will assume the 4:2:0 sub-sampling pattern,

whenever we refer to the YUV colour format.

Due to its losses, the YCbCr colour system can be viewed as a compression

technique that removes the irrelevancy associated to the colour information. In

order to better represent image and video data, other compression methods that

exploit data irrelevancy and also redundancy can be used. While the irrelevancy is

related to the information that can be removed without being perceived by the HVS,

the redundancy has a statistical nature and its removal does not cause any loss in

the original signal. Video compression methods that only exploit data redundancy

are denominated lossless compression algorithms, while the coding approaches that

exploit both redundancy and irrelevancy are the so-called lossy encoders.

In lossless image and video coding, the compressed signals can be completely

recovered after the decoding process, i.e. the original and reconstructed signals are

exactly the same. Generic lossless video compression algorithms not only exploit
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the spatial and temporal redundancies of video signals, but also the entropic re-

dundancy. The spatial or intra-frame redundancy of one image is associated to the

correlation between neighbouring pixels in the same image, tending to increase for

higher spatial resolutions. Temporal or inter-frame redundancy is related to the

existing similarities between adjacent temporal frames. Video sequences present

higher temporal correlations when their contents are constant in time or the motion

in the scene is slow. Such correlations also tend to increase for sequences with higher

temporal frame rate, because the motion effect between two consecutive frames is

smoother. Entropic redundancy is related to the statistics of the symbols transmit-

ted by the image and video compression algorithms. Symbols with higher probability

of occurrence may be more efficiently represented using shorter binary codes.

In addition to redundancy coding, the lossy compression algorithms also exploit

data irrelevancy, in order to further compress image and video signals. Contrary to

the redundancy coding, the removal of data irrelevancy is not a reversible process,

being responsible for the coding losses associated to lossy image and video compres-

sion algorithms. Such loss of information is accepted in favour of a much higher

compression ratio, as long as the video quality is not significantly degraded. The

efficiency of lossy video coding algorithms depends on their ability to remove both

the redundant and irrelevant information present in image and video signals, while

maintaining an acceptable video quality. This is measured by considering both the

compression ratio and the quality of the reconstructed signal.

2.2 Image prediction overview

The prediction process consists of a statistical estimation of future random variables

from past and present observable random variables. In image compression scenario,

the prediction of an image pixel or a group of pixels may be derived from the

previously transmitted pixels. The predicted pixels are subtracted from the original

pixels and a residual signal is obtained. In general, the prediction is considered

successful if the energy of the residual signal is lower than the energy of the original

signal. As a consequence, the residual pixels might be more efficiently encoded by

entropy coding algorithms, being transmitted with fewer bits.

Since the early days of image compression, predictive coding has showed to be

an effective technique, being widely used for both lossless and lossy image coding.

A generic compression approach commonly used to describe predictive coding is

known as Differential Pulse Code Modulation (DPCM) [14]. This method consists

in transmitting the difference between a pixel and its prediction instead of directly

transmitting the pixel’s value. The main motivation for DPCM is the fact that

most source signals, e.g. image and video signals, present a high correlation between
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Figure 2.1: DPCM block diagram for lossy image compression.

adjacent pixels.

A representative block diagram of DPCM approach for lossy image compression

is outlined in Figure 2.1. The basic principle of DPCM is to predict the current

pixel from the previous pixel (or multiple pixels) and to encode the prediction error

(or residual) resulting from the difference between the original and predicted pixels.

In a lossy coding approach, the residue signal (represented in Figure 2.1 by e) is

encoded by means of a scalar quantiser which converts a predefined range of values

into a single quantised value. In a final stage the entropy coding is used to efficiently

represent the quantised residual (e′) into fewer bits, by exploiting the existing sta-

tistical redundancy [15]. The compressed quantised residual is transmitted by the

encoder and received by the decoder. After entropy decoding the residue signal, the

reconstructed signal is obtained by summing the decoded quantised residue signal

(e′) with the prediction signal (ŝ), estimated from previous decoded pixels. All the

encoding and decoding processes are performed in a pixel-by-pixel basis.

The compression performance of DPCM depends on the accuracy of the used

prediction technique. An example of a spatial prediction technique for the pixel-

based DPCM approach processed in raster scan order is illustrated in Figure 2.2,

where the pixel X(n) is predicted based on a linear combination of the neighbouring

pixels indicated on the gray squares. This kind of prediction, based on the linear

combination of the previously decoded pixels, is known as linear prediction [16, 17].

Since the coding procedure is done in raster scan order, both encoder and decoder

can use the pixels X ′(n − 1), X ′(n − 2), X ′(n − 3) and X ′(n − 4), available in

current and previous pixel rows, in order to generate the prediction for the current

pixel, X(n). The decoded (or reconstructed) pixels should be used instead of the

original ones, in both encoder and decoder sides, because the decoded pixels may

differ from the original pixels due to the quantisation step. Since the original pixels
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Figure 2.2: Spatial prediction in a raster scan order encoder, e.g. DPCM.

are not available in the decoder side, the use of decoded pixels guarantees that the

prediction signal is identical in both encoder and decoder sides. Otherwise, if the

encoder used the original pixels for prediction, a cumulative mismatching error could

be observed between the decoded pixels at the encoder and decoder, leading to an

increased distortion in the decoder reconstructed image.

Linear Predictive Coding (LPC) techniques have been extensively studied in

literature and successfully used in image, speech and audio processing applications.

For the case of image compression, several algorithms based on DPCM, using an

adaptive approach of LPC have been presented since the early days of digital image

compression [17]. The use of adaptive prediction schemes for image compression has

shown to provide better prediction accuracy than the fixed LPC approach. This is

mainly because the adaptive methods try to adapt the predictor parameters to the

changing local statistics, that characterise the image signal. The main challenge of

adaptive prediction is to keep an affordable computational complexity.

For example, adaptive prediction can be achieved by testing a set of different

predictors in the encoder and signalling the chosen predictor to the decoder, by

using extra bits. However, the trade-off between the prediction efficiency gains and

the extra bits required to signal the chosen predictor must be carefully evaluated.

Alternatively, implicit approaches, which do not require extra signalling bits, also

can be used for adaptive prediction. A discussion on implicit linear prediction

techniques for lossy image compression using least-squares optimisation is presented

in Section 2.4.

Pixel-based compression schemes using adaptive linear predictive coding tech-

niques have also been successfully applied in lossless image compression. A basic

lossless DPCM system can be designed by discarding the quantisation step in the

block diagram of Figure 2.1. In such lossless scenario, the prediction stage may

directly receive the causal original pixels, since they are equal to the decoded pixels.
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Figure 2.3: Block diagram for a generic transform-based hybrid video compression
system.

Some examples of popular pixel-based lossless compressors using adaptive linear

and non-linear predictors are the JPEG-LS standard [18], Context-based Adap-

tive Lossless Image Codec (CALIC) [19], Minimum Rate Predictor (MRP) [20] and

Edge-Directed Prediction (EDP) [21].

Although DPCM compression is commonly associated to spatial or intra-frame

coding, it can be designed to exploit inter-frame similarities, such as temporal re-

dundancy in the case of video signals. While intra-frame coding usually uses the

causal neighbouring pixels belonging to the same frame, the inter-frame coding can

be conducted using the causal pixels belonging to another frame, e.g. the co-located

pixel in the previous coded frame.

Alternatively to the pixel-based approach, DPCM can operate with vectors. In

a vector-based DPCM, image blocks can be used as input vectors and the predic-

tion can be performed using block-based methods, such as directional prediction

or motion-compensated prediction. These prediction methods, used in the state-of-

the-art image and video coding standards, are described in Subsection 2.3. In fact,

the vector-based formulation of DPCM works quite similar to the typical transform-

based image and video compression standards. The main difference refers to the

residue quantiser that is replaced by transform coding and quantisation methods.

Figure 2.3 presents the block diagram for a generic block-based hybrid video com-

pression system using predictive coding and residue coding based on transform (T )

and quantisation (Q) methods. Apart from the residue coding module, which may
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be based on a different coding paradigm, the illustrated block diagram represents the

architecture of most image and video compression algorithms studied and developed

along this thesis.

The advantage of reducing spatial and temporal redundancies using prediction

methods is directly related to the probability distribution of the residual signal.

Unlike the original signal, the residue typically presents a highly peaked proba-

bility distribution, centred around zero, which is favourable for statistical coding

techniques. Regarding the transform coding methods, such probability function is

advantageous because the transformed residual presents a lower energy, resulting

in less non-null coefficients and producing a more compact representation in the

frequency domain. This transform-based representation tends to present a lower

entropy being more efficiently encoded with fewer bits.

Besides the prediction of original image pixels, most of image and video compres-

sion algorithms use predictive coding to efficiently encode other symbols generated

during the encoding process. For example, the motion vectors generated by motion-

compensated prediction can be differentially transmitted as a lossless DPCM system.

Such predictive coding approach is advantageous because motion vectors typically

present high correlation between neighbouring blocks, specially in situations of cam-

era panning.

2.3 State-of-the-art prediction methods

The prediction methods play an important role in image and video coding standards,

due to their ability to reduce the signal redundancy based on the previously encoded

samples. With the evolution of compression standards, more complex and sophisti-

cated predictive coding techniques have been investigated and adopted. The most

recent state-of-the-art H.264/AVC [5, 6] and H.265/HEVC [1, 2] standards use both

intra and inter prediction methods. Although these algorithms have been primarily

conceived for video compression applications, they also present efficient results for

still image coding [22]. In the image coding scenario, only intra prediction methods

can be used.

This section describes the main prediction techniques used in the state-of-the-art

H.265/HEVC standard, and highlights some differences in relation to the previous

H.264/AVC encoder. These techniques include the intra directional prediction for

efficient spatial redundancy coding and the motion-compensated prediction for inter-

frame temporal redundancy coding. The advantage of these techniques is not only

associated to their prediction efficiency but also to their reasonable computational

complexity, which make them appropriate for practical applications.
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2.3.1 Intra-frame prediction

In recent video coding standards, block-based intra prediction techniques are used

for efficient spatial redundancy exploitation. Intra predicted blocks are generated

based on the pixels of the previously encoded and reconstructed blocks. Directional

prediction plus Planar and DC modes were adopted in HEVC standard for luma

component prediction. These prediction modes are defined for square block sizes

from 4× 4 up to 32× 32. The encoder tests all the available intra prediction modes

and signals the best mode to the decoder. The decoder must generate an identical

prediction block, based on the reconstructed pixels from the previously encoded

neighbouring blocks.

The reconstructed reference samples used in the prediction process belong to

the neighbouring blocks at left-down, left, top-left, top and top-right positions, as

shown in Figure 2.4. For an N × N block, intra prediction requires a row of 2N

top neighbouring samples, a column of 2N neighbouring samples and the top-left

corner neighbouring sample, totalling 4N + 1 reference samples. For some blocks,

the left-down or top-right neighbouring blocks may not be available. This also can

occur for the top or left neighbouring blocks, e.g. at slice or tile boundaries. In

order to solve the unavailability issue, HEVC substitutes the unavailable reference

samples with the closer available reference sample values, so that all intra prediction

modes can be used.

Directional prediction modes

Directional intra prediction was first introduced in the H.264/AVC standard [5].

The idea of directional prediction is to estimate regions with a structured texture

or directional edges. In its process, directional prediction projects the reconstructed

16



18 19 20 21 22 23 24 252627 28 29 30 31 32 33 34

2

3

4

5

6

7

8

9
10
11

12

13

14

15

16

17

Figure 2.5: Intra prediction angular modes used in HEVC standard.

samples in the block neighbourhood along a specific direction. While H.264/AVC

defines 8 possible directional modes, HEVC uses a more sophisticated scheme based

on 33 directions, denominated as angular modes [1]. The 33 angular modes in HEVC

offer an increased number of possible prediction directions and are able to better

predict the larger block sizes available in HEVC. Figure 2.5 illustrates the available

prediction directions in the HEVC standard, numbered from 2 to 34.

Angular prediction modes were designed to better cover the angles near the

horizontal and vertical directions, being sparser near the diagonal directions. Such

angle distribution was observed to be more frequent and useful for prediction. When

the projected samples need to be extrapolated, HEVC uses bilinear interpolation of

the two nearest samples at integer location with 1/32 sample accuracy.

Planar and DC prediction modes

In addition to the directional modes, HEVC implements the Planar and DC pre-

diction modes, which were also used in H.264/AVC standard. These modes were

designed to efficiently predict smooth regions, by using constant or linear planes.

DC mode uses the average value of the neighbouring reference samples to gen-

erate a constant prediction for the block. The planar mode works by predicting the

block through an amplitude surface with vertical and horizontal slopes derived from

the neighbouring reference samples.
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Table 2.1: Reference sample smoothing in HEVC standard based on block size and
intra prediction modes.

Block size Intra prediction mode

4× 4 No smoothing
8× 8 Planar, Angular 2, 18 and 34 smoothing

16× 16 Planar and all Angular except 9, 10, 11, 25, 26 and 27 smoothing
32× 32 Planar and all Angular except 10 and 26 smoothing

Sample smoothing

HEVC applies sample smoothing in two distinct situations to improve intra pre-

diction results, namely the filtering of reference samples and the filtering of the

predicted samples. In H.264/AVC standard, only the reference samples are filtered.

In HEVC, this filtering is done in an adaptive manner, depending on the block size

and intra prediction mode. Table 2.1 presents the cases in which reference sample

smoothing is applied. HEVC uses the same three-tap [1 2 1]/4 filter, as defined in

H.264/AVC standard.

The other filtering proposed in HEVC is used to smooth the discontinuities

generated along block boundaries due to intra prediction. This filter is applied over

the boundary predicted samples for the DC, Angular 10 and Angular 26 modes. In

case of DC mode, when the block is smaller than 32 × 32, the samples of both the

first row and first column of the intra predicted block are filtered. A two-tap [3 1]/4

filter fed by the original value and the adjacent reference sample is used. In the

case of Angular 10, only the samples of the first column are changed by adding half

of the difference between the adjacent reference sample and the top-left reference

sample. A similar filtering is done for Angular 26 mode, but only for the first row

of predicted samples.

Prediction mode coding

An important aspect in the design of a predictive method is the need for signalling of

additional information in the bitstream. In the case of the presented intra predictive

scheme for luma prediction, the encoder should choose the best mode and signal it

to the decoder.

To better encode the prediction modes, the recent video coding standards esti-

mate the Most Probable Modes (MPMs), which allow to use fewer bits when selected.

In the case of H.264/AVC, only one MPM is used, being adaptively initialised from

the neighbouring blocks for each predicted block. Due to the increased number of

prediction modes, HEVC selects three MPMs to be more efficiently represented.

The MPMs are chosen according to the used prediction modes in the top and left
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Table 2.2: Assignment of the most probable prediction modes in HEVC.

Block neighbouring Most probable modes
modes: A and B 1st 2nd 3rd

A != B A B DC, Ang.10, Ang.26
A = B = DC, Planar A Planar, DC, Ang.26 Planar, DC, Ang.26

A = B = Angular A Angular closest to A Angular closest to A

neighbouring blocks.

The initialisation of MPMs in HEVC is shown in Table 2.2. It is possible to

observe that prediction modes from left and top neighbouring prediction blocks

are represented as modes A and B, respectively. When a neighbouring prediction

block is unavailable, the DC mode is used instead. If modes A and B are different,

they become the two first MPMs, otherwise only the first MPM is assigned. The

remaining MPMs, specifically the third one (and also the second one when A = B),

are defined in such a way that the same mode is not used twice in MPMs list.

Table 2.2 explicitly defines a small set of mode candidates that can be used for the

third MPM (and also the second MPM when A = B). In these cases, the MPM is

assigned to the first candidate that does not result in a duplicated MPM.

For encoding purposes, HEVC transmits one flag indicating whether the chosen

prediction mode matches any of the MPMs or not. If the matching occurs, the index

of the matched MPM (1 out of 3 possible values) is entropy coded and transmitted.

Otherwise, a 5-bit fixed length code is used to signal one of the remaining 32 modes

(35 modes minus 3 MPMs) to the decoder.

Chroma intra prediction

For chroma component intra prediction, HEVC considers five prediction modes: Pla-

nar, Angular 26 (vertical), Angular 10 (horizontal), DC and another mode denom-

inated as Derived mode. The objective of the Derived mode is to use for chroma

prediction the same mode as the co-located luma block. Despite allowing only 5

modes, the Derived mode gives a chance to predict the chroma block using any of

the 35 previously presented modes for luma prediction.

Derived mode relies on the assumption that corresponding luma and chroma

blocks are highly correlated. This is so because some image features, like edges or

textures, can be observed in both components. Thus, the Derived mode provides an

efficient solution to use the directional modes in chroma component prediction, ex-

ploiting some inter-component correlation and using less bits to signal the prediction

mode.

For prediction mode signalling, HEVC does not use the MPM approach for

chroma component. One flag is transmitted indicating whether or not the chosen
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chroma prediction mode is the Derived mode. When the chosen mode is not the De-

rived mode, HEVC uses a 2-bit fixed length code to signal one of the four remaining

modes. If any of these remaining modes matches the Derived mode, HEVC replaces

it by Angular 34 mode.

2.3.2 Inter-frame prediction

The efficiency of video coding algorithms highly relies on inter-frame predictive

techniques used to reduce temporal redundancy. The underlying idea of inter-frame

prediction is to estimate the target frame from one or more previously encoded

reference frames using block-based Motion Compensated Prediction (MCP). The

most common technique used for motion estimation in H.265/HEVC, as well as in

H.264/AVC, is the Block Matching Algorithm (BMA).

Inter-frame prediction is also used for disparity compensation in stereo and mul-

tiview video coding applications [23, 24]. In addition to temporal redundancy, the

stereo and multiview video systems present inter-view redundancy among the mul-

tiple views. Similar inter prediction techniques, typically based on BMA, are used

for both disparity and motion estimation. Despite being based on BMA, inter-frame

prediction methods have received significant improvements, mainly in the most re-

cent video coding standards. In the following, the state-of-the-art techniques pro-

posed for MCP in HEVC standard are discussed.

Motion compensation using Block Matching Algorithm

Motion estimation consists in searching for the causal block with highest similarity

with the target block to be predicted, using BMA over the previously encoded

frames, i.e. the reference frames. Typically, reference frames correspond to past

or future temporal frames. The frame encoding order determines which reference

frames are selected and whether future frames are available.

In its procedure, BMA subtracts the target block from each equally sized block

that exists in a search window defined in the reference frame and computes the result-

ing difference errors. The reference frame block that produces the lowest matching

error is used as prediction to the target block. The motion vector is given by the

offset between the best matched block position and the co-located position of the

target block. This vector is signalled to the decoder, in order to be able to use the

same predictor.

HEVC allows either one or two motion vectors to be chosen to compensate the

target block, in a process denominated uni-predictive or bi-predictive coding, respec-

tively. In the case of bi-predictive coding, the average of two motion compensated

blocks is performed. These vectors are obtained from frames of the two available
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reference frame lists. In addition to the motion vectors, HEVC transmits the indices

of the used reference frames and, in some cases, the reference picture list associated

to each index. Additionally, HEVC allows an enhanced prediction technique, called

weighted prediction, which is also present in H.264/AVC standard. This technique

consists in applying a scaling and offset to the predictor block. In HEVC, only the

explicit mode is used, in which the scale and offset parameters are transmitted to

the decoder.

BMA has been evolving over the various video coding standard generations.

While first block-based MCP approaches used a fixed block size, more recent algo-

rithms introduced the adaptive block size. The H.264/AVC standard uses adaptive

block size with seven possibilities from 4×4 up to 16×16 pixels for MCP, including

square and rectangular blocks generated by symmetric block partitioning. A signif-

icant evolution is visible on HEVC standard, that uses much more block sizes from

4 × 4 up to 64 × 64 pixels, including square and rectangular blocks generated by

symmetric and asymmetric block partitioning (see Subsection 3.2.1).

By using larger prediction blocks, HEVC is able to save more bits in the signalling

of the chosen motion vector, because more pixels can be predicted using a single

translational motion vector. At more complex textured regions, large blocks may

not produce efficient prediction results and a more precise motion representation

may be required. For these cases, the HEVC block partitioning gives rise to a large

number of possible block sizes that may use different motion vectors, leading to

better prediction results. However, such flexible block partitioning has the cost of

an additional computational complexity and increased bitrate requirements to signal

the chosen partitioning tree and motion information associated to each sub-block.

Besides the use of adaptive block size, MCP algorithms adopted in most video

coding standards have received some improvements in the motion vector accuracy.

Fractional interpolation has been used to generate non-integer sample positions at

the reference frames used for motion estimation. Both H.264/AVC and HEVC

standards use motion vectors up to quarter-pixel accuracy for luma component. For

chroma component, motion vector accuracy depends on the sampling format, being

eighth-pixel accuracy for the 4:2:0 sampling format.

In order to generate the luma interpolated pixels, HEVC uses an eight-tap filter

for half-pixel positions and a seven-tap filter for quarter-pixel positions, in contrast

to the H.264/AVC interpolation based on a six-tap filter for half-pixel positions

and two-pixel averaging for quarter-pixel positions. For chroma pixel interpolation,

HEVC uses four-tap filters, while H.264/AVC uses two-tap bilinear filtering. By

using larger tap filters, HEVC interpolation accuracy is improved. In contrast to the

two-stage interpolation process used by H.264/AVC standard, HEVC interpolation

uses a simpler architecture based on a single and separable process to interpolate
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Figure 2.6: Spatial candidates of motion information for Merge mode. Figure taken
from [2].

all fractional positions, without requiring any intermediate rounding operations.

Detailed information about HEVC interpolation filter can be found in [1, 2].

Merge mode

The Merge mode was introduced in HEVC standard, as a new technique to derive

motion information from spatial and temporal neighbouring blocks. This technique

extends the concepts of the direct and skip modes used in H.264/AVC, using a more

sophisticated algorithm. It provides an alternative solution for motion representa-

tion, which selects the motion vector from an adaptive set of candidate vectors and

signals it using an index number, that can be more efficiently represented.

A set of five spatial motion vector candidates, with the positions illustrated in

Figure 2.6, is considered in Merge mode. Unavailable candidates are not accounted

and duplicated candidates (i.e. with the same motion information) are removed.

According to the order a1, b1, b0, a0, b2, after the proper exclusions, the C− 1 spatial

candidates are retained, where C is the maximum number of Merge candidates

defined in the slide header. One temporal candidate is also added to fulfil the C

Merge candidates. This candidate is obtained from the right bottom pixel outside

the co-located block of one reference picture, whose index should be transmitted.

If no candidate is available in right bottom position, the middle position of the

block is used instead. HEVC Merge mode also considers some mechanisms to derive

additional candidates, when the number of available spatial and temporal candidates

is inferior to C.

Motion vector prediction

In order to encode motion vectors, in those cases when the Merge mode is not chosen,

HEVC uses a differential encoding approach for more efficient representation. This

predictive approach for motion vector coding works similarly to a lossless DPCM

system, where no loss is admitted. Its advantage is the possibility to encode a
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residual signal (difference motion vectors) that presents a concentrated probability

density function around zero, providing more efficient entropy coding results.

HEVC considers the same spatial candidate pixels of the Merge mode, illustrated

in Figure 2.6, to derive the motion vector predictors from which the difference vector

is obtained. Among these candidates, only two are chosen to be used as possible

predictors. HEVC limits the number of predictors to avoid further increasing of

the computational complexity associated to the motion estimation process. The

first motion candidate is chosen by picking up the first available candidate in the

set of left candidates arranged as a0, a1, while the second one is the first available

candidate among the set of above candidates arranged as b0, b1, b2.

When the number of available spatial motion vector predictors is less than two,

HEVC includes the temporal candidate as predictor. This is one of the mechanisms

used by HEVC to guarantee the existence of two motion vector predictors. For

the signalling, only a single binary flag is required to indicate which motion vector

predictor should be used.

2.4 Least-squares prediction methods

Least-squares methods have been used for linear prediction in many signal process-

ing applications. The modelling and compression of audio and speech signals are

successful applications of linear prediction for one-dimensional signals. Currently,

linear prediction is used in most speech coding algorithms.

In regard to image signals, several successful applications of linear prediction

for lossless image coding using Least-Squares Prediction (LSP) methods have been

presented in literature [21, 25–28]. Due to the abrupt changes in image’s local statis-

tics, adaptive approaches of linear prediction, such as the context-based adaptive

least-squares prediction [21], have shown to perform better than the non-adaptive

methods. For the case of lossy image and video compression, there are some research

works that demonstrate the advantage of the context-based adaptive prediction for

the recent state-of-the-art image and video coding algorithms [9, 29–32].

In this section, some methods based on LSP for efficient image and video com-

pression are described. Initially, the advantage of LSP for edge prediction in both

spatial and temporal directions is explained. Then, the LSP algorithm proposed for

lossless image coding is described. Finally, this section presents some variants of

LSP for block-based prediction in lossy image coding applications.
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2.4.1 Linear prediction of images and video using LSP

The principle of LSP is to linearly combine a set of causal neighbouring pixels using

coefficients previously estimated in a local causal training window. A common

implementation of LSP estimates the filter coefficients in a pixel-by-pixel basis, i.e.

a new set of coefficients is estimated for each pixel to be predicted. Such procedure

allows LSP to adaptively embed the changing local texture characteristics in the

linear prediction coefficients. Since the coefficients are estimated in a causal training

window, LSP adaptation is implicit and does not require the transmission of the

coefficient values.

In [21], it has been demonstrated that context-based adaptive LSP provides an

effective modelling of the edges present in natural images. This fact led to a new

interpretation of LSP, which is referred to as edge-directed property. The reasonable

match of the linear predictor to the edge direction is justified by the higher influence

of the pixels around the edges in the least-squares optimisation process.

The problem of edge modelling is of particular interest, due to the large amount

of information carried out by edges present in natural images. Typically, smooth

regions are easily predicted and compressed. However, the same does not apply

to edge areas or complex textured areas. The current state-of-the-art standards

use the directional intra prediction to explicitly model image edges, based on a

predefined number of fixed directions. Due to the edge-directed property, LSP is

able to provide a reasonable prediction of arbitrarily oriented edges using an implicit

methodology. The performance of LSP has been evaluated in [21], based on the

Edge-Directed Prediction algorithm for lossless image coding. The experiments

have shown a superior performance than other state-of-the-art lossless image coding

standards.

Modified approaches of LSP algorithm have been also investigated in literature

for lossy image coding. The main challenge of these methods is to adapt LSP for

block-based image coding algorithms, because pixel-based coding approaches are not

efficient for lossy compression. Some of these LSP-based methods have been imple-

mented and evaluated using the state-of-the-art transform-based H.264/AVC stan-

dard [29], as well as alternative image coding algorithms based on pattern matching

[9].

Regarding video coding applications, proposals of LSP have been investigated for

implicit motion compensation. An interesting solution is to use a spatio-temporal

prediction approach, in which temporal samples are included in the LSP filter con-

text in order to implicitly learn the motion information. This kind of LSP-based

motion compensation approach has been proposed in [31] as an alternative to the

explicit block-matching algorithm, widely used for MCP in current video coding
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Figure 2.7: LSP filter context (pixels represented by white circles) and associated
training window.

standards.

2.4.2 Context-based adaptive LSP

In this section, the context-based adaptive LSP algorithm is described as proposed

in [21] for lossless intra image coding. The main challenge of LSP is to develop

an efficient predictive model, which fully exploits the information contained in its

context.

Let X(n) denote the image pixel to be linearly predicted, where n is a two-

dimensional vector with the spatial coordinates in the image. By using the N

nearest spatial causal neighbours, according to a Nth order Markovian model, the

predicted pixel is computed as:

X̂(n) =
N∑
i=1

aiX(n− g(i)), (2.1)

where g(i) gives the relative position of each pixel in the filter context (or support),

and ai are the filter coefficients. An example of the filter context, as proposed in

[21], is illustrated in Figure 2.7 for N = 12.

In order to avoid the transmission of side information, LSP locally estimates the

prediction coefficients using a causal training window, which is available in both

the encoder and the decoder. This approach provides an implicit way to adaptively

learn the orientation of the edges contained in the training window. In [21], a

rectangular training window that contains M = 2T (T + 1) elements is proposed, as

show in Figure 2.7. The training window pixels can be arranged in a column vector

y = [X(n − h[1]) . . . X(n − h(M))]T , where h(j) represents the relative position

of each pixel. With the filter context pixels, the following M × N matrix can be
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formed:

C =


X(n− h(1)− g(1)) . . . X(n− h(1)− g(N))

...
...

X(n− h(M)− g(1)) . . . X(n− h(M)− g(N))

 .
Note that X(n− h(j)− g(i)) represents the ith filter context sample associated

to the training window pixel, given by X(n − h(j)). The filter coefficients, a =

[a1 . . . aN ]T , can be determined by least-squares optimisation, finding the solution

for mina(‖y − Ca‖2
2). A well-known closed-form solution for LS problem is given

by:

a = (CTC)−1(CTy). (2.2)

As suggested by the edge-directed property, the LSP estimated predictor coeffi-

cients tend to adapt to the orientation of the edges contained in the training window.

Because of such adaptation, LSP is able to provide a reasonable prediction of X̂(n)

along the estimated edge’s orientation.

2.4.3 Block-based LSP

Block-based implementations of LSP have been proposed specifically for lossy im-

age encoders. In [9], an LSP mode based on the previously described algorithm

was presented for block-based intra prediction in the MMP algorithm. In it, LSP

estimates the weighting coefficients on a pixel-by-pixel basis, using a slightly differ-

ent training window for each pixel of the block to predict. The training and linear

prediction procedures of such lossy-based LSP use not only the reconstructed pixels

from previously encoded blocks, but also the available predicted pixels from the

current block.

The recursive use of predicted samples in LSP algorithm has some drawbacks,

because predicted samples inherently incorporate an error not present in the recon-

structed samples. This yields a sort of error propagation. In order to reduce such

error propagation, the method in [30] presents a line-based linear prediction scheme

for the H.264/AVC standard. Unlike the pixel-based training procedure of [9], the

line-based model is fixed for the whole line of the block, being updated after each

encoded line.

An alternative LSP method for block-based intra prediction in the H.264/AVC

standard has been proposed in [29]. In it, an adaptive training window and filter

context are used, depending on the number of available neighbouring blocks. Sim-

ilarly to the LSP proposal in [9], this approach uses the predicted pixels from the

current block in addition to the reconstructed ones of the previously encoded blocks.

However, the proposal in [29] performs the training procedure on a block-by-block

basis. By performing a single training procedure for each block, the same set of esti-
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Figure 2.8: Example of a 13th order spatio-temporal filter context using causal
neighbours from the current frame (spatial neighbours) and previous encoded frame
(temporal neighbours).

mated linear coefficients is used to predict the entire block. Furthermore, due to the

reduced amount of training procedures, this solution presents a lower computational

complexity.

Some applications of LSP for linear prediction between colour image components

have been also presented using a single least-squares training procedure in the neigh-

bourhood of the block [10, 33, 34]. The work of [33] exploits the fact that the same

filter coefficients are used to predict the whole block and investigates an explicit

approach that quantises and transmits the linear coefficients.

An LSP prediction mode for inter prediction between stereo pair views has been

also proposed in [12]. One interesting feature of this proposal is the usage of multiple

filter contexts of different orders and shapes. At the encoder side, eight possible

contexts are tested and the one that produces the minimum block prediction error

is signalled to the decoder, as side information. A combination of spatial and inter

view prediction is used, by including pixels from both the left and right views in the

filter context.

2.4.4 Spatio-temporal LSP

The idea of spatio-temporal prediction has been investigated for implicit motion

compensation in video coding applications. This interesting approach exploits the

LSP edge-directed property for prediction of the motion trajectory along the tem-

poral axis, based on the duality between 2D image contour edges and 3D video

motion trajectory [31, 32]. Such duality is given by the similarity between image

edges and flow-like patterns that are observed in transversal sectioning of successive

video frames along the time direction.

In order to learn the edge information associated to the motion flow pattern

along temporal direction, an appropriate filter context that includes causal samples

from previous temporal frames is used. Such context configuration allows LSP to

implicitly embed motion trajectory in the linear predictor coefficients, based on the

training procedure in a causal window. Figure 2.8 illustrates an example of the
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referred spatio-temporal context for the LSP algorithm. Spatio-temporal context

provides some flexibility to exploit motion information from the temporal portion of

the context or to employ spatial prediction by assigning more weights to the spatial

neighbours.

The filter context of LSP should cover the flow-like patterns observed in 3D video

along temporal axis, in order to exploit the existing motion trajectories. Typically,

filter contexts as the one illustrated in Figure 2.8 tend to be more effective to predict

slow motion, in a variety of types, such as panning, rotations, zoom, and jittering.

In order to estimate LSP coefficients, a cube shaped training area that contains the

local causal pixels, considered stationary for natural slow motion video, is suggested

in [31].

The prediction efficiency of LSP can be further improved by means of an adaptive

update of the filter context. In [31], it is proposed to change LSP context configura-

tion according to the motion characteristics. The contexts are designed and chosen

based on the statistics of the causal data, not requiring the transmission of auxiliary

information. By using different contexts for zooming, jittering or panning, LSP can

better learn local motion characteristics and predict unknown samples.

When the video content is characterised by fast motion, the prediction perfor-

mance of LSP tends to reduce. The inconsistency between the training data and

the actual motion trajectory is the main reason for the performance degradation. A

solution proposed in [31] for a fast camera panning uses temporal frame warping to

compensate it. To minimise the effect of other types of unpredictable events, which

reduce the stationary statistics of the signal, an adaptive training window size is

also proposed. The main idea is to change the number of temporal frames included

in the training window, being updated on a frame-by-frame basis and explicitly

transmitted.

2.5 Sparse representation for image prediction

Another important class of algorithms, which has been increasingly considered in

literature for intra image coding, is based on sparse representation [35–37]. These

approaches are motivated by the assumption that natural image signals are formed

by few structural primitives or representative features.Sparse prediction tries to ap-

proximate the input signal using a linear combination of a small number of these

primitives, selected from a large and redundant basis, known as dictionary. Typi-

cally, these methods provide efficient prediction of highly textured areas, where the

traditional directional prediction techniques present some issues.

In the context of sparse representation, dimensionality reduction methods have

been also recently proposed for image prediction [38, 39]. The main idea of di-
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Figure 2.9: Approximation support (template) and search window used in sparse
coding and neighbour-embedding methods.

mensionality reduction techniques is to approximate the input unknown block as a

linear combination of the k nearest neighbours (k-NN) in terms of the Euclidean

distance, determined from an adaptive local dictionary. Such dictionary is formed

by elements derived from texture patches present in a causal reconstructed area in

the neighbourhood of the unknown block. This kind of prediction can be viewed as a

k-sparse representation of the block. In order to avoid the transmission of the near-

est neighbours, an approximation to a causal region defined in the neighbourhood

of the block (also called template region) is firstly determined. The optimal coeffi-

cients estimated for the template are then used to predict the unknown block, by

combining the block patches adjacent to the k-NN templates. Since the coefficients

for the template can be implicitly determined in the decoder side, no information

about the k-NN needs to be transmitted.

In this section, prediction algorithms for image and video coding based on sparse

representation are presented. These techniques include Matching Pursuit-based al-

gorithms (MP) and the Template Matching (TM) algorithm. Furthermore, dimen-

sionality reduction methods based on Non-negative Matrix Factorisation (NMF) and

Locally Linear Embedding (LLE) methods are described.

2.5.1 Sparse prediction problem formulation

Consider the N -pixel region S, the union of the Np-pixel block P to be predicted,

and the Nc-pixel approximation support (or template) C, as illustrated in Figure 2.9.

Note that the pixels from the block P to be predicted are unknown, and the ones

of the template C are the previously reconstructed pixels. By using an appropriate

dictionary, the sparse prediction method estimates the best linear approximation for

the known template C and keeps the same model to approximate the corresponding

unknown block P.

Let vector b be composed by the N pixel values of region S, stacked in a column
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(assuming zero value for unknown pixels of block P). Also, let an N ×M matrix

A represent the dictionary matrix, a horizontal concatenation of M basis functions

represented as column vectors, am, with m = 0, . . . ,M − 1. An over-complete

dictionary is used, i.e. the number of atoms (or basis functions) M is greater than

the size N of each function.

The dictionary A can be built in an adaptive way or using fixed basis functions.

In [35], fixed dictionaries based on Discrete Cosine Transform (DCT) or Discrete

Fourier Transform (DFT) waveforms are used. Adaptive dictionaries are frequently

formed by atoms derived from patches present in a local window in the reconstructed

causal neighbourhood [36]. However, dictionary learning methods have also been

used for sparse prediction [40]. In this description, adaptive dictionaries formed

based on the reconstructed causal texture patches are considered. These dictionaries

are built by stacking all the patches similar to region S, which exist in a predefined

causal search window W, as shown in Figure 2.9.

The dictionary matrix A (and vector b), can be separated into two vertically

concatenated sub-matrices Ac and Ap (and two vectors bc and bp), corresponding to

the pixels in the spatial location of template C and predicting block P, respectively.

Sparse representation algorithms aim at approximating the template C (vector bc),

by solving the following optimisation problem:

min
x
‖bc −Acx‖2

2 subject to ‖x‖0 ≤ t, (2.3)

where ‖x‖0 denotes the L0 norm of x, i.e. the number of non-zero components in

x, and t is a bound on sparsity.

Since searching for the sparsest solution for this problem is NP-hard, approxi-

mated solutions are usually estimated. The Matching Pursuit (MP) [41] and Or-

thogonal Matching Pursuit (OMP) [42] algorithms are iterative greedy methods

commonly used to find approximate solutions with tractable computational com-

plexity. Once the optimal coefficients are computed, sparse prediction estimates the

predicted signal through b̂p = Apxopt, where xopt is the sparsest solution of (2.3).

The advantage of the presented approach, based on a template area, is to pro-

vide an implicit way to derive the solution of the sparse prediction problem. By

solving the problem expressed in (2.3) exclusively based on the causal reconstructed

neighbourhood, specifically through bc and Ac data structures, the decoder can im-

plicitly derive the same sparsest solution xopt. This approach avoids the bitrate cost

associated to the explicit transmission of the sparse solution. However, since the

solution xopt was optimised for sparse representation of the template C, its predic-

tion performance for the block P may be reduced. This is so because the solution

for the template C may significantly differ from the optimal sparse solution for the
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block P. To obtain a minimal difference to the optimal solution, the assumption of

stationary statistics among the template C and block P should apply.

2.5.2 Matching Pursuit methods

The MP algorithm can be used to compute sparse signal representations by itera-

tively selecting the dictionary atoms. This method provides a possible approximate

solution to the problem in (2.3), which can be rewritten as:

min
{
‖x‖0 : ‖bc −Acx‖2

2 ≤ ρ
}
, (2.4)

with some admissible approximation error ρ ≥ 0.

MP procedure iteratively generates a sequence of possible solutions xk, which

present an increasing number of non zero components. In first iteration, x0 = 0 and

the initial residual vector is given by r0 = bc−Acx0 = bc. At iteration k, MP selects

the basis function, acmk
(with mk referring to the column index number), which has

the highest correlation with the residual rk−1 = bc−Acxk−1. The optimal dictionary

atom acmk
can be found by

mk = arg max
m

|aT
cmrk−1|
‖acm‖2

. (2.5)

The residual vector at iteration k is then computed as

rk = rk−1 −
aT
cmk

rk−1

aT
cmk

acmk

acmk
= rk−1 − xmk

acmk
(2.6)

where xmk
is the weight of the new atom, which is added to xk−1 in order to generate

the new sparse solution vector xk. MP proceeds with this algorithm until ‖bc −
Acxk‖2 ≤ ρ is satisfied.

As previously stated, the optimal solution estimated for the template area C

may not be the best one for the block P. For a more efficient prediction of block

P, some methods propose to explicitly select the solution that provides the best

prediction results for block P, from a set of possible solutions. For example, in

[35] all the intermediate solutions xk, for k = 1, . . . , kmax, where kmax is the value

of k that satisfied the maximum error ρ, are saved and tested to predict the block

P. The optimum solution xopt that minimises the block prediction error, given by

‖bp −Apxk‖2
2, is selected.

In order to reproduce the prediction process in the decoder side, the iteration k∗

associated to the optimum solution xopt should be explicitly transmitted. The pre-

diction block is calculated as b̂p = Apxopt. Algorithm 2.1 summarises the described
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Algorithm 2.1: Matching Pursuit algorithm for sparse image prediction.

Input: Ac , bc , Ap , bp , ρ

Output: b̂p , k∗

1: initialisation: k = 0 , x0 = 0 , r0 = bc −Acx0 = bc

2: repeat
3: k = k + 1

4: mk = arg maxm
|aT

cm
rk−1|

‖acm‖2

5: xmk
=

aT
cmk

rk−1

aT
cmk

acmk

6: rk = rk−1 − xmk
acmk

7: xk = xk−1 + uk , where uk is 1-sparse vector with xmk
on position mk and

remaining entries null
8: until ‖bc −Acxk‖2 ≤ ρ
9: kmax = k

10: k∗ = arg min
k∈[1,kmax]

‖bp −Apxk‖2
2

11: xopt = xk∗

12: b̂p = Apxopt

sparse image prediction procedure using MP algorithm.

Orthogonal Matching Pursuit

OMP is a popular extension to the MP algorithm, which is able to provide bet-

ter results, at the cost of an additional computational complexity [42]. The main

difference of OMP relative to MP is that all non-zero coefficients chosen so far are

updated at each iteration. In the context of the presented sparse prediction prob-

lem, this consists of an orthogonal projection of the template signal, bc, onto the

subspace spanned by the dictionary atoms selected so far.

A sparse image prediction method based on OMP is summarised in Algorithm

2.2. Note that Ak
c refers to a compacted matrix, which contains a sub-set of the

atoms of Ac, specifically all the atoms selected until iteration k. As for stopping

condition, alternative approaches that limit the maximum number of iterations can

be used.

2.5.3 Template Matching algorithm

The TM algorithm [43] can be interpreted as a particular case of the presented

sparse prediction method using MP, in which only one iteration is performed and

the weighting coefficient is equal to 1. In practice, TM algorithm can be formulated

as a search procedure which compares the reference template with all equally shaped

candidate templates existing in a causal search window (the atoms of the dictionary).

The prediction of the unknown block is given by the reconstructed block associated
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Algorithm 2.2: Orthogonal Matching Pursuit algorithm for sparse image pre-
diction.

Input: Ac , bc , Ap , bp , ρ

Output: b̂p , k∗

1: initialisation: k = 0 , x0 = 0 , r0 = bc , A0
c = [ ] , A0

p = [ ]
2: repeat
3: k = k + 1

4: mk = arg maxm
|aT

cmrk−1|
‖acm‖2

5: Ak
c = Ak−1

c ∪ {acmk
} and Ak

p = Ak−1
p ∪ {apmk

}
6: xk =

(
AkT

c Ak
c

)−1
AkT

c bc = Ak+

c bc

7: rk = bc −Ak
cxk

8: until ‖bc −Acxk‖2 ≤ ρ
9: kmax = k

10: k∗ = arg min
k∈[1,kmax]

‖bp −Apxk‖2
2

11: xopt = xk∗

12: b̂p = Apxopt

(or adjacent) to the candidate template, which resulted in the lowest matching error.

Typically, the reconstructed pixels belonging to the neighbourhood of the block to

be predicted are used as reference template, equivalently to the area C, of Figure 2.9.

Improved variations of TM algorithm have been proposed and implemented in

H.264/AVC standard, e.g. TM based on the averaging of multiple predictors [44]

and TM using adaptive illumination compensation methods [45]. The use of TM

algorithm in addition to the traditional intra prediction modes has shown to be

advantageous to predict textured areas. Applications of BMA for intra image pre-

diction have also shown to provide effective prediction results [46]. The principle

of both methods is to reuse repeated patterns along the image. However, BMA

requires some kind of signalling to indicate the optimal matched block in the causal

reconstructed area, while TM provides an implicit way to find the matching block in

the decoder. Hybrid approaches combining both BMA and TM for intra prediction

have also been investigated in the past [47].

2.5.4 Neighbour embedding methods

Neighbour embedding methods form a subset of data dimensionality reduction meth-

ods, which have been successfully applied for intra image prediction. The idea of

these methods is to search for the NNs (in terms of the Euclidean distance) of the

input data point and then to compute the linear combination of the NNs that best

approximate the input data point.

Data dimensionality reduction methods rely on the assumption that the real

world is sampled from a non-linear low dimensional manifold, which is embedded in
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the high dimensional space. When applied to image prediction, these methods learn

the neighbour embedding of input data, but they do not proceed to the computation

of the low dimensional space. Typical proposals find the linear combination of the

NN patches which best approximates some known data, e.g. the causal template in

the block neighbourhood, and then extrapolate that linear relationship to the NNs

of the unknown block to be predicted. This kind of operation makes neighbour em-

bedding methods very similar to sparse prediction techniques based on MP methods.

Actually, neighbour embedding methods can be interpreted as sparse image repre-

sentations in which the selected dictionary atoms (i.e. the elements that participate

in sparse solution) are given by k-NN patches. The investigation of two neighbour

embedding methods for image prediction was performed in [38, 39], namely the

Non-negative Matrix Factorisation (NMF) and Locally Linear Embedding (LLE)

techniques. The main difference between these methods is related to the method

used to compute the linear coefficients associated to the NN patches.

The NMF method consists in a low rank approximation of the input data, given

by the product of two matrices of lower dimension whose elements are non-negative.

One of these matrices typically contains basis functions (in its columns) that provide

a good linear approximation of the input data. The non-negative constraint only

allows additive linear combinations, which in some applications can be useful for

physical interpretation of the results. In the case of image data, which is made of

non-negative values, this constraint ensures a non-negative prediction result. Sim-

ilarly to the sparse prediction problem given by equation (2.3), the NMF image

prediction method is formulated as a constrained least-squares problem, which im-

poses non-negative coefficients. A sparsity constraint is also imposed, by using this

method over a compacted matrix formed by k-NN patches. A detailed description

of this algorithm can be found in [38].

The LLE has been designed to learn the underlying non-linear manifolds em-

bedded in the high dimensional data. The method exploits the local linear char-

acteristics of the high dimensional data, in order to generate a lower dimensional

representation which preserves those characteristics. Applications of LLE to intra

image prediction have shown better results than NMF method [38]. Given its im-

portance for this thesis, the description of the LLE algorithm for image prediction

as proposed in [38] is presented in what follows.

Image prediction based on LLE

The LLE method first searches a representation of the template C (refer to Fig-

ure 2.9) using a linear combination of the k-NN patches defined in the matrix Ac,

built from the causal search window W, as previously defined in Subsection 2.5.1.

Then, the same estimated coefficients are used to predict the block P, by linearly
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combining the corresponding k-NN patches defined in matrix Ab.

The k-NN method works like a sparsity constraint by choosing the k closest

patches (represented by the columns of Ac) to the template C (vector bc), in terms

of Euclidean distance. The sub-matrix of Ac containing the selected k-NN patches is

denoted by Ak
c . In order to compute the linear weights, LLE problem solves a least-

squares problem, which imposes a sum-to-one constraint on the linear weights. This

constraint is part of LLE algorithm forcing the approximation of each data point

to lie in the linear subspace spanned by its nearest neighbours. The enunciated

problem can be written as

min
xk

‖bc −Ak
cxk‖2

2 subject to
∑
m

xkm = 1. (2.7)

where xk is the solution vector containing the k optimal linear coefficients. Note that,

although sparsity constraint is not explicit in problem formulation, the selection of a

limited number of columns of Ac by k-NN method imposes the sparse representation.

The solution to this problem can be obtained based on a covariance matrix,

Dk, computed for the k-NN templates of Ak
c in reference to the template bc, by

solving the linear system Dkxk = 1 (where 1 is the column vector of ones), and

then rescaling the weights so that they sum to one. The predicted block is then

computed using b̂p = Apxk.

For an improved performance, the proposal of [38] suggests to vary the sparsity

constraint, by testing several k-NNs, e.g. with k = 1, . . . , K. The number of k-

NNs can be either constant for the whole encoding process or explicitly signalled to

the decoder. In the second case, the optimal number of NNs is selected by testing

the block P prediction accuracy for each k value. The Algorithm 2.3 describes the

presented LLE method for intra image prediction, assuming the explicit selection

and signalling of the optimal sparsity value k∗.

Experiments performed in [38] using H.264/AVC standard demonstrate the ad-

vantage of the described LLE-based prediction method. The reported results show

that LLE provides superior prediction quality and compression efficiency than di-

rectional prediction, TM algorithm, as well as other sparse prediction algorithms

based on MP method.

In a more recent research work, modified variants of the neighbour embedding

algorithms, denominated as correspondence map-aided neighbour embedding meth-

ods, were proposed [39]. The idea of these methods is to enable alternative pro-

cedures to select the k-NNs, which make use of auxiliary information transmitted

to the decoder. These methods solve some limitations of implicit NNs selection,

namely when the template and the block to be predicted are not correlated.

35



Algorithm 2.3: LLE-based algorithm for intra image prediction.

Input: Ac , bc , Ap , bp , K

Output: b̂p , k∗

1: initialisation: k = 0 , A0
c = [ ] , A0

p = [ ] , A
′0
c = Ac

2: repeat
3: k = k + 1
4: mk = arg min

m|acm∈A
′k−1
c
{dm} where dm = ‖bc − acm‖2

2

5: Ak
c = Ak−1

c ∪ {acmk
} and Ak

p = Ak−1
p ∪ {apmk

}
6: A

′k
c ← Ac\{Ak

c}
7: calculate covariance matrix Dk of Ak

c in reference to bc

8: solve Dkxk = 1 for xk

9: xk = xk

xT
k 1

10: until k = K
11: k∗ = arg min

k∈[1,K]
‖bp −Ak

pxk‖2
2

12: xopt = xk∗

13: b̂p = Ak∗
p xopt

2.6 Conclusions

In this chapter we presented an overview of several prediction techniques proposed

for image and video compression. Predictive techniques are of great importance in

the design of current image and video coding algorithms, being the main focus of

the investigation described in this thesis.

Section 2.2 presented the basis of predictive image coding, describing the legacy

DPCM encoder and its relations with the current lossless and lossy image and video

encoders. In Section 2.3, the state-of-the-art on image and video prediction, namely

the directional intra prediction and motion-compensated prediction methods were

described, as proposed in the recent HEVC standard. In this thesis, the directional

intra prediction has been investigated to improve the MMP algorithm in Chapter 4

and for efficient depth map coding as proposed in Chapter 5.

Two important families of prediction techniques were also presented in this chap-

ter, namely the linear prediction methods, based on least-squares optimisation de-

scribed in Section 2.4, and the sparse representation-based prediction methods de-

scribed in Section 2.5. Due to the importance of linear prediction and sparse repre-

sentation, alternative techniques based on these principles have been investigated in

this thesis for the compression of generic images. For instance, an extended version

of the LLE-based prediction method, described in Subsection 2.5.4, is proposed in

Chapter 6 for the HEVC encoder.

In the following chapter, we describe the main image and video coding algorithms

used along this thesis, where the proposed prediction techniques were implemented

and evaluated.
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Chapter 3

Image and video coding algorithms

In this chapter, we present an overview on the main image and video coding al-

gorithms used in this thesis, for both 2D and 3D video signals. These algorithms

have been utilised as reference benchmarks for the experimental evaluation of the

proposed prediction methods. Some of them have also been used as basis compres-

sion frameworks, where the proposed prediction methods were implemented and

evaluated.

In Section 3.1 we introduce some basic concepts about video compression, in par-

ticular the hybrid architecture that characterises the coding algorithms described in

this chapter. Section 3.2 describes the state-of-the-art algorithms for lossy compres-

sion of 2D video signals, which includes the recent transform-based High Efficiency

Video Coding (HEVC) standard and the pattern matching-based Multidimensional

Multiscale Parser (MMP) algorithm. Although HEVC was primarily designed for

video compression, its performance for intra-frame coding has made it an unequiv-

ocal approach for still image coding, presenting state-of-the-art results. Thus, an

experimental study of HEVC and MMP algorithms for still image and video cod-

ing is presented. Section 3.3 addresses the 3D video compression issues. First, an

overview is given on the main 3D technologies, namely stereo, multiview, depth en-

hanced and holoscopic video formats. Then, the current algorithms and standards

for 3D video compression are described. Some experimental results illustrating the

3D video standards coding performance are also presented.

3.1 Hybrid video compression

The ever growing consumption of multimedia contents, specifically still images and

monoscopic video, associated to the increasing diversity of services and applications

motivated the development of more efficient video coding standards able to cope

with the increasing compression requirements. The main goal of the lossy image

and video coding algorithms is to reduce the amount of information required to
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represent these signals, while minimising the loss of subjective quality.

The adopted hybrid video coding model has shown to be an effective solution,

as it has been used in all video coding standards since the early days of digital video

compression. As shown in previous chapter, the hybrid architecture is based on three

main components: the prediction stage, the transform-based coding and entropy

coding. The main difference among each generation of video coding standards is

the design of the coding techniques that constitute each component of the hybrid

architecture, which results in different compression efficiency and computational

complexity.

The prediction stage typically comprises both intra and inter prediction tools.

As previously explained in Chapter 2, intra prediction uses the previously encoded

regions of the same image frame, while inter prediction exploits the temporal re-

dundancy between different frames. Depending on the available prediction methods

for each frame, video coding algorithms define different types of compressed frames,

namely I, P and B frames. These frames types are used to define the Group Of

Pictures (GOP) structure, i.e. a group of successive frames in a video sequence,

which specifies the order in which I-, P- and B-frames are used.

The I-frame is an intra-predicted image frame, which only uses spatial prediction

methods, does not depending on any other frame. I-frames are used as reference

frames for temporal prediction of subsequent frames, through inter prediction meth-

ods. These frames are commonly positioned at certain instants along the video

sequence, in order to provide random access function. This is possible because

I-frames do not have any coding dependency from previous encoded frames and,

consequently, the decoding process can be restarted. Other obvious use cases of

I-frames are the first frame of a sequence and the compression of still images. In

such cases, no temporal frame exists and only spatial redundancies can be exploited.

In addition to intra prediction methods, the P- and B-frame types may use inter

prediction techniques to exploit temporal redundancies, that exist between neigh-

bouring frames. For this purpose, most video encoders use Motion-Compensated

Prediction (MCP) for inter prediction. As discussed in previous chapter, MCP basi-

cally consists on copying a reconstructed block from a previously encoded reference

frame to the position of the current target block. Currently, in HEVC standard,

the main difference between P and B frames is that the former can only estimate

one block for MCP, while the latter may use bi-predictive coding by combining two

motion compensation candidates.

Since the predicted signal barely matches the original signal, the residual signal

(or prediction error) computed from the difference between the original and predicted

signals must be determined and encoded. Typical video coding standards compress

the residual signal using the transform coding and quantisation methods. The pur-

38



pose of transform coding is to convert the residual signal, originally represented

in spatial domain, into the frequency domain. Such a transformation decorrelates

the residue signal and concentrates the signal energy in few coefficients, mostly at

low frequencies. Quantisation is used to remove the least relevant coefficients and

roughly approximate the remaining non-zero coefficients. This procedure intends to

remove the irrelevant data, which is not perceptible by the HVS. Finally, the com-

pressed representation of the residual signal generated after the quantiser output

is entropy encoded. Entropy coding stage is used to further reduce the statistical

redundancy of the symbols that represent the quantised residual.

In order to achieve good rate-distortion (RD) performance, image and video

compression algorithms should use optimal coding modes at each situation. For-

mally, the goal of an encoder is to minimise the distortion D, subject to a maximum

constraint Rc, on the number of used bits R (rate). This problem can be solved

using Lagrangian optimisation, where the distortion term is weighted against the

rate term [48]. The Lagrangian minimisation is an unconstrained problem given by:

min J, where J = D + λR , (3.1)

where J is the Lagrangian cost minimised for a specific value of the Lagrangian

parameter λ. The λ value has a correspondence with the desired target bitrate Rc.

Since the relation between the coding modes and the Lagrangian cost J is un-

known, typical video encoders evaluate the distortion and rate of each available

coding mode, selecting the coding solution that provides the minimum Lagrangian

cost J , for some predefined λ. This is an effective solution to achieve optimal usage of

the available coding tools with highest RD performance. However, such a procedure

involves an exhaustive search over all coding possibilities and existing parameters,

which requires a lot of computational resources. To alleviate the computational

complexity problem, practical encoder implementations often consider sub-optimal

solutions, for instance, only a sub-set of coding modes or parameters are evaluated.

While the coding decisions are responsibility of the encoder, the decoder algo-

rithm simply generates the reconstructed image or video using the optimal coding

modes selected by the encoder, and signalled in the compressed bitstream. After

parsing the bitstream and decoding the prediction symbols and residual informa-

tion, the decoder generates the predicted signal. Then, the inverse quantisation

and inverse transform are used to generate the decompressed residual signal. The

final reconstructed signal is obtained by summing the residual to the intra or inter

predicted signal. As the prediction methods depend on the previous processed in-

formation, the reconstructed signal is stored to be used as reference by intra and

inter prediction methods. In the following sections, we describe some of the most
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important video coding implementations for this study.

3.2 Compression of 2D video

The H.265/HEVC [1, 2] is the most recent transform-based video coding standard

developed by the Joint Collaborative Team on Video Coding (JCT-VC), which is a

partnership of the two main standardisation organisations: the ITU-T Video Coding

Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG).

It provides a significantly improved compression performance relative to its prede-

cessor H.264/AVC standard [5, 6], achieving an average bitrate reduction of 50% for

the same subjective quality. HEVC addresses the main video coding challenges that

appeared in the recent years, in particular the compression of high video resolutions

beyond HD format, as well as the use of parallel processing architectures.

Other compression paradigms have been investigated and presented in litera-

ture as alternative to the dominant transform-based video coding standards. The

MMP is one of these alternative algorithms, which belongs to the family of pat-

tern matching compression schemes [7, 8]. MMP was initially proposed as a generic

lossy data compression algorithm, but, as most improvements were focused on image

coding applications, it rapidly became a successful image encoder. However, loss-

less versions of the MMP algorithm were also recently developed for image coding

[49, 50]. Additionally, a wide range of signals have been encoded using the MMP

paradigm, including natural images [7], text documents [8], compound documents

[8], stereoscopic images [12, 51], depth maps [50, 52], as well as one-dimensional

electrocardiogram signals [53].

Some recent works also propose the MMP paradigm for video compression us-

ing two different approaches. The first approach is based on the same architec-

ture and coding techniques of H.264/AVC encoder, but the intra prediction and

motion-compensation residues are encoded using the MMP paradigm, instead of the

transform coding method [54, 55]. The second approach is an extension of MMP

algorithm for three-dimensional signals, which processes the 2D video sequence as

a volumetric signal based on 3D blocks, instead of using a frame-by-frame coding

approach [56, 57].

3.2.1 H.265/HEVC standard

This section presents an overview of H.265/HEVC standard [1], focusing on the

most relevant features of the encoding algorithm. A more detailed description of

HEVC standard can be found in [2]. We also briefly present the main techniques

introduced in HEVC extension for screen content coding [58].
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Figure 3.1: Architecture of HEVC algorithm.

Similarly to all previous video coding standards, HEVC only standardises the

bitstream formulation and decoding process. This includes the bitstream structure,

its syntax elements, the semantics of the bitstream elements and the process to

generate the output images from the bitstream elements. Because the standard does

not specify the encoder algorithm, the implementation of HEVC encoder is flexible

enough to consider different optimisation levels, in respect to the computational

complexity or compression quality. Thus, in order to be considered as an HEVC

encoder, an encoding algorithm only needs to ensure that the produced bitstream

complies the standard specifications.

Figure 3.1 presents the hybrid architecture of a typical HEVC encoder. In HEVC,

each frame is partitioned into equally sized blocks which are processed independently.

The encoder starts applying intra prediction methods and, for the case of P and B

frames, it also tests inter prediction methods based on the motion estimation proce-

dure. Then, the residual signal is computed, transformed by linear spatial transform,

quantised and entropy coded. The resulting bits associated to the compressed resid-

ual, the chosen intra prediction modes, the motion information of inter prediction

methods, as well as an auxiliary encoding information constitute the HEVC bit-

stream. In order to improve the overall quality of the reconstructed images and

smooth the coding artifacts, HEVC also uses the Deblocking Filter (DBF) and the

Sample Adaptive Offset (SAO) methods. During the encoding process, HEVC needs

to replicate the decoder procedure, so that the same reconstructed causal samples

in the current frame and previously encoded frames are available for intra and inter

prediction methods. In the decoding loop, the compressed residual is delivered to the

inverse quantisation and inverse transform modules of Figure 3.1. The reconstructed

samples are generated by adding the decoded residual to the predicted signal and

filtering with DBF and SAO methods. When one frame is completely encoded,
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the corresponding reconstruction, generated by the decoder output, is stored in the

decoded picture buffer to be used as reference frame by the prediction methods of

subsequent frames.

HEVC coding structures

Although HEVC follows the traditional hybrid coding architecture similarly to the

previous video coding standards, it presents significant differences regarding en-

coding data structures. Instead of the macroblock structure of H.264/AVC, which

uses 16× 16 luma blocks and 8× 8 chroma blocks, assuming YUV data with 4:2:0

sub-sampling, the HEVC algorithm defines the Coding Tree Unit (CTU), which is

composed by the luma and chroma Coding Tree Blocks (CTBs) and associated syn-

tax. The size of the luma CTB is configured by the encoder and signalled into the

bitstream headers, allowing three possibilities: 16 × 16, 32 × 32 and 64 × 64 block

sizes. The use of larger CTBs tends to provide better coding efficiency, specially for

high-resolution video contents.

Each CTB represents a quadtree structure, with the partitions being denomi-

nated Coding Blocks (CBs). The Largest CB size (LCB) corresponds to the con-

figured CTB size. The quadtree partitioning can be recursively applied until the

smallest CB (SCB) is reached, which cannot be inferior to 8 × 8 pixels. Similarly

to the LCB size, the SCB size should be configured by the encoder and signalled

in the bitstream headers. A maximum number of four quadtree levels are possible,

concretely when LCB is 64× 64 pixels and SCB is 8× 8 pixels. HEVC applies the

same quadtree partitioning structure to luminance and chrominance CBs, except for

the minimum size of chrominance blocks. The luma CB and corresponding chroma

CBs constitute the Coding Unit (CU).

The CU is the root for two types of structures that can further partition the

block, specifically the Prediction Unit (PU) and the Transform Unit (TU), which

are formed by the luma and chroma Prediction Blocks (PBs) and Transform Blocks

(TBs), respectively. The decision whether to use intra or inter prediction methods

is made at the CU level. Thus, HEVC does not allow to use both intra and inter

prediction methods in the same CU. However, different prediction modes of the same

class (i.e. intra or inter) can be used within one CU, by partitioning it into multiple

PUs.

When the CU is decided to be predicted using intra-frame methods, the size of

the PB must be equal to the CB, except for the smallest available CB size. In the

particular case of SCB, HEVC encoder may optionally partition it into four equally

sized PBs, using one bit signalling flag. By partitioning the SCB into four PBs,

different prediction modes can be used in the same CB, and smaller blocks can be

used, such as 4 × 4 PBs when the SCB size is 8 × 8 pixels. The use of smaller
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Figure 3.2: Partitioning modes of an inter-coded CB into PBs. Figure taken from
[2].

blocks provides a higher prediction accuracy, namely for complex image regions.

Although the PB corresponds to the image samples predicted by the same mode,

the derivation of these samples, for the case of intra prediction modes, is done at

TB level. The motivation for this procedure is to better reuse the reconstructed

samples within the PB, specifically when the TBs (where residue coding is used) are

smaller than the PB. An interesting non-normative research work which modifies

HEVC standard to use non-square PUs for intra prediction is presented in [59].

For the case of inter-predicted CUs, HEVC defines a larger amount of partitioning

modes, which may divide the luma and chroma CBs into one, two or four PBs.

Figure 3.2 illustrates the available partitioning modes for inter-coded CUs. The

M × M PB mode represents no partitioning at all, corresponding to a PB that

matches the CB. The M/2×M/2 mode divides the CB into four equally sized PBs,

but it only can be used on the SCB, when the minimum configured size is larger than

8×8 pixels. Note that, the use of the M/2×M/2 partitioning mode only makes sense

at SCB, because otherwise it would overlap the existing quadtree partitioning for

the CBs. The M ×M and M/2×M/2 partitioning modes are the same as the ones

available for intra prediction methods. The difference is that M/2×M/2 partition,

in the case of intra prediction, can be used when SCB is set to 8× 8 size. Because

of this, only intra prediction can be used on 4 × 4 PBs. Regarding the remaining

partitioning modes of Figure 3.2, the M/2×M and M ×M/2 provide vertical and

horizontal block partitioning, respectively. The lower four modes of Figure 3.2 are

denominated as Asymmetric Motion Partitioning (AMP), since they divide the CB

into two partitions with asymmetric sizes (one quarter and three quarters of the CB

area). The AMP modes only are allowed when luma CB size is 16 × 16 pixels or

larger.

In HEVC, the transform-based residue coding uses a quadtree structure with root

at the CB. In such structure, the CB can be divided into four TB partitions, which

43



in turn can be further partitioned, in a recursive fashion. The transform coding

and quantisation are applied at the leaves of the resulting quadtree. The maximum

depth of the residual quadtree, as well as the minimum and maximum TB sizes are

initially defined at encoder configuration. The minimum luma TB size should not

be inferior to 4× 4 pixels and the maximum luma TB size should not be superior to

32×32 pixels. During the encoding procedure, a flag may be transmitted to indicate

whether a residual quadtree partitioning occurs or not. When the minimum TB size

is reached, or when CB is larger than the maximum possible size of TB (forcing

block partitioning), the transmission of the flag is omitted. A particular feature of

the residual quadtree is the possibility to use transform coding in one TB that spans

across multiple inter-predicted PBs.

In addition to the block-based structures, HEVC defines the slice and tile struc-

tures for error resiliency and data parallel processing purposes. The slice is a se-

quence of CTUs processed in raster scan order, which belong to the same frame.

One frame may contain one or more slices. Each slice can be decoded independently

from other slices of the same picture, except for the effects of the in-loop filter near

the slice boundaries. This implies, for instance, that intra-prediction methods do

not use spatial neighbouring information across the slice boundaries. The main

advantage of using slices is the ability to resynchronise the decoding process when

transmission errors occur. The slices can be classified as I, P or B-slices.

The tile structure has been introduced in HEVC to enable the implementation of

parallel processing techniques for both encoding and decoding processes. Tiles are

rectangular regions of the image, that can be independently encoded and decoded,

except for deblocking filter. The decoding of these regions may share some header

information, namely when they are defined within the same slice. Another possible

application of tiles is the random access in different spatial regions of one image.

The tiles provide a coarse solution for parallel processing without requiring any

advanced synchronisation of threads. An alternative solution for a finer degree of

parallelism, is to use the Wavefront Parallel Processing (WPP) technique. The

WPP divides the slice into rows of CTUs and processes them in a synchronised

way. The idea is to start processing one row of CTUs after two CTUs have been

processed in the previous row. The advantage of WPP over tiles is the possibility

to use prediction methods across WPP boundaries, which provides better coding

efficiency.

Intra-frame prediction

As previously explained in Chapter 2, the intra-frame prediction plays an important

role for reducing spatial redundancy of each frame. HEVC uses the Planar, DC and

angular modes, which are defined at TB level with sizes that vary between 4× 4 up
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to 32 × 32. A detailed description of these prediction modes has been previously

presented in Subsection 2.3.1. Here, we describe some aspects related to the encoder

implementation of intra prediction.

The encoder implementation proposed by MPEG, given by the reference HM

software, uses the Rough Mode Decision (RMD) method to estimate the optimal

intra prediction mode with reduced computational complexity [60]. Note that, this

is a non-normative technique, as it is used at encoder side to speed up the intra RD

optimisation process. The size of RMD candidates list depends on the PB size. For

PBs larger than 8× 8 pixels, RMD uses three candidates, while for PBs with 8× 8

or 4× 4 pixels, eight candidates are defined.

During the encoding procedure, the candidate mode list of RMD is built using

a low complexity RD evaluation procedure, which avoids the compression of the

residual signal. The RD cost function uses a distortion term based on the sum

of the absolute coefficient values that result from the Hadamard transform of the

prediction residual, and a rate term given by the number of bits used by HEVC

to encode the prediction mode. The modes with lower RD cost are included in

the candidate mode list. In addition to these modes, HEVC includes the MPMs,

derived from the neighbouring PBs (see Subsection 2.3.1), into the candidate mode

list. Once the candidate mode list is generated, the candidate modes are evaluated

using full RD optimisation, where the residual signal is encoded by transform coding

and quantisation, considering both the luma and chroma components, and using a

simplified residual quadtree [61]. As a last step, the best mode obtained from the

previous optimisation procedure is evaluated again using full RD optimisation, but

without any restriction on the residual quadtree partitioning.

Inter-frame prediction

In HEVC, inter-frame prediction is carried out by the motion-compensated predic-

tion, which has been previously described in Subsection 2.3.2. In order to perform

motion estimation, HEVC stores the previously decoded pictures in the Decoded Pic-

ture Buffer (DPB). These pictures are identified by a Picture Order Count (POC)

that is transmitted in each slice header. The POC is important, because the encod-

ing order of the sequence frames can be different from the temporal picture order.

This allows, for instance, to use future temporal pictures as reference pictures for

MCP. Not all pictures of DPB are necessarily used as reference for MCP, and the

set of reference pictures effectively used by MCP is configurable, being referred to

as Reference Picture Set (RPS). Similarly to its predecessor, HEVC defines two

lists of pictures in DPB, called reference picture list 0 and list 1. In the case of

uni-prediction, MCP may use a picture from either of these lists, which should be

signalled. For bi-prediction, one picture from each list is used.
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The block matching-based motion estimation is one of the most computation-

ally complex procedures in the HEVC encoder. The optimal solution for motion

estimation is provided by the full-search algorithm, which tests all the possible can-

didate blocks of the search area and selects the best one. Despite its optimality,

the full-search algorithm requires the highest computational complexity. However,

as the motion estimation is a non-normative procedure, encoders may implement

alternative search algorithms that provide sub-optimal solutions with reduced com-

putational effort. Fast search algorithms, that avoid most of the search points, have

been proposed in literature to alleviate the problem of computational complexity.

An example of a fast search algorithm, used in the reference HM software, is the

Test Zone Search (TZS) [62].

Transform and quantisation

Similarly to the previous standards, HEVC uses 2D transform and quantisation

methods to encode the residual signal. The 2D transform is computed by applying

the 1D transform in the horizontal and vertical directions. The core transform

matrices are based on the Discrete Cosine Transform (DCT) basis functions and the

used sizes include the 4× 4, 8× 8, 16× 16 and 32× 32, depending on the TB. For

simplicity, only the 32 × 32 transform matrix is defined. Sub-sampled versions of

this matrix are used to derive the remaining transform matrix sizes.

For the case of 4× 4 luma residual blocks generated by intra prediction modes,

HEVC uses an alternative integer transform based on the Discrete Sine Transform

(DST). The motivation for DST is related to the statistics of the residual signal

of intra predicted blocks, which tend to present higher residual amplitudes as the

distance to the left and top block boundaries increases. Experiments have shown

that DST provides 1% bitrate savings for the compression of intra predicted blocks,

in comparison to the 4× 4 DCT-based transform, without requiring a significantly

superior computational complexity. DST is not used for other TB sizes, because the

compression efficiency gains are irrelevant.

Regarding the quantisation method, HEVC follows a similar procedure as

H.264/AVC standard, known as Uniform-Reconstruction Quantiser (URQ). The

quantisation is the method responsible by the coding losses, given that it performs

an irreversible many-to-one mapping of the transform coefficients. In general terms,

URQ procedure consists of an integer division of the transform coefficients by a quan-

tiser step. The value of the quantiser step depends on the Quantisation Parameter

(QP) defined in the encoder configuration, which may vary from 0 to 51.
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Entropy coding

In contrast to H.264/AVC standard, which allows two entropy coding methods,

HEVC only uses the Context Adaptive Binary Arithmetic Coding (CABAC) [63].

CABAC is an arithmetic coding method that only uses binary symbols (bin), con-

sidering different probability models for each bin. The context model selection has

an important weight in the entropy coding efficiency, being carefully designed in

HEVC standard. For example, in addition to the spatial neighbouring information,

which is used in H.264/AVC standard, the HEVC standard exploits the depth of

the partitioned coding tree or residual transform tree in order to derive the context

models for several syntax elements.

Regarding transform coefficient coding, CABAC uses a scanning method to or-

ganise the coefficients and transmits the position of the last non-zero transform

coefficient, a significance map, the sign bits and the levels for the transform coeffi-

cients. Three coefficient scanning methods are available: the diagonal up-right, the

horizontal and the vertical scan. The coefficient scanning is implicitly selected and

always performed in 4 × 4 sub-blocks for all TB sizes. Details about the context

models selection and the compression of each syntax element of HEVC can be found

in [1].

In-loop filters

As previously referred, HEVC may use two filtering procedures over the recon-

structed samples before writing them into the DPB, namely the DBF and the SAO

filters. The main purpose of DBF is to reduce blocking artefacts caused by the

block-based coding tools, operating similarly to the DBF of H.264/AVC standard.

DBF is applied to the samples adjacent to the PU or TU boundaries, that are aligned

on a 8 × 8 sample grid, for both luma and chroma components. Such grid-based

restriction reduces the computational complexity and improves parallel-processing

implementations. Three strength levels can be used by DBF depending on the coded

block characteristics.

The SAO is a non-linear filter, that is adaptively applied to all samples of the

image, after the DBF filter. In its operation, the SAO filter modifies the samples

by adding an offset value, extracted from lookup tables transmitted by the encoder.

For each CTB, the encoder decides whether to apply the SAO filter or not, and if

used, one of the two available filter types is applied, namely the band offset or the

edge offset. In the band offset mode the added offset value depends on the sample

amplitude, while the edge offset uses the gradient to classify and derive the offset

value.
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HEVC screen content coding extensions

In the context of the increasing number of applications using non-camera-captured

video content, such as computer screen sharing, wireless display or cloud gaming, the

JCT-VC partnership initiated a new standardisation process on HEVC extensions

for screen content coding (SCC), referred to as HEVC SCC [58, 64, 65]. HEVC SCC

introduces new video coding tools within the basis HEVC technology, in order to

improve its coding performance for the screen content type, which includes rendered

graphics, text, animation, natural and mixed data. In the following, we review

the main techniques available in the current draft of HEVC SCC standard (draft

version 5) [65], namely the Intra Block Copy (IBC), Palette Coding, Adaptive Colour

Transform (ACT) and Adaptive Motion Resolution (AMR).

The IBC method consists of BMA using the previously encoded region in the

same frame as reference for the search procedure. While MCP uses BMA to esti-

mate motion information based on the previously processed frames, the IBC tries to

predict repetitive patterns that exist in the same frame. Such technique is motivated

by the fact that screen content presents a different spatial correlation than natural

content. For instance, video with text and graphics often presents repetitive pat-

terns within the same frame, thus being efficiently represented by IBC. Similarly to

MCP, the IBC method estimates a displacement vector that indicates the position of

the predictor block relative to that of the current PU to be predicted. The residual

signal is encoded using the existing transform-based methods of HEVC algorithm.

Due to the similarities between IBC and inter prediction methods, HEVC SCC

unifies the design of these modes. As consequence, the IBC is reproduced by adding

the current frame as reference picture for inter prediction modes. The whole re-

constructed region of the current frame (within the same slice and tile), before the

in-loop filters in the encoder, is used for block searching. However, in order to allow

the Wavefront Parallel Processing, the top-right regions of the current block cannot

be considered in the search window, as illustrated in Figure 3.3. IBC is executed

at PU level, being able to use all the PU sizes available for inter prediction. The

estimated vectors use full pixel accuracy.

The purpose of Palette Coding method is to efficiently represent image blocks

that contain a small number of representative colour values. This kind of image

blocks are more frequent in screen content than natural video. The text regions are

a clear example where only the foreground text colour and background colour are

present. The Palette Coding is used at CU level, instead of intra prediction and

transform-based residue coding. In its procedure, the Palette Coding method classi-

fies all CU pixels into a list of major colours (with higher frequency of occurrence in

the CU). An index table, referred to as palette, maps each major colour of the CU
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Figure 3.3: Search window used by IBC (represented by gray CTUs). Figure taken
from [58].

to an index. All the CU pixels are converted into the respective indices, excluding

some isolated pixels with colour values not belonging to the palette. For such pixels,

an escape index is used. The indices are signalled to the decoder based on run-length

coding, using either the left or top neighbour as predictor. For each escape pixel, its

actual value is explicitly transmitted together with the escape index. Details about

the Palette Coding procedure can be found in [58, 64].

The Adaptive Colour Transform is used at CU level to remove some redundancy

that may exist between the components of RGB colour space, even after the encoder

prediction step. For the case of screen content, the image signal is often encoded

using the RGB colour space. It tends to provide more effective coding results,

specially when very saturated colours exist. However, for some image regions, RGB

components may present a high redundancy between them. For such cases, the ACT

method converts each residual pixel of the CU into an alternative colour space that

concentrates their energy. As the ACT is applied on the residual signal, it cannot

be used with Palette Coding, because there is no residue coding.

In HEVC SCC, Adaptive Motion Resolution consists of a slice-level flag that

indicates whether the current slice uses full-pixel motion vectors or not. When full-

pixel precision is defined, there is no need to estimate fractional motion, neither to

transmit the bits representing fractional precision. The main motivation for AMR is

the fact that screen content is often generated with knowledge of the pixel positions.

Consequently, the existing motion is often aligned with the image pixels. In these

situations, the bitrate associated to fractional portion of motion vectors can be

saved.

49



3.2.2 Multidimensional Multiscale Parser algorithm

Although the original MMP paradigm can be used to encode any N-dimensional

signal, the research work of the last years on MMP algorithm has been focused on

image and video compression applications. Currently, several proposals of MMP

algorithms can be found for image and video coding [7, 8, 55]. Since the research

work of this thesis is focused on the image coding implementation of MMP algorithm,

the video versions of MMP are not discussed. Therefore, in this section we present

an overview of the MMP-intra algorithm [7, 8], which has been proposed for generic

image coding.

Apart from the residue coding module, which is based on the pattern-matching

paradigm, the MMP-intra algorithm presents a hybrid coding architecture similar

to other image coding standards, including the prediction stage, residue coding and

entropy coding modules. The main idea of MMP paradigm is to approximate the

prediction error using elements from an adaptive multiscale dictionary. By reusing

the previously encoded patterns, MMP is able to learn the signal features and better

encode the redundant information.

MMP begins dividing the input image into 16×16 non-overlapping blocks which

are sequentially encoded. Each block may be recursively divided according to a

flexible block partitioning rule [66]. Each partitioning occurs in either vertical or

horizontal directions, producing two equally sized sub-blocks. By applying this

partitioning rule down to 1× 1 pixel, a total of 25 block sizes (or scales) are defined

by all the possible combinations: 2m × 2n, for m,n = 0, ..., 4, as illustrated in

Figure 3.4.

Predictive coding was introduced in MMP-intra encoder in order to improve

its coding performance, especially for smooth images [7]. MMP uses a hierarchical

prediction framework based on ten prediction modes, which include the Most Fre-

quent Value (MFV) mode [67], eight directional modes inspired on the ones used in

H.264/AVC encoder and the intra LSP mode [9]. The prediction step is applied on

sub-blocks obtained through the MMP flexible partitioning scheme, having dimen-

sions from 16×16 down to 4×4, as represented in Figure 3.4 by gray blocks. Due to

the prediction step, the residual blocks tend to be homogeneous, with a probability

distribution that is highly peaked and centred around zero. Experimental tests have

shown that this peaked distribution favours the adaptation process of the MMP

dictionary and increases the coding performance of the algorithm [7].

The residue generated by each prediction mode is approximated using the MMP

coding paradigm. In this process, a given residue patch is recursively partitioned to

find the optimal block representation. In order to decide whether a block should be

partitioned or not, the rate-distortion cost J = D+ λR is evaluated, where λ is the
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Figure 3.4: Possible block sizes (or scales) of MMP-intra algorithm.

Lagrangian multiplier that defines the target RD point, R is the rate required for the

representation and D is the representation distortion given by the Sum of Squared

Errors (SSE). When encoding a block X l belonging to scale l, the dictionary pattern

Sl
i that minimises the cost function J is chosen. Then, the block is divided into two

equally sized sub-blocks, X l−1
1 and X l−1

2 . The patterns from dictionary scale l − 1

that better represent the two sub-blocks are chosen, according to the Lagrangian

cost function. If the sum of the Lagrangian costs of each sub-block is smaller than

the cost of the parent block representation, then a block partitioning occurs. This

procedure is recursively performed by evaluating both the horizontal and vertical

partitioning directions until all the possible block sizes are tested, down to 1 × 1

pixel.

The MMP block partitioning is performed in two different stages: prediction and

residue coding. Each 16×16 initial block can be divided into sub-blocks that are pre-

dicted using different prediction modes. This defines a segmentation tree where each

node corresponds to a block partitioning and each leaf corresponds to the sub-block

where the prediction mode is used and the residue pattern is generated. Figure 3.5

illustrates the MMP segmentation tree for one block, where the prediction tree is

represented by dark circles. Horizontal and vertical block partitioning directions are

represented on the tree, by “h” and “v”.

Each leaf Pn of the prediction tree corresponds to a residue block, which can be

further partitioned into smaller blocks, using the same rules as for the partitioning

of prediction blocks. Thus, the final residue block can be approximated either by
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Figure 3.5: Example of an optimal MMP segmentation tree for some block (left)
and corresponding partitioned block (right).

one dictionary element (e.g., P1 in Figure 3.5) or by the concatenation of several

dictionary elements, from different scales (e.g., P2 and P3, in Figure 3.5). Each

used dictionary block is represented by its index, in. Note that, in Figure 3.5 solid

lines represent prediction block partitioning, while dashed lines represent the residue

sub-blocks.

The optimal MMP block partitioning is represented by a binary segmentation

tree, that contains all the required information to generate the block approximation.

The corresponding bitstream is constructed by scanning the tree from top to bottom,

coding all nodes and leaves, using Adaptive Arithmetic Coding (AAC) [68]. Due to

the flexible block partitioning, a binary flag needs to be transmitted at each node

to signal whether the partitioning direction is horizontal or vertical. In order to

identify each tree leaf, a binary flag is transmitted before the index of the dictionary

pattern that approximates the residue block for the leaf.

The adaptation of the MMP dictionary is a key factor for its coding performance.

During the encoding process, the dictionary patterns used to represent the residue

blocks are concatenated and added to the dictionary. This procedure is strictly

replicated in the decoder side, so that the dictionary is synchronised and does not

need to be transmitted. The MMP dictionary is organised into multiple scales, i.e.

block sizes. When an element is added to the dictionary, expanded and contracted

versions of that element are computed and inserted into the corresponding dictionary

scales. This procedure ensures that the new block will be available to encode future

blocks, irrespective of their dimensions. As the MMP dictionary is updated after

each coded block of size 16× 16, it rapidly learns the image’s features.

Several improvements have been proposed to MMP algorithm, such as the usage

of geometric transformations over the concatenated elements to enrich dictionary

updating, an efficient redundancy control scheme that limits the insertion of similar

elements in dictionary, a norm-equalisation procedure to adapt the new elements to
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(a) Barbara (512× 512) (b) Poznan Street, camera 4, frame 0 (1920× 1088)

Figure 3.6: Used test images: Barbara (left) and Poznan Street, camera 4, frame 0
(right).

the residue statistical distribution, among others [7].

3.2.3 Experimental results

In this section we present a brief performance evaluation of the H.265/HEVC and

MMP algorithms for generic image and video coding. The results of these methods

are compared with the ones of the previous H.264/AVC standard. Since the MMP-

based video coding implementations are out of scope of this thesis, we restricted the

analysis of MMP performance for image coding scenario.

Two test images and two test sequences, with different resolutions, were selected

for the experiments. The test images are the well known Barbara image, with

512× 512 pixels, and the first frame of Poznan Street (camera 4), with 1920× 1088

pixels. Figure 3.6 illustrates the luminance component of these test images. The

video sequences were selected from the HEVC common test conditions [69], namely

the Race Horses from class C (832×480), with 300 frames (30 fps) and the Basketball

Drive from class B (1920× 1080), with 500 frames (50 fps). This is a representative

selection of natural image and video signals used along this thesis.

In order to evaluate the compression performance of the tested algorithms, we

adopted the most widely used and known objective distortion metric, specifically

the Peak Signal-to-Noise Ratio (PSNR), as a function of the compression ratio. The

PSNR metric is usually measured in decibels (dB) and, for the case of the 8-bit pixel

images, it is defined as:

PSNRdB = 10 log10

2552

1

M.N

M−1∑
m=0

N−1∑
n=0

(
I(m,n)− Î(m,n)

)2

= 10 log10

2552

MSE(I, Î)
,

(3.2)

where M and N are the image dimensions in number of pixels, I is the original
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image and Î is the decoded image, that presents the coding distortions. The 255

value in the numerator of the equation is the maximum value of the 8-bit pixel

image. MSE is the Mean Squared Error function between two images. For the case

of video sequences, the average PSNR of all frames is used.

The compression ratio of image signals is usually measured in terms of bits-per-

pixel (bpp), i.e. the average number of bits used to represent each pixel of the

image. For the case of 8-bit pixel gray images, the maximum bpp value is 8, which

means no compression at all. Regarding video sequences, the bitrate in kilobits-per-

second (kbps) is frequently used. The bitrate can be computed based on the average

number of bits used per frame and the frame rate value, which is a characteristic of

the video sequence.

Along this thesis, we will make extensive use of RD plots representing the PSNR

as a function of the compression ratio or bitrate for evaluating the proposed coding

tools. Another evaluation method used in this thesis is the Bjontegaard Delta PSNR

(BDPSNR) or Bjontegaard Delta Rate (BDRATE) [70]. These metrics allow to

compare two RD curves, commonly from different encoding algorithms, by means

of a single scalar value that traduces the average PSNR improvement (BDPSNR)

or the average percent bitrate saving (BDRATE), between the two coding methods

associated to the compared RD curves.

In these experiments, we used the H.264/AVC encoder implementation provided

by JM-18.5 reference software [71] and the HEVC encoder implementation provided

by HM-14.0 reference software [72]. Regarding the image compression experiments,

we used H.264/AVC with high profile for intra frame coding and the HEVC with

main still picture profile. The QP values recommended in HEVC common test

conditions document [69], namely: 37, 32, 27 and 22, were used for both transform-

based coding standards. For the case of MMP algorithm, the Lambda parameter

is used to specify the RD points. We selected the Lambda values 150, 50, 15 and

5, because they approximately comprehend the same range of PSNR values as the

QP values used for transform-based standards. Note that, although these algorithms

have been conceived for video compression, it has been shown that their performance

for still image coding application is superior than the one of the traditional image

encoders [22], such as JPEG [73] and JPEG2000 [74].

Figure 3.7 presents the RD performance of the HEVC, MMP and H.264/AVC

for Barbara image and first frame of Poznan Street (camera 4), specifically the

PSNR of luminance component as a function of the luminance compression ratio in

bpp. For both images, the state-of-the-art HEVC standard presents the best RD

performance. Regarding the MMP algorithm, these results confirm its superiority

over H.264/AVC, as shown in literature [22]. However, one may observe that its

RD performance is inferior than the one of the most recent transform-based HEVC
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Figure 3.7: Rate-distortion performance of HEVC, MMP and H.264 for test images
Barbara and Poznan Street, camera 4, frame 0.

standard. The disadvantage of MMP relative to HEVC standard constitutes one of

the motivations for the first research topic addressed in this thesis, in Chapter 4.

One may also observe that the gains of MMP algorithm relative to H.264/AVC are

higher for Barbara image than for the Poznan Street frame. This is because Barbara

image presents textured areas made of repeated patterns that are better predicted

by the LSP mode used in MMP algorithm [9].

Regarding the experiments with test sequences, the HEVC random access main
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Figure 3.8: Rate-distortion performance of HEVC and H.264 for test video sequences
Race Horses (class C) and Basketball Drive (class B).

profile, with an intra period of 32 frames and the GOP size of 8 frames, has been

adopted. Additional details of the used encoder configuration are available in the

default random access configuration file that comes with HM-14.0 reference software.

For H.264/AVC standard, we used the HM-like random access configuration, that

comes with the JM-18.5 reference software, setting the intra period to 32. The used

QP values were the same as the ones used for the image coding experiments.

Figure 3.8 presents the RD performance of HEVC versus H.264/AVC for Race
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Horses and Basketball Drive test sequences, plotting the PSNR of luminance (Y) and

chrominances (U and V) as a function of the total bitrate in kbps. These results

show that HEVC algorithm presents a consistent advantage over the H.264/AVC

standard, for both test sequences. The gains of HEVC are more expressive for the

Full HD resolution Basketball Drive sequence, demonstrating the superiority of this

standard for the compression of high resolution test sequences.

3.3 Compression of 3D video

In recent years there has been a growing interest in 3D video contents, mainly

motivated by the recent advances on 3D display and transmission technologies, as

well as by the increasing production of 3D contents. 3D video introduces the depth

effect on the observed content, providing a more immersive and powerful viewing

experience for the users. Due to its greater realism, 3D systems have been used in

many applications. Beyond the cinema and entertainment markets, 3D technology

is found in professional applications, such as medical surgery, robotics, education,

among others.

In this section, we describe the main 3D technologies that have been used along

this thesis, focusing on the compression methods proposed for the 3D representation

formats. A brief overview of the most recent 3D-HEVC video coding standard, that

is based on HEVC technology, is also presented. Furthermore, the performance of

3D-HEVC algorithm is illustrated and discussed. A more detailed description of

3D-HEVC standard can be found in [23, 75].

3.3.1 3D video systems

Two definitions have been used to classify 3D technologies, namely the 3D Television

(3DTV) and the Free-viewpoint Television (FTV) video [76, 77]. The differentia-

tion of these concepts has historical reasons, being more related to the activity focus,

since the differences in the technology are not clear. The 3DTV video concept is

commonly associated to the ability for offering depth perception of the observed

scenario, while the FTV allows interactive changing of the viewpoint within some

operation range, similarly to computer graphics systems [78]. The 3DTV and FTV

video are not mutually exclusive, since a single 3D system may provide depth per-

ception and free navigation.

A common element between the 3DTV and FTV technologies is the use of multi-

ple views of the same scene, that need to be encoded and transmitted. Depending on

the amount of used views and whether geometry information is used or not, several

3D scene representation formats can be defined. The choice of the 3D representation
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format has a large influence in the design of the 3D video system, specifically in the

type of decoder, capture system, display technology, required bandwidth and sys-

tem complexity. For example, geometry-based representations usually require the

use of view synthesis (or rendering) algorithms on the decoder side [79, 80], which

has strong implications on its complexity.

In the following, we review some of the most important 3D representation formats

that have been used in this thesis, namely the stereo, the multiview, the multiview

video+depth and the holoscopic video. The presented review for each 3D video for-

mat addresses the capturing, coding and displaying stages of the 3D data processing

chain.

Stereo video

The stereo concept is related to the creation of depth illusion in the observed images.

Such a functionality is provided by stereoscopic systems which exploit the binocular

vision, specifically by separately presenting two slightly different images to the left

and right eyes of the viewer. The human brain combines the two received images

to give the perception of 3D depth in the observed scene. The stereo video is the

conventional 3D representation format for stereoscopic systems [81]. This format

simply uses two video views, which is the minimum number of views required to

provide depth perception. Because of this, stereo video is also the simplest solution

for 3D representation.

Typically, the acquisition of stereo video requires two capturing sensors installed

in one or two independent video cameras. The two video views present significant

similarities, since they represent the same scene captured from slightly different view-

points. The distance between the left and right camera sensors (baseline distance),

often corresponds to the average distance between the human eyes.

Each view of the stereo video can be separately encoded and transmitted, in

a process known as simulcast coding. Although it provides backward compatibil-

ity with existing compression algorithms, this approach does not exploit redundant

information present between views, requiring approximately double the rate of a

single-view video. To improve the compression of stereo video, extensions to the

state-of-the-art coding algorithms, such as H.264/AVC and HEVC, have been de-

ployed. These stereo extensions introduce inter-view prediction methods that exploit

the redundancy between views. Typically, the stereo video codecs independently

encode the first view using the traditional single-view coding techniques, while the

second view is dependently encoded using the same coding tools plus inter-view

prediction methods that exploit similar information from the first view. To further

improve the compression of stereo video, an uneven bitrate allocation between the

two views can be also performed. This procedure is motivated by the binocular
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Left view Right view

Side-by-side format Top-bottom format

Figure 3.9: Frame-compatible formats for stereo video: top images represent an
example of a stereo pair; bottom images represent the side-by-side and top-bottom
formats of the given stereo pair.

suppression theory [82], which states that the stereo vision quality is dominated by

the quality of the higher fidelity view.

Another solution to represent the stereo video are the so called frame-compatible

formats [83]. The purpose of these formats is to facilitate the introduction of stereo

video in the existing infrastructure and transmission equipments. The common

approaches multiplex the two stereo video views into a single frame, so that the

conventional 2D video codecs can be used to process the stereo video. Examples

of two frame-compatible formats, namely side-by-side and top-bottom ones, are

illustrated in Figure 3.9. Other frame-compatible formats include row interleaved,

column interleaved and checkerboard [83]. Alternatively, the stereo video views

can be multiplexed in time, by interleaving right and left frames. Although frame-

compatible formats are easily deployed, they may cause some losses in spatial and

temporal resolution. Furthermore, the RD performance of frame-compatible formats

is inferior to the one of the stereo video codecs explicitly designed to exploit inter-

view dependencies.

Regarding the displaying technologies for stereo contents, there are many avail-

able solutions that map each stereo view into the respective eye. The most common

solutions for stereoscopic displaying require the use of auxiliary glasses. Depending

whether the displays interact or not with the glasses, these solutions may be classi-

fied as active or passive systems. An example of an active system is based on shutter
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Figure 3.10: Three different arrangements for a 100-camera capturing system: linear
(left), circular (centre) and 2D-array (right). Figure taken from [78].

glasses electronically controlled by the display. Passive systems can use polarised

glasses, colour anaglyph glasses, chromadepth glasses, among others.

Alternative displays, that do not require the use of proper glasses, are known

as autostereoscopic displays. Although, many autostereoscopic displays are based

on stereo video, presenting only one observation point, most recent technologies

use the multiview video format. The fact that the stereo video only captures one

observation point of the scene is a drawback, because the viewer cannot observe

different viewpoints of the scene, neither experience the motion parallax effect.

Multiview video

While the stereo video only uses two views, the multiview video format involves

a larger number of views representing the same 3D scene. The use of multiple

views is important to provide more interactive applications, that allow to change the

observation point of the scene. Typically, the multiview video is captured using an

array of cameras, that may be configured using different arrangements and densities.

Figure 3.10 illustrates three possible camera arrangements, namely the linear, the

circular and the 2D-array arrangements, for the 100-camera system proposed in [78].

The deployment of a multi-camera system is a challenging task, mainly due to

the difficulties related to the synchronisation of the cameras and the handling of

large amounts of data, specially in real time applications. However, for the case

of static scenes, this capturing process can be highly simplified. Instead of using

multiple cameras, a single camera can be used to record the same scene from several

positions at different temporal instants, given that the lighting conditions do not

change. Possible solutions include the use of robots to change the camera position

or turn tables to rotate the scene.

Multiview video systems tend to produce huge amounts of data that need to

be processed and transmitted. The processing stage usually involves the correction

of some discrepancies and artifacts that exist between the captured views, namely

by using algorithms for geometrical calibration, colour correction or to adjust lens

distortion [84]. These systems often require the use of advanced computer clusters,

mainly for the case of highly dense camera arrangements.
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Figure 3.11: Two common autostereoscopic displaying technologies: parallax barrier
(left) and lenticular screen (right). Figure taken from [88].

Due to the increased amount of data associated to the multiple views, it is cru-

cial to use efficient compression algorithms for the multiview video format. The

state-of-the-art coding approaches exploit the inter-view dependencies across sev-

eral views, in addition to the spatial and temporal redundancies. The Multiview

Video Coding (MVC) [5, 85, 86] is an amendment to the H.264/AVC standard for

multiview video coding, that enables efficient inter-view prediction by adding de-

coded frames of other views to the reference picture list. A multiview extension for

the HEVC standard has been also standardised with the designation of MV-HEVC

[23, 87]. Although the multiview extensions of current state-of-the-art standards

provide significant coding gains, the complex dependencies associated to the tempo-

ral and inter-view prediction limit the random access capabilities and increase the

system delay, memory requirements and computational complexity of the encoder.

For displaying multiview video contents, autostereoscopic displays based on mul-

tiple views, typically eight or sixteen views, are used. These displays do not require

the use of glasses, since they perform spatial multiplexing of distinct views into each

eye using a light-directing mechanism. By using many views, the autostereoscopic

displays may provide free navigation (within some limited spatial range) as well as

motion parallax effect.

The autostereoscopic displays can be classified as active, when they track the

head position of the user, or passive, when a large number of views is displayed si-

multaneously based on spatial multiplexing [88]. Two common technologies used by

autostereoscopic displays are illustrated in Figure 3.11, namely the parallax barrier,

based on slits in opaque sheet, and the lenticular screen, which uses thin cylindrical

lenses. The main drawback of these displaying technologies is the blurring effect

caused due to pixel crosstalk.

A common problem of the autostereoscopic displays is the visual fatigue and

discomfort, caused by the accommodation-convergence conflict [89]. An alternative

displaying technology which avoids this kind of problems and provides a real 3D
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Figure 3.12: Example of MVD format using three texture video views (left) and
three depth map views (right).

sensation is the holography. Although this technology is commonly associated to

light field representation, it is possible to generate holograms from multiview video

data as shown in [90].

Multiview video+depth

One of the main problems of the multiview video is the large number of views that

need to be encoded and transmitted. Despite the significant RD gains provided

by the multiview extensions for the state-of-the-art video coding standards, the

total bitrate tends to increase linearly with the number of views. An alternative

solution for 3D video representation makes use of the geometry information of the

scene to reduce the number of required views [91, 92]. The idea is to transmit fewer

texture views and render the missing ones, using the well-known Depth Image Based

Rendering (DIBR) algorithm [79, 80]. This algorithm makes use of the geometry

information, usually provided by the depth maps, to warp the few transmitted

texture views to the desired virtual camera positions, and thus generate the virtual

texture views. This kind of 3D video representation, that combines the multiview

video with depth information, is known as Multiview Video+Depth format (MVD).

Figure 3.12 illustrates an example of MVD data based on three texture video views

(left) and three depth map views (right).

Three different methods can be used to obtain depth information, depending on

the scenario and known data. For the case of 3D scenes whose geometry model is

known, such as those used on 3D computer graphics applications, depth maps can

be directly extracted, given the camera parameters. A solution for capturing depth

data from the world scene consists in using active depth range cameras [93]. These

cameras are able to measure the distance between each point of the scene and the

camera by using appropriate techniques, such as time-of-flight, structured light or

light coding. However, these cameras have some limitations, mainly because they

tend to generate low resolution depth maps and the objects need to be next to the

depth camera. Furthermore, the depth is captured at a slightly different position

than the texture data, because both sensors cannot occupy the same physical po-
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sition. Another solution to obtain depth information is based on stereo matching

algorithms that estimate depth data from a pair of texture views [94]. The principle

of these algorithms is to find matching points of the same objects between the two

images, i.e. the disparity at each point, and then derive the depth information by

triangulation. Although there many algorithms to perform depth estimation, these

methods present several issues related to the mismatching errors that often occur

at smooth regions and occluded areas. One solution to minimise some mismatching

errors and reduce the computational complexity of depth estimation algorithms is

to use horizontally aligned cameras or apply a rectification process that virtually

rotates the textures views, so that the vertical component of disparity is zero and

the search procedure only needs to be performed in the horizontal direction.

In order to efficiently compress the MVD data, appropriate methods that exploit

similarities of both texture video and depth maps are required. Depth maps are

piecewise-smooth signals which are made of smooth areas associated to several depth

values separated by sharp edges at object boundaries. Although the state-of-the-

art multiview video encoders, such as the MVC or the MV-HEVC, can be used to

encode the multiple views of depth maps, as done with multiview video, these coding

standards were not optimised to encode depth map data.

The use of transform-based coding standards for depth map compression tends

to create coding artifacts, specifically edge smoothing and ringing effects. This kind

of coding errors on depth maps usually reduces the performance of the rendering

procedures, causing severe distortions in the synthesised views. In order to better

compress depth maps and improve their performance for rendering applications,

several coding algorithms have been proposed in the literature [23, 52, 95–97]. In

the last years, the MPEG group has been working in the standardisation of a new

coding solution for the MVD format.

Although the MVD format includes depth information, it provides a more effi-

cient representation than the multiview video, due to the reduced number of texture

views. Moreover, the depth maps usually convey less information than texture views,

being encoded often using less than 20% of the texture video bitrate [98]. The main

drawback of the MVD format is the computational complexity added to the decoder,

that needs to synthesise the missing texture views from the few transmitted ones

and depth maps.

Regarding the displaying side, the autostereoscopic displays or holographic sys-

tems can be used to present the MVD contents, as previously explained for the

multiview video format, providing free-navigation and motion parallax effect. When

compared to the multiview video format, MVD provides higher flexibility and easier

adaptation to different 3D displays. This is because, in MVD most views need to

be synthesised at the decoder side, which allows to generate any desired number of
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views. Moreover, other parameters, such as the baseline distance between the views,

can be configured at the display side. These features of MVD format contribute to

decouple the creation of 3D contents from the display technology.

Other related 3D representation formats that use geometry information based

on depth maps are the video+depth and the layered depth video (LVD) [81, 99].

The video+depth format is a particular case of MVD format, which only uses one

texture view and the respective depth map. This format is specified by ISO/IEC

23002-3, also referred to as MPEG-C Part 3 [100]. Since it only uses one texture

view, this format presents backward compatibility with legacy 2D systems. It allows

also to generate multiple views due to the depth information. However, this format

has a limited rendering range, since it can not properly handle occlusions. In fact,

the MVD format provides a higher level of interactivity and enables a larger navi-

gation range, due to the larger number of provided texture views and depth maps.

Regarding the LVD format, its principle relies on using multiple layers for different

objects in one view, transmitting the colour and depth information for each layer as

distinct views. The advantage of this format is the ability to represent colour and

depth information of occluded areas, becoming less error prone than video+depth

format in the presence of occlusions.

Holoscopic video

The 3D holoscopic imaging is a type of light field technique, which allows to record

light intensity and direction information of a captured 3D object. This technique was

firstly proposed in [101] with the designation of integral photography. Basically, a

3D holoscopic system comprises a regularly spaced 2D array of small spherical micro-

lenses, known as a “fly’s eye” lens array, which can be used in both acquisition and

display of the 3D holoscopic content, as shown in Figure 3.13.

In the acquisition side, a single aperture camera with a 2D array of micro-lenses

is used to obtain the 3D holoscopic image, as shown in Figure 3.13a. Each micro-lens

works as an individual small low resolution camera conveying a particular perspec-

tive of the 3D object at a slightly different angle. As a result, the planar intensity

distribution representing the 3D holoscopic image comprises a two-dimensional (2D)

array of micro-images, as illustrated in Figure 3.14. In the display side, the 3D holo-

scopic imaging allows 3D viewing experience without requiring glasses, presenting

motion parallax and different views with no discomfort.

The compression of the holoscopic images illustrated in Figure 3.14, as well as

holoscopic video sequences, can be done using a typical 2D video encoder. However,

due to the small angular disparity between neighbouring micro-lenses, the holoscopic

images present a significant spatial redundancy between neighbouring micro-images,

that is not efficiently exploited by existing image and video coding standards. Several
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(a) (b)

Figure 3.13: A 3D holoscopic imaging system [102]: (a) acquisition side; (b) display
side.

(a) (b)

Figure 3.14: Holoscopic image captured with a 250 µm pitch micro-lens array: (a)
full image with resolution of 1920×1088; (b) enlargement of 196×140 pixels showing
the micro-images.

holoscopic image coding schemes have been proposed in the literature to better

exploit the particular structure of these images.

In [103], a hybrid compression scheme, which combines two-dimensional Discrete

Wavelet Transform (2D-DWT) and two-dimensional Discrete Cosine Transform (2D-

DCT), is presented. In this scheme, the 2D-DWT is applied to each individual

micro-image and, then, the 2D-DCT is applied on sets of 2D-DWT coefficients

from neighbouring micro-images. The resulting 2D-DCT coefficients are quantised

and entropy coded. Similarly in [104], the authors propose to decompose the 3D

holoscopic image into several viewpoint images by extracting one pixel (from each

micro-image) which had the same relative position inside the micro-image. A 3D-

DWT is then applied to a stack of these viewpoint images. The lower frequency

bands are assembled and compressed using a forward two-levels 2D-DWT followed

by arithmetic encoding. In [105], the authors present a comparison between the

performance of JPEG2000 Part 10 and H.264/AVC standards for encoding sets of

micro-images and viewpoint images. These sets of micro-images (and also viewpoint

images) are put together along the third dimension (or temporal dimension) to be

encoded using the JPEG2000 Part 10 and H.264/AVC.
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Another approach for efficient holoscopic image coding consists in using the exist-

ing video coding standards with an improved predictive framework. In this context,

the Self-Similarity (SS) compensated prediction [106, 107] has been introduced into

the H.264/AVC and HEVC encoders to efficiently handle the 3D holoscopic im-

ages. The SS works similarly to the IBC method introduced in HEVC SCC, which

consists of BMA using an intra-frame search window. Such procedure allows SS

to compensate the aforementioned non-local spatial correlation between the neigh-

bouring micro-images.

3.3.2 3D video coding standards

As previously discussed, three-dimensional systems require the transmission of a

larger amount of data than the traditional 2D video systems. In order to cope with

the new requirements for 3D video compression, the Joint Collaborative Team on

3D video coding extension development (JCT-3V), formed by elements from MPEG

(ISO/IECJTC1/SC29/WG11 3DV ad hoc group) and ITU-T (SG 16 WP 3), has

been working on several 3D extensions for the current state-of-the-art HEVC stan-

dard. The MV-HEVC standard is the most straightforward HEVC-based solution

proposed for the compression of multiview video contents. Similarly to the MVC

(multiview extension of H.264/AVC), the MV-HEVC uses Disparity-Compensated

Prediction (DCP) to exploit inter-view dependencies.

DCP is implemented by modifying the high-level syntax of the HEVC standard.

In practice, the reference picture list of the current view, which originally contains

the temporal frames for motion-compensated prediction, is augmented with the in-

clusion of already encoded frames from other views at the same time instance. In

this way, the block-matching-based search procedure may adaptively find the opti-

mal predictor, either from temporal or inter-view references, for each encoded block.

The design of DCP provides a straightforward solution to adapt the existing HEVC

technology for efficient representation of multiview video, given that no change is

required at block-level tools.

In the scope of the MVD format, which is based on texture and depth map views,

the standardisation process comes out with three solutions using different base cod-

ing technologies. MVC+D [108] is proposed as a simple solution for sending texture

views along with depth maps, which does not introduce any change to the algorithm

used in MVC. All changes are related to high level syntax elements providing a way

to signal the presence of depth views. A more advanced approach which provides

higher compression efficiency, being backward compatible with AVC (allowing a fast

and easy adoption in the market), is referred to as 3D-AVC [109]. The recently fi-

nalised depth enhanced 3D video coding extension of the HEVC standard, known
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Figure 3.15: Main structure of 3D-HEVC encoder with inter-view and inter-
component prediction represented by gray arrows. Figure taken from [23].

as 3D-HEVC [23, 75, 110, 111], is the state-of-the-art solution for compression of

the MVD data. 3D-HEVC may also encode other 3D video formats, including the

stereo video and the multiview video formats. In order to provide such format

scalability, 3D-HEVC encodes each texture and depth map view based on HEVC

technology. The dependencies between different views are exploited, in addition

to the spatial and temporal ones encoded by HEVC basis algorithm. 3D-HEVC is

also able to perform joint coding of the texture video and depth map components,

allowing to exploit a new level of redundancy that arises with MVD format, namely

the inter-component redundancy existing between the texture video and depth map

signals.

Figure 3.15 illustrates the high-level structure of 3D-HEVC encoder, represent-

ing inter-view and inter-component prediction dependencies by gray arrows. The

texture view 0 (independent view) is encoded using the reference HEVC standard,

providing backward compatibility with 2D video systems, while other texture and

depth map views (dependent views) use modified versions of HEVC which are able

to exploit dependencies between views and between texture and depth components,

as illustrated in Figure 3.15. These modified HEVC versions for dependent view

coding include additional coding tools, which are described in what follows.

Dependent view coding tools

Similarly to MV-HEVC standard, the 3D-HEVC uses DCP to exploit inter-view

dependencies for both texture video and depth map components. For an improved

inter-view coding, 3D-HEVC also introduces modifications at the block-level tools,

which allow to exploit the correlations of motion and residue information between
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multiple views. The most relevant tools include the Neighbouring Block-based Dis-

parity Vector Derivation (NBDV), inter-view motion prediction, inter-view residual

prediction and illumination compensation [75].

The main idea of the NBDV tool is to implicitly derive the disparity vector of

the block, based on its spatial and temporal neighbourhood, in order to be used by

other methods, namely the inter-view motion prediction and inter-view residual pre-

diction. NBDV uses spatial candidates similar to the ones used in Advanced Motion

Vector Prediction (AMVP) or merge modes of HEVC, plus a temporal neighbouring

candidate. The first disparity vector found among the spatial and temporal candi-

dates is returned by NBDV. When does not exist a disparity vector in the available

candidates, a zero disparity vector is assumed. Note that, this approach does not

require any additional signalling symbol in the bitstream.

Regarding inter-view motion prediction, its main purpose is to include additional

candidates into the list of the merge mode (see Subsection 2.3.2), which can use up

to six candidates instead of the five candidates defined in HEVC standard. Two

possible additional candidates are the disparity vector (and associated reference

picture index) derived by the NBDV method, and the motion vector corresponding

to the block pointed out by the NBDV vector.

The inter-view residual prediction is used to exploit similarities between the

motion-compensated residue generated by two distinct views. Its procedure consists

in predicting the motion-compensated residual signal of the predicted block using an

already encoded view, namely the motion-compensated residual signal associated to

the block that is pointed out by the NBDV disparity vector and the corresponding

reference picture index.

The illumination compensation is used to compensate luminance variations often

observed between views, for instance when the cameras have calibration differences.

For this reason, this tool is only applied on blocks predicted from inter-view reference

pictures. The illumination compensation is achieved by using a simple linear model,

whose coefficients are implicitly estimated by solving a least-squares problem, based

on the reconstructed samples in the block neighbourhood.

Other tools used to improve the compression of dependent texture video views

using information of previously encoded depth maps from other views, include the

Depth-oriented Neighbouring Block-based Disparity Vector (DoNBDV), the View

Synthesis Prediction (VSP) and the Depth-Based Block Partitioning (DBBP) [75].

Depth map coding tools

In order to better represent depth maps and preserve the sharp edges, 3D-HEVC

proposes additional tools for depth map intra and inter coding, as well as for inter-

component prediction. Moreover, some tools inherited from MV-HEVC are modified
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or disabled when compressing depth maps. The modified tools include the motion

and disparity compensation methods. Instead of quarter-sample accuracy, the full-

sample accuracy is used, because the eight-tap interpolation filters tend to create

artifacts at sharp edges. Similarly, the estimated vectors are encoded using full-

sample accuracy. The disabled tools in 3D-HEVC for depth map coding include

the in-loop filters, specifically the DBF and the SAO. The inter-view motion and

inter-view residual prediction tools presented above are also disabled for depth map

coding. In order to exploit inter-component dependencies, 3D-HEVC proposes some

modifications to the dependent coding techniques mentioned in Subsection 3.3.2 and

includes new coding tools as well.

Regarding intra coding methods for depth maps, 3D-HEVC maintains the direc-

tional prediction modes and transform-based residue coding present in the reference

HEVC standard. However, new tools that better preserve depth map discontinuities

have been introduced [75], namely the Depth Modelling Modes (DMMs), segment-

wise DC coding (SDC) and single depth intra mode.

DMM takes an important role for depth map representation in 3D-HEVC stan-

dard. It consists on new intra prediction modes that partition the depth block into

two non-rectangular regions, which are approximated by constant values. The par-

titioning information and the mean value of both regions are the unique information

required by this model. DMM may exploit some inter-component dependencies by

deriving the depth block partitioning information from the co-located block in the

corresponding texture video view. Similarly to directional modes, the residual signal

calculated between the DMM model and the original depth map might be encoded

using transform coding.

The SDC mode is a residual coding method alternative to the transform coding,

which can only be employed on PUs of size 2N×2N . For directional intra prediction,

one segment is defined, while for DMM, two segments are considered. For each

segment, SDC transmits the mean value of the residual signal using a procedure

based on a Depth Lookup Table (DLT). DLT provides a residual DC value mapping

that allows to reduce the residue bit depth, especially when original depth maps do

not use the whole range of 256 depth values, e.g. quantised depth maps.

The single depth intra mode is another tool used for efficient representation of

smooth areas in depth maps. It aims to approximate the depth block based on

a single depth sample value that is derived from a sample candidate list. Specific

sample positions in the current block neighbourhood are used to derive the sample

candidate list. Whenever this mode is used no residual information is transmitted.

In relation to depth map inter coding, several techniques are introduced in 3D-

HEVC. The Motion Parameter Inheritance (MPI) is used to predict depth maps

based on the motion characteristics of the associated texture video view already
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encoded. The main idea behind this technique is to exploit similar motion charac-

teristics between video and depth map signals. This is possible because the texture

video and corresponding depth map signal capture the same scene from the same

viewpoint at the same time instants. MPI adds a new candidate into the merge list

of the depth block being encoded, which is derived from the motion information of

the co-located texture block.

Inter predicted blocks in depth maps may also skip transform and quantisation

methods. This is done using an inter-mode extension of the SDC method presented

above, which approximates the residual signal using a constant DC value. Another

source of redundancy resides in the block partitioning tree of both depth and texture

blocks. 3D-HEVC exploits block partition similarities by predicting the depth map

quadtree from the associated texture block quadtree for inter slices.

Since depth maps are not directly visualised, being instead used for view synthe-

sis at the decoder side, the 3D-HEVC significantly improves the coding efficiency

of depth maps using a modified version of the distortion metric used in Lagrangian

cost function, known as view synthesis optimisation (VSO) [75]. The idea of VSO

is to account the errors that encoded depth map blocks cause in the synthesised

views, instead of considering the coding errors in the encoded depth map itself.

The 3D-HEVC encoder test model allows to use two implementations of VSO: the

Synthesised View Distortion Change (SVDC) and a model based synthesised dis-

tortion estimation. The latter avoids the rendering procedure, for a low complexity

distortion calculation [75].

3.3.3 Experimental results

In this section we evaluate the RD performance of 3D-HEVC standard and compare

it with the MV-HEVC standard, for the compression of MVD contents. The Shark

test sequence, proposed in 3D-HEVC common test conditions (CTC) document

[112], has been selected for the experiments. It includes three texture video views

and the associated depth maps.

The multiview video coding with depth data scenario, based on the three view

case, has been used in these experiments. As indicated by the common test condi-

tions for 3D video core experiments [112], we used the encoder configuration files

and rendering configuration provided with the 3D-HEVC reference software, specif-

ically the HTM-13.2 [113]. In terms of temporal prediction structure, a GOP of 8,

and intra period of 24, were used. The used texture QP values were: 40, 35, 30 and

25, and the corresponding QP values for depth maps were set to 45, 42, 39 and 34,

as recommended by CTC.

In order to illustrate the importance of a modified distortion metric for depth
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map coding, a second configuration of 3D-HEVC replacing VSO method by the

traditional SSE for depth map distortion (3D-HEVC noVSO) was tested and eval-

uated. Although MV-HEVC was not designed for depth map coding it can be used

to encode multiview depth data, considering depth maps as multiview video. In the

performed tests, we encoded the Shark test sequence with MV-HEVC standard for

comparison purposes.

The evaluation procedure recommended by MPEG CTC has been followed. How-

ever, we independently plotted the results for the depth maps and texture views. For

texture video, the average luminance PSNR of the three encoded views is presented

as a function of the total bitrate used to compress the texture video views. For

depth maps, the average PSNR of six virtual views, synthesised using the encoded

depth maps and texture views, is presented as a function of the total bitrate used

to compress the three depth map views.

Figure 3.16 presents the RD results for the three tested configurations: the

default 3D-HEVC based on CTC, the 3D-HEVC without VSO and the MV-HEVC.

From the RD results of texture video in Figure 3.16a, one may observe that 3D-

HEVC is able to perform better in terms of compression efficiency than MV-HEVC

standard. This is justified by the multiview block-level coding tools, which are

only present in 3D-HEVC standard. Furthermore, these tools can make use of

depth information from other views to better encode the texture video. Disabling

the VSO method in 3D-HEVC does not result in a noticeable difference in the RD

performance of the texture video, because this technique only affects the compression

of depth maps.

Regarding the RD results for depth maps, shown in Figure 3.16b, they demon-

strate the clear advantage of the 3D-HEVC encoder over the MV-HEVC standard

for depth map coding. This advantage can be justified by the 3D-HEVC coding

tools that were specifically targeted for depth map compression, such as the depth

modelling modes, but also by the use of VSO method as distortion metric in the

RD optimisation loop. The importance of VSO for depth map coding is clearly evi-

denced by the 3D-HEVC noVSO curve of Figure 3.16b, which presents much lower

performance than the full configuration of 3D-HEVC using VSO method.

It is also interesting to compare the bitrate used by the compressed texture

video and depth map components. From Figure 3.16, it can be observed that depth

maps can be encoded using approximately five times less bitrate (or 20%) than that

used for texture, for high quality RD points. At lower quality RD points, the ratio

between depth and texture bitrate can be as low as 10%.

The presented results clearly demonstrate the limitations of the existing

transform-based video coding methods (such as MV-HEVC) and the benefits of

using new coding tools, as the ones proposed in 3D-HEVC, for the compression of
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Figure 3.16: Rate-distortion performance of shark test sequence using the 3D-HEVC,
3D-HEVC without VSO and the MV-HEVC configurations: (a) average PSNR of
texture views versus bitrate of texture views (b) average PSNR of synthesised views
versus bitrate of depth maps.

depth maps. These observations have encouraged the research work of Chapter 5,

where we propose an efficient predictive coding framework for depth map compres-

sion.
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3.4 Conclusions

In this chapter we described the main image and video coding algorithms used in

this thesis, where the proposed prediction methods were implemented and evaluated.

Section 3.1 described some important aspects about video compression, specifically

the hybrid video coding architecture and the rate-distortion optimisation procedure

used in current video encoders.

Section 3.2 presented an overview of the two main 2D video coding algorithms

used along this thesis: HEVC and MMP algorithms. An experimental evaluation

of these algorithms for image compression was performed, comparing them with

the H.264/AVC standard. The results confirmed the superiority of both MMP and

HEVC over the H.264/AVC algorithm. However, the MMP algorithm presented a

worse rate-distortion performance than HEVC standard. These results motivated

the first research topic of this thesis, that proposes an enhanced intra prediction

framework for MMP algorithm (see Chapter 4). The HEVC standard was also

evaluated for video compression. The presented results were consistent with the

ones of image compression, showing that HEVC tends to perform better for high-

resolution contents than low-resolution ones.

Section 3.3 presented a brief description of the main 3D video systems used in

this thesis, focusing on the capturing, compression and displaying aspects of the

3D data processing chain. The described 3D video formats encompass the stereo

video, multiview video, multiview video+depth and the holoscopic video. Regard-

ing the 3D standardisation, the recent extensions of HEVC algorithm for 3D video

coding, namely the MV-HEVC and the 3D-HEVC standards were briefly described.

Some experimental tests comparing the 3D extensions of HEVC for the compres-

sion of multiview video+depth data demonstrated the advantage of 3D-HEVC over

MV-HEVC standard. Such advantage is notorious specially for the depth map com-

ponent, which is better compressed mainly due to the new coding tools introduced in

3D-HEVC for this type of content. These results emphasised the inefficiency of the

original HEVC technology for depth map coding and demonstrated that significant

improvements can be achieved using alternative coding methods for depth maps,

being one of the motivations for the research work of Chapter 5.
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Chapter 4

Efficient predictive coding using

MMP

The experimental tests presented in Section 3.2.3, for the state-of-the-art image

coding algorithms, shed some light in the limitations of the Multidimensional Mul-

tiscale Parser (MMP) algorithm in relation to the HEVC standard, mainly for the

compression of high resolution images. This observation led us to the first research

topic of this thesis, which aims to improve the intra predictive framework of the

MMP algorithm.

In this chapter, we present several improvements to the prediction framework of

MMP algorithm for efficient compression of image signals. Such improvements were

implemented in the stereo image coding extension of MMP algorithm [114], which

is briefly introduced in Section 4.1.

In Section 4.2, the proposed methods for the MMP algorithm are described.

The directional prediction of MMP algorithm has been significantly improved, being

extended with new prediction modes, based on the angular prediction modes used

in HEVC. The use of a larger number of prediction modes tends to provide better

prediction results and reduce the residual signal energy, consequently improving the

overall RD performance of the pattern matching-based coding paradigm. Another

significant enhancement to the MMP algorithm is the increased initial block size,

which provides better prediction of high resolution images.

The experimental results of the proposed MMP algorithm are presented and dis-

cussed in Section 4.3, for both intra and stereo image coding. For the compression

of stereo pairs, MMP independently encodes the left image based on intra coding

methods, while the right image uses both intra and inter-view coding methods. The

idea is to evaluate the influence of the proposed techniques in both the independently

and dependently encoded images. Note that the dependent image exploits redun-

dancies from the reference image that was previously encoded with the proposed

intra prediction methods.
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4.1 Introduction

Predictive coding methods have been already successfully combined with MMP al-

gorithm as described in the literature [7, 115]. As presented in Subsection 3.2.2, the

last version of MMP for intra image coding uses an intra predictive framework, which

includes directional modes based on the ones of H.264/AVC standard, plus a least-

squares prediction method [9]. However, the investigation of prediction methods for

MMP algorithm has not been restricted to intra methods. Several inter prediction

algorithms that exploit disparity information between stereo images [12, 114, 116],

or dependencies between YUV colour components [10], have been also proposed in

the last years for the MMP algorithm.

The original stereo version of the MMP algorithm, proposed in [114], is an ex-

tension to the intra-based MMP algorithm described in Subsection 3.2.2. Similarly

to other stereo image encoders, MMP first encodes the reference image (usually

assigned to the left view) using only intra coding methods, as described in Subsec-

tion 3.2.2. The dependent image (usually assigned to the right view) is then encoded

using the same intra coding tools combined with additional disparity compensation

methods that exploit the redundancy between images.

The MMP-based stereo image encoder in [114] uses up to three methods for

disparity compensation. These methods include the well-known block-matching

algorithm (BMA), for explicit disparity compensation, and two implicit methods

based on template-matching (TM) [116] and least-squares prediction (LSP) [12].

The purpose of TM algorithm is to use the template area defined in the causal

neighbourhood of the block in order to implicitly find the disparity vector, avoiding

the transmission of the disparity vectors.

The LSP method for stereo image coding provides an efficient representation of

disparity information, mainly when its representation in the block is more complex.

In LSP approach, linear coefficients are adaptively estimated in a causal training

window defined in the block neighbourhood. Such local training procedure is per-

formed using several filter support shapes and the optimal one is explicitly signalled

for each block to be predicted. More detailed information about this method has

been provided in Section 2.4 and can be found in [12].

In this research work, we use a stereo implementation of MMP based on the one

presented in [114], which enables the explicit BMA and the implicit LSP methods for

disparity compensation. In comparison to the MMP version proposed in [114], BMA

method has been improved by using better prediction of the disparity vectors and

CABAC for entropy coding, while LSP received some improvements in its design,

mostly related to the training procedure.

The combined usage of BMA and LSP methods allows MMP to achieve more
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efficient compression results for the right image. The LSP method enables disparity

estimation without requiring the transmission of the disparity vectors, saving some

bitrate. However, when the causal training area used by LSP is highly uncorrelated

with the unknown block, MMP may select the explicit BMA and provide better

prediction results, at the cost of a higher bitrate.

MMP evaluates the BMA and LSP methods in the rate-distortion loop, along

with the intra prediction modes, for all available block sizes superior or equal to

4×4. The best prediction mode is selected according to a Lagrangian rate-distortion

criterion. The MMP algorithm also employs a post-deblocking filter on both images

of the stereo pair, based on the method proposed in [117].

4.2 Proposed contributions to MMP

The main contributions proposed in this work for MMP algorithm are related to the

directional intra prediction method and the initial block size of MMP. The enhanced

directional prediction method developed for the MMP algorithm is able to improve

the compression of the left and right images (independent and dependent images,

respectively), although its impact is more significant in the left image, where only

intra prediction modes are allowed. The coding performance of the right image is

also affected by the changes on the left image quality, because this image is used as

reference by the disparity compensation methods.

The use of larger block sizes in the MMP algorithm is an efficient solution to

increase the compression performance of high resolution images. In the proposed

approach, the larger block size was not restricted for the intra prediction methods,

but it was also enabled for the disparity compensation methods used to encode

the right image. In the context of the increased initial block size proposed to the

MMP algorithm, we also modified the block partitioning scheme, as described in the

subsection that follows.

4.2.1 Flexible block partitioning with larger initial block

size

In [7, 8, 114], MMP is used with a maximum block size of 16×16, as the H.264/AVC

standard. However, with the advent of high resolution formats, the use of larger

block sizes has shown to be beneficial, providing a better compression performance

for high resolution images. Since MMP algorithm has been used for the compression

of high resolution stereo pairs, we proposed to adapt it to use larger block sizes.

Initially, the MMP algorithm was adapted for the initial block size of 64 × 64.

Keeping the MMP flexible block partitioning rule, the new initial block size enables
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a segmentation tree with 49 possible block sizes. However, an alternative block

partitioning scheme was developed in this work.

Empirical observations demonstrated that larger block scales improve MMP rate-

distortion performance mainly at lower bitrates, while smaller block sizes continue

to be frequently used at higher bitrates or in image regions with more complex

structures or textures. In order to avoid the transmission of a large number of

segmentation flags to signal the use of smaller block sizes, a bi-level approach for the

initial block size is proposed. The idea of this approach is to enable the partitioning

of the initial 64 × 64 block size into 16 square blocks with 16 × 16 size, which are

independently optimised and encoded. MMP encoder decides the best initial block

level by optimising both the coding of the 64 × 64 block size and the 16 smaller

16× 16 blocks. One binary flag is transmitted to indicate the best approach.

Different segmentation trees were defined for the two initial block levels. While

the 16 × 16 size uses the same segmentation tree as the one of the original MMP

algorithm, a new tree was defined for the 64 × 64 size. Figure 4.1 illustrates the

two possible block segmentation trees that can be used for MMP optimisation pro-

cedure. Note that the recursive partitioning of 64 × 64 blocks does not reach the

smaller block sizes (below 4 × 4), because those block sizes are mainly used in the

case wherein the initial block size is 16 × 16. This restriction allows to save some

computational complexity for the initial block size of 64×64. While the partitioning

trees of Figure 4.1 represent all the possible block sizes for residue coding, the use of

prediction methods is restricted to a subset of these block sizes, being represented

in Figure 4.1 by the gray blocks.

4.2.2 Improved intra prediction framework

Based on the recent developments of HEVC standard, an improved intra-prediction

framework was proposed for the MMP algorithm. These improvements were highly

motivated by the availability of larger block sizes, where new directional correlations

may be exploited. Thus, the 8 directional modes used in the original MMP algorithm

were updated to 33 directional modes, similar to the ones used in HEVC standard,

as illustrated in Figure 4.2. Besides the directional modes, MMP uses the planar,

DC and an intra-based least-squares prediction (LSP) mode [9], totalling 36 intra

modes.

By using a more advanced intra prediction framework, the residue probability

distribution of MMP algorithm tends to be narrower, leading to better encoding

results. As demonstrated in [7], this happens because more uniform elements tend

to be used at larger block sizes, favouring the adaptation of the MMP dictionary

and its efficiency in representing the encoded blocks.
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Figure 4.1: Block segmentation tree for the bi-level initial block size: (a) 64 × 64
and (b) 16× 16.

In contrast to HEVC, which only uses square blocks for intra prediction, the

MMP algorithm uses a wide range of block sizes, including ones corresponding to

non-square blocks, as previously discussed. In order to employ directional prediction

in MMP algorithm, we extended this method for non-square blocks and made some

optimisations regarding the MMP algorithm. One of these optimisations is related

to the available directional modes at each block size.

In some block sizes, e.g. very narrow blocks, not all the directional prediction

modes are advantageous. For instance, two neighbouring modes may produce similar

prediction results for some block sizes, despite having slightly different prediction

directions. For this reason, we disabled some directional modes that seem to be

irrelevant for certain block sizes. This enables a more efficient coding of the avail-

able prediction modes, and avoids unnecessary computations in determining similar
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Figure 4.2: Set of intra prediction modes proposed for MMP.

Table 4.1: Prediction modes available for each block size.

Block size h× w Used directional modes

h ≥ 8 and w ≥ 8 all modes
h ≥ 8 and w = 4 all except modes 4, 6, 8, 10 . . . 18
h = 4 and w ≥ 8 all except modes 20, 22, 24, 26 . . . 34
h = 4 and w = 4 odd modes
h < 4 and w ≥ 4 modes 3, 11, 19, 27 and 35
h ≥ 4 and w < 4 modes 3, 11, 19, 27 and 35
h < 4 and w < 4 no mode

prediction blocks repeatedly. The proposed configuration of the available prediction

modes for each block size present in MMP algorithm is shown in Table 4.1. Note

that, h×w represents the block height versus block width, and the prediction mode

indexes correspond to the ones used in Figure 4.2.

4.2.3 Coding of Prediction Modes

The proposed intra prediction framework uses 36 modes, which should be efficiently

transmitted to the decoder. This can be done by exploiting eventual correlations that

may occur between adjacent blocks of the image, using similar directional prediction

modes. In this work, we propose a prediction process for the intra prediction modes

in the MMP algorithm, in order to maximise the entropy coding performance of

these modes.

The idea of the proposed scheme is to obtain 3 candidate modes, implicitly de-

rived in both encoder and decoder, and to transmit the index associated to the
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candidate that matches the best prediction mode if it exists, otherwise the mode

is explicitly transmitted. The candidate modes are derived from the causal re-

constructed pixels associated to the left column and top row pixels adjacent to the

unknown block. For each causal reconstructed pixel, the associated prediction mode

is recorded. The proposed solution chooses the candidate mode based on the 3 most

frequent prediction modes that were recorded from the causal reconstructed pixels.

If the number of recorded modes is inferior to 3, the existing modes are used as

candidates.

For mode encoding, a binary flag is transmitted indicating whether the prediction

mode matches one of the candidates or not. Depending on the value of this flag, the

following transmitted symbol is the candidate index (with 3 possible values) or actual

prediction mode index (with 36 minus 3 possible values). The proposed prediction

process provides an efficient mechanism for the compression of the prediction modes,

being advantageous when the same mode is used on adjacent blocks.

In addition to the mode prediction process, we developed a way to further im-

prove the entropy coding of prediction modes using the Adaptive Arithmetic Coding

of the MMP algorithm [68]. Since some prediction modes may not be available, due

to the previous presented restrictions in Table 4.1, the AAC of MMP only considers

the available prediction modes in the initialisation process, using an uniform sta-

tistical distribution for these modes, and zeroing the probability of the unavailable

modes.

During the compression process further modes can become temporarily unavail-

able, due to unavailable causal reconstructed pixels or due to an adaptive mode prun-

ing method. We have improved the entropy coding of the chosen prediction mode

by temporarily zeroing the probability distribution of those unavailable modes. This

results in a higher coding efficiency because the total number of available modes is

reduced and the probability of the transmitted mode is increased, requiring less bits

to be represented. It is important to note that the availability of the causal recon-

structed pixels can be checked on both the encoder and decoder, without requiring

the transmission of any lateral information.

In order to further improve the efficiency of the MMP algorithm, we propose

an adaptive mode pruning method that disables redundant modes based on the

smoothness of the causal reconstructed pixels in neighbourhood of the unknown

block. The motivation for this method comes from the fact that several directional

modes produce exactly the same prediction results when the causal reconstructed

pixels are constant, i.e. they have the same value.

We consider five causal neighbouring regions, namely the left-down, left, top-left,

top and top-right regions, as previously illustrated in Figure 2.4 of Subsection 2.3.1.

In the proposed method, we define a neighbouring region as constant whenever all
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Table 4.2: Sets of prediction modes and associated neighbouring regions.

Set Neighbouring regions Prediction modes

1 top & left & top-left modes 11 to 27, planar
2 left & left-down modes 3 to 10
3 top & top-right modes 28 to 35

of its pixels have the same value. Depending on the neighbouring regions declared

as constant, several sets of directional modes can be disabled. This is particularly

important in the MMP algorithm, mainly at lower bitrates, because homogeneous

regions occur more frequently, as consequence of the rough block approximations

generated by the uniform elements of the initial dictionary.

The proposed method defines 3 sets of prediction modes, as shown in Table 4.2,

which were formed based on the neighbouring regions used in the propagation pro-

cess of the directional modes. One set of prediction modes is disabled whenever

all the neighbouring regions associated to that set are unavailable (e.g. block is

adjacent to the image margins) or are constant (the pixels have all the same value).

This process is repeated on the decoder side, so that the statistical distribu-

tion of the modes is the same in both encoder and decoder sides, guaranteeing the

success of the decoding process. Note that no additional information needs to be

transmitted. Although this scheme introduces some computational overhead, due

to the inspection of the smoothness of neighbouring pixels, it can also save some

time on the encoder side, since modes associated to unavailable (or homogeneous)

neighbouring regions do not need to be tested.

4.3 Experimental results

Experimental tests were performed in order to evaluate the RD performance of

MMP algorithm using the proposed intra predictive framework and increased initial

block size. In the first set of experiments, we evaluate the RD performance of the

improved MMP algorithm for intra image coding, comparing it with the previous

version of MMP [8] and the state-of-the-art transform-based image encoders. The

idea is to evaluate the performance of the proposed coding techniques in the MMP

algorithm.

A second experimental evaluation is presented for the stereo extension of the

MMP algorithm using the proposed intra coding methods (referred to as MMP-

stereo), being compared to the state-of-the-art stereo image coding algorithms. The

used encoders were MVC, i.e. the multiview extension of H.264/AVC, using the

stereo high profile (reference software JM-18.5) [5, 71, 85] and the MV-HEVC algo-

82



rithm [23, 87] using the stereo configuration (reference software HTM-11.2) [112].

The used test data set comprises 11 stereo pairs, represented in Section A.1,

which are generated using the first frame of two views selected from several multiview

test sequences. Most of the stereo pairs come from multiview sequences proposed in

the common test conditions for 3D video core experiments [112], namely the ones

from Figure A.4 to Figure A.11. The stereo pairs from Figure A.1 to Figure A.6

have 1024× 768 pixels, while the remaining ones have 1920× 1088 pixels. Only the

luminance component was considered in these experiments.

The MMP algorithm has been evaluated from low to high bitrates, running

experiments with different input λ values (used in the MMP Lagrangian RD-cost

function): 300, 75, 25 and 10. It is known that the overall encoding performance of

a stereo pair can be optimised by playing with bitrate allocation between the left

and right images, usually through the use of different QP or lambda values for each

image. Since this research work is not focused on stereo coding aspects, efficient

bitrate allocation for stereo coding was not addressed. Thus, the same lambda

values were used for compressing both the left and right images of the stereo pair

using MMP algorithm. Regarding the transform-based standards for stereo image

coding (MVC and MV-HEVC), the same QP values were used for the two images

of the stereo pair, specifically: 25, 30, 35 and 40.

4.3.1 Evaluation of the proposed intra coding methods for

MMP

We evaluate the overall coding advantage of the proposed methods for intra coding

by comparing the new improved MMP algorithm (using the proposed methods) with

its previous version in [8]. In order to isolate the intra coding methods from the

disparity compensation framework, only the results for the left image of the stereo

pairs are evaluated in this subsection. Note that the left image is the first encoded

one, thus the compression algorithms can only use intra coding methods for this

image. We compare the intra coding performance of the MMP algorithm with the

one of the MVC and MV-HEVC standards. Since only the left image is encoded

using intra coding methods, these algorithms will be also referred to as MMP-intra,

H.264/AVC and HEVC encoders in this subsection.

Table 4.3 presents the Bjontegaard Delta PSNR (BDPSNR) results [70] of the

proposed MMP algorithm relative to the previous version of MMP [8], H.264/AVC

and HEVC standards, for the compression of the left image of the tested stereo pairs.

Positive values of BDPSNR correspond to the average PSNR gain of the proposed

MMP algorithm relative to the compared method.

The results of Table 4.3 show that the proposed intra coding methods, specif-
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Table 4.3: Bjontegaard Delta PSNR results of the proposed MMP algorithm relative
to the previous MMP, H.264/AVC and HEVC encoders for the compression of the
left image of the used test stereo pairs.

Image MMP H.264 HEVC

Ballet 0.855 1.263 0.127
Breakdancers 0.301 0.519 -0.054
Book Arrival 0.447 0.944 -0.133
Balloons 0.527 1.049 -0.334
Kendo 0.651 0.965 -0.492
Newspaper 0.484 0.931 -0.293
Poznan Street 0.484 0.952 -0.181
Poznan Hall2 0.754 0.919 0.063
GT Fly 0.491 1.179 0.322
Undo Dancer 0.299 0.978 0.209
Shark 0.430 1.019 -0.159
Average 0.520 0.974 -0.083

ically the advanced directional prediction and the new block partitioning scheme,

improve the MMP performance for all images, presenting BDPSNR gains that range

from, approximately, 0.3 dB up to 0.85 dB. When compared with H.264/AVC, the

proposed MMP-intra algorithm presents BDPSNR gains close to 1 dB for most

images.

From the last column of Table 4.3, one may observe that the proposed MMP al-

gorithm presents quite competitive results with the state-of-the-art HEVC standard.

In the best case, MMP obtains a BDPSNR gain superior to 0.3 dB, specifically for

the left image of GT Fly, while the worst case corresponds to a loss of almost 0.5 dB

for the left image of Kendo stereo pair. The average results of MMP-intra are very

close to the ones of HEVC, presenting a slightly lower performance, that traduces

to a BDPSNR loss inferior to 0.1 dB.

It is interesting to observe that the proposed MMP outperforms the HEVC

standard for some images, specially for the synthetic images GT Fly and Undo

Dancer. These results support the fact that MMP tends to perform better than

transform-based encoders for non-natural or synthetic images, as previously reported

in literature, for text documents [8] and depth maps [52]. Although the results for

Shark image, which is also synthetic, are not as good as the ones of the other

synthetic images, the performance difference between MMP and HEVC for this

image is small, as can be seen from Table 4.3.

To complement the previous discussed Bjontegaard results, Figure 4.3 presents

the RD curves of two representative left images, namely the Newspaper and the

Poznan Hall2, which illustrate the performance of the encoding methods from low

to high bitrates. The results shown in Figure 4.3 reveal that the proposed MMP
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Figure 4.3: RD performance of MMP using the proposed intra coding methods
(labelled as Proposed MMP-intra), previous version of MMP in [8] (labelled as
Original MMP-intra), H.264/AVC and HEVC, for the compression of the left image
of two selected stereo pairs.

algorithm tends to improve the original version of the MMP algorithm, mainly at

lower bitrates. Such gains at lower bitrates can be justified by the increased usage

of larger block sizes at these bitrates, providing more efficient representation using

less bits. Furthermore, as the previous version of the MMP algorithm in [8] tends to

provide a superior coding performance at higher bitrates, the improvements of the
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Table 4.4: Bjontegaard Delta PSNR results of the proposed MMP-stereo algorithm
relative to the MVC and MV-HEVC encoders for the compression of the used test
stereo pairs.

Stereo pairs
MVC MV-HEVC

Left Right Left Right

Ballet 1.096 1.405 -0.093 0.099
Breakdancers 0.383 0.758 -0.162 -0.009
Book Arrival 0.764 1.255 -0.173 0.051
Balloons 0.947 1.734 -0.423 -0.144
Kendo 1.089 1.767 -0.415 -0.034
Newspaper 0.841 1.534 -0.263 -0.055
Poznan Street 0.612 1.283 -0.250 -0.021
Poznan Hall2 0.814 1.249 -0.017 0.129
GT Fly 1.121 1.269 0.283 0.266
Undo Dancer 0.922 1.045 0.227 0.237
Shark 0.927 1.210 -0.237 -0.026
Average 0.8650 1.3189 -0.1385 0.0448

proposed MMP algorithm at these bitrates are more restricted. Such superiority of

the MMP algorithm from [8] at higher bitrates can be observed in Figure 4.3, by

comparing it with the H.264/AVC standard.

Even though the proposed methods improve the MMP algorithm, results for the

Newspaper image are still slightly inferior to the ones obtained for the HEVC stan-

dard. However, in some cases, such as Poznan Hall2, the proposed MMP algorithm

stands out with state-of-the-art coding performance for most RD points.

4.3.2 Evaluation of the large block size MMP for stereo im-

age coding

The experimental tests for stereo image coding were performed using the stereo ver-

sion of the MMP algorithm (referred to as MMP-stereo) improved with the proposed

prediction framework and increased block sizes, as well as the MVC and MV-HEVC

encoders. In the case of MVC, the default configuration file encoder stereo.cfg pro-

vided in JM-18.5 reference software was used. For MV-HEVC, the default config-

uration file for multiview video coding based on two views has been used. Both

MV-HEVC and MVC configurations used a disparity search range equal to 96, and

the SearchMode parameter, associated to the disparity compensation mode, was set

to Full search, as done in MMP-stereo algorithm. In order to generate the Bjon-

tegaard results and RD plots for stereo image coding experiments, the luminance

PSNR of each image and the sum of the bitrate used to encode both images of the

stereo pair were used.
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The summary of the BDPSNR results for the proposed MMP-stereo, relative to

the MVC and MV-HEVC standards, is presented in Table 4.4, for all the tested

stereo images. Note that the BDPSNR values for the left image differ from the

ones presented in Table 4.3, simply because the total bitrate (of both left and right

images) was considered in the BDPSNR calculations.

The results of Table 4.4 clearly show the advantage of the proposed MMP-stereo

algorithm over the MVC standard, presenting relevant RD gains for all stereo pairs.

The BDPSNR gains of MMP-stereo range approximately from 0.38 up to 1.12 dB

for the left image, and from 0.76 up to 1.73 dB for the right image.

In regard to the MV-HEVC algorithm, Table 4.4 shows that MMP-stereo achieves

very competitive results with the state-of-the-art encoder. Although it presents a

slightly average loss of about 0.14 dB for the left image, the MMP-stereo is able

to outperform MV-HEVC for the right image in some stereo pairs. These results

demonstrate the capabilities of the proposed MMP algorithm for the compression

of stereo pairs, being able to achieve state-of-the-art RD results, in particular for

synthetic stereo pairs.

The RD curves presented in Figure 4.4 compare the MMP, MVC and MV-HEVC

algorithms, for two selected stereo pairs, namely the Book Arrival and GT Fly.

These results show that the performance of both the MMP-stereo and MV-HEVC

algorithm is significantly higher than the one of MVC, for all bitrates. When com-

pared to MV-HEVC standard, the MMP-stereo demonstrates a competitive RD

performance for the Book Arrival stereo pair. The results for GT-Fly demonstrate

that MMP-stereo can reach new compression benchmarks for high resolution stereo

pairs, providing better performance than MV-HEVC standard from low to high

bitrates.

The presented results for stereo image coding are in line with the ones previ-

ously presented for MMP-intra, demonstrating the advantage of the proposed intra

prediction methods and increased block size for the MMP algorithm in both intra

and stereo coding scenarios. These results show that the proposed MMP algorithm

is worth pursuing, clearly outperforming the MVC standard, based on H.264/AVC

technology, and presenting a competitive performance with the one of the state-of-

the-art transform-based MV-HEVC for stereo image coding.

The major issue that prevents the practical use of MMP algorithm is the high

computational complexity that characterises this kind of pattern-matching-based

encoders. This problem was aggravated in this work by increasing the number of

intra prediction modes and using a larger initial block size that significantly increased

the block partitioning combinations. Due to these changes, MMP performs the

pattern-matching-based coding of a larger number of residue blocks, which results

in a considerably higher computational complexity. One solution to mitigate this
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Figure 4.4: RD performance of the proposed MMP-stereo, MVC and MV-HEVC for
the compression of two selected stereo pairs.

problem is to use faster sub-optimal methods for selection of the prediction mode.

The high recursive block partitioning scheme of MMP could also be combined with

quad-tree block partitioning and use a restricted number of possible block sizes

within each quadtree level.

88



4.4 Conclusion

In this chapter we have presented an improved intra prediction framework for the

MMP algorithm using an increased number of block sizes. In Section 4.1 we briefly

described the stereo implementation of MMP algorithm used in this research work

as basis for the proposed compression framework. The weaknesses of the MMP

algorithm for the compression of high resolution contents were the main motivation

for this work.

Section 4.2 described the proposed techniques and improvements for the MMP

algorithm. This includes the use of a larger initial block size and an improved intra

prediction framework, which extends the number of available directional modes,

based on the HEVC angular prediction modes. Several improvements related to the

entropy coding of intra prediction modes and the block partitioning scheme were

also presented.

The experimental results presented in Section 4.3 showed the importance of the

improved intra prediction framework and increased block size for the MMP algo-

rithm, for both intra and stereo image coding applications. The presented RD results

demonstrated that the proposed MMP algorithm can be an efficient alternative to

the transform-based coding standards for the compression of high resolution images,

specially synthetic contents. When compared to the MVC standard, the proposed

MMP-stereo encoder achieved an average BDPSNR result of 0.87 dB and 1.32 dB

for the left and right images of a stereo pair, respectively. In relation to the MV-

HEVC standard, the average BDPSNR results of MMP-stereo present a small loss

of 0.14 dB for the left image and a slight gain of 0.04 dB for the right image.
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Chapter 5

Compression of depth maps using

predictive coding

The research on efficient algorithms for compression of depth map signals has been

increasing in the last years, with the advent of the multiview video+depth (MVD)

format for 3D video representation. As previously described in Subsection 3.3.2, the

3D-HEVC is the most recent standard for the compression of MVD contents, ad-

dressing the problem of depth map coding with new techniques specifically designed

for this type of signals.

In this chapter we present an alternative depth map coding solution, which is

mostly based on intra predictive techniques. The developed algorithm, referred to

as Predictive Depth Coding (PDC), combines a flexible block partitioning scheme,

based on the one of MMP algorithm, with an intra predictive framework based on

directional prediction. To improve the representation of depth edges that cannot

be efficiently predicted by the directional modes, we propose the constrained depth

modelling mode, which uses explicit edge representation. For residue coding a simple

and low complexity approach, based on constant and linear residue modelling, is

proposed.

Section 5.1 presents an overview of the most important depth map intra coding

techniques proposed in literature, including the state-of-the-art methods adopted in

the recent 3D-HEVC standard for depth map coding. In Section 5.2, we present

the first investigation work on predictive depth map coding, which resulted in a

preliminary version of the proposed PDC encoder. Some experiments for the two-

view image coding scenario are presented and discussed. The overall structure of the

main proposed PDC encoder is presented in Section 5.3. A detailed description of

the coding techniques used in PDC is given in Section 5.4 and Section 5.5 presents

the encoder RD control mechanism used in PDC algorithm. In Section 5.6, we

present and discuss the experimental results, demonstrating the advantage of PDC

algorithm over the state-of-the-art 3D-HEVC standard for intra depth map coding.
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5.1 Overview of intra techniques for depth map

coding

Depth maps consist of grayscale images that capture the 3D structure of the scene,

by representing the relative distance of the objects to the camera (with brighter

pixels corresponding to closer points). In general, depth maps are characterised

by approximately constant regions, separated by sharp edges at object boundaries.

Due to these characteristics, current transform-based video coding standards, such

as H.264/AVC or HEVC, present some issues for coding depth map signals. Most of

these issues are caused by transform coding and quantisation that generate a limited

number of coefficients in flat areas and introduce strong ringing artefacts, which

blur sharp edges. As the depth maps are typically used to generate intermediate

views, these artefacts highly affect rendering capabilities. These observations have

motivated the investigation of alternative coding techniques for depth maps.

In the last years, alternative coding methods have been proposed for efficient

depth map compression [23, 52, 95–97, 118–120]. The mesh-based depth map coding

has been proposed in [97], by using an adaptive binary triangular tree (tritree). The

main problem of this method is related to the placement of triangular patches on a

regular grid, which usually causes the generation of a large number of small patches

along the edges. The JPEG2000 standard has also been used for depth map coding

by assigning a Region Of Interest (ROI) to each object in the depth map [118].

In spite of avoiding some of the artefacts of the transform-based algorithms, this

method is not efficient when many objects exist in the scene. Also, the use of MMP

algorithm for depth map coding was successfully demonstrated in [52]. Nevertheless,

MMP requires a high computational complexity in both the encoder and decoder

sides.

Another interesting method is the Platelet algorithm [95, 96] that approximates

the blocks resulting from a quadtree segmentation by using different piecewise-linear

modelling functions. Smooth blocks are approximated by using a constant or a linear

modelling function. Blocks with depth discontinuities are modelled by a Wedgelet

function, defined by two piecewise-constant functions, or by a Platelet function,

defined by two piecewise-linear functions, both separated by a straight line. The

optimal quadtree block sizes and modelling functions are chosen according to a

cost function, that evaluates the rate and distortion. Bitrate savings of about 25%

using Platelet algorithm for depth map coding have been reported in comparison to

H.264/AVC intra coding [95].

Algorithms based on Wedgelet modelling have been also successfully used for ef-

ficient depth map representation [119, 121]. The use of Wedgelet block partitioning

has been early investigated during HEVC standardisation, presenting bitrate reduc-
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tions on depth map coding up to 11% [119, 121]. Currently, Wedgelets are used as

part of the state-of-the-art depth intra coding techniques adopted in 3D-HEVC stan-

dard [23, 111]. A recent proposal on intra depth map coding proposes to replace the

transform-based residue coding and directional intra prediction framework of 3D-

HEVC standard by an advanced geometry-based intra prediction approach which

includes plane fitting, Wedgelet modelling, inter-component prediction and constant

offset residual coding [120]. Reported results showed a RD performance close to the

one of the 3D-HEVC encoder. An interesting feature of this algorithm is the ability

to provide a triangular mesh that represents the scene surface.

The 3D-HEVC algorithm is the most recent standard developed for the MVD

compression, presenting the current state-of-the-art performance for depth map cod-

ing. Regarding the intra techniques for depth map coding, 3D-HEVC algorithm em-

ploys transform coding with directional intra prediction, as typically used for texture

image coding [23]. However, in order to better represent depth maps, 3D-HEVC in-

troduces new coding tools and disables some of the existing ones. The disabled tools

include the in-loop filters, namely DBF and SAO, which were designed for natural

image coding. These filters are useless for depth map signals, and add unnecessary

computational complexity.

In order to better represent the sharp edges of depth maps, 3D-HEVC has

three main additional intra coding tools [75, 110]: Depth Modelling Modes (DMM),

segment-wise DC coding (SDC) and single depth intra mode. Depth Lookup Table

(DLT) was also proposed to reduce the bit depth of residual signal, for depth maps

with reduced depth range due to quantisation. The View Synthesis Optimisation

(VSO) consists in using the distortion of synthesised views to directly evaluate the

effect of the encoded depth block error in view synthesis during the RD optimisation

process. The following subsections present a brief description of the most impor-

tant depth intra coding methods used in 3D-HEVC algorithm, as for the reference

software HTM-13.2 [75].

5.1.1 Directional intra prediction

Intra prediction is a key tool of standard image and video compression algorithms,

being equally important for depth map coding. For an efficient prediction of the

sharp edges and flat areas present in depth maps, 3D-HEVC maintains the same

intra prediction modes, as the ones proposed to the HEVC standard, which were

previously described in Subsection 2.3.1. This prediction framework includes 35

modes defined for square prediction unit sizes, from 4× 4 up to 32× 32.

HEVC directional block prediction is based on 33 different angular modes, num-

bered from 2 to 34, as illustrated in Figure 2.5 of Subsection 2.3.1. This represents a
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significant extension to the 8 directional modes used in H.264/AVC encoder, which

is mainly motivated by the increased size of prediction units. To generate the pre-

dicted block, the reconstructed block boundary samples are projected into some

directions, using bi-linear interpolation with 1/32 sample accuracy.

Alternatively, intra planar and DC prediction modes can be used to predict

smooth areas, which are frequent in depth maps. Intra planar assumes an amplitude

surface with vertical and horizontal slopes, derived from the block neighbourhood

reference samples, while intra DC uses a flat surface with a constant value estimated

from the block neighbourhood.

5.1.2 Depth Modelling Modes

Depth modelling modes (DMM) consist of new intra prediction modes for efficient

edge representation [23, 122]. These modes are available together with the original

HEVC intra directional prediction modes, providing an alternative approximation

for depth maps. The residual difference between the depth modelling approximation

and the original depth map is encoded using transform coding, as for ordinary intra

prediction modes, or explicitly modelled by using constant approximation values.

The main idea of the depth modelling modes is to divide the block into two disjointed

regions, and approximate them by using constant values. Two types of partitions

are defined, namely Contours and Wedgelets.

In Wedgelet partition, a straight line defined between two points located on dif-

ferent borders of the block is used to separate the block into two regions, P1 and

P2. This type of partition is illustrated in Figure 5.1 (left) using the straight line

defined between points S and E. At the encoder side, the best matching Wedgelet

partition is searched using the original depth signal. The Wedgelet which presents

the lowest distortion, between the original depth and the pre-defined Wedgelet pat-

tern, is transmitted. More details about Wedgelet partition search and signalling

can be found at [75].

The Contour partition mode differs from Wedgelet partition in the sense that

it is not a geometry guided block division, but texture guided block segmentation.

This is an inter-component-predicted mode, which uses co-located texture block to

generate block partitioning (see Figure 5.1 - right), based on a thresholding method.

The threshold is estimated from the average value of the four corner luma samples of

the co-located texture block. Depending whether the samples of the texture block

are above or below the estimated threshold, they are classified has being part of

region P1 or P2, resulting in a block partitioned into two disjointed regions that

represents the Contour partitioning. Note that, unlike Wedgelet partitioning, each

region of Contour mode may contain multiple parts, as illustrated in Figure 5.1
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Figure 5.1: Example of Wedgelet (left) and Contour (right) block partitions.

(right) for region P2. Because it uses the texture information to derive the parti-

tioning pattern for the depth block, Contour mode provides an efficient solution to

represent arbitrarily shaped partitions with no overhead.

Depth modelling modes also require the transmission of the depth model in each

partition. Depth is modelled as a flat surface, characterised by a single Constant

Partition Value (CPV). During encoding, CPVs are estimated as the mean depth

value over each partition. For an even more efficient representation, estimated CPVs

are predicted based on neighbouring reconstructed pixels. The difference between

the estimated and predicted CPVs, denominated delta CPVs, can be transmitted

using two different approaches. In the first one, delta CPVs are transformed, quan-

tised and entropy coded, while the other approach signals CPVs using SDC and

DLT methods, which are detailed below.

5.1.3 Depth Lookup Table

It has been observed that most depth maps were originally quantised, not using the

full available depth range of 28 values. Depth Lookup Table [75, 123] was proposed

to reduce depth residue bitrate using a restricted set of valid depth values. 3D-

HEVC constructs the DLT based on the depth values used in each GOP of the

input sequence, and transmits the DLT information to the decoder.

DLT algorithm uses some auxiliary mapping tables to map the valid depth values

to index values and vice-versa. From the construction procedure, detailed in [75],

three tables are derived, namely the DLT D(.), the Index Lookup Table I(.) and

the Depth Mapping Table M(.). In order to derive the residual index iresi to be

transmitted, the original depth, dorig, and the predicted depth, dpred, are converted

to the respective indices and subtracted:

iresi = I(dorig)− I(dpred). (5.1)

At the decoder, the reconstructed mean depth value is firstly derived as

d̂orig = I−1(I(dpred) + iresi), (5.2)
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and the mean residual signal is obtained using

d̂resi = d̂orig − dpred. (5.3)

The reconstructed samples P̂x,y are computed by adding the mean residual value

d̂resi on each prediction sample Px,y.

5.1.4 Segment-wise DC Coding

The Segment-wise DC Coding is an alternative residual coding method, which does

not require transform and quantisation methods [75]. SDC can be applied to all

depth intra prediction modes and it only can be used at Prediction Units (PUs) of

size 2N × 2N . For directional intra prediction, one segment is defined, while for

DMM two segments are defined. For each segment, SDC encodes the mean value of

the residual signal using the DLT method.

5.1.5 Single Depth Intra Mode

The main motivation for single depth intra mode is the fact that most areas on

depth maps are smooth and present similar depth values. The principle of this

mode is to reconstruct the depth block by using a single depth sample value, which

is obtained from a sample candidate list. Specific sample positions of current block

neighbouring are used in a predefined order to derive the sample candidate list. No

residue information is transmitted when this mode is used.

5.1.6 View Synthesis Optimisation

As pointed out previously, depth maps are not directly observed by the viewer. They

carry on the structural information of the scene, being mainly used for view syn-

thesis. In order to better encode depth maps for their purpose, the View Synthesis

Optimisation (VSO) method is used in 3D-HEVC. The principle of VSO method is

to measure the distortion of the synthesised views, instead of the Sum of Squared

Errors (SSE) of the depth block [122]. This method is motivated by the fact that the

coding errors in the depth maps lead to quite different distortions in the synthesised

views. To measure the distortion of the synthesised view, two VSO metrics can be

applied in the RD optimisation process.

The first VSO metric is known as Synthesised View Distortion Change (SVDC).

SVDC estimates the change of distortion in the synthesised intermediate view caused

by the change in the depth block due to the coding error. This process is defined as

the distortion difference, ∆D, computed between two synthesised texture images,

as illustrated in Figure 5.2.
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Figure 5.2: SVDC procedure for the distorted depth block identified in bottom depth
map (labelled by tested block). Figure taken from [75].

The first synthesised view, s′T , is generated through view synthesis (VS) proce-

dure [79, 80] using a depth map that comprises the reconstructed depth values for

the previously encoded blocks and the original depth values for the remaining depth

map blocks. The second synthesised view, s̃T , is generated using a similar depth

map, that only differs in the samples of the block currently being encoded. Instead

of using the original samples, the reconstructed samples produced by the coding

mode under testing are used, as signalled in Figure 5.2 by the dark pattern. The

SSE for each synthesised view is estimated against a reference synthesised texture

view, s′T,Ref , which is rendered using uncompressed depth and texture video data.

The whole SVDC calculation can be represented by the following expression:

∆D = D̃ −D =
∑

(x,y)∈I

[
s̃T (x, y)− s′T,Ref (x, y)

]2 − ∑
(x,y)∈I

[
s′T (x, y)− s′T,Ref (x, y)

]2
(5.4)

where I represents the set of samples of the synthesised view. In order to avoid

the rendering of the entire synthesised view for each tested block and save some

computational complexity, 3D-HEVC uses an efficient implementation of SVDC

that performs minimal rendering of the regions that are affected by the distorted

depth block under test. Commonly, the SVDC implementation synthesises several

intermediate views and the average view synthesis distortion is evaluated.

The second VSO metric used in 3D-HEVC estimates the synthesised view dis-

tortion without actually performing view rendering. It was designed to be fast, but

still provides a reliable model for view synthesis distortion. Details about this metric

are available at [75].
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5.2 Investigation of efficient methods for depth

map coding

Prior to the development of the main depth map coding algorithm proposed in

this chapter, a preliminary investigation work on potential methods for depth map

coding was initiated. This investigation has been initially motivated by the high per-

formance results observed using MMP paradigm for depth map coding [52]. When

this research was initiated, the standardisation process of 3D-HEVC encoder has

not been started, yet. The Platelet algorithm [95, 96] was one of the most efficient

approaches for depth map coding, being the main reference used to compare and

evaluate the performance of the investigated algorithms.

In this research work, we started investigating the potential of the flexible block

partitioning and intra predictive scheme of original MMP algorithm for depth map

coding only, thus avoiding the high computational complexity associated to the

residue coding method based on the pattern matching paradigm. Instead of us-

ing the pattern matching for residue coding as done in MMP, a simpler approach

was investigated, based on linear block approximation combined with an efficient

dictionary-based algorithm that reuses the previously encoded approximations.

The investigated algorithm resulted in an efficient codec for depth map coding,

when compared with other algorithms proposed in literature. The directional pre-

diction provides a good representation of sharp edges present in depth maps, while

the piecewise-linear functions are mostly used to represent smooth regions. The

use of piecewise-linear functions has been inspired on Platelet algorithm [95, 96].

However, the developed algorithm applies the piecewise-linear functions over the

intra-predicted residual signal, instead of the original depth signal, as in [96].

Since depth maps are not directly observed by the users, the performance of depth

map coding algorithms is often evaluated by analysing the quality of the synthesised

virtual views using the compressed depth maps. Experimental tests demonstrated

that the synthesised views generated using the depth maps encoded by the developed

algorithm presented a higher PSNR quality than the ones synthesised using depth

maps compressed by other contemporary algorithms, such as Platelet, MMP or

H.264/AVC standard. When compared to the original MMP algorithm, which was

used as the basis framework for this work, the preliminary proposed algorithm for

depth map coding was able to achieve a superior RD performance with an inferior

computational complexity.

The following subsections describe the main features of the preliminary version

of the proposed depth map coding algorithm, namely the partitioning tree, the

use of hierarchical intra prediction, the piecewise-linear residue approximation and

rate-distortion optimisation procedure. Introductory experiments using the existing

98



depth map coding algorithms, as well as the investigated method, under the two

view depth map coding scenario are presented and discussed.

5.2.1 Flexible directional prediction using linear residue ap-

proximations

This algorithm first divides the input depth map into 32 × 32 pixel blocks. Each

block can be divided either in horizontal or vertical direction, resulting in 32 × 16

or 16× 32 blocks, which may in turn be further divided into 16× 16 blocks. These

blocks may be useful to approximate large smooth areas, commonly observed in

depth maps. From 16× 16 blocks, the same flexible partitioning scheme of original

MMP algorithm is used. This results in three larger block sizes (32×32, 32×16 and

16×32) plus 25 block sizes with dimensions 2m×2n, for m,n = 0, . . . , 4, obtained by

recursive partitioning of the 16×16 blocks, either in horizontal or vertical directions.

The flexible dyadic partitioning has an important role in the representation of

depth map edges, because very thin blocks may be used (e.g., 8 × 1) to match the

depth edges. For intra prediction, the developed algorithm uses nine modes, similar

to those defined in H.264/AVC encoder. However, the neighbouring causal samples

are not smoothed as done in the H.264/AVC.

Apart from the sharp edges, most regions of depth maps can be efficiently pre-

dicted, because they are constant (e.g., areas inside an object) or vary smoothly

(e.g., on ground plane or walls). These depth map characteristics motivate the use

of piecewise-linear fitting for residue coding. Thus, for a block S, of size 2m×2n, the

linear approximation of each pixel S(x, y), with block coordinates x = [0, . . . , 2m−1]

and y = [0, . . . , 2n − 1], is given by:

Ŝ(x, y) = α0 + α1x̃+ α2ỹ , (5.5)

where x̃ = (x − 2m−1 + 1) and ỹ = (y − 2n−1 + 1). Note that (x̃, ỹ) is a displaced

version of (x, y), with an approximately zero mean value. The (x̃, ỹ) values could be

determined with exact zero mean by using fractional displacement values. However,

fractional representation of (x̃, ỹ) is not favourable because the residue block values

are integers. The advantage of using (x̃, ỹ) approximately centered around zero

is that, in these conditions, the value of α0 corresponds to the actual mean value

of the target residue block. When the prediction step is successful, the values of

the generated α0 coefficients are highly correlated and centered around zero, which

favours the entropy coding.

The linear model coefficients α0, α1 and α2 are estimated in order to minimise

the squared error between the original depth values S(x, y) and the approximation
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Ŝ(x, y). The approximation coefficients for each block are then entropy coded and

transmitted to the decoder. In order to further reduce the overhead associated to the

coefficient transmission, an improved residue coding scheme was developed, being

presented in the following subsection, together with the adopted RD optimisation

procedure.

5.2.2 Approximation model coding and RD optimisation

The developed depth map encoder takes the coding decisions that minimise a La-

grangian RD cost function. This cost is affected by many coding parameters, in-

cluding the block partitioning decisions, the selected intra-prediction modes and the

used piecewise-linear functions.

Typical image coding algorithms use a distortion metric based on the Sum of

Squared Errors (SSE), in order to maximise the objective PSNR quality of the

encoded image. This objective does not apply to depth maps because they are

not directly observed by the users. Instead, the compressed depth maps should

provide efficient synthesis results. In this work, we performed some experiences using

alternative distortion metrics for RD optimisation, namely with the Sum of Absolute

Errors (SAE), and analysed the results. The experimental tests revealed that using

SAE as distortion metric provided more efficient PSNR results for the synthesised

views than using the SSE-based distortion. For this reason, the developed encoder

was setup to use SAE as distortion metric.

The linear model coefficients are quantised using a non uniform quantiser, that

uses an adaptive quantisation step Q. The value of Q for each coefficient can be

1, 4, 8 or 13, depending on the interval in which the values of |α0|, |α1.2
m/2| and

|α2.2
n/2| belong to: [0, . . . , 10], ]10, . . . , 22], ]22, . . . , 86] and ]86, . . . , 255], respec-

tively. Therefore, the quantised coefficients can be obtained by α0/Q, (α1.2
m)/(2Q)

and (α2.2
n)/(2Q).

In order to further improve the algorithm’s compression efficiency, a dictionary-

based method that reuses the previously encoded approximations was introduced.

This method is inspired on the pattern matching paradigm used in the MMP algo-

rithm. A dictionary is created for each block size and is initialised with an all-zero

pixel block. During the encoding process, the dictionary is updated with the new

encoded patterns.

Thus, each residue block can be approximated by using an explicit linear fitting

model or by transmitting an index of the dictionary. The choice is made according

to the solution that provides the minimum Lagrangian cost. For the case of an
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explicit linear model approximation, the Jfit cost function is given by:

Jfit = Dfit + λ
[
R(flagfit) +

2∑
j=0

R(αj)
]
, (5.6)

Regarding the dictionary-based approach, the cost of each pattern of a dictionary

with M elements, represented by index i, is computed as:

Jdic(i) = Ddic(i) + λ
[
R(flagdic) +R(i)

]
, i = 0, . . . ,M (5.7)

In these equations, Dfit and Ddic are the distortions associated to each approxi-

mation, and R(flagfit) and R(flagdic) correspond to the bitrate of the flags used to

indicate whether the residue is approximated by the linear function or by a dictio-

nary pattern.

Each time a new linear approximation is explicitly transmitted, the encoded

pattern is added to the dictionary, becoming available to approximate future residue

blocks using less bitrate (dictionary index). This dictionary-based method provides

an efficient way to reuse approximation patterns. It is important to note that the

high computational complexity traditionally associated to the dictionary searching

procedures has a reduced impact in this encoder. This fact results from the limited

growth ratio of the dictionary in this encoder, which is much smaller than the one

of the MMP algorithm, where many transformations are performed over each new

element, to further enrich the dictionary [52].

The computational complexity of this method is mostly related to the exhaustive

testing procedure used to find the optimal partitioning tree. In order to reduce the

number of tested residual blocks, the proposed encoder selects the prediction mode

solely based on the prediction error, avoiding the full RD optimisation of the residue

block for all prediction modes.

5.2.3 Experimental results

The performance of the proposed depth map coding algorithm has been evaluated

by analysing the quality of the synthesised texture views using the compressed depth

maps. The first frame of six virtual views based on four test sequences commonly

used in literature have been synthesised in these experiments: cameras 1 and 4

of Ballet1 [124], cameras 1 and 4 of Breakdancers1 [124], camera 9 of Book Arrival

[125] and camera 40 of Champagne Tower [126]. In order to synthesise a virtual view

associated to camera n, the compressed depth maps corresponding to cameras n−1

and n+ 1 (left and right cameras) and the uncompressed texture views (luminance

1http://research.microsoft.com/en-us/downloads/5e4675af-03f4-4b16-b3bc-a85c5bafb21d/
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Figure 5.3: Evaluation framework for depth map coding using the two-view scenario.

signal) of the same cameras were used, as illustrated in Figure 5.3. The VSRS-3.5

software [127] was used to perform the view synthesis procedure based on DIBR

method [80].

The method was compared against other algorithms with available source code

or experimental results, namely the transform-based H.265/HEVC standard [1, 2]

(reference software HM-9.1rc1 [72] using intra main configuration), the H.264/AVC

standard (software JM-18.0 [71] using the intra and stereo high profiles) [5], the

MMP algorithm [52] and the Platelet-based depth map encoder [95, 96]. The stereo

high profile of H.264/AVC standard introduces a new level of dependency because

it allows to exploit the inter-view redundancies between both encoded depth map

views. Although the remaining algorithms do not exploit inter dependencies, this

stereo configuration has been considered for the experimental comparison. For the

case of Platelet algorithm, only the results for the sequences Ballet and Breakdancers

were found available at [128]. It is important to note that the Platelet algorithm

was the state-of-the-art approach when this research work was being developed.

Figures 5.4, 5.5 and 5.6 illustrate the rate-distortion performance of the proposed

algorithm relative to the mentioned methods, for the first frame of the test set. The

objective quality of the synthesised views is given by the PSNR of the luminance

signal. In order to compute the PSNR, a reference synthesised view was firstly

generated by using the uncompressed depth maps and texture views. The bitrate

of the presented RD plots corresponds to the sum of the bitrate used by both, left

and right, compressed depth maps.

These results show that the proposed method achieves the best performance for

most bitrates and test sequences. When compared to the Platelet algorithm, for

the available test sequences results, the developed algorithm presents a superior

compression efficiency for all the bitrate values, gaining up to 4 dB for Ballet and

up to 2 dB for Breakdancers, at higher bitrates. Similar observations can be drawn

when the comparison is made with H.264/AVC standard, using intra or stereo high

profiles, for all test sequences. Despite using the stereo high profile, depth maps
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Figure 5.4: PSNR results for the synthesis of the first frame of Ballet sequence
(cameras 1 and 4), as a function of the total bitrate used by left and right depth
maps.

encoded by H.264/AVC are not accurate enough for view synthesis. These results

can be justified by the kind of artefacts generated by the transform coding method.

The HEVC standard using intra main configuration for depth map coding pre-

sented interesting results at lower bitrates. Despite exhibiting results very close to

the ones of the proposed method at lower bitrate, HEVC performance is still sig-

nificantly inferior from medium to higher bitrate. The reasonable performance at
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Figure 5.5: PSNR results for the synthesis of the first frame of Breakdancers se-
quence (cameras 1 and 4), as a function of the total bitrate used by left and right
depth maps.

lower bitrate can be related to the maximum block size of 64×64 adopted in HEVC

standard, which is superior to the maximum block size of 32 × 32 used in the pro-

posed method. When compared to MMP, the proposed method also demonstrates

to perform more efficiently for most RD points. It is interesting to observe that, at

higher bitrates, MMP tends to perform better than the Platelet algorithm and the

transform-based standards, as discussed in [52].
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Figure 5.6: PSNR results for the synthesis of the first frame of Book Arrival (camera
9) and Champagne Tower (camera 40) sequences, as a function of the total bitrate
used by left and right depth maps.

In terms of computational complexity the proposed algorithm presents encoding

times in the hundreds of seconds. Despite showing superior values than the encoding

times of the transform-based algorithms, they are approximately 10 to 50 times less

than the ones of MMP algorithm, which is the basis framework of the proposed

method. The computational complexity of the proposed decoder is also much inferior

than the one of MMP decoder, taking approximately one second to decode one frame.
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5.3 Overview of Predictive Depth Coding

The investigation work described in the previous section resulted in a preliminary

version of the proposed depth map coding algorithm, presenting an efficient coding

performance when compared to other depth map coding algorithms presented in

literature. The experiments demonstrated that directional prediction and flexible

block partitioning, based on the MMP algorithm, is important for efficient repre-

sentation of depth maps. The use of an alternative low complexity residue coding

method, based on linear residue approximation, also revealed to be advantageous for

depth map coding. These observations suggested further investigation on improved

predictive methods that better exploit the flexible block partitioning scheme for edge

representation and are able to reduce the encoder computational complexity.

With the advent of the 3D-HEVC proposal, new state-of-the-art results on depth

map coding were reached, overcoming the existing coding approaches presented in

literature, including the Platelet, the MMP, as well as the developed depth map cod-

ing algorithm, described in the previous section. In this context, based on the recent

developments of 3D-HEVC standard, new coding techniques and improvements to

the previous proposed algorithm were investigated, resulting in a new improved

depth map coding algorithm. As the proposed algorithm is based on intra coding

techniques, the coding of temporal, inter-view, and inter-component (between depth

map and texture video) redundancies are not addressed in this work.

The block diagram of the novel proposed intra-based algorithm, denominated

as Predictive Depth Coding (PDC), is presented in Figure 5.7. Similarly to most

image/video coding schemes, PDC uses a hybrid coding approach based on intra

+ residue
coding

directional
intra

prediction

constrained
depth

modelling

residue
decoding

+

bitstreamrate-distortion control
entropy
coding

mode

input
image -

output
image

Figure 5.7: Block diagram of the proposed intra PDC algorithm.
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prediction and residue coding. In the coding process, PDC firstly divides the in-

put image into 64 × 64 pixel blocks. Each block is intra predicted based on the

neighbouring reconstructed samples.

PDC intra prediction modes are the planar, DC and angular modes as proposed

in the HEVC standard. Alternatively, the block may be encoded using a constrained

depth modelling mode, designed for edges that are difficult to predict. This kind

of edges is typically observed in the bottom-right region of the block, which cannot

be predicted by directional intra prediction modes using left and top neighbouring

block samples. The proposed constrained depth modelling mode allows to explicitly

model those edges and approximate the surrounding smooth areas.

PDC encodes the residual information, given by the difference between the orig-

inal and intra predicted signals, using a straightforward and efficient method based

on linear fitting, which depends on the chosen intra prediction mode. This depen-

dence on the prediction mode is indicated in Figure 5.7 by the dotted line. Like

3D-HEVC, PDC uses a depth lookup table to efficiently encode the residue signal

values, mainly when depth maps present a very restricted depth range.

On the encoder side, most of the possible combinations of block partitioning and

coding modes are examined. The best one is selected according to a Lagrangian RD

cost. During the encoding process, each block is reconstructed like in the decoder.

Reconstructed data is further used by the encoder to generate the prediction signal

for the next blocks.

The encoded bitstream contains the flags used to signal the block partition, the

DLT information and the symbols produced by the encoder blocks: directional intra

prediction, constrained depth modelling mode and residue coding, as signalled by

dashed lines in Figure 5.7. For entropy encoding, PDC employs the context adaptive

m-ary arithmetic coding algorithm, based on the implementation of [68]. For each

frame, the probability models are initialised with uniform distributions. A different

context model, which depends on the block size, is used for most of the transmitted

symbols.

5.4 Coding techniques of PDC algorithm

This section details the coding techniques comprising the PDC algorithm and high-

lights the main contributions of this work relative to the current existing techniques

used in the 3D-HEVC encoder. The proposed techniques were designed to maximise

the RD performance of the encoded depth maps and the quality of the synthesised

views. However, in order for PDC to have a low computational complexity, some

simplifications leading to sub-optimal decisions have been made. Thus, the proposed

algorithm is a compromise between complexity and coding efficiency.
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Figure 5.8: Possible block sizes in PDC and respective label numbers.

5.4.1 Flexible block partitioning

PDC divides the input depth map into fixed 64 × 64 pixel blocks. During the

encoding process, each block can be further segmented through a flexible scheme

based on the one of MMP algorithm, which recursively divides the block, either in

the vertical or horizontal direction, down to the 1 × 1 size [66]. In this scheme,

vertical partitioning is first applied and the left partition is processed before the

right one. Then, the block is also partitioned in the horizontal direction and the top

partition is processed before the bottom one. Each generated partition is recursively

processed using the same partitioning scheme, until the smallest block size is reached.

The possible block sizes are labelled from 0 up to 29, as illustrated in Figure 5.8.

Note that, block sizes with a high ratio between horizontal and vertical dimensions

(ratios larger than 4, e.g. 64 × 1) are not included in the proposed partitioning

scheme because they significantly increase the encoder’s computational complexity

and have a small impact on the RD performance.

Despite the restriction to 29 possible block sizes, the complexity required to test

all the possible block partitioning combinations in the encoder side still remains the

main issue of the proposed flexible partitioning scheme. To mitigate this problem a

quadtree block partitioning scheme was combined with flexible block partitioning.

Three quadtree levels were defined at block sizes 16× 16, 32× 32 and 64× 64. The

four partitions, generated by each quadtree partitioning, are processed using a raster

scan order. For each presented quadtree level, the flexible partitioning is used within
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Table 5.1: Flexible segmentation restrictions per quadtree level.

Quadtree level Max. block area Min. block area

2 (64× 64) 4096 (64× 64) 256 (16× 16)
1 (32× 32) 1024 (32× 32) 64 (8× 8)
0 (16× 16) 256 (16× 16) 1 (1× 1)
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Figure 5.9: Example of an optimal block partitioning and corresponding segmenta-
tion tree in PDC algorithm using quadtree plus recursive flexible partitioning.

a restricted range of block sizes, which depends on the block area. Table 5.1 presents

the proposed maximum and minimum block areas (and sizes) that are obtained by

the flexible block partitioning scheme, for each available quadtree level.

In Figure 5.9, an example of an optimal segmentation tree (left) with the cor-

responding block partitioning scheme (right) is presented, based on quadtree plus

recursive flexible partitioning. Darker nodes represent quadtree partition, while

brighter nodes correspond to the flexible partitioning, being complemented with the

“h” and “v” labels, for horizontal and vertical partitioning, respectively. Depth

map coding using prediction and residue approximation is used at tree leaves, as

labelled in Figure 5.9, by means of An, for n = 1, .., 12. In Figure 5.9, one can also

observe the flexible partitioning within a quadtree level. There, sub-blocks as larger

as 32×32 (represented by A7) are used next to smaller non-square blocks, like 16×8

(represented by A5). Note that some leaves could, eventually, be further segmented

down to 1× 1 size using flexible partitioning scheme.

5.4.2 Directional intra prediction framework

Combined with the flexible block partitioning scheme, the directional prediction is

an effective technique in the PDC algorithm. The intra prediction framework is

based on the one proposed to the current state-of-the-art HEVC standard [1]. It

includes the intra planar, DC and 33 angular prediction modes, as described in

Subsection 2.3.1. However, in PDC proposal some improvements were made for

better prediction of depth map signals.

In order to keep the sharpness of edges and improve prediction results, the pro-
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posed framework does not smooth the reference neighbouring samples from which

prediction is derived, as typically done in AVC and HEVC standards for prediction

of natural image signals. Furthermore, PDC disables another filtering that HEVC

uses over some predicted samples of DC, Angular 10 (horizontal) and Angular 26

(vertical) modes, specifically the samples of the first row and column of the pre-

dicted block. This is done in HEVC to smooth the transition between the reference

neighbouring samples and the predicted block samples. In the case of depth maps,

this filtering is not appropriate as it would blur the predicted depth edges.

This intra prediction model is able to produce a reliable depth map prediction and

thus a small residual signal that can be encoded using a relatively low bitrate. The

smooth and constant regions, which are very frequent in depth maps, are efficiently

predicted by DC and planar prediction modes. In addition, angular modes combined

with flexible block partitioning are able to represent the sharp edges which also

characterise depth maps. The effectiveness of this method results from the piecewise

edge approximation using a variety of rectangular sub-block sizes and prediction

directions for each partition.

In order to further improve the performance of the proposed directional intra

prediction for depth map coding using PDC algorithm, further solutions were in-

vestigated. As previously explained, PDC uses a great amount of block sizes which

can be predicted based on 33 directional intra modes. Since some block sizes are

very small or narrow, some directional intra prediction modes, namely adjacent di-

rections, may be redundant and produce similar prediction patterns. For example,

the 1 × 4 block size presents very few samples in the horizontal direction (1-wide

pixel), which is not sufficient to project the left neighbouring reference samples into

17 clearly distinct prediction directions (Angular 2 up to Angular 18 modes). In

this context, in order to avoid unnecessary calculations and to use less bits for di-

rectional intra prediction coding, a reduction in the set of prediction directions was

investigated for the proposed algorithm according the used block size. Table 5.2

presents the proposed restricted direction set of angular prediction modes for each

block size in the PDC algorithm. DC mode is enabled at all block sizes, while the

planar is active for block sizes larger or equal to 2× 2.

Besides this restriction, that is due to the large amount of small and narrow block

sizes, the characteristics of depth maps may be exploited to further restrict the used

directional intra prediction modes. Because depth maps present large smooth areas,

multiple prediction directions may produce the same predicted samples. In order

to exploit this prediction redundancy, an analysis of the reference samples in the

neighbouring reconstructed blocks is performed and some prediction directions are

disabled accordingly. This method provides both speed-up of the encoder and bitrate

reduction, since a more limited set of directions is tested, and less bits are required
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Table 5.2: Restricted direction set of available angular prediction modes per block
size.

Block size w × h Active angular modes

w ≥ 16 and h ≥ 16 all modes
w ≥ 16 and h = 8 all modes except 3, 5, 7, 9, 11, 13, 15, 17
w = 8 and h ≥ 16 all modes except 19, 21, 23, 25, 27, 29, 31, 33
w = 8 and h = 8 even modes
w = 8, 16 and h = 4 even modes except 20, 24, 28, 32
w = 4 and h = 8, 16 even modes except 4, 8, 12, 16
w = 8 and h = 2 even modes except 20, 22, 24, 28, 30, 32
w = 2 and h = 8 even modes except 4, 6, 8, 12, 14, 16
w = 4 and h = 4 modes 2, 6, 10, 14, 18, 22, 26, 30, 34
w < 4 and h < 4 modes 2, 10, 18, 26, 34

Table 5.3: Groups of prediction modes defined according to the block neighbouring
regions.

Group Neighbouring regions Prediction modes

1 top & left & top-left modes 10 to 26, planar
2 left & down-left modes 2 to 9
3 top & top-right modes 27 to 34

to signal each directional mode.

The proposed method defines three groups of directional prediction modes, which

may be disabled as a whole when the associated neighbouring reference samples are

exactly constant. These groups of prediction modes and associated neighbouring

regions are shown in Table 5.3. The group 1 contains all the directions that generate

a prediction signal exclusively based on the top and left neighbourhood, including

the top-left pixel. When these reference samples are constant, the associated modes

of group 1 are disabled. DC mode can be chosen in place of the disabled modes

of group 1, since it produces the same predicted samples. When the samples of

the neighbouring left and down-left regions are constant, the modes of group 2 can

be disabled. In this case, the Angular 10 mode (horizontal) is able to substitute

these modes, producing the same results. Note that the Angular 10 mode, belongs

to group 1, and it should be active if left and top neighbourhoods contain varying

samples. Otherwise, if left-down, left, top-left and top neighbouring regions are

constant, the DC mode should be able to replace all the modes of groups 1 and

2. Group 3 contains those modes that depend on top and top-right neighbouring

regions, and can be replaced by Angular mode 26 (vertical).
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5.4.3 Constrained Depth Modelling Mode

The Constrained Depth Modelling Mode (CDMM) is another important tool of the

proposed PDC algorithm. The main idea behind this tool is to complement the intra

directional prediction, by providing an alternative method that explicitly encodes

depth edges in the bottom-right region of the block, that are hard to predict by

directional intra prediction. This method is inspired on depth modelling modes

used in 3D-HEVC, but several restrictions were applied to its design, in order to

make it more efficient in the context of the PDC algorithm.

Intra prediction angular modes are able to represent most of the straight edges

present in depth maps. However, some specific ones are difficult to predict. An

example of a straight edge that is difficult to predict is illustrated in Figure 5.10.

PDC intra prediction framework reasonably predicts straight edges coming from the

left or top block neighbourhood. As can be observed, edges illustrated in the left and

middle blocks of Figure 5.10 can be well represented by the proposed intra prediction

framework, based on the left and top neighbouring reference samples. When an edge

does not touch the left or top neighbouring samples, like the one shown in the right

block of Figure 5.10, it is difficult to predict. In some cases, the top-right or down-

left reference samples may provide the necessary information to predict this kind

of edges. Unfortunately, these neighbourhoods are often unavailable. Furthermore,

as illustrated in the right block of Figure 5.10, the visible edge in the block may

not reach the top-right or left-down neighbouring region, if it does not maintain the

straight shape outside of the predicting block.

In order to improve the representation of such difficult to predict edges, a depth

modelling mode is proposed to represent edges below the block diagonal drawn

between the down-left and top-right block corners, indicated in Figure 5.10 by the

C0 and C1 points. The principle of the proposed CDMM consists in dividing the

block into two partitions, which are approximated by constant values. The block

partitioning should occur between two points of the right and bottom margins of

the predicting block. As a second restriction to the proposed method, the line
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Figure 5.12: Different CDMM partition slopes provided by flexible partitioning.

drawn between the two chosen points should be parallel to the diagonal defined by

the down-left and top-right block corners. Thus, it can be specified by just one

parameter.

Figure 5.11 illustrates some partition possibilities of the proposed CDMM for an

8 × 8 square block. The imposed constraints highly simplify the signalling of the

CDMM block partition, requiring a single value only, which is represented by the

offset d in Figure 5.11. In this example, eight different partitions that vary between

the minimum offset, d = 0, and the maximum offset, d = 7, can be employed. It can

be observed in Figure 5.11 that block partitions are performed in the bottom-right

half of the block and their slope is the same as the block down-to-top diagonal,

satisfying the proposed constraints.

The restriction on the block partitioning slope is advantageous in terms of com-

putational complexity because it avoids testing a lot of block partitions with different

slopes. Furthermore, by using a unique partition slope depending on the block size,

no bitstream overhead is required for its transmission. The main disadvantage of this

partitioning restriction is the reduced flexibility to approximate depth map edges.

However, the proposed PDC algorithm is able to alleviate this issue, by combining

CDMM with the flexible partitioning scheme.

The large amount of block sizes generated through flexible partitioning provides

up to five different CDMM partitioning slopes according to the possible down-to-

top diagonals. Figure 5.12 illustrates these five CDMM line partition slopes gen-

erated from different block sizes available in the PDC algorithm. The blocks are

overlapped and the available slopes are represented between the points S and En,

for n = 1, 2, 3, 4, 5. The illustrated overlapped block sizes represent all the block

width/height ratios available in PDC.
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To generate the block partitions in the image sample domain, a simple formula-

tion was derived. Let w and h define the block width and height, respectively, and

r = max(w, h)/min(w, h) define the ratio between block dimensions. The partition

P2 (see Figure 5.11) is defined by all the block samples (x, y) (with x = 0, ..., w − 1

and y = 0, ..., h− 1) that satisfy the following conditions:y + (x/r) ≥ (h+ d− 1), if w > h

x+ (y/r) ≥ (w + d− 1), otherwise
(5.8)

where d = 0, ...,min(w, h) is the offset variable used to change the partitioning line

position, as illustrated in Figure 5.11.

The above description clearly highlights the importance of flexible partitioning

scheme for the proposed CDMM. It allows CDMM to use different block partition

possibilities, using a minimal overhead. Only the position of the CDMM block

partition is signalled through offset d, while the partition slope is implicitly derived

from the used block size.

CDMM block partitioning generates two partitions, whose depth values are ap-

proximated by using a constant value. For P1 partition, the approximation coef-

ficient is derived from the block neighbourhood, namely through the mean of the

left and top neighbouring reconstructed samples. The constant approximation of P2

partition is explicitly transmitted to the decoder. For that, the mean value of the

original samples in P2 is computed and the difference between the constant values P1

and P2 is encoded using the DLT technique (detailed in Subsection 5.1.3), as done

for the residue generated by directional intra prediction. The residual information

generated by the proposed approximations is bypassed, not requiring any extra bits.

Unlike directional intra prediction, which can use block sizes down to 1×1 pixel,

CDMM is disabled for smaller block sizes, namely blocks with an area equal or less

than 5 pixels (see Figure 5.8). This is so because at these levels the right-bottom

block partition is not feasible, since the blocks are only one pixel wide in either

dimension directions.

5.4.4 Residual signal coding

The residual signal is given by the difference between the original depth and pre-

dicted samples. In PDC, the flexible block partitioning scheme combined with the

directional intra prediction and CDMM provides very efficient prediction, resulting

in a highly peaked residue distribution centered at zero. For this reason, PDC does

not use the DCT, but an alternative approach which often assumes null residue

and uses linear modelling in the remaining cases. The simplicity of the proposed

approach is also advantageous in terms of computational complexity. Figure 5.13
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Figure 5.13: Detailed schematic of the PDC residue coding method.

illustrates the schematic of the proposed residue coding method. Four approxima-

tion models are available: constant, horizontal linear and vertical linear, as well as

a special case of null residue. In this approach, the residue block size matches the

prediction block size. Thus, the residue block is no further partitioned.

Linear residue approximation is mainly intended to encode a residue produced on

smooth areas. Constant residue approximation is employed only when DC mode is

used. On the other hand, linear fitting is used to approximate the residues generated

by the horizontal (Angular 10) and vertical (Angular 26) directions. Note that, a

row- or column-wise formulation is used without any additional offset, as formulated

in Figure 5.13. The main motivation for Angular 10 and Angular 26 prediction

modes is their ability to predict the offset component of depth regions similar to

horizontal or vertical linear planes, respectively.

These modes (DC, Angular 10 and Angular 26) tend to be mostly used at smooth

regions, where the residue often can be easily approximated by linear fitting. For the

remaining planar and angular modes, PDC always encodes a null residue. Angular

prediction modes are mostly intended for depth edge prediction - they usually choose

angular modes whose direction matches the predicting edge. When the prediction

direction does not match the edge, highly irregular residue patterns, which cannot

be efficiently represented by linear modelling, tend to be generated. For this reason,

in order to reduce the overhead, we disable residue coding on angular prediction

modes. Note that, when depth map edges cannot be efficiently predicted by the

existing modes, encoder RD control tends to further partition the block into smaller

sub-blocks that can be better predicted and encoded.

The linear model coefficients used to approximate the residue signal (Figure 5.13)

are computed using a straightforward method. For the DC mode, residue approxi-

mation is based on coefficient a, given by the mean value of the residue block. For

the Angular 10 and Angular 26 modes, the mean of the rightmost column and the

mean of the bottom row of the residue block are transmitted, respectively. Note

that the transmitted mean values computed from the right column or bottom row
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do not correspond directly to the value of the linear coefficients b and c represented

in Figure 5.13. However, they can be easily derived at the decoder from the received

values.

Depending on the chosen prediction mode, which is known in both the encoder

and decoder, one of the residue approximation models should be transmitted. How-

ever, for a more efficient RD coding, PDC allows to bypass residue approximation,

through the use of a binary flag. The bypass mode is tested as an alternative

residue coding mode that can be chosen, depending on the RD cost evaluation (see

Figure 5.13). In practice, this flag provides a lower bitrate coding for the zero

coefficient used in the approximation models.

PDC uses a simple residue quantisation scheme, by rounding the residue model

coefficients in the form of mean values to the nearest integer. Note that in opposition

to most codecs like 3D-HEVC, bitrate control is not performed by the quantisation

step size, that controls only the precision of the transmission of the residue coeffi-

cients. As mentioned before, bitrate is controlled through the Lagrangian multiplier.

When the intensity range of the input depth map is quantised, the DLT algorithm

is used, as presented in Subsection 5.1.3.

5.4.5 Bitstream syntax and context modelling

The bitstream symbols encoded in PDC include the block partitioning flags, intra

prediction modes, residue approximation coefficients and DLT. When the optimal

partitioning tree and encoded depth data is determined for a 64 × 64 block, the

symbols are organised as a string and represented in the bitstream. Context adaptive

arithmetic coding is used to efficiently encode the symbols. For most symbols, an

appropriate context model is derived and used. Probability models are initialised

with uniform distributions and they are updated whenever a symbol is encoded. In

order to guarantee that PDC can independently decode each frame, the arithmetic

encoder probability models are reset with uniform distribution for each frame.

For quadtree partitioning, a binary flag is transmitted indicating whether the

block is partitioned into 4 sub-blocks (q1) or not (q0). For flexible partitioning a

ternary flag is used, indicating whether the block is partitioned, in horizontal (f1),

in vertical (f2), or not further partitioned as it is a leaf of the partitioning tree (f0).

The partitioned block is encoded in the bitstream using the partitioning order as

described in Subsection 5.4.1, for quadtree and flexible partitioning schemes.

Considering the example of Figure 5.9, presented in Subsection 5.4.1, the block
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would be encoded by the following strings of symbols:

q1

q1 f0 A1 f2 f0 A2 f0 A3 f0 A4 f1 f0 A5 f0 A6

q0 f0 A7

q0 f1 f1 f0 A8 f0 A9 f0 A10

q0 f2 f0 A11 f0 A12.

The transmitted string would be given by the concatenation of these smaller

strings, which are presented in a convenient way. The first string corresponds to

the first quadtree node, while the following ones contain the symbols used to encode

the four nodes (quadtree level 1) in a raster scan order, as a result of the first

quadtree partitioning. The An strings mean that all symbols are used to encode the

sub-block (by using directional intra prediction, CDMM and residue coding). They

are signalled whenever a non-segmentation flag, f0, is used. Note that at level 0 of

quadtree (block size 16×16), the quadtree flag is omitted, since the block cannot be

further partitioned. The same procedure is carried out when the flexible partitioning

reaches block size 1× 1.

PDC uses an appropriate context modelling, in order to efficiently exploit the

fact that larger blocks are mostly used at low bitrate RD points and smaller blocks at

high bitrates. For quadtree partitioning flags three independent probability models

are used, depending on the quadtree level where the flag is transmitted. For the

flexible partitioning scheme, context modelling depends on both, the block size (of

flexible partitioning) and quadtree partition level, from where flexible partitioning

was initiated. Thus, based on Table 5.1, 41 probability models (which correspond

to 19 + 11 + 11 block sizes used from quadtree levels 0, 1 and 2, respectively) are

available to encode the flexible partitioning flags.

Intra prediction mode flags consist of 36 symbols that include planar, DC, di-

rectional modes and CDMM. This intra information is transmitted whenever the

non-segment flag f0 is used to signal a new encoded sub-block. For each block size,

a different context associated to independent probability models, is used in AAC.

The context modelling is important, since the number of available prediction modes

depends on the block size. Furthermore, as explained in Subsection 5.4.2, the prob-

ability models can be adaptively adjusted depending on the characteristics of the

neighbouring block samples.

In the case of CDMM, two additional symbols are transmitted, specifically, the

partitioning offset symbol d and the mean value of the down-right block partition.

In the AAC, an independent probability model associated to the block size is used

to encode the partitioning offset d. Note that, this context is important because the
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range of values used in symbol d depends on the block size. To encode the mean

value of the down-right block partition a fixed context is used for all block sizes.

When DC, Angular 10 or Angular 26 intra prediction modes are used, the resid-

ual information can be linearly approximated. In these cases, the binary flag, which

indicates whether the linear approximation is applied or not, is encoded using an

independent context per block size. If a linear approximation is used, the linear

coefficient index derived from DLT is encoded using a fixed context for arithmetic

coding. For the remaining directional intra prediction modes, a null residue is as-

sumed and no symbol is transmitted.

In addition to the symbols referred above, PDC also transmits the DLT table

used to encode the residual signal. Since the proposed PDC algorithm is designed for

intra coding, DLT is computed and transmitted for each encoded depth map frame.

Unlike the previous symbols, DLT does not use context-based coding, because it

consumes a negligible amount of the bitrate. Thus, before to encode information

for each frame, PDC writes 256 bits (one bit per intensity value) directly into the

bitstream indicating which intensity values are available in the 8-bit depth intensity

range (ranging from 0 and 255). Alternative solutions to encode DLT could be

investigated, for example by calculating DLT and transmitting it only once for a

group of pictures.

5.5 PDC encoder control

The encoder control plays an important role in the PDC rate-distortion performance,

as well as in the computational complexity. During the encoding process, PDC seeks

to minimise the following Lagrangian RD cost function:

J(T ) = D(T ) + λR(T ), (5.9)

where D(T ) is the block distortion used to represent the partition tree T , and R(T )

is its rate. λ is the Lagrangian multiplier used to control the target bitrate. The

default distortion metric used in PDC is the SSE metric, typically used on standard

image/video encoders. In this work we also implemented and evaluated the VSO

method for distortion measure in the PDC algorithm, using the SVDC approach [75],

as described in Subsection 5.1.6. The bitrate stands for the number of bits required

to arithmetically encode the partition tree (Subsection 5.4.1), plus the symbols used

to encode prediction mode and residue signal. Examples of these are the residue

coefficient, prediction mode and CDMM related symbols.

PDC optimisation is performed independently for each 64× 64 block, by recur-

sively partitioning each sub-block down to the smaller block size and choosing the
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optimal block representation. This process involves the creation of a fully expanded

partition tree, which is posteriorly pruned by evaluating the coding costs at the tree

nodes. Whenever the parent’s node cost is inferior to the sum of the children’s node

costs, the given node is not partitioned.

At each tree leaf the optimal representation is found by evaluating all intra

prediction modes plus residue coding. In the case of CDMM, all the partitions

given by each offset, d = 0, ...,min(w, h), are examined (see Subsection 5.4.3) and

the optimal one is selected. When using directional intra prediction, PDC tests all

the available prediction modes (including planar and DC) at the current block size

and encodes the residue for the case of DC, Angular 10 and Angular 26 modes. For

these modes, the encoder also tests the bypass mode, which assumes null residue,

and chooses the solution which minimises the Lagrangian cost function.

Most of the PDC encoder computational complexity is due to the directional

intra prediction, CDMM mode and residue coding, because they are repeated thou-

sands of times for the 29 types of block sizes. Although most of the techniques

described in the previous sections were designed with the computational complexity

in mind, an improved solution for the encoder RD control was proposed to further

reduce the encoder complexity. This solution forces an early termination of block

partitioning whenever the distortion is smaller than 10% of the Lagrangian cost

(D(B) < 0.1J(B)), for some sub-block B being encoded.

Other improvements were further implemented at PDC encoder control. For

example, whenever the cost of the left (or top) child node is higher than the parent’s

node cost, PDC reduces the encoding time by aborting further partitioning of right

(or down) nodes, since the overall cost of the child nodes is known to be higher.

These improvements combined with the proposed coding techniques resulted in an

efficient depth map coding algorithm with a reasonable computational complexity.

5.6 Experimental Results

This section presents the experimental results of the proposed intra depth map cod-

ing solution in comparison with the current state-of-the-art intra coding techniques

present in 3D-HEVC algorithm. The experimental setup is based on the common

test conditions (CTC) document for 3D video core experiments [112], with some

modifications detailed in the following. Simulations were run under three-view con-

figuration using recommended test sequences and view numbers, as presented in

Table 5.4.

The three-view depth maps of each sequence were encoded using PDC algorithm

and 3D-HEVC reference software version HTM-13.1 [113] for comparison purposes.

Since PDC algorithm is designed for intra coding, the inter-view, temporal and
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Table 5.4: Test sequences used for experiments.

Test Sequence Resolution No. Frames Views

Balloons 1024× 768 300 1-3-5
Kendo 1024× 768 300 1-3-5
Newspaper1 1024× 768 300 2-4-6
GT Fly 1920× 1088 250 9-5-1
Poznan Hall2 1920× 1088 200 7-6-5
Poznan Street 1920× 1088 250 5-4-3
Undo Dancer 1920× 1088 250 1-5-9
Shark 1920× 1088 300 1-5-9

inter-component correlations are not exploited. In order to fairly compare the pro-

posed algorithm with the current state-of-the-art depth intra coding techniques of

3D-HEVC, a reference HTM configuration (RefHTM ) was created, based on the

non-CTC all-intra encoder configuration provided by the HTM software. The inter-

component prediction (which is present on HTM I-frames) was disabled in RefHTM

configuration by turning off the Contour prediction mode. This RefHTM config-

uration makes 3D-HEVC operation similar to PDC, in the sense that only intra

coding techniques are used. Also, to evaluate the RD performance and computa-

tional complexity of the original coding techniques used in PDC algorithm using

the SSE distortion metric, the View Synthesis Optimisation (VSO) method was dis-

abled on RefHTM configuration. Additional experimental tests for PDC algorithm

using VSO method as distortion metric, based on SVDC approach [75], were also

performed and compared with 3D-HEVC.

For all experiments, CTC recommended QP pairs (for texture and depth) were

used with 3D-HEVC, namely (40,45), (35,42), (30,39) and (25,34). For PDC, the λ

values 1200, 500, 250 and 75 were chosen as the ones that best match the bitrate

produced by CTC recommended QPs for 3D-HEVC using RefHTM configuration.

The PSNR metric is commonly used to evaluate the objective quality of the decoded

video. However, as previously discussed, PSNR results are not very meaningful,

since depth maps are not directly presented to the viewer, but rather used for view

synthesis purposes. In these experiments we used the depth map evaluation method

suggested by the experts of ISO/IEC and ITU-T JCT-3V group, which is described

in the CTC document [112]. This evaluation methodology consists in assessing the

quality of the generated virtual views, using the decoded depth data and original

texture views versus the generated virtual views using the original uncompressed

depth and the original texture views.

The quality of six synthesised views placed between the positions of the encoded

depth maps has been measured by luminance PSNR. Note that such a methodology
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allows to assess depth map coding quality losses, excluding up to some degree the

influence of the particular view synthesis algorithm used. Furthermore, by using

always original texture data to generate virtual views, a more accurate evaluation

of the encoded depth maps performance could be made, without interferences of

coding artefacts present on decoded texture views. For the purpose of view synthesis,

state-of-the-art view synthesis software for linear camera arrangement implemented

in HTM software has been used [129].

5.6.1 Evaluation of PDC algorithm for intra coding

The first set of experimental results using the proposed PDC algorithm and 3D-

HEVC RefHTM configuration, which use SSE as distortion metric for depth maps,

are presented in Table 5.5. The evaluated virtual views are indicated by vv1, vv2

and vv3, which are interpolated between the first and second depth map views, and

by vv4, vv5 and vv6, which are interpolated between the second and third depth

map views. The PSNR of each virtual view as well as the average PSNR for all

views (avg-vv) are presented for the used RD points (identified by p1,...,p4 ). The

sum of the bitrate of the three depth map views (in kbits per second) and the

average PSNR results of the virtual views were used to compute the Bjontegaard

Delta Rate (BDRATE) results [70], which are shown in the last column of Table 5.5.

BDRATE represents the average bitrate differences between RD curves for the same

PSNR of virtual views, where negative values indicate actual bit-rate savings of PDC

algorithm over 3D-HEVC.

The results presented in Table 5.5 clearly show the advantage of the proposed

intra coding approach over the current state-of-the-art 3D-HEVC standard. The av-

erage bitrate savings of PDC algorithm for all the tested sequences is approximately

6%. The best result is observed for Ghost Town Fly sequence, where PDC saves

13% of bitrate in comparison to 3D-HEVC using RefHTM configuration. For the

worst case, PDC presents approximately the same performance of 3D-HEVC, as can

be observed for Poznan Street sequence. Note that PDC performance gains relative

to 3D-HEVC are not constant, varying for different sequences. This is expected,

since depth maps present distinct features that are differently exploited by PDC

and 3D-HEVC algorithms.

Representative results for subjective evaluation of the PDC performance are

presented in Figure 5.15. A detail of the first frame of the third virtual view (vv3)

of Poznan Street sequence is presented. The virtual view was synthesised using

reference uncompressed depth maps (left), 3D-HEVC encoded depth maps using

QP 42 (middle) and PDC encoded depth maps using Lambda 500 (right), which

correspond to the rate-distortion point 3 (p3) of Table 5.5. In the example of
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Table 5.6: Encoding time results (in seconds per frame) for each RD point and used
test sequence using PDC and 3D-HEVC (RefHTM configuration) algorithms.

Test
sequences

PDC (seconds per frame) 3D-HEVC, only depth, (seconds per frame) Ratio

p4 p3 p2 p1 Average p4 p3 p2 p1 Average p4 p3 p2 p1 Average

Balloons 3.03 3.59 4.06 4.83 3.88 8.69 9.03 8.90 9.31 8.98 0.35 0.40 0.46 0.52 0.43

Kendo 2.71 3.19 3.59 4.21 3.43 8.63 8.77 9.14 8.89 8.86 0.31 0.36 0.39 0.47 0.39

Newspaper 4.16 5.11 5.93 7.38 5.65 9.92 10.07 10.64 11.00 10.41 0.42 0.51 0.56 0.67 0.54

GT Fly 6.46 7.96 9.33 12.31 9.02 26.73 27.57 28.20 28.66 27.79 0.24 0.29 0.33 0.43 0.32

Poznan Hall2 2.63 3.31 3.90 4.91 3.69 19.83 20.67 21.68 22.53 21.18 0.13 0.16 0.18 0.22 0.17

Poznan Street 6.24 8.58 10.81 15.90 10.38 23.84 25.09 27.23 27.62 25.95 0.26 0.34 0.40 0.58 0.39

Dancer 4.40 5.45 6.29 8.05 6.05 24.24 24.97 25.75 26.39 25.34 0.18 0.22 0.24 0.31 0.24

Shark 6.53 8.20 9.61 12.21 9.14 21.80 22.24 24.96 25.40 23.60 0.30 0.37 0.39 0.48 0.38

Average 4.52 5.67 6.69 8.73 6.40 17.96 18.55 19.56 19.98 19.01 0.27 0.33 0.37 0.46 0.36
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Figure 5.14: Average prediction mode usage in PDC algorithm for all tested lambdas
and encoded views of each test sequence.

(a) Reference (b) 3D-HEVC (c) PDC

Figure 5.15: Detail of the third virtual view (vv3) of Poznan Street (frame 0) synthe-
sised using a) reference uncompressed depth maps, b) 3D-HEVC (RefHTM ) encoded
depth maps and c) PDC encoded depth maps, for rate-distortion point 3 (p3).

Figure 5.15, one may observe some rendering distortions in the reference virtual

view synthesised using the uncompressed depth maps. This is mainly due to the

acquisition noise of depth maps. In these cases, rendering distortions are inevitable

using both compressed and uncompressed depth maps. From the results using the
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3D-HEVC and PDC encoded depth maps, one may observe that PDC presents a

similar subjective quality. Its main advantage is the bitrate savings achieved for

similar quality as presented in Table 5.5.

The computational complexity results for PDC and 3D-HEVC using RefHTM

configuration are presented in Table 5.6. The average number of seconds used to

encode each depth map frame is shown for each rate point of each recommended

test sequence. These time values were obtained using a 2.00 GHz Intel Xeon E5-

2620 CPU running GNU/Linux (Ubuntu 14.04) and give us a rough idea of the

method’s computational complexity. Table 5.6 shows that PDC presents a lower

computational complexity, with most encoding times being inferior to 50% of the

ones of 3D-HEVC. One may observe that PDC presents higher variation of encoding

times between different sequences and λ values. This can be justified by the use of a

condition for early termination of block partitioning in PDC, which mainly reduces

encoding times at lower bitrates or when sequences present large smooth regions.

In Figure 5.14, we represent some statistical results, namely the distribution

of chosen intra prediction modes in PDC algorithm, using all lambdas for each

sequence. These results show that DC mode presents a high usage rate, which is

mainly due to the large smooth regions present in depth maps. DC mode is also

chosen more often than Planar mode. This is because constant residue coding is

only available for DC prediction, forcing its usage when encoding of prediction error

reduces RD cost. Horizontal and vertical modes also present a high usage rate in

comparison to other angular modes. These two modes are also used in many smooth

areas because linear residue approximation is available to encode the prediction error

of these modes. Despite presenting a low usage rate, CDMM plays an important

role in achieved results. Experiments using PDC without CDMM showed an average

BDRATE performance of -2.5% relative to 3D-HEVC using RefHTM configuration

(in contrast to the previously presented gain of -6%), being inferior to 3D-HEVC

for some sequences.

5.6.2 Evaluation of PDC algorithm using VSO metric

In this section we evaluate the PDC algorithm using the VSO method as distortion

metric, based on the SVDC approach [75]. In order to compare with 3D-HEVC,

the RefHTM+VSO configuration was created by enabling VSO method. The VSO

string (of HTM configuration file) was also modified to use original texture views

instead of encoded ones. As the evaluation methodology uses the original texture

views and encoded depth maps for view synthesis, the VSO method must also use

the original texture views, for optimal coding performance. PDC λ values were

adjusted to approximately match RD distortion curves of 3D-HEVC, resulting in
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Figure 5.16: Average BDRATE values of PDC algorithm using SSE and VSO dis-
tortion metrics relative to 3D-HEVC using RefHTM and RefHTM+VSO configura-
tions, respectively.

the values 500, 100, 25 and 5.

Average BDRATE results for PDC+VSO using 3D-HEVC RefHTM+VSO con-

figuration as reference are presented in Figure 5.16 for each test sequence (bright

bars). For comparison purposes, we plotted results of previous tests based on SSE

distortion metric (dark bars), specifically the values of the last column of Table 5.5.

These results clearly show that PDC rate-distortion performance highly benefits

from VSO method, achieving an average BDRATE gain of -14.3% when compared

to 3D-HEVC using RefHTM+VSO configuration.

For illustration of RD performance of the discussed configurations at different

bitrates, Figure 5.17 represents several RD curves using PDC and 3D-HEVC algo-

rithms to encode depth maps of Shark sequence. These RD curves correspond to

the average PSNR values of virtual views generated using encoded maps in function

of the total bitrate used to encode the three depth map views. The two lower RD

curves compare PDC with 3D-HEVC RefHTM configuration, using SSE as distor-

tion metric. The advantage of PDC is clear, matching the BDRATE gain of -10.98%

represented in Table 5.5.

The previously discussed results using VSO are represented by PDC+VSO and

RefHTM+VSO curves of Figure 5.17. We can observe that PDC tends to achieve

superior RD performance at higher bitrates when using VSO method. This ten-

dency can be related to the highly flexible block partitioning scheme used in PDC,

since block partitions are more frequent at higher bitrates. We also compare PDC

with RefHTM+VSO+Contour configuration which enables inter-component predic-

tion on 3D-HEVC intra frame coding. Although the proposed PDC algorithm does

not exploit redundancy from texture frames, we can observe that PDC+VSO still

presents a superior RD performance when compared to RefHTM+VSO+Contour
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Figure 5.17: Average RD performance of shark sequence using PDC and 3D-HEVC
algorithms under various configurations.

configuration for most RD points of Shark sequence. Experiments for all se-

quences revealed an average BDRATE gain of -11% for PDC+VSO in relation to

RefHTM+VSO+Contour configuration.

As reference, we also present the RD results of the CTC configu-

ration (HTM-CTC ), which enables temporal and inter-view prediction in

RefHTM+VSO+Contour configuration. Figure 5.17 shows that the use of temporal

and inter-view predictions on HTM significantly improves its performance, achiev-

ing the highest RD performance on depth map coding. This performance difference

can be justified by the large amount of redundancy existing between temporal and

inter-view frames.

5.6.3 Evaluation of PDC algorithm combined with 3D-

HEVC standard

In this subsection we present some experiments that evaluate the potential of PDC

algorithm to improve the 3D-HEVC standard. The main idea of these experiments

is to investigate the use of PDC algorithm to encode the depth map I-frames of

3D-HEVC, while the compression of P- and B-frames is kept unchanged.

The 3D-HEVC coding configuration proposed in CTC, only uses I-frames in the

first view of depth map data, with an intra period of 24 frames. For the case of the

MPEG test sequences, which have between 200 and 300 frames, this corresponds to

a number of I-frames between 9 and 13 for each three-view sequence. In our experi-

ments, we first selected the depth map I-frames and then encoded them using PDC
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algorithm with VSO enabled. The bitrate of the encoded frames is approximately

the same as the one provided by 3D-HEVC standard. However, eventual differences

between the 3D-HEVC I-frames and the PDC ones were properly accounted in the

final results. Once the I-frames were encoded, we compressed the MVD contents

using a modified version of 3D-HEVC which replaced the depth map I-frames by the

PDC ones, during the encoding procedure. The reconstructed I-frames were stored

in proper buffer structures of 3D-HEVC standard in order to be used as reference

frames by inter coding methods.

As previously discussed, since PDC only uses intra coding tools, the inter-

component dependencies cannot be exploited for the compression of I-frames, as

done in original 3D-HEVC standard using the Contour mode. This is a missing

feature of PDC algorithm, which has been designed as standalone algorithm for

depth map coding and does not have access to the encoded texture video views for

exploiting inter-component dependencies.

The performance of 3D-HEVC using the PDC encoded I-frames, was compared

with two different encoder configurations of HTM software, referred to as RefCTC

and RefCTC withoutContour. The difference between these HTM configurations

is that RefCTC withoutContour disables inter-component prediction in depth map

I-frames, by turning off the Contour mode. The idea of RefCTC withoutContour

configuration is to make a fair comparison with the modified 3D-HEVC encoder,

which cannot exploit inter-component dependencies for I-frames.

The used coding configurations are based on the reference CTC configuration

file present in HTM-13.1 reference software, with a slight change on VSO configu-

ration string. This change forces the VSO to use the original texture video views

in the synthesis procedure performed during the encoder optimisation loop, even

when the reconstructed texture video is available. This was done because the PDC

algorithm only can use the original texture video views for VSO process. Thus, this

configuration change keeps VSO performing similarly in both 3D-HEVC and PDC

algorithms.

Figure 5.18 presents the BDRATE results for depth map coding considering the

average PSNR quality of the six synthesised views, and the sum of bitrate used to

encode the three depth map views. One may observe that, even without exploiting

inter-component dependencies at depth map I-frames, the 3D-HEVC using PDC

algorithm presents a superior RD performance than the state-of-the-art 3D-HEVC

using RefCTC configuration, with average bitrate savings of 1.85%. However, these

performance gains are not very expressive, because there are few I-frames in the CTC

configuration. Bitrate savings can be observed for all test sequences, except for the

Undo Dancer sequence. The results of this particular sequence can be justified by the

fact that the Contour method, enabled in RefCTC configuration, has an significant
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Figure 5.18: Average BDRATE results of the modified 3D-HEVC (using the PDC
encoded I-frames) relative to the 3D-HEVC RefCTC and RefCTC withoutContour
configurations.

influence in the RD performance.

The comparison with RefCTC withoutContour shows that the presented solution

is consistently superior to 3D-HEVC algorithm when Contour mode is disabled in

both encoders, presenting an average bitrate saving of 3.68%. These results suggest

that implementation of inter-component prediction in PDC algorithm may be worth

considering, in order to improve its overall coding performance relative to the state-

of-the-art 3D-HEVC RefCTC configuration.

5.7 Conclusions

In this chapter we presented the PDC algorithm, a complete intra-based encoder for

efficient depth map coding, intended for 3D video based applications. This work was

mainly motivated by the flexible intra prediction framework used in MMP algorithm,

which has presented interesting results for depth map coding. In Section 5.1 we

described the main algorithms proposed in literature for the compression of depth

maps, in particular the intra depth map coding methods used in the recent 3D-HEVC

standard. Section 5.2 presented the first research work of this chapter, which resulted

in a preliminary version of the proposed algorithm for depth map coding. We

have shown that combining the flexible block partitioning scheme with directional

prediction and linear residue fitting provides an efficient representation of depth

maps when compared with other methods, such as Platelet algorithm. Despite

being based on the MMP, the developed algorithm provided significant reduction

of the encoding times, mostly due to the lower computational complexity of the

proposed residue coding method.
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The architecture of the PDC algorithm developed in this work was described in

Section 5.3 and its techniques were detailed in Section 5.4. Unlike the state-of-the-

art 3D-HEVC algorithm, the presented approach uses alternative coding techniques

which do not rely on the transform-coding paradigm. PDC algorithm exploits an

improved flexible block partitioning scheme with an intra predictive framework that

uses directional prediction and a novel constrained depth modelling mode. For some

blocks, the residual signal can be encoded using a simple linear-fitting method.

The experimental results presented in Section 5.6 demonstrated the superior

RD performance of the PDC algorithm when compared to the state-of-the-art 3D-

HEVC standard for depth map coding. The intra coding methods of PDC algorithm

presented a reduced computational complexity, saving about 25% of the encoding

time in relation to 3D-HEVC standard. The use of PDC algorithm to encode the

I-frames in 3D-HEVC standard demonstrated the potential of the proposed intra

coding solution to improve the current state-of-the-art depth map encoder.
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Chapter 6

Sparse representation methods for

image prediction

In this chapter, we investigate an alternative class of prediction methods for in-

tra image coding based on sparse representation. The main sparse representation

techniques proposed in literature for image prediction were previously described in

Section 2.5. These methods included the straightforward Template-Matching (TM)

algorithm and more elaborated approaches based on iterative greedy algorithms,

such as the Matching Pursuit (MP) [37], and dimensionality reduction methods, in

particular the Locally Linear Embedding (LLE) based prediction method.

These algorithms aim to approximate the unknown block as a linear combina-

tion of few patches extracted from an adaptive dictionary, that is formed by texture

patches derived from the previously encoded area. Due to their features, sparse-

representation methods tend to perform better in the presence of complex textures

with repeated patterns. The sparse characteristic of these methods imposes a re-

duced number of linearly combined patches, providing a representative model that

performs more efficiently for prediction purposes.

As most of these methods have been proposed for the H.264/AVC algorithm, we

started investigating dimensionality reduction methods for the most recent compres-

sion standard. In Section 6.1, we evaluate the prediction capabilities of LLE method

in HEVC standard, in particular for 3D holoscopic image coding. The presented re-

sults demonstrate the advantage of the LLE-based prediction over other existing

approaches to exploit the high redundant structure of 3D holoscopic images, which

consist of a regularly spaced array of micro-images.

An improved sparse linear prediction method is also presented in Section 6.2.

The proposed method can be seen as a generalisation of existing linear prediction

and sparse representation prediction methods. Unlike most LSP-based algorithms

presented in literature, which use a fixed filter context limited to a small set of

closer neighbouring pixels, we propose a linear prediction method that may use a
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sparse filter context defined in larger causal area. Sparsity restrictions are imposed

to the proposed linear prediction method by limiting the number of non-null coef-

ficients in the filter context, using a similar procedure to the one of the LLE-based

prediction method. In Section 6.3, the proposed sparse linear prediction method is

evaluated within HEVC standard. Experimental tests demonstrate the advantage

of the developed method relative to other prediction solutions, namely LLE, TM

and LSP.

6.1 3D holoscopic image coding using LLE-based

prediction

The main purpose of LLE-based prediction method is to estimate the unknown block

by using a linear combination of k-Nearest Neighbour (k-NN) patches, determined

in a causal reconstructed area of the image. As described in Subsection 2.5.4, the

LLE method uses an implicit approach that avoids the transmission of the linear

predictors [38]. In this approach, LLE-based prediction learns the optimal linear

combination of the k-NN patches that best approximate a template patch defined in

the causal neighbourhood of the unknown block and uses the same estimated model

to predict the unknown block.

The ability of LLE-based prediction method to exploit the information associated

to the causal area is important for the compression of image contents that present

high spatial redundancy. Its advantage for the compression of natural images has

been shown in [38], where it was used within H.264/AVC standard.The major gains

were achieved for images with repeated patterns and complex textures.

In this context, we investigated the potential of LLE-based prediction method

to improve the RD performance of the recent HEVC standard for the compression

of 3D holoscopic images. These signals are formed by a 2D array of micro-images

which are characterised by strong similarities between them. Due to this fact, 3D

holoscopic images present a high spatial redundancy that can be exploited by the

LLE-based prediction as well as other related methods.

The current state-of-the-art solution proposed in literature for the compression

of 3D holoscopic images is based on a modified version of HEVC standard that in-

cludes an intra block-matching method, known as Self-Similarity (SS) compensated

prediction. Similarly to the LLE-based prediction method, the SS uses information

from the causal reconstructed neighbourhood to predict the unknown block. How-

ever, instead of a linear combination of causal patches, the SS only uses one patch

and its position is explicitly transmitted to the decoder, using a vector.

In this section we describe the proposed 3D holoscopic image encoder, specifically
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the incorporation of the LLE-based prediction in HEVC standard. Some experimen-

tal tests that illustrate the advantage of the developed algorithm over the previous

proposed approach based on SS method are presented and discussed.

6.1.1 Proposed HEVC encoder using LLE-based prediction

As explained in Subsection 3.3.1, the 3D holoscopic images present a significant spa-

tial redundancy between the micro-images. This kind of non-local spatial correlation

(separated at least by one micro-image) can be exploited by the LLE-based intra

prediction method, which approximates the unknown block using a linear combina-

tion of causal patches that may come from the previously encoded micro-images.

Unlike the LLE-based prediction method, the directional prediction modes cannot

remove the redundancy between micro-images, because only the neighbouring pixels

of the first row and first column along the block margins are used to generate the

predicted block. Therefore, one expects that the proposed prediction framework

based on LLE method is able to improve the overall prediction accuracy of HEVC

for the compression of 3D holoscopic content.

As proposed in [38], the number of used causal patches linearly combined in LLE

method may vary. These patches are related to the k number defined for the k-NN

method, which allows to define different levels of sparsity. Due to the importance

of this method for 3D holoscopic image prediction, we used an advanced solution

that tests LLE method using several values of k, selecting and explicitly signalling

the one that results in the optimal prediction solution, i.e. that produces the lowest

prediction error.

In this proposal, the LLE-based prediction method was implemented in HEVC

prediction framework by replacing some intra directional prediction modes. The idea

is to enable explicit signalling of the optimal number, kopt, of NN predictors used

by LLE method, without changing the bitstream syntax of HEVC. In the proposed

LLE-based prediction method, the k-NN procedure is tested for eight sparsity levels,

specifically for k = 1, . . . , 8. Thus, eight directional prediction modes, represented in

Figure 6.1 by the dashed lines and bold numbers, were replaced by LLE modes. The

replaced modes are uniformly spaced to avoid prejudicing any direction in particular,

corresponding to the prediction mode number given by m = 4k − 1. Although the

whole set of replaced modes could be shifted, for instance starting from mode 4, there

is no special motivation for this adjustment, because its influence in RD performance

is minimal.

The proposed solution may reduce the performance of directional prediction

framework, because less angular modes are available. However, as will be shown

in the experiments, the LLE-based prediction method is more important for 3D
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Figure 6.1: Set of HEVC prediction modes replaced by the LLE-based prediction
modes, represented by dashed arrows and bold numbers.
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Figure 6.2: Search window used by the proposed LLE-based intra prediction.

holoscopic image coding, compensating the absence of these modes. Furthermore,

since there is no need to add new signalling symbols to the HEVC bitstream, this

solution simplifies the incorporation of LLE-based prediction into HEVC framework.

Note that we only need to transmit the optimal number of NN predictors. The

position of the NN predictors and the associated linear coefficients are implicitly

derived in both the encoder and decoder sides, based on the template patch defined

in the causal reconstructed area.

In order to exploit the redundant information across different micro-images, the

size of the causal search window, where the k-NNs are selected, was defined large

enough to include at least one micro-image, which for the used test images can reach

at most 75×75 pixels. Thus, the size of the causal search window W, represented in

Figure 6.2, was set to: DV1 = 128, DV2 = PY +T , DH1 = 128 and DH2 = 64+PX+T .
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The size of the template patch used for k-NN search procedure, depends on

the unknown block size and dimension T , which has been set to 4. The proposed

template size provides a good compromise between using as much neighbouring

samples as possible and minimising the inclusion of neighbouring samples that are

not correlated with the unknown block.

The optimal block partition and prediction modes are chosen based on the HEVC

rate-distortion optimisation procedure. In this procedure, the RMD and MPM

methods of original HEVC encoder are used in the same way, although they were

originally designed for the directional prediction framework. The proposed mode

is also available for chroma prediction, through the luma derived mode, which uses

the same mode of luma to predict the corresponding chroma block.

6.1.2 Experimental Results

The performance of the proposed LLE-based prediction framework for 3D holoscopic

image coding using HEVC technology (referred to as HEVC+LLE-KNN) was eval-

uated against the original HEVC standard as well as against the block-matching-

based SS compensated prediction presented in [107] (referred to as HEVC+SS). The

reference software HM-13.0 [72] of HEVC standard was used as benchmark in the

experimental evaluation and also as basis framework to implement the proposed

prediction scheme.

Additional experiments were performed using two particular cases of LLE

method, based on a fixed number of predictors in k-NN method: the HEVC+LLE-

8NN that refers to HEVC enhanced by LLE mode using 8-NN; and the HEVC+LLE-

1NN that uses only 1-NN (and corresponding coefficient weight equal to 1), being

equivalent to the template matching algorithm. To incorporate these two non-

adaptive LLE approaches in HEVC standard, only one intra directional mode (An-

gular 3) was replaced. The objective of these experiments is to show the advantage

of the adaptive LLE-based prediction method relative to the TM algorithm as well

as to the non-adaptive approach based on 8-NNs.

Figures A.20 to A.22 of Section A.3 illustrate the four 3D holoscopic test images

used in these experiments, namely the frame 0 of Plane and Toy (1920 × 1088),

Demichelis Cut (2880× 1620), Demichelis Spark (2880× 1620) and Laura (7240×
5432). These test images were encoded based on the common test conditions defined

in [69], using the HEVC intra main configuration, and the recommended QPs: 22,

27, 32 and 37.

Figures 6.3 to 6.6 present the RD results for the tested 3D holoscopic images

in terms of luminance PSNR and compression ratio given in bits-per-pixel (bpp).

These results show that the proposed coding scheme using LLE-based intra predic-
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Figure 6.3: Rate-distortion results for Plane and Toy (frame 0) holoscopic image.
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Figure 6.4: Rate-distortion results for Demichelis Cut (frame 0) holoscopic image.

tion method (HEVC+LLE-KNN) is clearly superior than the other tested methods.

The lower coding gains are observed for HEVC+LLE-1NN (or template-matching

approach), which uses a single predictor. The use of eight predictors in LLE method

(HEVC+LLE-8NN) provides a superior RD performance than a single predictor.

However, none of these non-adaptive schemes outperformed the adaptive implemen-

tation of LLE method (HEVC+LLE-KNN). It can be also observed that HEVC+SS

provides significant gains over HEVC, but it is not as efficient as the HEVC+LLE-

8NN and the HEVC+LLE-KNN approaches.
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Figure 6.5: Rate-distortion results for Demichelis Spark (frame 0) holoscopic image.
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Figure 6.6: Rate-distortion results for Laura holoscopic image.

The Bjontegaard results (BDPSNR and BDRATE) [70] of the main proposed

method (HEVC+LLE-KNN) relative to HEVC and HEVC-SS methods are pre-

sented in Table 6.1. One may observe that HEVC+LLE-KNN presents an average

bitrate saving of 33% when compared to HEVC and 11% when compared to HEVC-

SS, specifically proposed for the compression of 3D holoscopic contents.

Regarding the computational complexity aspects, these methods tend to signifi-

cantly increase the encoding and decoding time of the compression algorithm. This

is mainly because the template matching procedure used to select k-NN predictors
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Table 6.1: Bjontegaard results of proposed HEVC+LLE-KNN relative to HEVC
and HEVC+SS references.

Image
Reference HEVC HEVC-SS

BDPSNR (dB) BDRATE (%) BDPSNR (dB) BDRATE (%)

Plane and Toys 1.2 -18.5 0.28 -4.9
Demichelis Cut 1.4 -37.4 0.52 -15.3

Demichelis Spark 1.4 -38.5 0.43 -13.5
Laura 3 -37.9 0.67 -11.3

Average 1.75 -33.1 0.48 -11.3

needs to be performed in both encoder and decoder sides. Furthermore the estima-

tion of linear coefficients involves solving a linear system (see Subsection 2.5.4). In

the proposed implementation of LLE-based prediction method, which did not take

into account algorithmic efficient solutions, increased encoding times of one or two

orders of magnitude were observed relative to the HEVC standard.

These results demonstrate that prediction approaches based on sparse repre-

sentation, mostly based on implicit methods, may be more efficient than the ex-

plicit block-matching algorithm for exploiting the spatial redundancies present in

3D holoscopic images. The investigated LLE-based prediction method is based on

the implicit template matching and least-squares algorithms, requiring a minimal

overhead to signal the optimal sparsity level k (between 1 and 8) in contrast to the

BMA-based approach that needs to transmit the SS vectors.

These are very interesting results which motivated further research work on

sparse representation methods for efficient image prediction. In the following section,

we present an improved sparse representation method proposed for intra prediction

of generic images.

6.2 The sparse-LSP method for intra prediction

This section describes the proposed method, denominated as sparse-LSP (SLSP),

for intra prediction of generic images. Sparse-LSP incorporates the concept of sparse

representation into the least-squares prediction algorithm, previously described in

Subsection 2.4.2. The idea is to extend the capabilities of LSP algorithm by in-

creasing the size of the linear filter context while keeping a low order model able to

learn the representative structural features of the data. The sparse-LSP can also be

viewed as a generalisation of the LLE-based prediction method.

The proposed linear model of sparse-LSP is able to exploit not only the linear

correlations from the neighbouring samples, as done by traditional LSP algorithms

[9], but also from the farther causal reconstructed samples, similarly to LLE method.

Traditional linear prediction methods that use a filter context based on the neigh-
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Figure 6.7: Proposed training window and filter context for sparse-LSP algorithm.

bouring samples, as the one illustrated in Figure 2.7 of Section 2.4, provide a good

modelling for natural images, that tend to present strong correlations between closer

neighbouring samples. On the other hand, the use of larger contexts may be useful

when similar textures or objects occur repeatedly along the image signal, as for the

case of 3D holoscopic images and some natural images.

6.2.1 Algorithm description

The proposed sparse-LSP method estimates the linear coefficients in a block-by-

block basis, which means that the training procedure for coefficient estimation is

done once per block, and the same estimated linear model is used to predict all the

samples of the unknown block. Instead of using a filter context with fixed shape

for the whole image, as used in traditional LSP methods [9], the proposed method

employs an adaptive filter context, where most coefficients are null.

The filter context region for the proposed method is illustrated in Figure 6.7.

As can be seen, this filter context is much larger than the traditional LSP filter

contexts, that use around 10 coefficients. However, in the proposed algorithm,

most coefficients are null, due to the imposed sparsity constraint. Since the filter

coefficients are estimated once per block, the sparse-LSP method uses a fixed training

window T, that is defined in the neighbourhood of the unknown block P, similarly

to a template area.

The proposed filter context region was designed in such way that all of its posi-

tions are available when moving the filter along each sample of the unknown block

during the prediction process. In Figure 6.7, the proposed filter context is positioned

for both the first sample (represented by a thick black line) and last sample (rep-

resented by a dashed gray line) of the unknown block P. Note that, as one moves

towards the bottom-right corner of the block, some samples to the right of X(n) are

not available, as can be seen in Figure 6.7 when predicting the last sample of the

block P (down-right corner). Due to this fact, only part of the region above X(n) is
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used by the proposed filter context, in its full extension from the left to right side.

In order to prevent over-fitting issues during the training procedure, i.e. the

situation in which the estimated models memorise the training data itself rather

than learning the underlying linear model, the filter order should not be higher that

the number of training samples. Although the illustration of Figure 6.7 suggests

that the filter context is larger than the training window T, one should notice that

only few positions of the filter context will use non-null coefficient, due to the sparse

constraint.

In order to achieve a sparse model, i.e. to choose the positions of non null

coefficients in the proposed filter context region, we employ a searching algorithm

based on template matching (TM) procedure (equivalent to k-NN method). The

purpose of the searching algorithm is to find the samples of the filter context region

which are more similar to the ones of the training window T. This can be achieved

through the TM algorithm, because the shape of the proposed training window

used in the search procedure is equivalent to the template region commonly defined

around the unknown block.

A causal search window that corresponds to all positions of the proposed filter

context region is used by the TM algorithm. Sparse-LSP uses the TM algorithm

to find the k patches most similar to the training window, exactly as done by the

k-NN technique in LLE-based prediction method. Although sparse-LSP and LLE

methods use the same technique for predictor selection, they differ in relation to

the allowed matching points of the search window. Since the LLE method uses the

blocks associated to the best matched template patches in order to generate the

predicted block, some matching points as the one represented by template patch 2

in Figure 6.8 are not allowed. At such matching point, the associated block is not

available, because it partially overlaps the unknown block P, as represented by the

striped pattern. Thus, all the matching points for which the corresponding block

is not fully available are not considered in the LLE method. For the case of the

proposed sparse-LSP method, these matching points, including the one of template

patch 2 of Figure 6.8, can be selected by the k-NN searching procedure.

The number k of best matched patches (or NNs) estimated by the TM algo-

rithm defines the order of the proposed sparse-LSP filter. The position of each best

matched patch relative to the training window is used to define each non null coeffi-

cient of the sparse filter context. The coefficients are estimated solving an ordinary

least-squares problem, similar to the one described in Subsection 2.4.2. The main

difference is the position of the filter coefficients, which can be located anywhere

in the filter context region illustrated in Figure 6.7. In the following subsection we

describe the mathematical aspects of sparse-LSP and its relation to the LLE-based

prediction.
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Figure 6.8: Selection of non-null coefficients’ positions using TM algorithm (equiv-
alent to k-NN method) within a causal search window.

6.2.2 Mathematical interpretation

Let X(n) denote the image pixel to be linearly predicted, where n is a two-

dimensional vector representing the spatial coordinates in an image. Considering

that all the N spatial causal samples of the filter context region presented in Fig-

ure 6.7 participate in the prediction process of sparse-LSP, we can write the predicted

sample as:

X̂(n) =
N∑
i=1

aiX(n− g(i)), (6.1)

where g(i) gives the relative position of each sample in the proposed filter context

(support), and ai are the filter coefficients for i = 1, . . . , N .

Define the column vector, t = [X(n0−h(1)) . . . X(n0−h(M))]T , containing the

M samples belonging to the training window T, where n0 denotes the coordinate

of the first sample of the predicting block and h(j) represents the relative position

of the samples in the training window, with j = 1, . . . ,M . Note that, the presented

matrix is defined relative to the first sample of the block, X(n0), because the training

procedure in sparse-LSP is executed once per block, serving to predict the whole

block samples.

Consider the following matrix whose rows correspond to the N -sample filter

context of sparse-LSP positioned for each sample h(j) of the training window:

V =


X(n0 − h(1)− g(1)) . . . X(n0 − h(1)− g(N))

...
...

X(n0 − h(M)− g(1)) . . . X(n0 − h(M)− g(N))

,
where g(i) is the previously defined relative position of each sample in the filter

context.

Each column i of matrix V corresponds to a displaced version of the training

window T in the causal search window, pointed by g(i) vector, for i = 1, . . . , N .
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Based on this observation, vector t and matrix V defined for sparse-LSP can be

interpreted as the template bc and dictionary Ac defined in Subsection 2.5.4, for

the LLE-based prediction method. Actually, matrix V is constructed similarly to

dictionary Ac, based on the patches existing in a predefined causal search window, as

illustrated in Figure 6.8. The main difference of sparse-LSP relative to LLE method

is that its dictionary (matrix V) is more complete than dictionary Ac of LLE-based

prediction method. As explained in previous subsection, while the matrix Ac of LLE

method does not include those templates whose associated block partially overlaps

the unknown block P, the matrix V of sparse-LSP method contains all the patches

(with the shape of the training window) that exist in the search window, without

any restriction on the availability of the associated blocks. The only exception is

the patch that matches the training window itself (given by vector t), which can not

be part of the dictionary (matrix V) since this is the vector to be approximated by

the formulated dictionary.

The solution of LSP method, presented in Subsection 2.4.2, is used to find the

linear combination of the columns of matrix V (predictors) that better represents

the vector t (samples of the training window). However, when we consider the

sparsity constraint imposed by the sparse-LSP method, the linear combination is

restricted to a few columns of matrix V. As previously explained, the selection of

the columns of matrix V that participate in the linear model is done through the

TM algorithm (k-NN method). In practice, this procedure consists in comparing

the vector t with all columns of matrix V, and choose the k columns nearest to the

vector t, i.e. the columns with the lowest matching error.

There are many algorithms proposed in literature to solve linear problems with

sparse constraints, providing adaptive solutions closer to the optimal sparse solution.

In Chapter 7, some of these methods are investigated to generate sparse linear

models. However, in this particular proposal of sparse-LSP, we used the k-NN

method for predictor selection, which uses a lower computational complexity, and

also allows to generalise the LLE-based prediction method, which can be viewed as

a particular case of sparse-LSP method.

Once the predictors (columns of matrix V) were determined using k-NN method,

the LSP algorithm proceeds by solving the problem minak
(‖t−Vkak‖2

2), where Vk

is a sub-matrix of V which only contains the k selected columns, and ak is the vector

of coefficients. Note that, by using a sub-matrix of V with the k selected predictors,

the solution vector ak only applies to that sub-set of predictors, having a total of

k coefficients. The columns missing in Vk are assumed to use a null coefficient in

the linear combination. Based on the solution vector ak, we can build the complete

N-sample solution vector a, where the null coefficients correspond to the unused

columns of matrix V and the estimated coefficients (from vector ak) are attributed
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to the positions of the selected predictors.

Given the solution vector a, the prediction of the sample X̂(n) of the unknown

block P can be determined by:

X̂(n) =
N∑
i=1

aiX(n− g(i)) (6.2)

where g(i) gives the relative Euclidean coordinates of the filter context samples, as

previously defined.

Similarly to the traditional LSP algorithms, that used a fixed filter order, the

sparsity level used in sparse-LSP method can be constant during the whole encoding

procedure. This is an implicit procedure, which does not require the transmission

of any additional information. Alternatively, an explicit approach, similar to the

one used in LLE-based prediction method for 3D holoscopic image coding in Sub-

section 6.1.1, can be used. Such approach consists in testing several sparsity levels,

solving the LSP problem K times, for k = 1, . . . , K, and choosing the solution kopt

that gives the lowest prediction error. In this approach the selected sparsity level,

kopt, should be transmitted to the decoder.

6.3 Application of sparse-LSP to HEVC standard

As previously discussed, the sparse-LSP method provides higher flexibility, because

it may use predictors closer to the unknown sample to predict, similarly to the

traditional LSP methods, or use farther predictors, as the LLE-based prediction

method. Furthermore, sparse-LSP may select both closer and farther predictors in

the same linear model. The use of closer predictors for linear prediction has shown to

be important in natural image coding applications, namely using the LSP algorithm

in the MMP algorithm [9]. The advantage of farther predictors for the compression

of natural images was also demonstrated in literature using the LLE-based prediction

in H.264/AVC standard, specially for those images with more complex textures and

repeated patterns.

In this section, we show the advantage of the proposed sparse-LSP method for

natural image coding, which is able to exploit the properties of both LSP and LLE

methods. The sparse-LSP method was implemented in the state-of-the art HEVC

standard and compared to the other prediction methods, using the same basis com-

pression technology. In what follows, the main implementation details of the sparse-

LSP mode into HEVC standard are described. Experimental results illustrating the

advantage of the proposed method are also presented and discussed.

143



6.3.1 Implementation details

The proposed sparse-LSP prediction method was implemented in HEVC algorithm,

being used together with the directional intra prediction framework constituted by

planar, DC and 33 angular modes. In order to fairly compare the sparse-LSP with

other methods, such as the traditional LSP algorithm, we used the implicit imple-

mentation of sparse-LSP, which defines a fixed sparsity level along the encoding

procedure. Since these comparisons were made against the LSP implementation

proposed in [9], which used a 10th order filter support, we set the sparse-LSP spar-

sity level to K = 10. This means that sparse-LSP always selects 10 predictors from

the context filter region, for which it computes non-null linear coefficients.

In order to accommodate the proposed prediction mode in HEVC framework, the

directional mode 3 has been replaced by sparse-LSP mode. Thus, no modification to

the HEVC bitstream syntax was required. Furthermore, the directional prediction

framework of HEVC was almost unaffected, because only one angular mode was

replaced. The Lagrangian RD procedure of HEVC encoder, adopted in HM reference

software, which is based on the RMD and MPM methods, was used to select the

optimal prediction mode for each PU.

As previously explained, the training window and the filter context of sparse-LSP

are closely related to the template area and the search window of LLE-based predic-

tion method. The training window includes the left and top neighbouring regions

of the unknown block, varying its dimension with the block size. The thickness of

the training window was set to T = 4, as previously defined for the template area of

LLE-based prediction method developed for 3D holoscopic image coding, illustrated

in Figure 6.2.

The dimensions of the search window used by the TM algorithm (equivalent

to k-NN procedure) to estimate the sparse filter context are given by DV1 = 64,

DV2 = PY + T , DH1 = 64 and DH2 = PX + T , as represented in Figure 6.2 for the

LLE-based prediction method. These values indicate the size of the search window

that corresponds to the filter context region of Figure 6.7, where the sparse filter

predictors associated to non-null filter coefficients are selected.

Note that, the size of the search window proposed for these experiments is smaller

than the one proposed for 3D holoscopic image coding using LLE-based prediction.

This is because we are designing sparse-LSP for the compression of natural images

and we do not need to meet the previous requirement that imposes a search window

large enough to include at least one micro-image of 3D holoscopic contents. The

proposed search window has a reasonable size, which allows to exploit repeated

patterns in the natural images with a period up to 64 samples.
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Table 6.2: BDPSNR and BDRATE results of HEVC using LSP, TM, LLE and SLSP
methods relative to the reference HEVC standard, for the selected set of test images.

LSP TM LLE SLSP

Image PSNR RATE PSNR RATE PSNR RATE PSNR RATE

Barbara 0,23 -3,37 0,12 -1,86 0,27 -3,99 0,43 -6,27
Barbara2 0,02 -0,31 0,07 -1,13 0,20 -3,13 0,27 -4,05
Snook 0,01 -0,10 0,28 -3,83 1,00 -13,64 1,05 -14,31
Wool 0,13 -2,25 0,33 -5,70 0,56 -9,49 0,62 -10,38
Bike 0,15 -1,69 0,49 -5,59 0,45 -5,24 0,51 -5,85
Pan0 qcif 0,00 0,06 0,36 -5,25 0,92 -13,27 1,12 -15,73
Roof 0,07 -0,92 0,12 -1,61 0,33 -4,34 0,44 -5,80
Houses 0,03 -0,41 0,24 -2,98 0,34 -4,21 0,39 -4,72
Average 0,08 -1,12 0,25 -3,49 0,51 -7,16 0,60 -8,39

6.3.2 Experimental results

The proposed modified version of HEVC incorporating the sparse-LSP mode is based

on the reference software HM-13.0 [72], being denominated by HEVC-SLSP. In order

to assess its performance relative to other methods, we created new versions of HEVC

algorithm using those methods. The LSP mode, as proposed in [9], based on a 10th

order filter, was implemented in HEVC standard, being referred to as HEVC-LSP.

Another version of HEVC standard used in these experiments incorporates the LLE-

based prediction mode [38] as presented in Subsection 6.1, with a fixed number of

predictors, being referred to HEVC-LLE. As the TM algorithm is a particular case

of sparse prediction methods, which provides the sparsest representation using only

one dictionary element, it has been also used in the comparisons. The version of

HEVC algorithm improved by TM algorithm is denominated by HEVC-TM.

Similarly to the proposed HEVC-SLSP algorithm based on sparse-LSP, the LSP,

LLE and TM methods compared in these experiments are combined with the di-

rectional intra prediction framework of HEVC standard, by replacing the angular

3 mode. For the case of LLE and TM methods, the size of the template area (see

Figure 6.2) was set to T = 4, as the training window of the sparse-LSP method. The

size of the search window for these methods (see Figure 6.2) was defined equal to

the one of sparse-LSP method, presented in previous subsection. The sparsity pa-

rameter (k-NNs) for LLE-based prediction method was set to k = 10, corresponding

to the same model order used in sparse-LSP and LSP methods. The used config-

urations for TM, LLE and sparse-LSP methods ensure that these methods exploit

the same causal information, differing only by the procedure used to generate the

predicted block, being important for a fair comparison.

Experiments were performed for two sets of sequences. The first one, illustrated
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Table 6.3: BDPSNR and BDRATE results of HEVC using LSP, TM, LLE and SLSP
methods relative to the reference HEVC standard, for the first frame of HEVC test
sequences.

LSP TM LLE SLSP

Image PSNR RATE PSNR RATE PSNR RATE PSNR RATE

(E) Johnny -0,01 0,21 0,09 -2,31 0,11 -2,53 0,08 -1,95
(E) KristenAndSara -0,01 0,17 0,09 -1,69 0,08 -1,54 0,09 -1,65
(E) FourPeople 0,01 -0,14 0,05 -0,84 0,05 -0,79 0,05 -0,89
Average 0,00 0,08 0,08 -1,61 0,08 -1,62 0,07 -1,50

(D) BasketballPass 0,03 -0,41 0,08 -1,17 0,03 -0,52 0,08 -1,20
(D) BlowingBubbles 0,01 -0,05 0,01 -0,05 0,00 -0,03 0,01 -0,17
(D) BQSquare 0,00 0,05 0,03 -0,35 0,01 -0,09 0,04 -0,40
(D) RaceHorses -0,02 0,15 -0,02 0,21 -0,03 0,38 0,00 0,00
Average 0,00 -0,06 0,02 -0,34 0,00 -0,07 0,03 -0,44

(C) BQMall 0,00 -0,05 0,04 -0,68 0,04 -0,72 0,05 -0,78
(C) BasketballDrill 0,02 -0,50 0,13 -2,61 0,12 -2,51 0,14 -2,96
(C) PartyScene 0,01 -0,10 0,04 -0,49 0,05 -0,57 0,05 -0,62
(C) RaceHorses 0,01 -0,15 0,01 -0,24 0,00 -0,05 0,01 -0,24
Average 0,01 -0,20 0,06 -1,01 0,05 -0,96 0,06 -1,15

(B) BasketballDrive 0,01 -0,26 0,06 -2,39 0,07 -2,99 0,06 -2,16
(B) BQTerrace 0,01 -0,17 0,11 -1,73 0,17 -2,69 0,10 -1,55
(B) Cactus 0,00 -0,03 0,05 -1,43 0,06 -1,55 0,05 -1,35
(B) Kimono1 0,00 -0,01 0,00 -0,06 0,01 -0,18 0,01 -0,14
(B) ParkScene 0,00 -0,03 0,01 -0,18 0,01 -0,20 0,01 -0,27
Average 0,00 -0,10 0,05 -1,16 0,06 -1,52 0,04 -1,09

in Figures A.12 to A.17 of Section A.2, includes a selected set of test images with

complex textures and repeated patterns, which are not efficiently predicted by tra-

ditional directional modes. The second set includes the first frame of HEVC test

sequences from four classes as proposed in [69], namely the classes B (1920× 1080),

C (832× 480), D (416× 240) and E (1280× 720). Only the luminance channel was

encoded and evaluated in these experiments.

Tables 6.2 and 6.3 present the Bjontegaard results [70] (BDPSNR and BDRATE)

using the proposed HEVC-SLSP, based on sparse-LSP method, as well as HEVC-

LLE, HEVC-TM and HEVC-LSP algorithms, for the compression of the two selected

test sets, respectively. The Bjontegaard results were computed relatively to the orig-

inal HEVC standard. The results for the first test set, made of natural images with

complex textures, presented in Table 6.2, show that all the evaluated methods pro-

vide significant improvements to HEVC standard. These methods tend to perform

better in the presence of complex textures with repeated patterns, due to limitations

of directional intra prediction framework for representing these features. Among all
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the evaluated methods, the sparse-LSP provides the higher coding gains, achieving

an average bitrate saving above 8% in relation to the original HEVC standard. The

performance of HEVC-LLE is slightly inferior than the one of HEVC-SLSP, provid-

ing about 7% of average bitrate savings. The superior performance of sparse-LSP

can be justified by its ability to exploit the same predictors of LLE and the predic-

tors closer to the sample to predict. The HEVC-TM, which only uses one predictor,

and the HEVC-LSP, based on traditional LSP method, achieve significantly inferior

average bitrate savings of about 3.5% and 1%, respectively. The low performance

of LSP algorithm is due to its limitations to exploit textured areas with repeated

patterns that present a period larger than the LSP filter support.

The results for the first frame of HEVC test sequences, presented in Table 6.3,

are less relevant than the ones of the first test set. This is mainly because these

images tend to be smoother or have less textured areas with repeated patterns,

and hence directional prediction is able to provide an efficient prediction for most

cases. The HEVC-LSP method presents the lowest performance, providing average

bitrate savings quite inferior to 1% for all test sequences. When using TM, LLE or

sparse-LSP algorithms, HEVC shows a more efficient performance, achieving bitrate

savings close to 3% for some test sequences. The HEVC-SLSP approach tends

to present the best RD performance for most cases, mainly for classes D and C.

However, the HEVC-LLE shows to perform better for most Full-HD test sequences

(class B) as well as for the Johnny sequence of class E with HD resolution. This

higher performance of LLE-based prediction method for most high resolution images

can be justified by the larger amount of samples in these signals, which tends to

present spatial dependencies between more distant samples. Therefore, the ability

of sparse-LSP to select closer predictors, may not provide a significant advantage

for some high resolution images. This observation agrees, to some extent, with the

results of HEVC-LSP, which uses closer neighbouring predictors and provides a poor

performance for these images.

In Figures 6.9 and 6.10, the RD curves of two selected test images, namely

Barbara and Wool, are presented. The results for both images show the advantage

of HEVC using the sparse-LSP method over the remaining methods, from low to

high bitrates. In the case of Barbara image, the performance of HEVC-LSP and

HEVC-LLE algorithms is quite similar, being significantly superior to the original

HEVC standard. The gains of LSP method in HEVC standard for the Barbara

image agree with previous observations reported in literature using the LSP method

in MMP algorithm [9].

The results for the Wool image, in Figure 6.10, show that HEVC-LLE performs

quite similar to HEVC-SLSP, mainly at lower bitrates. However, the sparse-LSP

approach tends to slightly improve at higher bitrates. The RD performance of
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Figure 6.9: Rate-distortion curves comparing SLSP, LLE, TM and LSP methods
using HEVC standard, for Barbara image.
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Figure 6.10: Rate-distortion curves comparing SLSP, LLE, TM and LSP methods
using HEVC standard, for Wool image.

HEVC-TM is smaller than the one of HEVC-SLSP and HEVC-LLE methods, but

its curve is consistently above original HEVC from low to high bitrates. In the

case of HEVC-LSP, the achieved gains are almost null at lower bitrates, increasing

its performance for higher bitrates. The poor performance of LSP method at lower

bitrates can be justified by the higher quantisation effects in the reconstructed causal

image at those bitrates, which decreases the learning capabilities of LSP method
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when using a small filter support.

In general, the presented results reveal that the coding performance of the eval-

uated methods highly depends on the type of encoded images. Due to their charac-

teristics, images of the first test set tend to result in higher coding gains, specially

when using the sparse-LSP method. The main advantage of sparse-LSP method is

its ability to generalise the remaining evaluated methods. With simple restrictions

on the size of the filter context region and model order, it is possible to transform the

sparse-LSP method to operate similarly to TM, LLE or LSP methods. An adaptive

selection of those restrictions during the encoding procedure allows to optimise the

prediction results for different image characteristics.

In regard to the computational complexity, we observed that coding times of the

evaluated encoding algorithms are about one order of magnitude higher when com-

pared to the original HEVC coding times. This is mainly due to the TM searching

procedures and least-squares optimisation methods used by the investigated predic-

tion techniques. With exception of TM algorithm, which run uses less computations,

the remaining evaluated prediction methods presented a comparable computational

complexity. In this work, we did not consider efficient algorithmic implementa-

tions for the investigated methods. Thus, we believe that computational complexity

problem could be alleviated, either by using more efficient implementations, or by

exploiting parallel processing architectures.

6.4 Conclusions

In this chapter, methods based on sparse representation have been investigated

for efficient image prediction. In Section 6.1, the Locally Linear Embedding-based

prediction has been investigated for 3D holoscopic image coding using the HEVC

technology. The working principle of LLE-based prediction method consists on

the linear combination of several causal reconstructed patches, which makes it an

efficient solution to exploit correlations from the previously encoded micro-images.

Experimental results demonstrated the advantage of LLE-based prediction method

to exploit the spatial redundancy that characterises the 3D holoscopic images, when

compared to the explicit Self-Similarity approach based on intra BMA.

In Section 6.2, a new least-squares-based prediction mode for intra image coding

has been investigated. By combining sparse representation with LSP method, an

improved prediction method that generalises LLE-based prediction method was de-

veloped. The proposed algorithm derives a sparse context for linear prediction using

the k-NN algorithm in a large causal search window. The linear coefficients of the

selected predictors are estimated by least-squares optimisation, and the estimated

linear model is used to predict all the samples of the unknown block.
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The proposed method, denominated as sparse-LSP, was implemented in the

HEVC standard, and evaluated for still image coding. Section 6.3 discussed the ex-

perimental results of sparse-LSP method, showing its superior coding performance

for most test images when compared to the other related methods presented in lit-

erature, such as the LLE-based intra prediction, the traditional LSP and the TM

algorithms. The advantage of sparse-LSP over the LLE-based prediction method

results from its higher adaptation, as it may use a more flexible filter context con-

sidering predictors from the closer spatial neighbourhood, like traditional LSP filters,

as well as more distant predictors, similarly to the LLE-based prediction method.
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Chapter 7

Generalised optimal sparse

predictors

The main research work presented in the previous chapters of this thesis was fo-

cused on two main intra prediction methods, specifically the directional prediction,

investigated in Chapters 4 and 5, and the linear prediction using sparse models, in-

vestigated in Chapter 6. A common characteristic among these methods is the use of

the previously encoded samples in the neighbourhood of the unknown block for the

prediction process. However, while the directional prediction only uses information

from the closer neighbouring samples, namely the top row and left column adjacent

to the block, the linear prediction methods investigated in this thesis exploit informa-

tion from a larger causal region, being able to use reconstructed samples at a longer

distance. Due to their characteristics, the prediction capabilities of these methods

tend to depend on the image contents. This has been observed in Chapter 6, where

the sparse linear prediction methods achieved better prediction performance in the

presence of complex textures and repeated patterns, than the directional prediction

methods used by HEVC standard.

In this chapter, we present a new linear prediction framework for the HEVC stan-

dard, which generalises the previously investigated directional and linear prediction

methods, using optimal sparse predictors combined with geometric transformations.

Ultimately, each angular mode of directional prediction can be regarded as a set of

very simple linear predictors, a different one for each pixel of the unknown block.

However, such an interpretation of each directional mode is too poor to provide

useful insights for their design. In Section 7.1 we present a new interpretation for

directional prediction as a first-order linear prediction method combined with ge-

ometric transformations. Such interpretation of directional prediction motivated

the proposed generalised intra prediction framework based on sparse models, as

presented in Section 7.2.

In Section 7.3 we describe several algorithms that can be used to estimate the
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proposed sparse models. We show that sparse models estimated by traditional Or-

thogonal Matching Pursuit (OMP) method are less efficient for prediction purposes,

mainly due to the greedy characteristic of OMP selecting the non-null predictors.

Conversely, we demonstrate that not-so-greedy approaches, such as Least-Angle

Regression (LAR) and Least Absolute Shrinkage and Selection Operator (LASSO)

methods, are able to provide better prediction performance. We also investigate dif-

ferent stopping criteria for the optimisation algorithms used for model estimation.

Section 7.4 describes the proposed prediction algorithm, based on generalised

optimal sparse predictors for HEVC standard. Several experimental results are

presented and discussed in Section 7.5, demonstrating the advantage of the proposed

predictive solution in relation to the directional prediction framework of HEVC, as

well as other linear prediction methods previously investigated.

7.1 Two-stage interpretation of directional pre-

diction

In its procedure, the angular modes propagate the causal neighbouring pixels from

the left column and top row adjacent to the unknown block into the target block in

some specific direction. In practice, this can be viewed as predicting pixels with a

linear combination of causal samples. In this section, we analyse the sample propa-

gation of HEVC angular modes and present an alternative two-stage interpretation

for their design, based on the concepts of linear prediction and geometric transfor-

mations.

An angular mode can be easily written as a set of linear predictors, whose filter

contexts and weighting coefficients depend on the predicted sample position and

mode direction. This interpretation, however, has some issues related to the depen-

dency existing between the filter context and the predicted sample position. Such

a dependency results in a more complex linear model formulation, which does not

provide valuable insights for designing a generalised linear prediction method. This

has motivated an alternative interpretation of angular modes, which at a first-stage

only considers three simple linear models associated to the Angular 10 (horizontal),

Angular 18 (diagonal) and Angular 26 (vertical) modes. These angular modes have

a common characteristic: under the linear prediction interpretation they may be

reproduced using a filter with fixed context.

Unlike most angular modes, that use a linear combination of two reference sam-

ples for prediction of each sample, the three referred angular modes simply copy

the reference neighbouring samples along the block, in either horizontal, diagonal

or vertical directions. Such copy of reference samples can be performed by first
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X(n−
(1, 0))

X̂(n)

(a) Angular 10 - F 1
H

X(n−
(1, 1))

X̂(n)

(b) Angular 18 - F 1
D

X(n−
(0, 1))

X̂(n)

(c) Angular 26 - F 1
V

Figure 7.1: Sample propagation using a first-order linear filter context for Angular
10, 18 and 26 modes.

Table 7.1: Linear filters and associated geometric transformations.

Filter Neighbourhood Transform Angular modes

F 1
H left, left-down TH(d) 2 to 10

F 1
D left, top-left, top TDh(d) / TDv(d) 11 to 18 / 18 to 25

F 1
V top, top-right TV (d) 26 to 34

order linear filters, which only depend on the mode direction and use a weighting

coefficient equal to 1.

Let X(n) denote the image pixel to be linearly predicted, where n is a two-

dimensional vector with the spatial coordinates in the image. The referred first-order

linear models can be written as:

X̂(n) = X(n− g) , (7.1)

where the relative position of the first order filter, g, is (1, 0), (1, 1) or (0, 1), for

Angular 10, 18 and 26 modes, respectively. These filter contexts are illustrated

in Figure 7.1, being designated by F 1
H , F 1

D and F 1
V . The gray coloured samples

represent the target prediction sample.

In order to reproduce the remaining angular modes of HEVC encoder, we propose

these first-order linear filters (first-stage) with an additional processing stage based

on geometric transformations (second-stage). The idea is to distort the linearly

predicted block, so that all angular modes can be reproduced from the three linear

filters from Figure 7.1. Different sets of geometric transformations are available,

depending on the used linear filter, as indicated in Table 7.1. For instance, in the

case of filter F 1
H , which only uses the left and left-down neighbouring regions for

prediction (see available regions in Figure 2.4 of Subsection 2.3.1), the geometric

transformation TH(d) is used to reproduce any angular mode between 2 and 10,

controlled by parameter d. For linear filter F 1
D, two sets of geometric transformations

are defined, namely TDh(d) and TDv(d), which generate angular modes 11 to 18 and
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(a) F 1
H - angular modes 2 to 10
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d

TB

d
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(b) F 1
D - angular modes 11 to 25

TV

LP

d

TB

(c) F 1
V - angular modes 26 to 34

Figure 7.2: Geometric transformations applied to linearly predicted blocks in order
to reproduce HEVC angular modes.

angular modes 18 to 25, respectively.

The proposed geometric transformations are affine, i.e. they preserve collinearity

and distance ratios, and parameter d is used to control the magnitude of transfor-

mation. When d = 0, there is no transformation on the output block (corresponding

to the Angular 10, 18 or 26 modes). The proposed transformations that generate

all the HEVC angular modes are illustrated in Figure 7.2. For each linear filter, the

linearly predicted output (labelled by LP) and the transformed block (labelled by

TB) are shown. For clarity, a representative edge is visible in the illustrated blocks.

The TH(d) and TV (d) transformations correspond to vertical and horizontal block

skews, respectively. As observed in Figure 7.2, the straight lines generated by hor-

izontal and vertical first-order linear filters (F 1
H and F 1

V ) remain straight and also

parallel after the block skew transformation. In practice, the TH(d) (or TV (d)) trans-

formation simply displaces each vertical line (or horizontal line) of the block by an

amount proportional to its distance to the horizontal block margin (or vertical block

margin). These transformations can be described as:

TH(d) =

 1 0 0

d 1 0

0 0 1

 TV (d) =

 1 −d 0

0 1 0

0 0 1

 , (7.2)
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Table 7.2: Transformation matrix parameter d and respective angular modes gen-
erated by TH(d) and TV (d) transformations.

Value of d 0 2 5 9 13 17 21 26 32
TH(d) modes 10 9 8 7 6 5 4 3 2
TV (d) modes 26 27 28 29 30 31 32 33 34

Table 7.3: Transformation matrix parameter d and respective angular modes gen-
erated by TDh(d) and TDv(d) transformations.

Value of d 4096 1638 910 630 482 390 315 256
TDh(d) modes 11 12 13 14 15 16 17 18
TDv(d) modes 25 24 23 22 21 20 19 18

where d is the parameter that defines the amount of skewing. Note that d is negative

for TV (d) transformation because the skewing is applied to the left direction. To

ensure that the transformed block fills all samples of the target block, the linear filter

step propagates both the left and left-down block neighbourhoods in case of F 1
H ,

and both the top and top-right block neighbourhoods in case of F 1
V , as illustrated in

Figure 7.2. Considering that block dimensions are normalised to 32× 32 (the larger

block size where prediction is derived), the values of d that correspond to HEVC

angular modes, using TH and TV transformations, are given in Table 7.2.

Regarding TDh(d) and TDv(d) transformations, a slightly different approach is

used. The linearly predicted (LP) block is divided into two triangles, which are

independently transformed. These transformations should preserve the continuity

between the block and the left and top neighbourhoods, in order to follow the

propagation effect of angular modes 11 to 25. In the case of TDh(d) transformations,

the triangle below the block diagonal is scaled (T s
Dh(d)), while the triangle above

the diagonal is horizontally skewed (T k
Dh(d)). These affine transformations are given

by:

T s
Dh(d) =

 d 0 0

0 1 0

0 0 1

 T k
Dh(d) =

 1 d 0

0 1 0

0 0 1

 , (7.3)

where the parameter d defines the intensity of the transformations.

Similarly, TDv(d) uses scale and skew transformations on the triangles above and

below the block diagonal, respectively. The difference is that the transformations are

made along the vertical direction, instead of the horizontal one. Considering that

block dimensions are normalised to 32 × 32, the values of d that result in HEVC

angular modes, using TDh and TDv transformations, are given in Table 7.3. Note

that, the proposed model for angular modes 11 to 25 does not produce exactly the

same results as HEVC implementation for these modes. This results from small dif-
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ferences on sample interpolation process, which do not compromise the performance

of the intended generalisation. Details about implementation of angular modes in

HEVC algorithm can be found in [130].

7.2 Generalising directional prediction

The presented two-stage formulation of directional prediction demonstrates that

first-order linear prediction models can be used to generate angular intra modes

when combined with geometric transformations in a second stage. An interesting

extension of this method would consist in replacing the first-order predictors by

optimal linear predictors, that would be able to reproduce directional prediction

as a particular case. This would require the optimal predictors to exploit a larger

causal area than the first order filters. Such observation led us to a generalised intra

prediction framework based on optimal sparse predictors.

In addition to the first-order filters, that replicate angular prediction modes, the

proposed generalised prediction framework uses adaptive high-order linear filters.

These filters are adaptively determined in an augmented context area, with squared

shape, as shown in Figure 7.3. This means that the three first-order filters F 1
H , F 1

D

and F 1
V described in Section 7.1 can be replaced by larger filter contexts. In the

example of Figure 7.3, the maximum order of linear filters is 25, i.e. Df = 5 which

results in F 25
H , F 24

D and F 25
V , where superscript indicates maximum filter order.

The block prediction using the F 24
D and F 25

V filters is applied in raster scan order,

from left to right. Due to its shape, the F 25
H filter is applied using a vertical scan

order, from top to bottom. Note that the samples belonging to the two bottom rows

of filter F 25
H and the two right columns of filter F 25

V may not be available during the

block prediction. This is an issue when non-null coefficients are defined in these

positions. To solve it, the last available samples in the missing rows and columns

are padded along horizontal and vertical directions, respectively.

X̂(n)

Df

Df

(a) F 25
H

X̂(n)

Df

(b) F 24
D

X̂(n)

Df

(c) F 25
V

Figure 7.3: High-order linear filters for the proposed generalised intra prediction
framework.
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Figure 7.4: Training window regions associated to the three types of linear filters
used in the proposed intra prediction framework.

The use of three independent filters is motivated by the geometrical

transformation-based interpretation of directional intra prediction previously pre-

sented. These filters allow to exploit different block neighbouring regions, namely

the left, left-top, and top regions. Unlike the first-order filters, that use a fixed

coefficient equal to 1 to reproduce angular modes (see Equation 7.1), the proposed

augmented filters are locally optimised in a causal training window (TW), based on

least-squares regression with a sparsity constraint. The estimated linear model is

used for predicting all samples of the target block.

Depending on the filter context, a different TW, corresponding to a different

neighbouring region is defined, as shown in Figure 7.4. For instance, filter F k
H ,

which only combines causal samples from the left of the target sample X̂(n), is

estimated in the neighbouring region defined on the left side of the current block.

The size of the TW depends on the size of the block and dimension DTW , represented

in Figure 7.4.

Although the proposed linear models may use all the samples within the Df×Df

context area, it is not expected that they are all relevant for the prediction process.

The least-squares-based training procedure should attribute higher weighting co-

efficients for more important samples and lower weighting coefficients to the less

relevant samples. However, when the number of filter coefficients (or variables) is

large in relation to the number of training samples (observations), over-fitting issues

may occur. In these cases, the estimated models tend to memorise the training data

rather than learn the underlying linear model. As a consequence, these models may

present a poor predictive performance. This problem is aggravated when the filter

size is larger than TW size, resulting in an under-determined problem, that provides

infinite solutions.

In order to overcome these problems, regularisation constraints are typically

added to the ordinary least-squares regression problem. We investigated the use of

a sparsity-based regularisation function for the least-squares problem. The classical

LSP optimisation problem (see Equation 2.2) using a sparsity constraint can be
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given by:

arg min
a
‖y −Ca‖2

2 subject to ‖a‖0 ≤ t , (7.4)

where a is the sparse coefficients vector, C is the correlation matrix computed as

described in Subsection 2.4.2, y is the training data and t is a bound on sparsity

(number of non-zero coefficients).

In general, searching the exact solution of this problem is NP-hard [131], and thus

computationally intractable. To solve this problem, there are various algorithms in

the literature that provide approximated solutions with feasible complexity. Some

of these algorithms are reviewed in the following section.

7.3 Sparse model estimation algorithms

In this section we review some algorithms to estimate approximate solutions to the

constrained least-squares problem described by Equation 7.4. These methods in-

clude the iterative greedy matching pursuit-based algorithms [41, 132], as well as

less greedy solutions, such as least angle regression [133], LASSO [134] and Elastic

Net regression [135]. From this point onwards, we will use the notation of Equa-

tion 7.4, assuming that y is centred to have zero mean, and the columns of C are

normalised to unit l2-norm and centred to have zero mean.

7.3.1 Matching Pursuit algorithms

The Matching Pursuit (MP) [41] algorithm is one of the greediest approaches for

variable selection. It searches the predictor (column of matrix C) that best fits the

residual at each iteration and adds it to the support (or model). Note that, due to

the previous normalisation to unit l2-norm and centring to zero mean assumptions,

the fitting procedure is equivalent to the predictor correlation. The l2-norm of the

error of the objective function (i.e. the residual) is often used as the stopping

criterion.

Since MP does not orthogonalise the residue in relation to the current model

predictors, the same predictor can be chosen again in later iterations. Because of

this, MP may potentially require a large number of iterations to converge. The

Orthogonal Matching Pursuit (OMP) [132] is an improved version of MP which

solves the predictor repetition and the convergence issue. The main difference from

MP is that all the solution coefficients are updated after at each iteration by com-

puting the orthogonal projection of the signal onto the set of selected predictors.

This procedure ensures that each new residual is orthogonal to the already chosen

predictors.
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Although OMP is more computationally complex than MP, it tends to use less

iterations due to the residue orthogonalisation step. Furthermore, OMP provides

more accurate sparse solutions than the MP algorithm. A description of MP and

OMP algorithms for sparse prediction methods has been previously presented in

Subsection 2.5.2.

7.3.2 Least Angle Regression

Besides their sometimes excessively greedy nature, due to the aggressive fitting, MP

methods tend to choose only one predictor in the presence of a group of highly

correlated predictors. This may exclude useful predictors. A less greedy version of

the traditional forward selection methods has been proposed in [133], denominated

as Least Angle Regression (LAR). The LAR method has very interesting properties

and can be easily modified to behave like other model selection algorithms, namely

LASSO and Incremental Forward Stagewise methods.

The LAR algorithm can be briefly described in what follows. Similarly to forward

selection algorithms, LAR starts with all coefficients equal to zero and finds the

predictor, c1, which is most correlated with the response y. To find the second

predictor, LAR moves along the direction of c1, updating the residual along the

way, until some other predictor, c2, becomes as correlated as c1 with the current

residual. These two predictors form the most correlated set, named as active set.

Then, LAR proceeds along a new direction that is equiangular to both predictors

c1 and c2 (i.e. along the least angle direction), and it stops when a third predictor,

c3, has as much correlation as c1 and c2 with the current residual, adding it to

the active set. This process continues by using the equiangular direction between

the three found predictors, until a fourth predictor is obtained, and so on. LAR

terminates its procedure when the number of desired predictors is achieved or when

the full solution path is obtained.

The LAR algorithm is very efficient, since it can solve the whole solution path

(i.e. the sequence of all solutions from 0 up to p predictors), at the cost of solving

the Ordinary Least-Squares (OLS) problem for the full set of p predictors. More

details about LAR algorithm and its algebraic derivation can be found in [133].

7.3.3 LASSO regression

The Least Absolute Shrinkage and Selection Operator (LASSO) [134] has been pro-

posed in statistics literature for estimation of linear models, using an l1-norm con-

straint on the coefficients’ vector. An equivalent formulation used in signal process-

ing literature is known as Basis Pursuit [136]. The LASSO constraint is a convex

relaxation of the intractable l0-norm problem described in Equation 7.4. It can

159



provide approximate solutions to the l0-norm problem formulation with reasonable

computational complexity, through the use of convex optimisation techniques. A

useful unconstrained formulation of the LASSO problem for Equation 7.4, based on

a Lagrangian multiplier λ, is given by:

arg min
a

1

2
‖y −Ca‖2

2 + λ‖a‖1 . (7.5)

Due to the nature of l1-norm, LASSO enjoys two main features: model selection

and coefficient shrinkage. The model selection feature guarantees that estimated

solutions using LASSO are sparse and thus it can provide accurate approximations

to the original l0-norm problem formulation. With λ = 0, the problem in Equation

7.5 becomes the classical OLS minimisation problem. As λ increases, LASSO tends

to shrink the OLS coefficients towards zero, which results in decreased coefficients’

variance and a more biased solution. Consequently, the solution becomes more stable

and the predicted values present lower variance, improving the overall prediction

accuracy.

The LASSO problem can be solved using various optimisation algorithms, in-

cluding a modified version of the previously presented LAR algorithm. As pointed

out above, the advantage of LAR algorithm is its ability to solve the full solution

path (from λ = 0 up to very large λ values) with efficient computational complexity.

Unlike the original LAR algorithm, the LASSO-modified version of LAR may remove

predictors during its iterations. When one coefficient changes its sign, the associated

predictor is removed and the next equiangular direction is computed with the re-

maining predictors. Due to the possible predictor dropping, the LASSO-modification

of LAR may slightly increase the computational complexity, when compared to the

original LAR algorithm [133].

7.3.4 Elastic Net regression

The Elastic Net (EN) regression [135] has been proposed as an extension to the

LASSO formulation, in order to improve its prediction performance for some sce-

narios, e.g. when the number of predictors (p) is much larger than the number of

samples (n). In such a scenario, LASSO can select at most n out of p predictors,

which is a problem when the number of relevant predictors is superior to n. This

limitation is intrinsic to the convex optimisation problems and it is also present on

the LAR algorithm, as previously discussed. Another interesting feature of EN is

the ability to include groups of correlated predictors into the model, which is often

desirable in prediction scenarios. In contrast to EN, LASSO lacks the grouping

effect, selecting only one arbitrary predictor from a group of correlated ones.

The EN problem can be formulated as an extended version of the LASSO prob-
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lem, adding an l2-norm component (the Ridge penalty) to the l1-norm penalty of

LASSO. Considering the LASSO problem of Equation 7.5, its EN extension can be

written as:

arg min
a

1

2
‖y −Ca‖2

2 + λ1‖a‖1 + λ2‖a‖2
2 . (7.6)

Unlike the model estimation methods previously presented, the EN uses two

parameters to adjust the influence of the used penalties: the sparsity parameter λ1

and the grouping parameter λ2. EN can be transformed in the LASSO problem by

setting λ2 = 0, or in the ridge regression when λ1 = 0. By setting both parameters

equal to zero, the problem reduces to the classical OLS regression. The use of ridge

penalty in classical OLS is known to improve its prediction performance through a

bias-variance trade-off. However, ridge regression does not provide sparse solutions

like LASSO. As previously discussed, LASSO is able to enforce both sparsity and

shrinkage properties. The combination of ridge with LASSO is advantageous in

many situations, because it converts the convex problem into a strictly convex one.

This guarantees that similar predictors receive similar coefficients, justifying the

grouping property of EN.

For the resolution of the EN problem, described in Equation 7.6, standard meth-

ods used to solve the LASSO problem can also be used but based on an augmented

dataset. The number of samples in the augmented dataset is n+p and the modified

matrix C has rank p, which means the EN solution may use all the p predictors. This

eliminates the limitation of the original LASSO solution, that cannot use more than

min(n, p) non-zero coefficients. An attractive approach in terms of computational

complexity to solve EN is to use the LAR algorithm with LASSO modification.

Note that the λ1 parameter defines the early stopping of LASSO algorithm, while

λ2 parameter participates in the formation of the augmented dataset. In order to

solve some issues of EN method, which introduces extra bias to the estimated solu-

tions, degrading the prediction performance, the EN estimated coefficients can be

re-scaled. More details about the EN can be found in [135].

7.4 Proposed algorithm based on adaptive sparse

predictors for HEVC

In this section we describe the algorithm of the proposed generalised sparse linear

prediction method for the HEVC standard. In order to improve filter design flexi-

bility, the maximum size of filter context is adaptively chosen. We also investigate

adaptive early stopping conditions for the evaluated model estimation algorithms

presented in Section 7.3.

The proposed two-stage intra prediction framework has been incorporated into
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HEVC standard by replacing the 33 angular modes and keeping the original planar

and DC modes. The linear filtering stage is used as described in Section 7.2. The

maximum filter context size, given by parameter Df (see Figure 7.3) should be pro-

vided. This parameter is important because it indicates the maximum distance of

non-zero filter coefficients from the predicted block (or maximum filter size). The

use of the Df parameter can be comparable to a step penalty function, which gives

equal importance (weight 1) to samples within a squared context area, discarding

the outside samples (weight 0). As an alternative, more complex and smooth penal-

ties might be used, for instance, smooth functions that exponentially decrease the

importance weight of the coefficient when its distance to X̂(n) increases.

In the proposed algorithm, we consider the straightforward step-based penalty

solution, where Df indicates the maximum filter size, as illustrated in Figure 7.3. In

addition, we use an adaptive approach, in which the maximum filter size is explicitly

transmitted to the decoder. We minimise the amount of encoded side information

by using only two possible filter sizes, specifically Df = 1 and Df = 31, which are

represented by a binary flag (fo). A higher number of filter sizes (Df values) could

be used, however, it would require additional signalling bits. Note that Df = 1

provides similar results to the HEVC angular modes (assuming coefficient equal to

1), which corresponds to the filter contexts shown in Figure 7.1.

For Df = 31, up to 961 non-zero coefficients are available, but only a few should

be selected by the model estimation algorithms described in Section 7.3. A point of

concern for these algorithms is the choice of an appropriate stopping condition. In

the case of the LASSO problem, the stopping criterion is related to the λ parameter.

The most straightforward solution for this problem is to use a fixed number of non-

zero predictors, similar to traditional LSP methods. In such an approach, which we

call KNP (k non-zero predictors), the optimisation algorithm should stop whenever

k, the predefined number of predictors, is reached.

In addition to trivial KNP method, we investigated alternative early stopping

criteria, based on adaptive solutions. Statistical methods, such as Akaike Informa-

tion Criterion (AIC) [137], Bayesian Information Criterion (BIC) [138] or Mallows

Cp [139], have been used as stopping criteria for efficient model selection. However,

in our scenario, where the number of predictors (maximum filter context size) is

usually larger than the number of training samples (i.e. p� n), these methods are

not recommended, because they turn into a measure of training error only. A pop-

ular solution to adaptively find the optimal number of non-zero coefficients, when

only training data is available, is the Cross-Validation (CV) method [140]. However,

because the CV has high computational complexity, we decided to investigate two

other methods to find the optimal number of predictors under the evaluated model

estimation algorithms.
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The first adaptive solution is based on the Variation of the Training Error (VTE)

at each iteration. The idea behind this method is to stop the optimisation algorithm

when the variation of mean squared error in the training window is inferior to a

predefined threshold, ρE, in terms of percentage. The second used method is based

on the Geometrical Stopping Criterion (GSC), originally proposed in [141] for the

LAR algorithm.

GSC is based on the fact that the angle, θj,n, between the residue and the

predictor cj tends to 90◦ as the algorithm iteration n increases. Thus, the stopping

criterion is defined by ∆θn ≤ σθ1 , where θn = [θ1,n . . . θj,n . . . θp,n], ∆θn = max(θn)−
min(θn) and σθ1 is the standard deviation of the angles at first iteration. In practice,

this method forces the algorithm to stop when the difference between the maximum

and minimum angles is smaller than their standard deviation at the first iteration.

Since this approach is static, we made a simple modification that allows for tuning,

introducing the parameter ρG, yielding ∆θn ≤ ρG.σθ1 .

The optimal tuning parameters for KNP, VTE and GSC stopping criteria, the

parameters k, ρE and ρG, respectively, are fixed for the whole image coding process.

We obtained the optimal values through experimental tests (see Section 7.5) and

we verified that they are approximately consistent for several images with differ-

ent characteristics. Thus, the only encoded side information in the proposed intra

prediction framework is the optimal maximum filter context size (represented by

fo), and the optimal geometric transformation selected in the second stage of the

proposed algorithm (represented by to).

In order to encode these symbols (fo and to) we have made minimal changes to

the HEVC bitstream syntax. Since they replace the angular modes, the optimal

geometric transformation (to) is encoded using the existing symbols and entropy

coding solution for the angular modes. This means that the 33 symbols for geometric

transformations are jointly encoded with the planar and DC modes by using the

existing MPM scheme to predict the geometric transformation and the Context-

Adaptive Binary Arithmetic Coding (CABAC) [63] for entropy coding using either

the MPM index coding or a fixed-length-code of 5 bits.

Regarding the optimal filter context size (that can be Df = 1 or Df = 31), an

additional binary flag (fo) is signalled in the bitstream after encoding the optimal

geometric transformation (to). The statistical redundancy of this binary symbol

is exploited using CABAC, based on 33 possible contexts that correspond to each

geometric transformation, being initialised with uniform distributions.

Algorithm 7.1 summarizes the encoder side procedure of the proposed method

based on adaptive sparse linear predictors for the prediction of one PU in HEVC

standard.
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Algorithm 7.1: Prediction algorithm based on adaptive sparse linear predic-
tors (encoder).

Input: causal reconstructed image of current PU;
Output: predicted block P̂ for current PU;

1: evaluate Planar and DC modes and compute costs JPlanar and JDC ;
2: set Df = 1;
3: use first-order filters: F 1

H , F 1
D and F 1

V (see Figure 7.1), to generate 3 first-
stage output blocks;

4: for each available geometric transformation t; do
5: use geometric transformation t over one of the previous generated first-

stage output blocks (selected one depends on t - see Table 7.1);
6: save previous result as temporary predicted block P (Df = 1, t);
7: compute RD cost J(Df = 1, t);
8: end for
9: set Df = 31;

10: estimate sparse models (using OMP, LAR, LASSO or EN with some stop-
ping criterion: KNP, VTE or GSC) for 3 filter context configurations with
Df = 31 (see Figure 7.3);

11: use estimated k-sparse filters: F k
H , F k

D and F k
V , to generate the 3 first-stage

output blocks;
12: for each available geometric transformation t; do
13: use geometric transformation t over one of the previous generated first-

stage output blocks (selected one depends on t - see Table 7.1);
14: save previous result as temporary predicted block P (Df = 31, t);
15: compute RD cost J(Df = 31, t);
16: end for
17: find D∗f , t

∗ = min
Df ,t

J(Df , t);

18: if J(D∗f , t
∗) < min(JPlanar, JDC); then

19: set final predicted block P̂ = P (D∗f , t
∗);

20: set to = t∗;
21: set fo = 0 if D∗f == 1, or fo = 1 if D∗f == 31;
22: encode to and fo symbols using CABAC;
23: else
24: if JPlanar < JDC ; then
25: set Planar mode output as final predicted block P̂ and encode its flag;
26: else
27: set DC mode output as final predicted block P̂ and encode its flag;
28: end if
29: end if

7.5 Experimental results

The proposed intra prediction framework has been evaluated for still image com-

pression using the HEVC reference software HM-14.0 version [72]. Four coding

approaches using different predictor estimation algorithms have been used in the

experiments: HEVC-OMP, HEVC-LAR, HEVC-LASSO and HEVC-EN. The used
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test images are organised in two sets. Set 1 includes test images with complex

textured areas and repeated patterns, as illustrated in Figures A.12 to A.17 of

Section A.2. Set 2 includes first frame of HEVC test sequences from classes B

(1920 × 1080), C (832 × 480), D (416 × 240) and E (1280 × 720) [69]. Only the

luminance component has been considered in the experiments. In the following, we

analyse the rate-distortion (RD) performance of these algorithms as well as their

optimal parameters.

7.5.1 Effect of sparsity constraints

In this subsection, we analyse the influence of the sparsity constraints on the linear

prediction models solved by OMP, LAR and LASSO algorithms. In order to evalu-

ate the importance of the sparsity constraint, Barbara image was encoded using a

modified version (explained below) of HEVC-OMP, HEVC-LAR and HEVC-LASSO

with QP=27, and the KNP stopping method. Different sparsity levels, in the range

of k = 1, ..., 100 were tested.

In Figure 7.5 we present some statistics about training and prediction error, as

well as mode usage frequency versus the number of non-zero predictors (k). These

results only correspond to those blocks chosen by the encoder to be predicted by

the proposed method using the high-order filter case with Df = 31, as defined

in Section 7.4, that are the cases where the presented optimisation algorithms are

effectively used. In order to better interpret the error of linear prediction, we disabled

the geometric transformations for the high-order filters.

The average training error of Figure 7.5 corresponds to the average MSE obtained

in the training window for the blocks predicted using sparse linear predictors. Such

training error gives the average modelling capabilities of the sparse linear predic-

tors in the training windows, defined around left and top regions of the predicted

block. The results of Figure 7.5a show that the average approximation error tends

to decrease as the number of non-zero predictors (k-value) increases, regardless of

the predictor estimation algorithm. This is an expected result because the linear

predictors are optimised for the training window. Thus, as more predictors are

added to the linear model, the better are the modelling capabilities, decreasing the

approximation error. This error may be exactly zero, namely when the number of

predictors equals the number of samples in the training window, assuming linearly

independent predictors.

According to Figure 7.5a, the training error obtained by OMP algorithm tends

to be lower than the one of LAR and LASSO, for the same sparsity value. This can

be justified by the highly greedy behaviour of OMP, which provides a good approx-

imation using less iterations, i.e. less predictors. The average prediction error on
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Figure 7.5: Influence of linear filter sparsity on (a) average training error, (b) average
prediction error and (c) mode usage frequency, for compression of Barbara image
(QP 27) using OMP, LAR and LASSO algorithms, with varying sparsity level k =
1, ..., 100 (number of non-zero predictors).
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the block, shown in Figure 7.5b, presents a different behaviour than the one of the

training error. The greedy OMP algorithm tends to provide better prediction per-

formance (lower prediction MSE) for smaller k-values. Regarding LAR and LASSO

algorithms, Figure 7.5b shows that these methods tend to provide better prediction

performance for larger k-values, more specifically when k > 10.

It is important to note that lower average prediction error on Figure 7.5b does

not imply better RD performance. The presented results correspond to the average

prediction error of the blocks chosen by the encoder. Those blocks may vary with

each experiment based on different k-values, due to different RD decisions which

take into account not only the prediction but also the residue approximation cost.

Thus, to better understand these results, the number of times that the sparse linear

prediction methods were used (usage frequency) is illustrated in Figure 7.5c. We

may observe that OMP-based prediction is more frequent when smaller k-values are

used (with maximum at k = 4), decreasing its frequency as more predictors are

considered. These results are somewhat in line with the average prediction errors of

OMP algorithm, so we should expect a better overall RD performance when fewer

predictors are used.

In regard to LAR and LASSO algorithms, the usage frequency results tend to

improve as the number of non-zero predictors increases, until reaching a maximum

around k = 15. For higher k-values the usage frequency of these methods decreases

again, mainly for the LAR algorithm. The prediction errors, shown in Figure 7.5b,

of LAR and LASSO methods also reach their minima close to k = 15, although they

do not increase significantly for higher k-values. These observations suggest that

there is an optimal number of non-zero coefficients, which provides the highest RD

performance. When we compare the results for the three methods, we observe that

LASSO provides the best prediction results and higher usage frequency. In the next

subsection we analyse the RD performance of these methods using different sparsity

levels and three different stopping criteria.

7.5.2 Regularisation parameters for optimal RD perfor-

mance

Figure 7.6 presents the Bjontegaard Delta Rate (BDRATE) [70] results as a function

of the number of non-zero predictors, using HEVC-OMP, HEVC-LAR and HEVC-

LASSO encoders with KNP criterion and test set 1. BDRATE results were com-

puted against the original HEVC standard. In the case of the greediest approach, the

HEVC-OMP, one may see that bitrate savings tend to be more significant (i.e. higher

negative BDRATE values) for small k-values. Less greedy approaches, specifically

the HEVC-LAR and HEVC-LASSO schemes, present a different behaviour com-
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pared to HEVC-OMP. Their optimal RD performance is obtained with the number

of predictors k = 15, that is rather consistent for all tested images. Moreover, it can

be observed that the maximum bitrate savings using these schemes are significantly

higher than using HEVC-OMP. These results support the observations presented in

Subsection 7.5.1.

The results using the VTE stopping criterion are illustrated in Figure 7.7

for HEVC-OMP, HEVC-LAR and HEVC-LASSO schemes and test set 1, with

BDRATE results computed against the original HEVC standard. The performance

of HEVC-OMP approach increases as ρE goes from 1% to 10%. Between 10% and

close to 100% its performance is not consistent, as it may decrease or not, depending

on the test image. Results for the HEVC-LAR and HEVC-LASSO schemes reveal

that an optimal value for ρE, that works for all tested images, can be found. Regard-

ing HEVC-LAR, the optimal VTE stopping criterion value is around 0.4%, while

HEVC-LASSO performs better when ρE is 0.1%.

Figure 7.8 presents the BDRATE results when the geometrical stopping criterion

is used on HEVC-OMP, HEVC-LAR and HEVC-LASSO schemes with test set 1.

In this scenario, HEVC-OMP seems to perform more efficiently on average with

ρG = 0.5. HEVC-LAR and HEVC-LASSO achieve the best results for most images

at ρG = 2 and ρG = 1, respectively.

Another solution investigated in this work is based on the EN method (HEVC-

EN). As explained in Section 7.4, EN can be reproduced using the LASSO algorithm

with modified input matrices. The first parameter of EN, λ1, is related to the

stopping criterion of iterative LASSO algorithm, while the second parameter, λ2,

associated to l2-norm constraint, is incorporated in the modified input matrices.

Figure 7.9 presents the BDRATE results of HEVC-EN for test set 1, using optimal

stopping parameter for LASSO and a variable value for λ2. The plot of Figure 7.9a

uses LASSO implementation with k = 15 non-zero predictors, while the plot of

Figure 7.9b uses VTE stopping criterion with ρE = 0.1%. In order to analyse

the impact of l2-norm constraint, BDRATE values have been computed relative to

the results of LASSO. Note that LASSO is a particular case of the EN method,

specifically when λ2 = 0.

From Figure 7.9, we may observe that adding l2-norm constraint to LASSO

problem does not provide consistent gains. For some cases, BDRATE performance

slightly increases, namely for Pan0 qcif image (for both plots of Figure 7.9) and

Barbara image for the plot of Figure 7.9b, with λ2 = 0.0001. However, other images

present a decrease of RD performance or null gain, independently of the λ2 value.

Such results lead us to conclude that the LASSO approach is preferable to the EN

method. Furthermore, the EN requires an extra regularisation parameter, λ2, which

adds complexity without consistent advantages.
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(c) HEVC-LASSO

Figure 7.6: BDRATE results of proposed HEVC with generalised intra prediction
framework for test set 1, as function of the number k of non-zero predictors (KNP
stopping criterion) used by OMP, LAR and LASSO methods.
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Figure 7.7: BDRATE results of proposed HEVC with generalised intra prediction
framework for test set 1, as function of the VTE-based stopping criterion threshold,
ρE.
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Figure 7.8: BDRATE results of proposed HEVC with generalised intra prediction
framework for test set 1, as function of the geometrical stopping criterion threshold,
ρG.
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(a) HEVC-EN using KNP with k = 15
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(b) HEVC-EN using VTE criterion with ρE = 0.1%

Figure 7.9: BDRATE results for test set 1 using HEVC-EN based on Elastic Net
as function of parameter λ2, with constant parameter λ1 given by (a) KNP with
k = 15 non-zero predictors and (b) VTE criterion with ρE = 0.1%. HEVC-LASSO
is used as reference method to compute BDRATE results.

In order to provide a clear comparison between the OMP, LAR and LASSO,

Table 7.4 shows the previously presented BDRATE results for the optimal reg-

ularisation parameter values. These optimal parameters have been derived from

Figures 7.6, 7.7 and 7.8, by choosing the stopping criterion thresholds that roughly

provide the maximum average bitrate savings for all the images of test set 1. For

the case of OMP method, we defined k = 2, ρE = 10% and ρG = 0.5 as being the

optimal parameters for the KNP, VTE and GSC methods, respectively. Similarly,

the choice for LAR has been k = 15, ρE = 0.4% and ρG = 2. For LASSO, we set
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k = 15, ρE = 0.1% and ρG = 1.

The bold BDRATE values of Table 7.4 indicate the best results among the

three stopping criteria for each optimisation method and test image. When we

compare OMP, LAR and LASSO, using the same stopping criteria, we observe that

LASSO always provides higher bitrate savings. As previously discussed the greedy

OMP method presents the worst performance, being significantly inferior to LAR

and LASSO methods. These results also reveal that the use of l1-norm constraint

(LASSO) tends to be more effective than LAR procedure for image prediction.

Regarding the results for different stopping criteria, they depend on the opti-

misation algorithm. For the case of OMP, apparently there is no better stopping

criterion. Different images reach optimal RD results using different stopping crite-

ria. In respect to the not-so-greed algorithms, LAR and LASSO, we observe more

consistent results for all images. The VTE-based stopping criterion demonstrates an

inferior performance than the one of traditional KNP and adaptive GSC methods.

Both LAR and LASSO present the best average results using the traditional KNP

solution. For few images, GSC provides a superior RD performance. However, such

performance difference is insignificant in all cases (less than 0.5%).

The better performance of KNP stopping criterion over the adaptive VTE

method can be explained by the poor relation between training and predictor errors.

As can be seen in Figure 7.5, the training error tends to decrease monotonically as

more predictors are added to the model. On the other hand, the prediction error

has a different behaviour and it may increase or decrease with the inclusion of new

predictors. This uncertain relationship between training and prediction errors does

not guarantee that VTE stopping method is the best one.

7.5.3 RD performance relative to other intra prediction

methods

In this section we compare the proposed prediction framework based on the gener-

alised optimal sparse predictors (GOSP) with the existing state-of-the-art prediction

methods for image compression. For this purpose, we used the best configuration of

our method, based on LASSO algorithm with KNP stopping criterion using k = 15

non-zero predictors. The intra prediction methods in these experiments include the

traditional LSP algorithm, the sparse-LSP (SLSP) method proposed in Chapter 6,

the TM algorithm and the LLE method [38]. The traditional LSP has been used as

described in Subsection 2.4.2 for block-based image prediction using k = 10 closest

predictors. For the SLSP, TM and LLE methods, the same configuration parameters

(e.g. training window size, number of predictors or maximum filter size) as proposed

in Section 6.3, were used. Furthermore, all the comparing methods were incorpo-
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Table 7.5: BDRATE results for test set 1 using proposed HEVC algorithm with
generalised optimal sparse predictors based on LASSO method, compared with other
related prediction methods.

Image LSP TM LLE SLSP GOSP

Barbara -3,37 -1,86 -3,99 -6,27 -12,19
Barbara2 -0,31 -1,13 -3,13 -4,05 -6,51
Snook -0,10 -3,83 -13,64 -14,31 -14,26
Wool -2,25 -5,70 -9,49 -10,38 -15,45
Pan0 qcif 0,06 -5,25 -13,27 -15,73 -21,00
Bike -1,69 -5,59 -5,24 -5,85 -6,79
Roof -0,92 -1,61 -4,34 -5,80 -7,66
Houses -0,41 -2,98 -4,21 -4,72 -4,26
Average -1,12 -3,49 -7,16 -8,39 -11,01

rated in HEVC standard by replacing the Angular 3 mode of directional prediction

framework. Note that the proposed GOSP is the only method that generalises di-

rectional prediction, and replaces all the angular modes of HEVC standard. Only

planar and DC modes have been maintained.

Tables 7.5 and 7.6 present the BDRATE results of the proposed solution, based

on generalised optimal sparse predictors (GOSP), as well as the compared methods,

all using the HEVC standard, for the compression of test images of set 1 and set

2, respectively. BDRATE results were computed relative to the RD performance of

original HEVC standard, using HM-14.0 software with intra main profile. Images of

test set 1 present more complex textures and repeated patterns that can be better

exploited by sparse predictors. This is clearly shown in the results of Table 7.5.

For most images, GOSP provides the higher RD performance, achieving up to 6%

bitrate savings over SLSP, namely for Barbara and Pan0 qcif. In the worst cases,

GOSP performance is quite similar to the one of existing methods, with performance

differences inferior to 1%. This is case of Snook and Houses images, that present

similar performance with GOSP and SLSP methods.

The results of Table 7.6 refer to HEVC test sequences of classes B, C, D and

E. One may observe that the proposed solution presents the best average BDRATE

results for classes B, C and E. For class D, which consists on very low resolution

images (416×240), the GOSP method performed slightly worse than original HEVC

standard, as evidenced by the positive BDRATE values. In fact, all the evaluated

methods present very small BDRATE gains for class D, being most values inferior to

1%. There are also some images in classes B, C and E, where GOSP performs slightly

inferior than SLSP. Such limited performance of GOSP method for these images, as

well as class B images, can be explained by the higher number of bits used to signal

the intra prediction modes. The bitrate overhead given by geometric transformations
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Table 7.6: BDRATE results for test set 2 using proposed HEVC algorithm with
generalised sparse optimal predictors based on LASSO method, compared with other
related prediction methods.

Image LSP TM LLE SLSP GOSP

(E) Johnny 0,21 -2,31 -2,53 -1,95 -5,34
(E) KristenAndSara 0,17 -1,69 -1,54 -1,65 -1,08
(E) FourPeople -0,14 -0,84 -0,79 -0,89 -0,56
Average 0,08 -1,61 -1,62 -1,50 -2,33

(D) BasketballPass -0,41 -1,17 -0,52 -1,20 0,03
(D) BlowingBubbles -0,05 -0,05 -0,03 -0,17 0,70
(D) BQSquare 0,05 -0,35 -0,09 -0,40 0,61
(D) RaceHorses 0,15 0,21 0,38 0,00 0,58
Average -0,07 -0,34 -0,07 -0,44 0,48

(C) BQMall -0,05 -0,68 -0,72 -0,78 -0,39
(C) BasketballDrill -0,50 -2,61 -2,51 -2,96 -4,05
(C) PartyScene -0,10 -0,49 -0,57 -0,62 -0,07
(C) RaceHorses -0,15 -0,24 -0,05 -0,24 -0,14
Average -0,20 -1,01 -0,96 -1,15 -1,16

(B) BasketballDrive -0,26 -2,39 -2,99 -2,16 -3,63
(B) BQTerrace -0,17 -1,73 -2,69 -1,55 -2,53
(B) Cactus -0,03 -1,43 -1,55 -1,35 -1,62
(B) Kimono1 -0,01 -0,06 -0,18 -0,14 -0,01
(B) ParkScene -0,03 -0,18 -0,20 -0,27 0,06
Average -0,10 -1,16 -1,52 -1,09 -1,55

(5 bits) and the filter size Df (1 bit average for uniform distribution) results in a

total of 6 bits to represent each intra prediction mode, being larger than the 5

bit word used in the other evaluated HEVC-based methods to signal the angular

modes and linear prediction technique. The GOSP uses CABAC context modelling

to encode the filter size Df symbol, so its representation can be inferior to 1 bit,

when its distribution is non-uniform. However, for most test images with smaller

resolutions, the CABAC encoder may not be able to learn the symbol statistics.

In these situations, a slight performance penalty may occur for GOSP method.

However, it is important to notice that for most images where GOSP is not the best

solution, the performance difference is insignificant, being far below to 1%.

Despite the referred limitations, mainly for small images, the GOSP method

provides significant RD gains for several test images, specially for the Johnny, Bas-

ketballDrive and BasketballDrill. These results demonstrate the relevance of the

proposed solution based on LASSO method and geometric transformations, over

the directional prediction framework of HEVC standard, as well as the other com-

pared algorithms using SLSP, LLE, TM and LSP methods. Note that, unlike the
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compared algorithms, that combine HEVC directional prediction with linear predic-

tion methods, the proposed GOSP solution replaces the intra prediction framework

of HEVC standard (only keeping Planar and DC modes). However, GOSP may

provide similar results to directional prediction when filter size Df = 1 is selected.

In general, the results of Tables 7.5 and 7.6 show that proposed prediction frame-

work may significantly improve the RD coding performance of HEVC for most test

images. In the worst scenario, the proposed method provides a RD performance

similar to the one of the HEVC standard. The main issue of GOSP is the higher

signalling cost for the intra prediction modes, which may limit the provided coding

gains, mainly for small images. A possible solution is to use a binary representation

for geometric transformations, alternative to the fixed-length-code of 5 bits. Al-

though the used binary representation can be acceptable when Df = 1 is used, we

believe that a more efficient binary representation could applied when larger filters

(Df = 31) are used. This is because larger filters tend to capture dependencies

between farthest pixels, resulting in output predicted blocks less susceptible to high

intensive deformations, as given by some of the used geometric transformations.

Regarding the computational complexity of the proposed method, there is, in-

evitably, a higher number of operations because it needs to solve the LASSO problem

and apply geometric transformations. The impact of these computations is higher

in the encoder side, where it tests all the prediction possibilities for different block

sizes. In this work, we did not particularly address the computational complexity

problem, but the experiments showed that coding times may increase two orders of

magnitude. However we believe that the method could be largely improved by using

more efficient algorithmic implementations, as well as parallel processing architec-

tures.

7.6 Conclusions

In this chapter we developed a generalised intra prediction framework that unifies the

HEVC angular prediction modes with the linear prediction method. In Section 7.1

an alternative interpretation of directional prediction was presented based on first-

order linear prediction filters combined with geometric transformations. Such inter-

pretation provided new insights for the design of directional prediction, motivating

the proposal of a generalised intra prediction framework, as described in Section 7.2.

In the proposed framework, the first-order linear filters related to directional pre-

diction were replaced by optimal sparse models adaptively estimated in the causal

neighbourhood of the block.

In Section 7.3 we briefly described the predictor selection algorithms investigated

in this work for sparse linear modelling. These methods included the OMP algo-
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rithm, which provides a greedy solution for predictor selection, as well as less greedy

solutions, such as the LAR and LASSO algorithms. The Elastic Net method, which

provides a grouping effect in predictor selection, was also investigated. Section 7.4

presented the proposed prediction algorithm for HEVC standard, explaining some

aspects related to the stopping criteria of model selection methods and used filter

context size.

The experimental tests presented in Section 7.5 revealed that sparse model esti-

mation using greedy algorithms tends to result in a lower prediction performance.

Conversely, the use of LAR and LASSO methods for sparse model estimation showed

to provide a more efficient image prediction performance. Different stopping criteria

methods were also evaluated for the proposed sparse model estimation algorithms.

The results demonstrated that using a fixed number of predictors along the encod-

ing procedure is an efficient solution. When compared to the directional prediction

framework, as well as other linear prediction methods proposed in literature, the

use of the proposed prediction framework in HEVC standard showed significant

coding improvements for most images, specially for images with complex textures

and repeated structures. The presented results allowed a better understanding of the

strengths and limitations of directional and linear prediction methods and showed

that sparsity is the key to unify them.
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Chapter 8

Conclusions and future work

This thesis investigated new efficient intra prediction methods for image and video

coding using the current state-of-the-art compression algorithms. The importance

of these techniques is justified by the spread of digital image and video contents, as

well as the emerging 3D video formats and high video resolutions, which impose in-

creased bitrate requirements. Some of the most recent video compression algorithms

used in this thesis include the state-of-the-art HEVC standard, the 3D extension of

HEVC for multiview video plus depth coding, known as 3D-HEVC, and the alter-

native MMP algorithm based on the pattern-matching paradigm, which has shown

a noticeable performance for image coding in the last years. In the following, the

chapters of this thesis are briefly summarised, presenting the main conclusions and

suggested future work regarding each proposed contribution.

In Chapter 1, after a brief introduction describing the main motivations for this

research work, the objectives, contributions and outline of this thesis were presented.

Chapter 2 described the main prediction techniques investigated in this thesis, in

particular, the directional prediction methods and motion-compensated-prediction

used in current state-of-the-art compression algorithms, the linear prediction meth-

ods based on least-squares regression, and some dictionary-based prediction methods

using sparse representations.

Chapter 3 presented a description of the main 2D and 3D image and video

compression algorithms used in this thesis, namely the HEVC standard, the MMP

algorithm and the 3D extension of HEVC for multiview video plus depth coding.

Regarding the 2D codecs, a comparison between HEVC, MMP and the previous

H.264/AVC standard was performed, in order to assess the performance of these

algorithms for image and video coding. The performed experiments revealed some

issues of MMP algorithm for still image coding, when compared to the transform-

based HEVC standard, motivating the research of improved prediction techniques for

MMP. Regarding the 3D codecs, an experiment using the 3D-HEVC and MV-HEVC

standards for the compression of multiview video plus depth data was presented.
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The results demonstrated the importance of the new coding tools incorporated in

3D-HEVC standard specifically for the compression of depth maps.

Chapter 4 described the first contribution of this thesis, which proposed an

enhanced intra prediction framework for the MMP algorithm. Instead of using

only 8 directional modes, a more advanced prediction framework based on 33 an-

gular modes, similar to the ones of HEVC standard, was investigated for the MMP

paradigm. The use of more accurate prediction methods for still image coding

in MMP algorithm tends to produce a residual signal with a more concentrated

probability distribution, which favours the adaptation of MMP dictionary, leading

consequently to a more efficient compression performance. The directional predic-

tion was optimised for the flexible block partitioning scheme of MMP algorithm,

for instance, by disabling less important modes at certain block sizes. The entropy

coding of directional modes was also improved using adaptive mode pruning, based

on the smoothness of neighbouring samples. In order to better exploit the higher

number of prediction directions, larger block sizes were also introduced in MMP

algorithm. In the proposed approach, both 64 × 64 and 16 × 16 block sizes can be

used as starting points for the flexible block partitioning scheme of MMP algorithm.

The experimental evaluation of the MMP algorithm demonstrated the advantage

of the proposed improvements for its intra prediction framework. When compared

to the transform-based coding standards for still image coding, the new MMP algo-

rithm presented significant coding gains over the H.264/AVC and a quite competitive

performance in relation to the HEVC algorithm, presenting an average result very

close to the one of the state-of-the-art solution. For some images, in particular the

synthetic images, the new MMP algorithm achieved the highest coding performance.

Experiments for stereo image coding showed that the improvements to the MMP

algorithm are equally important for independent and dependent images, achieving

a coding performance similar to the one of the recent MV-HEVC standard.

As suggestion for future work, more efficient solutions could be investigated for

the intra prediction framework of the MMP algorithm. The high computational

complexity burden is a well-known limitation of these methods that belong to the

family of pattern-matching coding paradigm. When a higher number of prediction

modes is used, the computational complexity further increases due to the larger

amount of generated residual blocks that need to be tested by the MMP residue

coding method. The investigation of faster sub-optimal methods to select the intra

prediction modes is a possible solution to mitigate this issue. Also, the use of larger

block sizes significantly increases the computational complexity of MMP algorithm,

mainly due to the higher number of possible partitioning combinations of a block.

This problem could be minimised by combining the flexible block partitioning scheme

with the quadtree block partitioning, by limiting the minimum block size of flexible
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partitioning for each quadtree level.

Chapter 5 presented the second contribution of this thesis, a new highly predic-

tive encoder for the compression of depth map signals, denominated as Predictive

Depth Coding algorithm (PDC). PDC was motivated by the investigated predic-

tion methods for the MMP algorithm, combining the directional prediction with a

flexible block partitioning scheme. A simplified depth modelling mode is also used

to complement directional prediction modes, specifically when the depth block con-

tains edges that cannot be well predicted from the causal neighbouring samples. For

the compression of residue signal, a straightforward linear approximation method is

employed. In this method, most residuals are encoded using a null pattern, while

a few residuals for a specific set of prediction modes can be encoded using non-null

linear functions.

The presented PDC algorithm is an enhanced version of a preliminary depth

map encoder, previously investigated in this work. This preliminary encoder pre-

sented several designing differences relative to the final proposed PDC algorithm,

mostly regarding to the flexible block partitioning scheme and the residue coding

method. Although this algorithm provided a superior RD performance than most

depth map coding algorithms presented in literature, it have not competed with

the recently standardised 3D-HEVC standard. The proposed PDC algorithm, not

only improved the coding performance of the original method, but also reduced its

overall computational complexity.

The performance of the PDC algorithm was assessed for the three view cod-

ing scenario and compared to the state-of-the-art 3D-HEVC standard, specifically

developed for the compression of multiview video plus depth data. Experiments

were performed using the SSE and VSO methods for evaluation of the depth map

distortion. The VSO method was originally developed for depth map coding in 3D-

HEVC, in order to optimise the encoded depth maps for view synthesis purposes.

This method is extremely important when using the recommended evaluation pro-

cedure by MPEG, based on the quality of the texture views synthesised using the

encoded depth maps. The experimental results using the all-intra coding config-

uration demonstrated the superiority of PDC algorithm over 3D-HEVC standard,

using either SSE or VSO methods for distortion measure. An additional experiment,

based on the common test conditions, using a modified version of 3D-HEVC, where

the anchor I-frames were encoded by PDC algorithm, confirmed the relevance of the

proposed depth map intra coding algorithm.

For future work, PDC algorithm could be extended to perform inter predic-

tion, specifically to exploit temporal, inter-view and inter-component dependencies.

One interesting inter prediction solution would be to combine motion-compensated

prediction with the flexible block partitioning scheme of PDC algorithm. Another
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interesting research line is the investigation of some of the proposed prediction tech-

niques for the 3D-HEVC standard, such as the constrained depth modelling mode or

the adaptive pruning of directional modes based on the smoothness of neighbouring

causal pixels.

In Chapter 6, an alternative class of prediction methods based on linear pre-

diction and sparse representation was investigated to further improve the coding

performance of current state-of-the-art image compression standards. First, the

LLE-based prediction method was researched for efficient prediction of 3D holo-

scopic images based on the HEVC compression technology, resulting in the third

contribution of this thesis. The LLE-based prediction method consists in a linear

combination of block patches which are implicitly estimated in the causal recon-

structed image. Such estimation is performed in both encoder and decoder sides

using the causal neighbouring template area adjacent to the unknown block. This

kind of prediction method, based on previously encoded image patches, is interesting

for holoscopic image prediction, because these signals present a strong spatial cor-

relation among neighbouring micro-images. Experimental tests using the proposed

HEVC-based holoscopic image encoder demonstrated significant coding gains, when

compared to other methods proposed in literature for the compression of 3D holo-

scopic contents.

There are some suggestions of future work that could be exploited to further

improve the performance of the proposed holoscopic image encoder. Regarding the

causal search window, where the predictors of LLE-based prediction method are

selected, several searching constraints could be used, not only to reduce computa-

tional complexity, but also to improve coding performance, by preventing inefficient

predictors from being selected using the implicit template matching method. These

constraints on the search procedure could be defined based on the grid structure

of micro-images that characterise the holoscopic image, specifically considering the

micro-image dimensions. Another suggestion to improve the algorithm performance

is to combine the LLE-based prediction method with the explicit Block Matching

Algorithm for predictor selection, as proposed by the Self-Similarity method. These

methods have different characteristics that could complement each other when used

together.

As a second contribution of Chapter 6, the sparse-LSP method for still image

prediction was developed. Sparse-LSP is a linear prediction technique which defines

a filter context in a large causal area, where only a few positions may use non-null

coefficients, forming a sparse filter context. It can be regarded as an extension of

the LLE-based prediction method, allowing to predict one pixel using neighbour-

ing causal pixels, similarly to traditional LSP methods, as well as more distant

causal pixels, similarly to the LLE-based prediction method. The predictor selec-
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tion method of sparse-LSP is the k-NN algorithm as used in LLE-based prediction

method. Experimental tests using the proposed sparse-LSP method combined with

directional prediction in HEVC standard for still image coding showed to improve

the overall coding performance of HEVC, specially for those images with textured ar-

eas made of repeated structures. When compared to LLE-based prediction method,

sparse-LSP demonstrated a superior RD performance for many test images.

An interesting future work for investigation would be to extend the sparse-LSP

method for inter-prediction coding. This could be done by augmenting the filter

context to the previous encoded frames. Such an approach could provide an implicit

solution for motion compensation, similarly to template matching methods, with

the advantage of combining several spatial and temporal predictors either from one

or several reference frames. As sparse-LSP generalises the LSP, TM and LLE-

based prediction methods an interesting future work would be to develop a flexible

version of sparse-LSP method able to evaluate different filter orders and context

area constraints during the encoding procedure, in order to operate similarly to

other prediction methods. The optimal filter order and context area parameters for

each encoded block could be explicitly transmitted to the decoder. Another topic

for future work is the research of less computationally complex implementations of

sparse-LSP method.

Chapter 7 presented the last contribution of this thesis, a new intra prediction

framework that generalises the main prediction techniques investigated along this

research work, namely the directional and linear prediction methods. The proposed

method results from an alternative interpretation of directional prediction, where

each angular mode is regarded as the output of a first-order linear prediction filter

deformed by a geometric transformation procedure. Such an interpretation of di-

rectional prediction led us to the generalised prediction framework, which replaced

the first-order filters by sparse linear filters, optimally estimated in a causal training

window. In this chapter, several methods for predictor selection and estimation were

investigated and evaluated for image prediction. Due to its greedy characteristic,

the sparse models estimated by OMP algorithm showed to present some issues for

image prediction. On the other hand, the less greedy LAR and LASSO methods

demonstrated to achieve more efficient prediction results, in particular when using

a predefined number of non-null coefficients.

The proposed intra prediction framework was incorporated in the HEVC stan-

dard, by replacing the angular prediction modes. In order to signal the selected

geometric transformation in the proposed method, the bitstream syntax for angular

modes in the HEVC algorithm was used. Furthermore, an additional signalling bit

was introduced in order to explicitly select either the minimal filter size (the first-

order filter) or the maximum filter size based on sparse modelling. Experimental
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tests using the new prediction framework in the HEVC algorithm for still image

coding showed to outperform the original HEVC standard based on directional pre-

diction, for most cases. When compared to other methods based on linear prediction

and sparse representation, including the sparse-LSP method proposed in Chapter 6,

the new prediction solution presented the best performance results for many test

images, specially for the ones with complex textures and repeated patterns.

Although the presented prediction scheme provided good results, there are some

topics for future work that could be addressed to improve the overall compression

performance. For instance, the signalling of the geometric transformations could be

enhanced, taking into account the estimated linear filter context. The characteristics

of the linear filter, e.g., the distance between the unknown pixel and the estimated

predictors, could be used to determine the expected probability of each geometric

transformation, which also depends on the intensity of the caused deformation. An

study could be performed to find out the probabilities of each geometric transfor-

mation, for different types of filter contexts, and thus optimise their entropy coding

using CABAC algorithm. Another research topic is the investigation of alternative

stopping criteria for the LASSO method used for adaptive predictor selection. The

use of explicit solutions, that signal the number of selected predictors to the de-

coder could be investigated. An interesting future work would be also to extend this

method for inter image prediction, by augmenting the filter context across previous

encoded frames. The use of the proposed prediction scheme with other compression

algorithms, such as MMP, could also be investigated in the future.

As a summary, one may conclude that the use of new efficient prediction meth-

ods in current state-of-the-art image and video compression algorithms may provide

significant coding gains. In particular, the alternative MMP algorithm was signif-

icantly improved by using a larger number of directional prediction modes. The

directional prediction was also shown to be relevant for depth map coding when

combined with a flexible block partitioning scheme. Additionally, linear prediction

methods based on sparse representation demonstrated to provide a state-of-the-art

coding performance using the HEVC standard. The achieved results shed an inter-

esting light over the importance of intra prediction, allowing a better understanding

of the strengths and limitations of both directional and linear prediction techniques

from an image coding point of view.
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Appendix A

Test signals

This appendix illustrates some of the original test signals used in simulations

throughout the thesis, namely test stereo images, grayscale natural test images and

holoscopic test images.

A.1 Test stereo images

Figure A.1: Stereo test image Ballet, cameras 5 and 3 (1024× 768)

Figure A.2: Stereo test image Breakdancers, cameras 5 and 3 (1024× 768)
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Figure A.3: Stereo test image Book Arrival, cameras 10 and 8 (1024× 768)

Figure A.4: Stereo test image Balloons, cameras 3 and 5 (1024× 768)

Figure A.5: Stereo test image Kendo, cameras 3 and 5 (1024× 768)

Figure A.6: Stereo test image Newspaper, cameras 4 and 6 (1024× 768)

186



Figure A.7: Stereo test image Poznan Street, cameras 4 and 3 (1920× 1088)

Figure A.8: Stereo test image Poznan Hall2, cameras 7 and 6 (1920× 1088)

Figure A.9: Stereo test image GT Fly, cameras 5 and 1 (1920× 1088)

Figure A.10: Stereo test image Undo Dancer, cameras 5 and 9 (1920× 1088)
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Figure A.11: Stereo test image Shark, cameras 1 and 5 (1920× 1088)
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A.2 Test images

Figure A.12: Grayscale natural test image Barbara (512× 512).

Figure A.13: Grayscale natural test image Barbara2 (720× 576).
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Figure A.14: Grayscale natural test image Snook (720× 576).

Figure A.15: Grayscale natural test image Wool (720× 576).
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Figure A.16: Grayscale natural test image Pan0 qcif (176× 144).

Figure A.17: Grayscale natural test image Bike (512× 512).
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Figure A.18: Grayscale natural test image Roof (512× 512).

Figure A.19: Grayscale natural test image Houses (512× 512).
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A.3 Holoscopic images

Figure A.20: First frame of holoscopic test image Plane and Toy (1920× 1088)

Figure A.21: First frame of holoscopic test image Demichelis Cut (2880× 1620)

Figure A.22: First frame of holoscopic test image Demichelis Spark (2880× 1620)
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Figure A.23: Holoscopic test image Laura (7240× 5432)
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Appendix B

Published papers

This appendix presents a list of the published papers that resulted from the research

work done during this thesis proposal. Submitted papers are also presented.

B.1 Journal papers

J1. Lucas, L. F. R.; Wegner, K.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E.

A. B.; de Faria, S. M. M., “Intra Predictive Depth Map Coding using Flexible

Block Partitioning”, IEEE Transactions on Image Processing, vol. 24, no. 11,

pp. 4055-4068, November 2015.

B.2 Conference papers

C1. Lucas, L. F. R.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E. A. B.;

de Faria, S. M. M., “Efficient depth map coding using linear residue approx-

imation and a flexible prediction framework”, In: Proceedings of the IEEE

International Conference on Image Processing, ICIP ’12, pp. 1305-1308, Or-

lando, USA, September 2012.

C2. Lucas, L. F. R.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E. A. B.; de

Faria, S. M. M., “Codificação eficiente de mapas de profundidade com base

em predição e aproximação linear”, In: Proceedings of the XXX Simpósio

Brasileiro de Telecomunicações, SBrT ’12, Braśılia, Brazil, September 2012.

C3. Lucas, L. F. R.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E. A. B.; de

Faria, S. M. M., “Improving the Multidimensional Multiscale Parser algorithm

for intra image coding”, In: Proceedings of the Conference of Telecommunica-

tions, Conftele ’13, Castelo Branco, Portugal, May 2013.
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C4. Lucas, L. F. R.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E. A. B.; de

Faria, S. M. M., “Predictive depth map coding for efficient view synthesis”,

In: Proceedings of the IEEE International Conference on Image Processing,

ICIP ’13, pp. 2058-2062, Melbourne, VIC, Australia, September 2013.

C5. Lucas, L. F. R.; Conti, C.; Nunes, P.; Soares, L. D.; Rodrigues, N. M.

M.; Pagliari, C. L.; da Silva, E. A. B.; de Faria, S. M. M., “Locally linear

embedding-based prediction for 3D holoscopic image coding using HEVC”,

In: Proceedings of the European Signal Processing Conference, EUSIPCO ’14,

pp. 11-15, Lisbon, Portugal, September 2014.

C6. Lucas, L. F. R.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E. A. B.; de

Faria, S. M. M., “Improving the emergent 3D-HEVC standard with a highly

predictive depth map coding algorithm”, In: Proceedings of the Conference of

Telecommunications 2015, Conftele ’15, Aveiro, Portugal, September 2015.

C7. Lucas, L. F. R.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E. A. B.;

de Faria, S. M. M., “Sparse least-squares prediction for intra image coding”,

In: Proceedings of the IEEE International Conference on Image Processing,

ICIP ’15, pp. 1115-1119, Quebec City, QC, Canada, September 2015.

B.3 MPEG documents

D1. Lucas, L. F. R.; Wegner, K.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva,

E. A. B.; de Faria, S. M. M., “Intra depth-map coding using flexible segmen-

tation, constrained depth modeling modes and simplified/pruned directional

prediction”, ISO/IEC JTC 1/SC 29/WG 11, Sapporo, Japan, 7-11 July 2014.

B.4 Submitted journal papers

S1. Lucas, L. F. R.; Rodrigues, N. M. M.; da Silva, E. A. B.; Pagliari, C. L.; de

Faria, S. M. M., “Image coding using generalized optimal predictors”, submit-

ted to IEEE Transactions on Image Processing.

S2. Lucas, L. F. R.; Rodrigues, N. M. M.; Pagliari, C. L.; da Silva, E. A. B.; de

Faria, S. M. M., “Recurrent Pattern Matching Based Stereo Image Coding

Using Linear Predictors”, submitted to Multidimensional Systems and Signal

Processing, Springer.
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