
DEEP LEARNING MODELS APPLIED TO MACHINE TRANSLATION
UNDER LOW-RESOURCE SETTINGS: A PORTUGUESE-ENGLISH CASE

STUDY

Arthur Telles Estrella

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Mestre em
Engenharia Elétrica.

Orientador: João Baptista de Oliveira e Souza
Filho, D.Sc.

Rio de Janeiro
Dezembro de 2022

DEEP LEARNING MODELS APPLIED TO MACHINE TRANSLATION
UNDER LOW-RESOURCE SETTINGS: A PORTUGUESE-ENGLISH CASE

STUDY

Arthur Telles Estrella

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO
PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU
DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: João Baptista de Oliveira e Souza Filho, D.Sc.

Aprovada por: Prof. João Baptista de Oliveira e Souza Filho, D.Sc.
Prof. Marcello Luiz Rodrigues de Campos, Ph.D.
Prof. José Alfredo Ferreira Costa, D.Sc.

RIO DE JANEIRO, RJ – BRASIL
DEZEMBRO DE 2022

Telles Estrella, Arthur
Deep learning models applied to machine translation

under low-resource settings: a Portuguese-English case
study/Arthur Telles Estrella. – Rio de Janeiro:
UFRJ/COPPE, 2022.

XIII, 120 p.: il.; 29, 7cm.
Orientador: João Baptista de Oliveira e Souza Filho,

D.Sc.
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2022.
Referências Bibliográficas: p. 110 – 119.
1. Tradução automática. 2. Aprendizado profundo.

3. Processamento de linguagem natural. 4. Aprendizado
de máquina. 5. Redes neurais. I. Baptista de Oliveira e
Souza Filho, D.Sc., João. II. Universidade Federal do Rio
de Janeiro, COPPE, Programa de Engenharia Elétrica. III.
Título.

iii

Dedico este trabalho a minha
família, principalmente meus

pais Luciene e Guilherme e ao
meu amor, Débora

iv

Agradecimentos

Agradeço ao empenho dos meus pais em me orientar pelos caminhos corretos. Eles
foram responsáveis por me incentivar a entrar em uma busca interminável por con-
hecimento, e que me levou a alcançar essa conquista. Agradeço ao carinho, bons
valores e conforto que foram sempre prioridades da minha tia Sueli (in memoriam),
avó Sidnéia (in memoriam) e Tia Maria (in memoriam). Agradeço também ao meu
avô Leonídio (in memoriam), que serviu de exemplo de que o trabalho pode render
grandes frutos, independentemente do nível de conhecimento com que se começa.
Homenageio também minha irmã pela parceria disponível a qualquer momento e ao
meu amor Débora pelo forte apoio e incentivo na reta final deste trabalho.

Sou grato ao professor João Baptista Filho pela inserção no mundo da Estatística
e Aprendizado de Máquina, pela sua orientação, que já vem desde os primeiros
passos da graduação e o alto valor por ele agregado em importantes decisões tomadas
durante o curso desta dissertação. Agradeço às experiências de trabalho privado que
tive e especialmente aos meus principais mentores durante esta trajetória. Eles foram
responsáveis por me capacitar e revelar diversas oportunidades, abrindo incontáveis
portas e contribuindo para o profissional que sou hoje.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MODELOS NEURAIS PROFUNDOS PARA TRADUÇÃO EM CENÁRIOS DE
BAIXO RECURSO: UM ESTUDO DE CASO PORTUGUÊS-INGLÊS

Arthur Telles Estrella

Dezembro/2022

Orientador: João Baptista de Oliveira e Souza Filho, D.Sc.

Programa: Engenharia Elétrica

Com o avanço das técnicas de Processamento de Linguagem Natural, os modelos
de tradução automática ganharam espaço, porém os erros produzidos por tais mode-
los são pouco explorados ou analisados. O problema se agrava ao usar poucos dados
para o treino (low-resource), devido a uma limitação de vocabulário e contexto.
Há técnicas para lidar com as limitações de domínios de baixo recurso, tais como
Subword Embeddings, Pre-trained Word Embeddings e Back Translation. Porém, os
vieses inseridos por elas na tradução não são amplamente estudados. Esta disser-
tação se diferencia dos trabalhos trabalhos mais recentes, que normalmente focam
em aumentar o BLEU (Bilingual Evaluation Understudy) escore, negligenciando os
erros produzidos. Deste modo, são propostas técnicas qualitativas e quantitativas
de avaliação, utilizando-se de testes de hipóteses e de ferramentas de Aprendizado
de Máquina para se avaliar os vieses de modelos de tradução automática, submeti-
dos à baixa disponibilidade de dados e treinado em uma única GPU. O estudo é
focado no par Português-Inglês, sendo o BLEU usado como métrica quantitativa
de referência. Uma análise qualitativa é conduzida junto a um tradutor humano
para um melhor entendimento dos padrões de erros em frases e complementada com
uma estratificação em diferentes níveis de complexidade, por meio da escala CEFR
(Common European Framework of Reference for Languages), para se avaliar a cor-
relação entre estas variáveis. Modelos de baixo recurso derivados do Transformer
são usados e comparados com o Google Translate, sendo que o melhor dentre eles é
capaz de atingir 40,26 pontos no BLEU, correspondendo a 77.1% do referencial em
01/2022. Este resultado reforça o potencial de uma abordagem eficiente low-resource
em alcançar uma performance comparável a modelos complexos no estado da arte,
mesmo sujeito a restrições de dados, energia e infraestrutura.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

DEEP LEARNING MODELS APPLIED TO MACHINE TRANSLATION
UNDER LOW-RESOURCE SETTINGS: A PORTUGUESE-ENGLISH CASE

STUDY

Arthur Telles Estrella

December/2022

Advisor: João Baptista de Oliveira e Souza Filho, D.Sc.

Department: Electrical Engineering

Neural Machine Translation models have flourished with the advancement of
the Natural Language Processing techniques, however, the errors produced by these
models are little explored or analysed. This issue aggravates when using a small
dataset for training (low-resource), leveraged by a vocabulary limitation. There are
techniques to deal with low-resource domain limitations in the context of Machine
Translation, like Subword Embeddings, Pre-trained Word Embeddings and Back
Translation; but the bias inserted by them in the translations hasn’t been widely
studied. This dissertation differs from recent works, that usually focus on increasing
the BLEU (Bilingual Evaluation Understudy) score, overlooking the errors produced
by the models. We propose qualitative and quantitative evaluation frameworks, ex-
ploring hypothesis tests and Machine Learning tools to evaluate the biases of the
translation models exposed to a low-data availability and trained on a single GPU.
The study focuses on the Portuguese-English pair, and BLEU is used as a quanti-
tative benchmark metric. A qualitative analysis is conducted along with a human
translator to understand the patterns of errors in the sentences and is also comple-
mented with a stratification of the content in different complexity levels, using the
CEFR (Common European Framework of Reference for Languages) scale, to evalu-
ate the correlation between these factors. Transformer-based models are used and
compared with Google Translate, where the best model built is capable of reaching
40.26 points of BLEU, 77.1% of the value achieved by the reference at 01/2022. This
result reinforces the potential of using efficient low-resource approaches to reach a
performance comparable to much more complex state-of-the-art models, even under
constraints over data availability, energy and infrastructure.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 The reenactment of Machine Translation 1
1.2 Challenges for the Portuguese language 2
1.3 Contributions of this dissertation . 2
1.4 Dissertation Organization . 4

2 A brief introduction to Natural Language Processing 5
2.1 Feature representation . 5
2.2 Neural Word Embeddings . 6

2.2.1 Single-word context . 7
2.2.2 Multi-word context . 8
2.2.3 Word2Vec: CBOW and Skipgram 9

2.3 Machine Translation and its challenges 11
2.3.1 Word order typology . 11
2.3.2 Morphological typology . 12
2.3.3 Word alignment . 12
2.3.4 Lexical divergences . 13
2.3.5 Qualitative aspects to evaluate translations 14
2.3.6 Ambiguity . 14
2.3.7 The open vocabulary challenge 15
2.3.8 Addressing MT challenges . 15

3 Neural networks and Machine Translation 17
3.1 Machine translation as a task . 17
3.2 The rise of Neural Machine Translation 19

3.2.1 A brief introduction to the recurrent neuron 19
3.2.2 The first RNN-based machine translator 21

3.3 NMT by jointly learning to align and translate 22

viii

3.3.1 Some intuition behind the attention mechanism 22
3.3.2 Attention: Calculus background 23
3.3.3 Search algorithms for NMT 25
3.3.4 Exploring RNN-based Sequence to Sequence architectures . . 27

3.4 Transformer models . 28
3.4.1 Unveiling self-attention . 29

3.5 Attention variants for Sequence to Sequence learning 32
3.5.1 Positional encoding . 33

3.6 Relevant Transformer variations . 34
3.7 Alternative training objectives . 36
3.8 Alternative positional encoding . 37

4 The low-resource domain context 39
4.1 Intrinsic challenges of this work . 40
4.2 Subword Embeddings . 41

4.2.1 BPE (Byte Pair Encoding) . 42
4.2.2 Subword variations . 45

4.3 Transfer Learning . 46
4.4 Data Augmentation . 47

4.4.1 Back Translation . 48

5 Experiments on Neural Machine Translation 50
5.1 Methodology . 51
5.2 Quantitative study . 52

5.2.1 The impact of restricted dataset content 53
5.2.2 Effects of switching to subword level and ways of incorporating

external knowledge . 54
5.2.3 Effectiveness of Back Translation when addressing different

low-resource settings . 56
5.2.4 Comparison of Transformer candidates against the Google

Translate benchmark . 58
5.3 Qualitative study . 59

5.3.1 Challenges of a qualitative analysis 59
5.3.2 The qualitative criteria . 62
5.3.3 Error proportion analysis with the Fisher Exact test 66
5.3.4 Hierarchical Clustering (HC) evaluation 70
5.3.5 Correspondence Analysis (CA) experiment 85
5.3.6 Consolidating the qualitative study 96

ix

6 Conclusion 105
6.1 Study limitations . 107
6.2 Next steps . 108

References 110

A Academic Publications 120

x

List of Figures

2.1 Architectural diagram for calculating word probabilities using a 2-
layer Neural Network for an arbitrary 10,000 words dictionary. 7

2.2 Illustration of a word context window of sizes 2 and 3. 9
2.3 Multi-word mechanisms CBOW and Skipgram. 11
2.4 One-to-one, many-to-many and one-to-many alignments using Por-

tuguese and English sentences . 13

3.1 Computational graph of a RNN. 20
3.2 The first steps of how the attention mechanism acts when translating

an example . 23
3.3 The last 2 steps of attention during the translation of an example

sentence. 24
3.4 Example of beam search with beam width of size 2. 27
3.5 Transformer model architecture. 28
3.6 Illustration of the Scaled Dot-Product Attention mechanism. 30
3.7 Illustration of the Multi Head Attention mechanism. 31
3.8 (a) Positional encoding matrix with dimensions n = 60 and d = 32.

(b) Basis functions for columns 6 to 9. Generated by http://code.

probml.ai/book1/15.25 . 34

4.1 Steps of the BPE algorithm applied to an example corpus. 43
4.2 N -grams generated by Fast Text for the word "eating". 45
4.3 The Augmentation of a dataset with Back Translation 48

5.1 Dendrogram plot for an illustrative example. 74
5.2 Dendrogram related to both HC experiments. 75
5.3 Correspondence analysis visualization comparing models and error

classes . 92
5.4 Correspondence analysis visualization comparing complexities and er-

ror classes . 95

xi

http://code.probml.ai/book1/15.25
http://code.probml.ai/book1/15.25

List of Algorithms

1 Pseudocode for BPE. 42
2 Pseudocode for Hierarchical Clustering (according to the linkage cri-

terion). 72

xii

List of Tables

2.1 Pros and Cons per Feature Representation 6

4.1 Final distribution of tokens (step 7). 44

5.1 Performance obtained with models developed under restricted data
(see text) . 54

5.2 Transfer learning and Subword Embeddings translation results 55
5.3 TED Talks Back Translation results 57
5.4 Performance comparison between our best performing models and

Google Translate . 58
5.5 Selected references with errors . 60
5.6 Description of the error classes defined in the process of error analysis 62
5.7 Examples of wrong translations classified according to the proposed

error criterion . 63
5.8 Evaluation of some translated sentences 65
5.9 Ratios of class errors per dataset and sentence complexity (see text) . 67
5.10 Summary of the multiple Fisher Exact test outcomes for the error-

model dimension pair, restricted to statistically significant pairs (see
text) . 68

5.11 Comparison of k-means and HC techniques 71
5.12 Silhouette coefficients per linkage approach and number of clusters. . 76
5.13 Prevalence of the classes of errors and the models involved per cluster. 77
5.14 Rank of the most frequent errors per model in each cluster 78
5.15 Error class and complexity prevalence per cluster. 82
5.16 Rank of most frequent errors per complexity in each cluster 83
5.17 General matrix P format, after normalizing K 86
5.18 Main model-error conclusions extracted from the qualitative experi-

ments . 99
5.19 Main model-error conclusions extracted from CA 100
5.20 Main complexity-error conclusions extracted from the qualitative ex-

periments (see text). 103

xiii

Chapter 1

Introduction

1.1 The reenactment of Machine Translation

Machine translation is a research field that until 2013 has mainly invested in sta-
tistical based models, but the breakthrough promoted by the Sequence to Sequence
(Seq2Seq) algorithms followed by the use of Transformer-based models has signifi-
cantly changed the focus of the field. Before Neural Networks, Machine Translation
systems were rule-based, syntax-based, phrase-based or a blend between more than
one of these techniques. Probabilistic models used to be considered the state-of-the-
art before the first Seq2Seq model paper. The increase in performance promoted
by Seq2Seq and Transformers received some attention, and soon other variants were
developed.

The challenge of translating text got constrained by computational power issues
for many years, until the rise of the Transformers, which turned possible to perform
the high amount of computation required in these cases in a truly parallel schema.
With this new architecture, the operations performed during training are not totally
dependent, allowing them to be parallelized in Graphic Processing Units (GPUs).
Thus, by removing the constraint that some operations must wait for others to
finish, NMT (Neural Machine Translation) models could scale largely and reach
higher quality translations.

Just in 3 years, NMT became the dominant approach to Machine Translation,
inducing a major transition from statistical to neural models. It was also the root
cause for an increase in the demand for data, which subsequently drove attention to
the importance of aiming for resource efficient models.

1

1.2 Challenges for the Portuguese language

Traditionally, the Machine Translation datasets and related conferences usually fo-
cus on languages from countries that are actively investing on NLP, which biases
and narrows the potential of such algorithms towards a specific domain. Unfor-
tunately, as of 2020, Portuguese is a language that does not dispose of abundant
supervised translation data, specially considering a diversity of domains. This is-
sue increases the struggle to build a model that can successfully translate text in
this idiom to other languages. Another obstacle is the existence of the European,
Brazilian and African Portuguese variants, which leads to a challenge for the model
since generalization is harder if several sentences with different dialects can have the
same meaning. We have performed an extensive search for works with a qualitative
analysis of translation results for Brazilian Portuguese, and only one single paper
was found [1], indicating a vast unexplored terrain when considering the analysis of
translation errors produced by Machine Translation.

The branch of NMT inside the big topic of Natural Language Processing (NLP) is
also a field with few papers and academic works among many Brazilian universities.
This can be partially explained by the challenge that this environment imposes over
practitioners: most models require cutting-edge GPUs and usually only one GPU is
not enough for medium-sized models required by many WMT competition datasets.
The scarcity of these resources to many researchers require them to circumvent these
limitations and search for cloud solutions without sponsorship.

Finally, Portuguese is a complex language that uses accents which can change
their meaning (e.g. "e" and "é"), has different pronoun placements (e.g. "realizar-
se-á" equals "se realizará") and irregular verb inflections (e.g. the "pôr" and "haver"
verbs) so text preprocessing and tokenization plays an important role. Disregarding
these details by applying some generic preprocessing steps that eliminates accents,
for instance, can lead to a worse model performance. On the other hand, exploiting
some domain knowledge on NLP often helps the model to better translate or classify,
depending on the task at hand.

1.3 Contributions of this dissertation

Many previous works for solving the NMT task have focused on surpassing the state-
of-the-art, disregarding the associated computational burden for achieving this goal.
The research under this scope is often solely driven by increasing scores such as
BLEU, which have limitations in assessing the quality of the translations generated.
This dissertation tries to be an initial effort in filling this gap, in the sense that our
focus is both on assessing quantitatively and qualitatively the translations automat-

2

ically produced by an NMT model, as well as discussing the techniques that can
be potentially associated with these purposes, whilst considering resource efficiency
under low-resource settings.

The motivation for the concentration on low-resource scenarios arises from the
emergence of IoT applications, whose computing power is typically restricted. Be-
sides, for most researchers, the task of developing a competitive translation model
without a robust infrastructure is becoming increasingly hard over time. As the
access to such machinery is restricted to a selected group of researchers, there is an
active trend in the NLP community of investing in accessible AI, whose one of the
priorities is investing on experiments that could be performed using low-cost GPUs.

As a result of the effort put on this dissertation, we published a conference pa-
per at the Symposium in Information and Human Language Technology (STIL)
[2]1. This paper reports our early work on exploiting resource efficient Natural Lan-
guage Processing (NLP) techniques to leverage translation performance, whilst also
analysing the quality of resulting translations both quantitatively and qualitatively.
This analysis was performed in resource constrained environments, using statistical
hypothesis tests targeting the translation error patterns of each model variant.

This work concentrates on the Transformers model [3], currently the state-of-the-
art in NLP, and experimentally evaluate to what extent techniques such as transfer
learning, modelling of subsets of words (Subword Embeddings), and dataset aug-
mentation with artificial sentences (Back Translation) can leverage an NMT model
to excel in a low-resource environment. This experimental study is conducted with
only one average-size GPU and small to medium-sized datasets, considering the
English-to-Portuguese pair. In a quantitative sense, the challenge of low-resource is
emulated considering samples of the dataset with a range of sizes. The goal is to
infer how cost-effective are the aforementioned techniques under such settings. A
qualitative analysis is also conducted in the study, where classes of errors are de-
fined with the help of a Brazilian English translator. His participation was crucial to
spot and classify mistakes in grammatical patterns and put them under well defined
clusters. The translator also applied his knowledge to stratify the sentences using a
complexity drill down, rated according to the CEFR scale [4]. The qualitative di-
mensions of sentence complexity and error patterns were subjected to 3 experiments
that analysed the bidimensional associations between the model variants and these
factors. In the end of the analysis we concluded that the techniques associated with
the model indeed have an influence over the error patterns.

For comparison purposes, the model with the most promising score is compared
with the Google Translate service, acessed by an API [5], over the test set of the main

1The full paper is publicly available at https://sol.sbc.org.br/index.php/stil/article/
view/17807.

3

https://sol.sbc.org.br/index.php/stil/article/view/17807
https://sol.sbc.org.br/index.php/stil/article/view/17807

datasets used. Despite the significantly higher but precisely unknown quantity of
data as well as human and computing efforts required for training the Google model,
our low-resource model reached 77.1% of the Google’s model BLEU score.

This work is not only an attempt to explain qualitatively and quantitatively the
pros and cons of applying a specific technique in low-resource environments. We
also hope that it can stimulate the community to dive deeper into error patterns
and biases of specific techniques in NMT, as our belief is that this process may aid
on leading the community towards producing clearer, more fluid and grammatically
correct translations.

1.4 Dissertation Organization

The fundamentals of NLP that are the pillars for NMT, such as the types of word
representations and how the translation task is performed are presented in Chapter
2. Chapter 3 introduces the Sequence to Sequence neural architectures and the
Transformer model, along with some interesting properties that helped them to
learn richer word representations and output more coherent translations.

In Chapter 4, aspects of low-resource domains and related constraints are out-
lined, along with a brief review of NLP techniques that can potentially help to reduce
their side-effects on models’ performance. A description of the datasets used in this
work is provided in Chapter 5, which also depicts quantitative and qualitative ex-
periments and the corresponding results for the strategies considered here. Finally,
in Chapter 6, we derive some conclusions and outline further possible improvements
and study directions.

4

Chapter 2

A brief introduction to Natural
Language Processing

Natural language was considered by the Machine Learning community as one of
the most complex data types to represent. Practical applications with meaningful
feature representations took time to evolve, even longer than computer vision related
tasks, which also required customized representations. In the sections below, a brief
introduction to the different kinds of features used for word representations will be
given to contextualize the reader over some of the historical challenges and evolution
observed in this field.

2.1 Feature representation

Natural language can be represented either by words or tokens. The scope of tokens
includes not only words, but also punctuation marks, acronyms and any other text
that can be used as a placeholder. Despite that subtle distinction, both terms are
used almost interchangeably when speaking of natural language representation in
the literature. When referring to words or tokens throughout the next sections, we
will be considering any of these sorts of natural language instances.

In order to keep the unique and original meaning of each word, one of the oldest
and most popular ways to represent natural language is through one-hot encoding.
Let V be the number of distinct words present in a vocabulary. When this set of
words is vectorized, each word will be represented by an unique not-null dimension
inside a binary vector of size V . In other words this means that when representing
one word, the vector would contain 1 for the dimension of that word and all the
other positions are filled with zeroes. In this case, the vectors of two different
words would be always orthogonal, i.e., have their dot product equal to 0, not
allowing any measure of similarity between them. One-hot encoding is a type of

5

sparse representation that has only one position different than zero. Another method
disadvantage is employing a high number of dimensions to represent even small and
medium-sized vocabularies, thus imposing relevant challenges to algorithms that
cannot properly handle high-dimensional inputs.

Another possibility to represent a set of input words is using fixed-length real
vectors, where the number of dimensions is pre-specified, regardless the vocabulary
size. These real numbers may widely vary in range depending on how there are
generated, and there is a number of techniques that can provide them. For instance,
such vectors can be randomly initialized using uniform distributions and then ad-
justed using an optimization algorithm based on the statistics over the co-occurrence
of words. In the most simple neural-based algorithms, such real number vectors are
usually extracted from the weights related to the first network layer, thus can be
referred to as weight vectors or neural embedding. This word encoding strategy is
also known as dense representation.

There are pros and cons of using either sparse or dense vectors to represent
words. A brief summary can be found at Table 2.1.

Table 2.1: Pros and Cons per Feature Representation
Feature repre-
sentation

Encoding
Type

Dimen-
sionality

Information
sharing

Curse of dimensionality

One-hot en-
coding

Sparse High None, as the
vector

dimensions are
independent

Sparse and high-dimensional
vectors may hinder model

performance

Neural em-
bedding

Dense Fixed-
Length

Similar vectors
(low cossine

angle) for related
words

Dimensionality can be
experimentally tuned to a

sweet spot

We should stress that if the dimension is too high in one-hot encoding, some di-
mensionality reduction may be applied. However, depending on the dataset and the
algorithm considered, this process may not be recommended due to the computa-
tional burden involved, as potential quality issues may arise. On the other hand, the
weight encoding alternative lets the user to tune the embedding dimension, but this
may require several experiments to achieve an optimal performance. The algorithm
used to generate such embeddings also plays an important role in this process.

2.2 Neural Word Embeddings

Natural language representation using neural Word Embeddings was responsible to
allow Machine Learning algorithms to scale to a range of applications, representing
a watershed for the research community. Neural networks can be recognized as
intrinsic dense vector learners, due to the weight update operations performed during

6

Figure 2.1: Architectural diagram for calculating word probabilities using a 2-layer
Neural Network for an arbitrary 10,000 words dictionary.

backpropagation. In a neural network capable of modelling words, the weights
themselves when concatenated into a vector can be optimized to represent a specific
word.

The properties of each modality of feature representation previously reported
in Table 2.1 are clear, but one question remains: How dense vectors are able to
capture the similarity in meaning between words? One quote by John Firth from
1952 may shed light on the potential answer:

“You shall know a word by the company it keeps.”

Basically, the meaning of a word can be defined by the context around it, and
usually this context is extracted using a fixed-size window, whose length is a hyper-
parameter of the algorithm, here denoted as c. To gradually understand how words
relate to their context, let us first consider the association between two arbitrary
words in a sentence.

2.2.1 Single-word context

One popular technique to obtain word weights is the two-layer neural network ar-
chitecture illustrated in Figure 2.1. It is a simplified representation of a neural word
embedding, taking an one-hot encoded vector v of size v as input and generating

7

a dense vector at the outputs of its hidden layer neurons. In this case, the weights
between the input vector and the hidden layer can be represented by a n× v matrix
W, where n and v are the and the dimensionality of the embedding and vocabulary
sizes, respectively. Therefore, each column of W is a n-dimensional vectorial repre-
sentation vw of the respective word in the dictionary (here all vectors are assumed
as column vectors). This enables the hidden layer to become analogous to a lookup
table, where each column represents a different word.

In Figure 2.1, the hidden layer outputs are simply defined by h = WTx. From
the hidden layer to the output layer, there is another weight matrix W

′
= w′

Cj with
dimensions n × v. Weights from both matrices can be used to compute scores uj′
and uj for a given word:

uj′ = v
′T
wj
h, (2.1)

and
uj = vTwj

h, (2.2)

where 1 ≤ j ≤ v, whilst v′T
wj

and vTwj
are the j-th column of the matrix W

′ and W,
respectively. Now, consider the following problem: what is the most likely word that
succeeds a given word? Assuming that the network is trained, one may just set the
corresponding vx to this word, generate the corresponding embedding h, and apply
h to the output layer to infer the likelihood of each vocabulary word in succeeding
it. Before the likelihood inference, the score of 2.2 is then passed through a softmax
layer, that calculates the probability of a set of words that could be fit into that
context.

In this case, the output layer is responsible for inferring the level of association
of a word with another word in its context (in this example, the word succeeding
it), or vice versa, depending on the approach used. Thus, the probability associated
with each vocabulary word given a single word is given by the softmax function as
follows:

p(wo|wj) =
exp(uo′)∑v
j′=1 exp(uj′)

, (2.3)

where wo denotes an arbitrary word from the vocabulary, wj is the current word,
and uj′ is given by 2.1.

2.2.2 Multi-word context

Better embeddings may be achieved by considering context windows composed of
multiple words instead of a single one. Figure 2.2 illustrates some examples. Now
consider that the central word is immersed in a context of C other words, where

8

c = C
2
. As the output word o lies within the target word’s context, it can be denoted

by i+ o, with o being the number of positions ahead or behind the center word, and
i is the position of the center word.

The idea here is the same as before: starting the weights of the word embedding
randomly and updating them based on how they interact with nearby words, using
an optimization algorithm. For the sake of simplicity, such iterations will be simply
evaluated by quantifying the pairwise associations (i.e. between the word and those
integrating the context window), in terms of the likelihood that both words might
co-occur. Therefore, the model’s task is calculating the probability of the occurrence
of a surrounding word wi+o given a word wi, denoted as p(wi+o|wi). Once all the
words in the context of a given center word are defined by the length of the fixed
window, the goal is to maximize the likelihood of this set of context words given
the center word. Assuming a multiple independence between the multiple pairs of
central and context words, the likelihood function to be maximized is given by:

L(θ) =
C∏
i=1

∏
−c≤o≤c
o 6=0

P (wi+o|wi). (2.4)

The same equations previously presented also apply for the multi-word case. The
difference is that now 2.1 is calculated for each surrounding word, and Eq. 2.3 is
applied using a sliding window.

2.2.3 Word2Vec: CBOW and Skipgram

The explanation so far constitutes a simplified version of the architecture proposed in
the seminal work of MIKOLOV et al. [6], popularly known by the alias of Word2Vec.
In the original proposal, it operates in a multi-word setting, which in turn has 2
variations: Continuous Bag of Words (CBOW), whose rationale is illustrated by the
left-side of Figure 2.3; and Skipgram, on the right. The main difference between
them is that in CBOW, the task performed consists in predicting the target word
based on the context, whilst in Skipgram the context words are predicted based on
the central word. A more detailed explanation will be provided for Skipgram, since
the embeddings exploited in this work will be based on it, and it has consolidated

Figure 2.2: Illustration of a word context window of sizes 2 and 3.

9

itself in the literature as a more effective approach for a wide range of experiments.
Remember that our previous modelling approach constitutes of calculating the

probability of the co-occurrence of the output word o with the center word i, con-
sidering −c ≤ o ≤ c. In order to obtain the update equations for the parameters of
this model, we need to maximize Eq. 2.3. The loss function E associated with the
Skipgram is given by:

E =− log
C∏
o=1

exp(u
′
oc)∑V

j′=1 exp(uj′)

= −
C∑
o=1

u
′

oc + C log
V∑

j′=1

expuj′ ,

(2.5)

where oc represents the index of the c-th context word in the current window. This
algorithm updates the word vectors for each element in the context, but the final
representation of the word reflects its neighbors, since it is influenced by all of them
during the optimization process. If interested in further details on how Word2Vec
equations are derived, the reader is referred to RONG [7].

Eq. 2.3 also represents the output of the softmax function in Word2Vec, explored
in the vanilla implementation of the Skipgram embedding. There are also some tricks
that may be explored to improve this model scalability: the hierarchical softmax
and negative sampling. The hierarchical version of softmax mitigates the expensive
number of operations involved in computing the denominator of Eq. 2.5, with a
computing mechanism based on binary trees. In such trees, the leaves represent
words and the calculation of a word probability is decomposed into a sequence
of probability calculations. This saves the algorithm from having to calculate the
expensive normalization factor over all dictionary words.

Another alternative is the negative sampling. Considering a context window
where the words A and B are being compared, the algorithm’s goal is to approxi-
mate or move away their word vectors into a multidimensional space, and for this
it has to consider the relation of the target word with other words. Usually all the
other words in the vocabulary are used as spurious samples, which is computation-
ally expensive, but negative sampling provides a method that samples only a subset
of these words. The output word (the most probable word) is kept in the sample
and gets updated, and the negative samples explored in this case are drawn follow-
ing a probabilistic distribution that can be arbitrarily chosen. This distribution is
called noise distribution, and to make sure that a good sample will be selected, an
empirical approach is proposed by the authors. The result is a simplified training
objective that is capable of producing high-quality embeddings [6]. The probabilis-
tic distribution used is based on a posterior multinomial distribution [7]. Negative

10

Figure 2.3: Multi-word mechanisms CBOW and Skipgram.

sampling and hierarchical softmax were crucial techniques that enabled a huge num-
ber of practical NLP applications explore the Word2Vec, as well as also attracting
the attention of many other Machine Learning branches.

2.3 Machine Translation and its challenges

Some aspects of the human language seem to be universal, or statistically universal,
since only a subset of the languages created in the whole mankind’s history is known
in the 21th century. When speaking about language diversity, only widely spoken
and recently created languages are often considered. Many of these languages em-
ploy the use of verbs and nouns, and specific words to refer to animals, emotions,
attitudes, and other aspects. Besides, there is a number of differences between
them. They can be idiosyncratic or systematic for instance. Idiosyncratic accounts
for which words are usually combined and how common they sound together, since
different languages are usually biased to distinct sets of words. Systematic repre-
sents the word order chosen, for example if the verb is usually put before the direct
object or not. The study of systematic differences is called linguistic typology. These
and other challenges imposed by language nuances discussed in this section are in-
spired by the chapter over Neural Machine Translation from the unfinished book of
JURAFSKY and MARTIN [8], shared as a draft.

2.3.1 Word order typology

Languages may differ in the way they order verbs, subjects, and objects in simple
declarative clauses. Some are considered SVO (subject-verb-object) , i.e., their

11

sentences start with the subject, the verb is put in the middle and it ends with an
object. Portuguese, Chinese and English are SVO languages, whereas German and
Japanese are SOV (subject-object-verb). There are also VSO (verb-subject-object)
languages, such as Arabic and Irish.

One of the most challenging scenarios for an NMT model to operate is when
translating from a language with one typology type to another, which luckily isn’t
the case in this work, as both languages are SVO.

2.3.2 Morphological typology

Regarding typology, languages can be categorized in 2 dimensions. The first is the
number of morphemes per word: isolating languages like Vietnamese usually contain
one morpheme (one enclosed meaning or reference to something) per word. They
are simpler to deal with than polysynthetic languages, which may contain a variable
number of morphemes per word. This classification isn’t binary, though. Portuguese
and English are somewhere in between both, but closer to isolating rather than
polysynthetic. Both languages can add suffixes or prefixes that change the meaning:
for instance happy is an adjective, but when united with "ness" becomes a noun
"happiness".

The second dimension refers to which degree the morphemes are segmentable.
Languages can be agglutinative (clear boundaries between morphemes) such as Turk-
ish; or fusional, such as Spanish, where the boundaries between the morphemes are
unclear or lost. One example for this is the verbal inflection "comí" (I ate), where
the morphemes "comer" and "yo" have lost their boundaries between each other.
Portuguese and English are considered to be fusional, but not as much as other
fusional benchmarks such as Classical Hebrew.

2.3.3 Word alignment

Alignment in the context of translating means how word correspondences are made
between the reference (source language) and the corresponding translation (target
language). The aforementioned typological properties substantially increase the
complexity of the alignment process, specially for situations where distinct typologies
must be matched.

Not all words in the source or target language necessarily need to be aligned,
sometimes the role of one word in a translation pair is just to maintain fluency,
contributing to a correct sentence in terms of grammar. Figure 2.4 contains 3
alignment examples, wherein the source language is on the left and the target one
is on top. From left to right, the first rectangle represents a simple one-to-one
scenario; the second shows a many-to-many relation and the third, one-to-many, all

12

Figure 2.4: One-to-one, many-to-many and one-to-many alignments using Por-
tuguese and English sentences

of them considering the Portuguese-English pair. Note that the last scenario has
one spurious word in the source language which does not align with any word of the
target translation.

2.3.4 Lexical divergences

Sometimes, languages may contain a specific expression or word that cannot be accu-
rately translated to another language without losing some of its meaning. Whenever
this happens, this word represents a lexical gap. This is pretty common with slang
words, which have a very specific use case, making it harder to express the same
meaning in another language, even when using several words.

Another language characteristic that may increase the chance of happening a
lexical gap is the fact that some of them are verb-framed. This means that they
mark the path of motion in the verb and leave the satellites to express the manner
of motion. The path of motion for instance means the direction of the movement,
such as move into, out of or across, whilst the manner of motion refers to a specific
type of motion, such as running, walking, or crawling.

On the opposite side of verb-framed, there are languages that are satellite-framed,
which means that the manner of motion is expressed in the verb whilst the path of
motion is expressed in the satellite. As happened with other language characteris-
tics, these classifications don’t mean that a given language cannot mix verb-framed
and satellite-framed expressions. English and Portuguese for instance can generate
expressions using both styles.

Consider the translation of language A that mainly uses verb-framed sentences
to a language B, which mainly uses satellite-framed ones. The difference in the
framing pattern between A and B languages does not necessarily mean that the
chance of lexical gaps increases. It means that A may have a range of specificities
by aggregating verbs that may be complex to reproduce with the correspondent
aggregation of satellites in B. This diversity might pose a challenge to generate an
accurate translation, and it may result in a partial loss of the original meaning.

13

2.3.5 Qualitative aspects to evaluate translations

Defining qualitative and quantitative characteristics for accurately evaluating how
successful was a translation is hard. The quantitative matter will be further dis-
cussed in an another section, but the qualitative side is usually broken into 2 di-
mensions, namely adequacy and fluency.

Adequacy represents how well the meaning of the source sentence was captured,
and it is sometimes referred to as fidelity. Synonyms hardly ever affect this di-
mension, and the complexity of correctly evaluating this dimension is what mostly
hinders the development of related quantitative metrics. Fluency means how correct
and fluid the translation is in the target language. Thus, it involves evaluating the
sentences in categories such as grammaticality, readability, and naturality of the
words chosen.

2.3.6 Ambiguity

The challenge of identifying and properly representing ambiguity is among one of
the most complex for natural languages. This happens because the model heavily
depends on the diversity and quality of the dataset considered for its development,
since it should be able to assign distinct features to different meanings. Ambiguity
can be found at the word-level, for instance, the word sink can be a noun or a verb,
which is known as lexical ambiguity. It can also occur for a whole sentence or a
clause, what is called as structural ambiguity. Models inherently do not possess
knowledge of the whole world to identify in which situations ambiguity may occur.
If one could provide such knowledge to a model beforehand, it should be capable of
handling such situations, but no solution so far has proved to be robust enough to
achieve this.

A plausible critic for the effectiveness of the vector structure derived by
MIKOLOV et al. [6] is that it creates a single vector representation for words that
may contain multiple meanings, hence capturing only the most frequent cases in the
training set. It lacks of flexibility to deal with occurrences of polysemy or homonymy
in a given context. The word pike is a classic case of homonymy, also used to ex-
plain ambiguity in the course material of MANNING [9], since it can have any of
the following meanings:

1. A sharp edge or staff

2. To piece or kill with a pike

3. A type of elongated fish

4. A railroad line or system

14

5. One type of road

6. To make one’s way (pike along)

This word may also admit additional meanings, based on the speaker location.
Polysemy accounts for the coexistence of many possible meanings for a word or
phrase, a phenomenon that happens in either Portuguese or English. In addition
to the challenges of polysemy and homonymy, Portuguese provides some specific
challenges such as distinct pronoun organizations carrying the same meaning, and
some others already mentioned in a previous section (1.2).

2.3.7 The open vocabulary challenge

NMT models typically learn from supervised data, hence they are constrained to a
fixed vocabulary. When dealing with an unseen word in some test scenario, tradi-
tional word-level models produce an < unk > (unknown) token. This phenomenon
is referred to as out-of-vocabulary (OOV).

There is a number of ways to deal with the open vocabulary issue. Speaking
of word-level models, the only way to reduce the chance for a model to produce
< unk > tokens is to guarantee that the training set has enough words to cover
those that might appear in the evaluation phase. One conclusion that can be derived
from this statement is the following: the bigger the number of words a dataset has,
the bigger the challenge of addressing open vocabulary is. Another issue to outline
is that as higher is the complexity and diversity of the domains present in a text,
higher will be the probability of existing more words in it. One of the datasets used
in this work corroborate with this hypothesis.

If the word-level restriction is removed, then subword models can increase the
occurrence of smaller tokens, since they are capable of breaking the words into
smaller units. These units can be characters (at the character-level), syllables or
prefixes (at the subword-level). By acting upon smaller pieces of a word, the model
incorporates the ability of generating custom tokens, since any combination of these
pieces become possible when generating translations.

2.3.8 Addressing MT challenges

This chapter performed an overview of the qualitative theory that is intrinsic to the
study of natural languages, which is relevant to the context of Machine Transla-
tion. It sheds some light on the practical differences that one language may have
as compared to another, as well as it helps to understand some of the challenges
that MT researchers have to face when creating systems based on expert knowledge.
Modelling all these nuances was a complex task, since many of the first MT systems

15

were rule-based or phrase-based, belonging to a MT branch called Statistical Ma-
chine Translation. Therefore, the development of such systems required that specific
language phenomena have to be compiled in a set of rules unique to each language
pair, like tables of equivalent expressions, thus requiring a heavy manual effort to
maintain and update these systems. The alignment, for instance, used to be treated
using latent variables. This hugely used to increase the complexity of the translation
task, since the goal has switched from predicting P (x|y) to P (x, a|y), where a is the
alignment variable.

Neural systems represent a breakthrough in this area, since they removed the
manual work of modelling language nuances, learning them on their own. This
came along with the flexibility to adapt their architectures according to the available
resources and performance target. Among other advantages of NMT are the better
use of context and phrase similarities, enhanced fluency of the translations and
the necessity of optimizing only a single network end-to-end. NMT has also some
disadvantages: the neural networks are known for being a black-box algorithm very
hard to interpret and debug. It is also difficult to control possible model biases
(which can be gender or race related), strongly depending on the dataset used as
well as the process of learning as a whole.

Despite these disadvantages, the solid associated benefits of this approach have
motivated a strong investment in this research branchby the NLP community, lead-
ing to a big increase on the number of publications of the field since 2014. Further
technical details and practical behaviour of neural networks will be discussed in the
following chapter.

16

Chapter 3

Neural networks and Machine
Translation

Since their ideation in 1958, Neural Networks have seen peaks and valleys of re-
search interest in the Machine Learning field. They have gone out of the tar pit
(term borrowed from [10] that originally mentioned learnings of "the dark times"
in Software Engineering) in the eighties with feedforward and recurrent variants,
and evolved with contributions such as the convolutional and LSTM (Long Short-
Term Memory) variants in nineties. After such progress, they started to leverage
promising results when applied to numerical and categorical data. Specially after
2013, Neural Networks are growing at an unseen rate, driven by the widespread use
of Deep Networks. Applications in image processing and natural language areas
were massively explored and soon consolidated themselves as the state-of-the-art
approaches.

Before going into further details of the pioneer research that applied Neural
Networks to solve the Machine Translation problem the task of translating from one
language to another will be formally explained. Even though are a few alternative
approaches that may reach the same result, we will focus the core of the explanations
on the neural alternative.

3.1 Machine translation as a task

The ability to use an automated procedure to translate from a source language to
a target language had precursors since the 1930s, with the use of mechanical dic-
tionaries, later coming up with some pioneer applications in the 1950s [11]. These
applications were heavily funded by the military sector and were focused on Russian-
English translation or the other way around, mostly motivated by the rivality be-
tween the United States and the Soviet Union in the Cold-war period. Roughly, the

17

translation task can be formulated as the following optimization problem:

ŷ = argmaxyP (y|x), (3.1)

where x is the representation of a sentence in the source language, y represents
another sentence in the target language, and P is a probability value. Note that P
includes parameters to be trained using supervised learning. After the training has
been completed, these parameters will represent the model’s word representation
knowledge for a vocabulary previously seen. Based on this prior knowledge, the
model will generate its guess ŷ for the sentence x. Using the Bayes’ theorem to
decompose P (y|x), it follows that:

P (y|x) = P (y)P (x|y)
P (x)

. (3.2)

Since the denominator is independent of y, finding ŷ is the same as to make the
product P (y)P (x|y) as large as possible. The following main components derived
from this process are the numerical representations of different challenges for the
translation process: P (x|y) and P (y).

The probability indicated by P (x|y) represents the translation model part, which
is basically a mapping of which translation matches with the source sentence, con-
sidering what the model has learned with the training set. Accordingly, P (y) can be
interpreted as a language model, basically responding for how fluently some meaning
is reproduced in a set of words. To accurately reach a high probability for P (x|y), a
large amount of high-quality parallel data is required, whereas the other component
P (y) requires only proficiency under the scope of a single language (the target one).

Another approach to address this problem is to narrow the scope of the trans-
lation task by breaking it into more steps. This may be achieved, for instance,
by introducing a latent variable a that connects the source and target clauses and
words. This variable is the mathematical representation of the alignment model
described in the previous Section 2.3.3, and it isn’t explicitly specified in a dataset
a priori. The alignment model basically connects particular words between both
languages.

The process of obtaining an efficient representation for ŷ (the most probable
translation guess) is performed with the help of a decoding algorithm. Decoding
isn’t a trivial task as it requires a robust algorithm to deal with both the translation
and language models. Matching the reference with the use of an algorithm is hard
since human translators can reword a phrase with synonyms, reorder and rearrange
words, replace single words with multi-word phrases, and vice versa. Decoding has
also been proven to be a NP-hard problem, even in relatively simple translation
models [12]. The task of reaching an adequate degree of correspondence between

18

source and target sentence parts is aggravated by the Machine Translation challenges
briefly discussed in Section 2.3.

When decoding the source sentence, there are some special tokens used to rep-
resent the start of the sentence and the end of the sentence (<sos> and <eos>).
The decoding process always starts with the <sos> token, then each word from the
source sentence is analyzed and the model tries to generate its correspondent word
in the target language. This process only ends when the <eos> is produced or the
maximum sentence length in words is reached. When the model does not have a
clear translation for a source word based on its current knowledge, it may output
the token <unk>, which stands for unknown.

In this section a formal definition of the Machine Translation task was provided,
as well as the qualitative challenges for this task were addressed. The reader now
may have a clearer picture of the challenges faced by the first neural algorithms
applied to solve this task. The sections in the following will show how the first
algorithms addressed these questions and their main flaws and strengths.

3.2 The rise of Neural Machine Translation

For a long time, neural networks haven’t seen any applications involving translation
tasks, until 2013 when CHO et al. [13] came up with the RNN (Recurrent Neural
Network) Encoder-Decoder architecture. At a time where statistical models were
the main alternative for Machine Translation, the adoption and later maturity of
RNN algorithms gradually started to prevail in the published papers.

There are some interesting properties of the recurrent neurons that justify their
application to solve the Machine Translation task. The next section clarifies them
to the reader by going through equations and properties of this neuron.

3.2.1 A brief introduction to the recurrent neuron

Traditional feedforward neurons treat the data points over which they are trained
on as independent instances. This means that switching the order of them within
a same batch does not affect the final update of network parameters. Conversely,
recurrent neurons contain an interesting property that extended the scope of appli-
cations successfully addressed by a Neural Network: their outputs are dependent on
the previously presented samples; therefore, switching the order of inputs leads to
distinct results.

Basically, a RNN neuron contains a hidden state and the concatenation of all
hidden state vector. This vector, conjugated with the current input, defines the
value of the hidden state vector for the next network iteration. This is shown

19

Figure 3.1: Computational graph of a RNN (adapted from SHERSTINSKY [14]).

by the current neuron output after going through some activation function. The
computational graph of a RNN is illustrated in Figure 3.1. In this graph, Whh

is a weight matrix that defines the contribution of the previous hidden state into
the current one; Wxh is a matrix that maps the contribution of the input xt to
the current hidden state ht and Why defines how the current hidden state must be
reflected into the neuron output. At each addition operation in this graph, there is
a correspondent bias vector summed to produce the final outcome.

This schema is responsible for introducing the concept of "memory" to RNNs.
Note that this feedback loop can be "unrolled" to evidence the network dependence
on previous inputs (considering different timestamps for instance) and hidden state
values. For computing convenience, in order to perform backpropagation, we must
limit the depth of this unrolling procedure, propagating the gradients from the
last output from the unrolled graph backwards up to this point. Following this
procedure, the resulting unrolled network turns analogous to a simple feedforward
layer network, easing the related computing procedures.

The order-dependence property of a RNN is an extremelly desired characteristic
for processing Word Embeddings, as previously discussed in Section 2.2, since the
neighbouring words often affect or contribute to the meaning representation of a
given word in the sentence.

20

3.2.2 The first RNN-based machine translator

According to the Cho et al’s approach, one RNN sequentially processes each symbol
of a sequence of inputs represented by vectors xt, that represent symbols (typically
words or token Embeddings), t ∈ N, encoding it into a fixed-length vector represen-
tation defined by the encoder hidden state. The equation that abstracts the encoder
hidden state computation at a given timestamp t is

het = f(xt,h
e
t−1), (3.3)

where f represents some nonlinear mapping function implemented by the RNN. For a
variable-length sequence with size Tx defined by S = {x1, · · · ,xTx}, the information
delivered by the encoder to the decoder corresponds to the last hidden state obtained
with the Eq. 3.3, which in turn is called as the context vector c.

The second RNN has the task of decoding this representation into a sequence
of symbols by predicting the next symbol yt given the context vector c plus all the
previously predicted words {y1, . . . , yt−1}. In other words, it is possible to compute
the probability over a given translation y according to the following decomposition
of the joint probability associated with y:

p(y) =

Ty∏
t=1

p(yt|{y1, . . . ,yt−1}, c), (3.4)

where y = (y1,y2, · · · ,yTy) (the sequence in the target idiom) and c is the previously
mentioned context vector. The iterative equation for defining the decoder’s hidden
state at the time t resembles the one from the encoder as follows

hdt = g(yt−1,h
d
t−1, c), (3.5)

with g representing the function implemented by the decoder RNN. Based on hdt ,
the tth translated word is calculated using

yt = softmax(f(hdt)), (3.6)

where f represents one or more feedforward network layers. These equations provide
a holistic view of the first encoder-decoder RNN-based translator. In this setup, the
encoder and the decoder are jointly trained targeting to maximize the conditional
log-likelihood of a target word given the sequence of words of some source sentence
and the previous translated words.

The drawback of this architecture is that some of the information available at
the encoder RNN is lost, since only the last hidden state is used, whilst other hidden
state values are discarded. Another issue relates to the fact that the encoder has

21

to compress all the relevant sentence source information into a fixed-length vector.
This increases the challenge of dealing with long sentences, which is already complex
for any RNN neuron due to the vanishing gradient effect [14].

3.3 NMT by jointly learning to align and translate

To address the fixed-length and "information compression loss" issues identified
in the previous implementation, the authors of the first paper proposed another
architecture that changes how the encoder is connected to the decoder in BAH-
DANAU et al. [15]. Now, the context vector provided by the encoder to the decoder
is multiplied by a weighted "attention" function and integrates multiple hidden-
states, not just the last one, defining a variable-length context vector such that
c = {he1, . . . , heTx}.

In the following sections, we will briefly discuss features and issues related to
the main contribution of this paper: the attention mechanism. First, this process
will be described using high-level illustrated steps to help the reader in grasping the
intuition. Then, in the sequence, we will show the equations related to them.

3.3.1 Some intuition behind the attention mechanism

Roughly, the attention mechanism simply assigns weights to word embeddings, al-
lowing a straightforward implementation of the alignment model presented in Section
2.3.3. Essentially, these weights define how much attention must the decoder pay
for a specific word from the encoder sequence when guessing the next word of the
translated sentence.

Consider the translation of the Portuguese sentence "Vou às dez." to English. In
Figure 3.2 at the step 1, the rectangles resembling a traffic light represent the RNN
neuron at a given sentence iteration, where the circles correspond to the components
of the hidden state vector (see 3.1 to remind its dynamics). Note that each neuron
is fed with the hidden state from the previous iteration plus the current input. The
attention scores are computed by the dot product between the embedding (produced
by the decoder RNN) of the token Start-Of-Sequence ("SOS") (written as "<sos>")
that must be feed to the decoder inputs for starting the generation of the translated
sequence. This process defines a particular weight for each part of the encoder
sequence to compose the context vector used by the decoder, conjugated with it’s
current input, when defining the next word of the translated sequence. Naturally,
the attention weights are recalculated at every step of the translation process, i.e.,
this process is repeated for every next token generated in the output or translated
sequence. For computing the attention scores, a softmax layer is commonly used,

22

as discussed further later, and the weights attributed in this case are represented by
the green bars on the top right of Figure 3.2 at step 2.

Figure 3.2: The first steps of how the attention mechanism acts when translating
an example (adapted from MANNING [16]).

Since the model has already been trained on a supervised dataset, it presumedly
knows that the word "Vou" must be translated to one or a given set of words in
English. In this particular case, when starting with the token "<sos>", the subject
of this verb is represented by the personal pronoun "I".

The translation task then keeps on producing the next words based on the inputs,
generating the word "will" after "I" to complement the meaning of the original word
"Vou" at step 3.

Note that the attention weight distribution changes for every new step. In Figure
3.3 at step 4, the decoder has already generated the sentence fragment "I will go",
corresponding to the original "Vou". Thus, the embedding associated with the
token/word "às" becomes the focus.

In step 5, the other words or tokens related to "ten" and "." are skipped to
illustrate how the algorithm ends. When the weights are considered to be low in
absolute value with respect to the inputs, it may be a signal that the algorithm has
converged. The translation process ends when the <eos> token is produced.

Now that the dynamics of the attention mechanism during the translation is
clear, a mathematical walkthrough on the attention layer must be performed.

3.3.2 Attention: Calculus background

Consider the new variable-length context vector defined by a linear combination of
several hidden states of the encoder, in opposition to only the last one from the
first RNN-based translator model. Now, the context vector will vary according to

23

Figure 3.3: The last 2 steps of attention during the translation of an example sen-
tence (Adapted from MANNING [16]).

every input token from the encoder. Let us interpret such words as a set of vector
annotations {he1,he2, . . . ,heTx}. The context vector after applying attention will be
computed by a weighted sum of such annotations hei at a given time i as follows:

ci =
Tx∑
j=1

αijh
e
j , (3.7)

where the variables αij ≥ 0 (or attention weights) represent a measure of how
relevant is each input annotation when composing ci for a given token currently
processed at the decoder. Such weights are also known as attention coefficients, and
represent the probability that a target token yi is aligned to, or translated from, a
source token xj. These weights shed a light on how the model is aligning and relating
words between the source and target language, helping it to address the challenge
stated at Section 2.3.3. The attention coefficients can be computed in many forms
but a common approach is the following

αij =
exp (a(hdi−1,h

e
j))∑Tx

k=1 exp (a(h
d
i−1,h

e
k))

, (3.8)

where a is an alignment model that relates the embedding hej referent to the encoder
position j with the embedding of hdi of the decoder at the position i. The variable
k iterates over the entire range of the input sentence Tx. The alignment scores can
also be interpreted as a way to distribute attention over the input, and a is often
parameterized by a feedforward neural network jointly trained with the encoder and
decoder parts. The authors have also stressed that the attention mechanism relieves
the encoder from the burden of having to encode all the information from the source
sentence, hence contributing to the resilience of this approach when dealing with long

24

sentences.
Another improvement in this work that contributed to the success of this ap-

proach is the use of bidirectional RNNs to encode the input sequence. The key
difference from this to the unidirectional RNN is that the context vector now ag-
gregates information relative to the representation of not only the preceding words
but also from the following words, allowing a more efficient attention weight dis-
tribution. This vector is simply defined by a concatenation of the representations
obtained from the forward and the backward RNN hidden states. Despite these
improvements, the attention mechanism is still rather simple, since it is based only
on an additive attention, whilst later variants compose additive with multiplicative
attention and even statistical distributions to define the α factors [17]. Due to this
gap, the importance attribution isn’t performed as well as in its variants.

Another detail that contributed to a better model performance despite not clearly
highlighted in the paper (it is only mentioned) is the use of a beam search decoding
algorithm. This algorithm was first proposed as a generic sequence transducer [18],
but only a few years later was exploited for MT [19]. The main benefit brought
by it is a more efficient and accurate search of the most likely next word given a
set of preceding words. In other words, it reduces the chance of the algorithm to
get trapped in local optimal solutions compared to the Greedy Search algorithm,
thus allowing the NMT model to explore more translation variants and converging
to more realistic translations.

3.3.3 Search algorithms for NMT

After converging to a local optimum and learning vector representations that reflect
semantical and syntactical attributes of the words, the model can be tested and
generate translations. When accomplishing the task of generating translations, the
quality of the search performed and the number of possibilities considered by the
algorithm make a difference on the final result. The traditional approach and a
more clever one will be discussed here: the greedy search and the beam search,
respectively.

Greedy Search

This was the approach used for the first RNN-based translator described in Section
3.2.2. It may be considered as the simplest way to generate a translation given the
context, as it predicts the most likely word by considering a given set of previous
words. This rather simple search is used since the beginning of the field of Statistical
Machine Translation. The goal is to obtain the next ŷt iteratively such that

25

ŷt = argmaxytP (xt|yt−1)P (yt−1), (3.9)

in each timestep t, considering xt as the representation of a sentence in the source
language and yt−1 is the current composition of the target sentence built until the
timestamp t. This algorithm has the drawback of being impossible to go back after
generating an unnatural or sub-optimal sentence. Basically, a token that looks good
to the decoder at a given moment might turn out later to have been a wrong choice.
When this happens, the model gets limited to generating new words on top of the
current sub-optimal sentence, hence the translation loses fluency. Nonetheless, it
was the top of mind algorithm for the MT community for a long time.

Ideally, the only method that guarantees to find the best translation is the ex-
haustive search. Given a vocabulary with size V , the exhaustive search would be
performed by computing and evaluating each one of the V T word combinations,
with T being the length of the sentence translated in words. Going over such a
large word search is obviously too expensive. Hopefully, a more cost-effective search
variant that considers more words than the greedy variant and that is less complex
than the exhaustive one was created.

Beam Search

In this algorithm, instead of choosing the best token, k possible tokens are kept
at each step. This fixed-size parameter is called as the beam width. It works by
computing a probability of each vocabulary word to be appended to the current
translated sequence, for each of the k available candidates, wherein this probability
is obtained through a softmax calculated over the entire vocabulary. These numbers
are then sorted from the most probable to the least, and only the k best possible
tokens are retained for the succeeding step. Such candidate tokens are called hy-
potheses, and this process of calculating probabilities, sorting the sentences and
progressively adding words at the end of the sentence at each step means that the
algorithm is simultaneously evaluating a set of k different sentences.

A hypothesis only stops being evaluated if it ends with an <eos> token, or if it is
not within the top k options. If an < eos > token is reached, the sentence is placed
aside and other hypothesis continue to be explored. This process is repeated until
all the hypothesis reach an < eos > token or the maximum predetermined sentence
length (in words). Figure 3.4 shows an example for a small sentence using beam
width of size 2, where "arrived" and "the" are the first guesses, later producing
4 words where only the 2 most probable were selected. After picking "green" and
"witch" by sorting probabilities in a descending order, another 4 words are generated,
and the process is repeated until convergence.

26

Figure 3.4: Example of beam search with beam width of size 2, taken from JURAF-
SKY and MARTIN [8].

Besides the practical gains regarding fluency, this algorithm has the drawback of
penalizing longer sentences with lower scores. Moreover, this issue can be partially
addressed by a length normalization factor, but not totally mitigated. Beam search
has become the standard approach in NMT, with a good starting point being the
use of a beam width of size 3, the same adopted in our experiments.

3.3.4 Exploring RNN-based Sequence to Sequence architec-

tures

An interesting work that illustrates the potential of the previously presented RNN
models is due to BRITZ et al. [20]. They use [13] as a base model and evaluate
the tuning of several hyperparameters, like embedding size, RNN cell variant, i.e.,
LSTM and GRU (Gated Recurrent Unit), encoder and decoder depth, unidirectional
vs. bidirectional RNN encoders, attention mechanism and beam width parameters.
One of the claims of this work is that careful hyperparameter tuning can yield better
results than exploring architectural variations.

Here are some interesting findings reported by BRITZ et al. [20]: (1) larger em-
beddings consistently outperform smaller ones by a thin margin, (2) LSTM cells
consistently outperform GRU cells, (3) deeper decoders tend to lead to some perfor-
mance increases, (4) additive attention achieves slightly better results than multi-
plicative attention and (5) beam searches when tuned to a "sweet spot" can increase
the model performance up to 5%.

27

Figure 3.5: Transformer model architecture, taken from the original paper [3].

3.4 Transformer models

One contribution switched the focus on recurrent and convolution-based neural net-
work models for NMT in 2017: the Transformer architecture. Introduced in the
seminal work of VASWANI et al. [3], this model is not subjected to the same issues
faced with RNNs. Due to their sequential processing structure, RNNs have to wait
for some internal operations to finish before beginning with another one, which is
not the case of Transformers. This new approach gained traction and adherence
from the community, since its massive parallelization is one of its major strengths.

In the original implementation, the encoder and the decoder exploit 6 stacked
Transformer layers. Regarding the encoder, each layer contains a multi-head self-
attention mechanism, followed by a layer normalization and a position-wise feed-
forward fully connected layer, represented by the "Add & Norm" block depicted in
Figure 3.5. A residual connection is also employed around each of the 2 blocks inside
a Transformer layer, represented by the arrow that goes into the "Add & Norm"
blocks. The structure of the decoder is quite similar, differing by the existence of an
extra masked multi-head attention layer, before the multi-head attention block. This
mask procedure, combined with an offset in the target sentence (output embedding)
by one position, ensures that the predictions for a given position i depend solely on

28

the known inputs for positions less than i. Backpropagation operates end-to-end for
training this architecture.

3.4.1 Unveiling self-attention

The attention mechanism adopted here differs from the previous formulation, but
the overall goal is the same: enabling the model to distribute the influences of every
input word on the output words generated. Consider a scenario where there are a set
of q feature vectors available, with dimensionality q stored in the rows of V ∈ Rq×k.
The model can dynamically map a feature vector to a key, based on how similar the
input query vector q ∈ Rq is to a set of k keys in the columns of K ∈ Rq×k. The
mapping is performed depending on the level of similarity between the input and
the query matrix. If Q is highly similar to ki, and has some similarity with ki+1

(respectively, the ith and (i + 1)th column of K), but it is uncorrelated with the
rest, the value vectors vi and vi+1 will be used in the weighted sum explored by the
attention mechanism with the highest weight [21].

The query (Q), keys (K) and values (V) are all matrices whose dimensions are
model’s hyperparameters. Attention’s "keys and values" would loosely correspond
to hidden state representations learned by the Sequence to Sequence architecture
[22], and "queries" will be defined by input token embeddings or intermediary rep-
resentations of them provided by some immediately previous Transformer layer.

The core of this new mechanism is still pretty much the same as the one used by
BAHDANAU et al. [15]. The attention weights are defined by an equation similar
to Eq. 3.8, whereas the attention coefficients are now given by Eq. 3.10:

αij =
exp (eij)∑
i′ exp (ei′j)

, (3.10)

where
eij = qTj ki. (3.11)

The output of the self-attention mechanism for the qth input query is given by:

yj =
∑
i

αijvi. (3.12)

Scaled dot-product attention

The name scaled dot-product attention comes from the strategy of normalizing the
dot products between the query matrix and the key matrix entries, normalized by
the factor

√
dk, before submitting them to a softmax layer to produce the weight

factors αij, which will be responsable for linearly combining the vectors stored in V.

29

This mechanism is illustrated in Figure 3.6, where MatMul represents a matrix mul-
tiplication block and the mask is optional, used only in the decoder. Mathematically
speaking, we have

Attention(Q,K,V) = Vsoftmax

(
KQT

√
dk

)
. (3.13)

One of the major advantages from the dot-product attention is that it is space-
efficient. It can be implemented using optimized matrix multiplications; thus, bene-
fiting from parallel architectures as compared to the additive attention, for instance.
The scaling factor is a plus from the authors to the original dot-product attention,
as they claim that it helps in reducing the magnitude of the dot-products, which
may push the softmax function to flat regions, wherein the associated gradients may
be small.

Figure 3.6: Illustration of the Scaled Dot-Product Attention mechanism, taken from
VASWANI et al. [3].

Multi-head attention

Essentially, this technique implements the attention mechanism by a concatenation
of scaled dot-product attention sub-blocks. The assumption behind it is that dif-
ferent learned projections of the same Q, K, V matrices yield representations that
may complement each other, as an ensemble of attention heads, delivering distinct
features from the same data. Figure 3.7 illustrates this trick. One may readily note
that the outcomes of the of the multiple heads goes through a linear feedforward
layer on the top.

Multi-head self-attention also plays a major role on the overall performance of
the Transformer. The authors claim that it is beneficial to decompose the original
attention matrices Q, K and V in h submatrices, where h is the number of atten-
tion heads, thus exploiting different learned projections. The attention weights are

30

adjusted to such different representation subspaces, depending on the query and
available keys. The original paper uses h = 8 heads. An usual recommendation in
this case is that the original hidden size dmodel must be divisible by the number of
attention heads.

Figure 3.7: Illustration of the Multi Head Attention mechanism, taken from
VASWANI et al. [3].

At the time of the original paper writing, multi-head self-attention was thought
to consistently contribute to the Transformer performance. Years later, after an
analysis performed by VOITA et al. [23], this hypothesis was rejected. The authors
evaluated how each attention head contributes to the solution of a translation task,
and found out that only a small subset of the heads would be enough to sustain
the Transformer translation scores. Their analysis was based on the importance
distribution, a heatmap that correlates each output word with every input word,
which allowed they discover that several heads have learned similar dependency
mappings. By using this map as a qualitative index of the feature importance of
each head, they pruned the heads with similar dependency maps, concluding that
there is no noticeable loss in the translation quality in this case.

This paper also raised a relevant question to the community: are deep learning
models usually biased towards increasing complexity and model parameters unnec-
essarily? Less complex models have a smaller carbon footprint and energy waste,
which can lower their impact on the nature, bringing the NMT community closer to
the status of Green AI.

31

3.5 Attention variants for Sequence to Sequence

learning

Not only architectural improvements can lead the Transformers to translations of
higher quality, the attention mechanism has also received some relevant contribu-
tions. In the approach followed by FAN et al. [24], the multi-head attention is
modified to a new mechanism called multi-branch attention, where each branch is
an independent multi-head attention mechanism.

Despite the evidence that increasing the number of attention heads may lead to
redundancy, this work outperformed the standard Transformer baseline, which goes
against the analysis previously stated. In this paper, other techniques such as a
drop branch mechanism (similar to Dropout [25], but applied to the Transformer’s
branches) and a specific initialization recipe for each branch may have impacted
the final outcome. The composition of such techniques makes unclear whether the
benefits come from scaling the attention complexity or from those architectural
alternatives.

Going back to the literature, variants applied over the set of words that the
attention blocks sees as well as over the weight distribution functions are among the
most common variants explored. In the paper published by LUONG et al. [17], the
attention mechanism is split into 2 classes: global and local attention. The former
always attends to all source words of a given sentence, whilst the latter only looks
at a subset of words at a given time.

Local attention is explored with different alignments: monotonic and predictive.
In the first case, they just assume that the source and the target sequences are
roughly monotonically aligned, and concatenate the target hidden state ht with
the equivalent source version hs. In the predictive variant, they use a Gaussian
distribution centered around the word to be predicted and define alignment weights
based on the values of the Gaussian, so nearby words are more important than
distant words. Following this approach, the attention weights are biased to follow a
normal distribution.

The main findings of this paper are: (1) attention-based models usually outper-
form non-attentional ones and (2) properly tuning the alignment model can yield
to better results. A small increase in the performance was observed by adding a
custom weight function (Gaussian-based in this case). They also concluded that
using an ensemble involving some of the proposed attention architectures may be
effective. However, further details of how this ensemble was implemented are not
provided.

Incorporating different attention perspectives to the attention mechanism is an-
other common exploited approach, which has been followed by CALIXTO et al. [26]

32

and CUI et al. [27]. In [26], a single layer feedforward network is used to compute the
expected alignment between each annotation vector in both mechanisms, but this
increases the number of parameters to be trained on the model. In [27], the concept
of forward and backward attention is introduced, where specialized masks help the
Transformer to model word order information, a slightly different schema than the
positional encoder used in the original paper. Both mechanisms are concatenated
with the standard global and local attention. Even though this approach leads to a
better BLEU score, it also increases the number of model parameters.

There is no strong evidence that tuning the attention mechanism would provide
relevant benefits in low-resource settings. Furthermore, all variations usually in-
crease the quantity of model parameters, raising its complexity and amount of data
required for learning, along with the amount of resources required to be trained
(GPU memory). In a single GPU scenario, a larger and more robust GPU would be
necessary in these cases. Increasing the number of GPUs unfortunately does not fit
in the scope and budget of this work. However, data augmentation and embedding
techniques have a higher potential to succeed in our case, hence the focus of this
work was shifted away from a possible tuning of attention mechanisms.

3.5.1 Positional encoding

To insert information relative to the order of the words in a sequence without re-
currence or convolutions, the encoder may augment the base layer of the network
with positional encodings correspondent to the order of occurrence of each word in
the source sentence. Considering for instance a sequence length of n = 5 and the
use of 3-dimensional bit vectors to represent each word (d = 3), we could generate
vectors to represent the location of the words like l ∈ 000, 001, ...110, 111. In this
case, a position matrix can be represented by P ∈ Rn×d. However, a more compact
representation of the word position can be obtained by using basis functions and
real-valued weights. VASWANI et al. [3] proposes a sinusoidal basis to encode this
position:

p(i,2d) = sin

(
i

C
2d

dmodel

)
, (3.14)

and
p(i,2d+1) = cos

(
i

C
2d

dmodel

)
, (3.15)

where d is the dimension or level within the representation (the quantity of real
numbers used to represent a word) and C corresponds to a maximum sequence
length, set to 10000 in the original paper. If a matrix P has dimensions d = 4, then
it’s ith row is given by

33

pi =

[
sin

i

C
0
4

, cos
i

C
0
4

, sin
i

C
2
4

, cos
i

C
2
4

]
. (3.16)

Figure 3.8 provides an intuitive view of how the entries of the matrixP ∈ Rn×d for
a sequence of length n = 60 and an embedding dimension of size d = 32 contributes
in encoding the word position.

Figure 3.8: (a) Positional encoding matrix with dimensions n = 60 and d = 32. (b)
Basis functions for columns 6 to 9. Generated by http://code.probml.ai/book1/
15.25 and adapted from MURPHY [21].

This representation brings a two-fold advantage: first, it can be computed for
arbitrary length inputs (up to L ≤ C), unlike mapping alternatives such as one-hot
encoding [21]. Second, the representation of one location is linearly predictable from
any other, given the knowledge of their relative distance [21]. Any word position can
be modelled by pt+φ = f(pt), where f is a linear transformation, and this property
is inherited due to the use of trigonometric functions. Note this by the following
decomposition[

sin (ωk(t+ φ))

cos (ωk(t+ φ))

]
=

[
cos (ωkφ) sin (ωkφ)

− sin (ωkφ) cos (ωkφ)

][
sin (ωkt)

cos (ωkt)

]
. (3.17)

If φ is small, then pt+φ ≈ pt, correctly inducing the desired relative position
correlation. Once the positional encodings P are computed, they are combined with
the original Word Embeddings X through the following:

POS(X) = X+P. (3.18)

3.6 Relevant Transformer variations

Since their publication, Transformers were customized in many ways by researchers
aiming to define new state of the art. Not all the variations are worth a story

34

http://code.probml.ai/book1/15.25
http://code.probml.ai/book1/15.25

to tell, but some of them have exceeded expectations and deserve some space in
this discussion. Beginning with BERT (Bidirectional Encoder Representations from
Transformers), the Transformer idealized by DEVLIN et al. [28], designed to extract
deep bidirectional representations from unlabeled text.

Roughly, two interesting tasks can be addressed with BERT: one is predicting
masked tokens in a sentence, i.e., the BERT performs like a masked language model.
In this case, during training some percentage of the input tokens are hidden at ran-
dom, and the tokens masked are predicted by the model. The second aims to extend
the model’s functionalities to other NLP tasks, such as question answering and nat-
ural language inference, and this is accomplished via next sentence prediction. The
intriguing aspect of BERT is that it can be easily fine-tuned to perform a wide range
of tasks, whilst still keeping an architecture that isn’t far from the original Trans-
former. In these cases, this model still beats the best results available for a range of
tasks, such as natural language understanding, inference and question answering.

Some other variants of the traditional Transformer architecture were heavily
focused on increasing complexity aiming to surpass the state of the art, and solving
a wider number of tasks. The variant presented by BROWN et al. [29] have shown
that it is possible to improve the performance of the model by simply increasing the
model size, and, as a consequence, the dataset size and the computational power
used as well.

A typical example is the GPT-3. This model comes in various sizes, with the
smallest model having 125M parameters, 12 attention layers, each one with 12 heads
of dimension 64. The largest version has 175B parameters, along with 96 attention
layers, each one containing 96 heads with dimension 128. This model has raised
an environmental concern, as it spent about 190,000 kWh to be trained [30]. Some
GPT-3 outcomes are interesting to be highlighted: (1) in text generation, humans
have failed in discriminating artificially generated summaries from genuinely human-
made texts for 24% of the cases; (2) Machine Translation, surpassing the best avail-
able BLEU scores for many language pairs wherein the English idiom figures as the
target, and (3) other less traditional tasks, performing surprisingly well in arithmetic
and word scrambling.

Not all the Transformer variants focused on firepower, though. There is some
research aiming to come up with lightweight alternatives to the Transformer. In this
case, the main goal is increasing the model performance but still keeping the com-
putational burden under satisfactory standards. Both models proposed on MEHTA
et al. [31] and a year later on MEHTA et al. [32] are able to improve the efficiency
of the original Transformer as a language model on a range of tasks. The definition
of efficiency here is achieving a high BLEU score (for NMT) or another score (for
other tasks), but considering the number of model parameters integrating the cost

35

function.
The Delight model, one of the most recent works in this area, have changed

the inner mechanism of the Transformer layer by using the delight transformation,
which is composed by a group of linear transformation layers that are shallower
and narrower near the input whilst deeper and wider near the output. The authors
state that this transformation decouples the attention dimensions from the depth
and width, allowing representations to be learned efficiently using block-wise scaling.
Delight also replaces the multi-head attention mechanism by a single-head attention,
reducing the number of parameters needed in training. Over the WikiText-103
dataset, the authors obtained an increase on BLEU score of 3.3%, whilst using only
80% of the standard Transformer parameters and requiring just 23 hours to train,
as opposed to the 37 hours used by the original model.

3.7 Alternative training objectives

Many of the state-of-the-art models have reached their related scores using the tradi-
tional cross-entropy loss. Most language models have also focused on the maximum
likelihood learning objective, as stated in TAN et al. [33].

Let x to be the real-valued representation of a token in the source language and,
analogously, y to be the same for a token in the target language. The equation to
obtain log-likelihood function in this case is given by:

L(θ) =
S∑
s=1

logP (y(s)|x(s); θ), (3.19)

where x and y are data and target vectors from the training set D = {(x(s),y(s))}Ss=1

whose size is S, and θ represent the model parameters. The standard goal of most
NMT algorithms is maximizing the value of this function on the training set data,
as follows

θ̂MLE = argmax(L(θ)). (3.20)

Nevertheless, the work of RANZATO et al. [34] indicate two drawbacks of this
approach. First, NMT models are usually trained on a specific dataset, but are
not exposed to their own translations and consequently their own errors: this phe-
nomenon is referred to as exposure bias. Finally, the MLE estimation is defined
at the token-level rather than sentence-level. So, theoretically, the objetive settled
by the optimization is not aligned with the final objective, which is generating a
sentence that matches a correct human translation.

With this problem in mind, these authors introduced the Mixed Incremental

36

Cross Entropy Reinforce (MIXER), which switches the learning objective towards
a sentence-level training. The proposed algorithm tries to handle the problem of
backpropagating gradients from non-differentiable metrics like BLEU, exploiting
some ideas borrowed from the Reinforcement Learning (RL) area.

Other works have also put efforts in this learning objective issue. For instance,
the technique proposed by SHEN et al. [35], called Minimum Risk Training (MRT).
In this learning objective, the model considers the discrepancy between its prediction
and the equivalent gold standard translation. The model generates multiple samples
from the search space provided by beam search to calculate the expected risk, and
this risk is defined as the expected loss with respect to the posterior distribution.
This loss function is not parameterized, thus, not differentiable. Moreover, it can
also be negative when considering sentence-level evaluation metrics such as BLEU.

The work of SHEN et al. [35] reported better results than RANZATO et al.
[34]. The authors’ allegation for this is because the MIXER approach samples only
one candidate for calculating the reward, whilst their approach, Minimum Risk
Training (MRT), generates multiple samples. This potentially increases the MRT’s
discrimination capabilities, a pretty close effect than to increase the beam size in
beam search in the standard NMT setup.

Apart from the efforts put into iterating on the learning objective and the benefits
alleged by these papers, some side effects of switching this cost function are also
reported in CHOSHEN et al. [36]. Some major pointed issues are the weakness of
RL-based approaches for optimization, the fact that some gains can not be fully
attributed to the techniques, and some convergence issues related to the training
objectives proposed by SHEN et al. [35] and RANZATO et al. [34]. Therefore,
based on this literature review, the potential of changing the learning objective to
obtain better translations under low-resource is uncertain. As a result, this work
opted for not considering any change in the learning objective.

3.8 Alternative positional encoding

The positional encoding performed by the traditional Transformer is called absolute
positional encoding. As it simply adds the positional embeddings to the original
Word Embeddings, it comes with the drawback that word position and word meaning
are entangled, despite representing unrelated information. The work of KE et al.
[37] warns for the risks brought by possible mixed correlations between the word
semantics and the position information itself, which may add unwanted noise to the
learning process and limit the expressiveness of the model.

These authors propose the use of the Transformer with Untied Positional En-
coding (TUPE), which processes the word contextual and positional information

37

separately, following different parametrizations, and adds them later. By following
their approach, the resulting attention weights can be decomposed into terms that
represent interactions between word-to-word, word-to-position, position-to-word and
position-to-position, a factor that they claim to enrich the word representation [37].
Their model is compared with other literature proposals for positional encoding, like
mixing relative positional encoding with absolute positional encoding, obtaining a
superior performance over them with the GLUE dataset benchmark.

38

Chapter 4

The low-resource domain context

The term "low-resource" recalls situations where any of the resources needed to
perform a task are scarse. In NMT, this phenomenon can manifest itself in a number
of ways. Complex models that contain a high number of parameters to be learned
also demand an abundant quantity of data, a phenomenon that is explained by the
VC (Vapnik-Chervonenkis) dimension theory. If a supervised complex model has
scarce data for training, its potential in achieving relevant generalization scores can
be significantly hindered. This can even lead to simpler algorithms outperforming
more complex models in a given task. There are some situations to which phrase-
based Machine Translation models can surpass neural-based models, especially when
the dataset is small, such as the case study reported in SENNRICH and ZHANG
[38].

Scarce data also often strongly contributes to increasing the open vocabulary
challenge, mentioned in Section 2.3.7. Solving the translation task with reduced
data also means solving the open vocabulary challenge under adverse conditions.
Increasing the complexity of the corpus content somewhat turns this challenge more
difficult, so the technique adopted must be resource efficient to excel under such
conditions.

The second most important issue that is fundamental for the success of a trans-
lation model is the infrastructure used for training. NLP models usually need one
or more GPUs or TPUs (Tensor Processing Units). Besides, models that require a
high batch size such as Transformers cannot be trained in practical terms with a
CPU. Switching from CPU to GPU may accelerate the training process hundreds
of times, reducing to hours what would require days to be completed.

The memory footprint demanded to tackle with a dataset in some infrastructure
is directly related to its size. Two dataset dimensions that directly influence on
the memory footprint are the number of sentences and the number of words per
sentence. Such numbers are relevant to determine the ideal batch size.

Another factor that contribute on the choice of the batch size is the number of

39

trainable parameters of the model, which linearly increase with the depth of a neural
network. A common practice is to increasing the batch size proportionally to the
network depth. This approach may be observed for the GPT-3 variants described
in the work of BROWN et al. [29]. There is no theory establishing a deterministic
rule relative to how the batch size must be increased as a function of the number
of parameters. However, it seems to be a good practice to consider them directly
proportional, to achieve a better generalization during training.

Another factors that must be also considered when one addresses an NMT task,
but rarely represent a bottleneck: disk storage, internet connection, and a correctly
configured Python environment (or another language of choice). These factors do not
usually represent the biggest challenge because such resources are more accessible
than cutting edge GPUs. Therefore, when referring to low-resource domains in the
following sections, only the dataset size and the GPU power constraints will be
considered.

Fortunately, techniques that turn the NMT models more resilient to open vo-
cabulary as well as some of the previously mentioned issues are available in the
literature. Some of these strategies will be addressed in the following sections, right
after a brief overview of some challenges faced whilst tackling Portuguese NMT
under low-resource settings.

4.1 Intrinsic challenges of this work

Before focusing our attention to low-resource approaches, our initial objective was
creating a model that would surpass the state of the art. However, as soon as the
computational infrastructure at our reach has shown its intrinsic limitations (e.g.
the GPU out of memory error), we realized that we could not compete with the
literature at such a level. Experiments involving datasets of different lengths and
the process of tuning hyperparameters for many Transformer variants can be quite
challenging when one uses a 12GB GPU, which is the standard low-cost or free cloud
hardware solution available in 2021.

Transformer variants have been showing an astonishing performance in a vari-
ety of practical applications, attracting multiple companies and dedicated research
groups that seek to reach the state-of-the-art status. Researchers from more re-
sourceful countries or universities usually have multiple GPUs in the same cluster,
enabling them to evaluate solutions with a higher GPU memory usage. However,
this can be quite expensive without sponsorship to get on your own. Given such
limitations, our decision was to contribute to the low-resource branch of NMT given
the overall practical limitations.

The process of understanding the constraints of our environment (specially GPU

40

memory related) also involved a non-friendly trial-and-error approach. Even when
setting our batches to begin higher than usual and dwindle in size, the out of memory
error does not usually appear in the beginning of the first epoch or even in the first
few epochs. Frequently, we had to conduct a number of experiments that took some
time until fail aiming to understand what infrastructural factors are constraining
the experiment to behave as desired. This trial-and-error process was repeated
whenever the dataset used or the number of parameters (complexity) of the model
under training has changed, significantly increasing the time spent when performing
the experiments with different datasets and techniques.

The following sections provide a brief coverage over the techniques considered in
this work to deal with low-resource issues and some technical trade-offs necessary
to be settled when using them in the NMT context.

4.2 Subword Embeddings

In Chapter 2, we only mentioned some interesting aspects of switching to the sub-
word level. In this section, we provide a more detailed explanation of how the sub-
word models operate. The process is quite similar to producing vector embeddings
for the words in a sentence (word embedding), differing in the sense that each word
is broken into several tokens, and to each token is produced an embedding vector.
The methodology that dictates how words are split into subparts has an important
influence in the explainability (quality) of the final subword representations.

This type of embedding is more robust relatively to the out of vocabulary (OOV)
occurrence as compared to the traditional word-level approach [22]. When one
breaks a word into smaller tokens, the smaller resulting tokens are often more likely
to appear in both training and test sets. Considering the translation of rare tokens,
the use of Subword Embeddings relieves part of the burden of the model having to be
trained in a dataset with a statistically relevant occurrence of that token, enabling
it to reach an adequate performance even with small datasets. Subword models can
be designed to act in a character level or in an intermediate level between word and
character (like phonemes, syllables and others).

There is a number of Subword Embeddings available in the literature that could
be exploited in low-resource settings. This work concentrates on evaluating a to-
ken embedding approach known as BPE, due to its success in a wide number of
applications.

41

4.2.1 BPE (Byte Pair Encoding)

The pioneer work introducing Subword Embeddings is due to SENNRICH et al.
[39]. According to it, the segmentation is performed based on BPE, an algorithm
introduced to break the raw text into sub-parts. Roughly, BPE breaks the words
from a corpus into smaller parts (the smallest BPE unit is a character). Some
of these parts are subsequently merged, and the number of merge operations is
a hyperparameter to be tuned. All the steps involved in BPE can be found at
Algorithm 1.

The original BPE implementation has only one mandatory hyperparameter: the
number of merges, which is not much intuitive since the vocabulary size is what most
concerns an NLP researcher. Thus, one of the original implementation drawbacks
is that the practioner cannot clearly define the maximum vocabulary size a priori,
relying solely on the number of merge operations for that. This opens a margin for
creating a huge vocabulary with a low frequency for some Subwords, possibly hin-
dering model performance. Despite the previously mentioned drawbacks and clear
room for improvement, this method became widespreadly used in many applications
because it is simple, cheap to run, easy to understand, and effective.

Algorithm 1 Pseudocode for BPE, taken from BOSTROM and DURRETT [40]
1: Input: set of D tokens, target vocabulary size k
2: procedure BPE(D, k)
3: V ← all unique characters in D (about 4,000 in English Wikipedia) |V| < k
. Process of merging tokens

4: tL, tR ← The most frequent bigram in D
5: tNEW ← tL + tR . Make a new token
6: V ← V + [tNEW]
7: Replace each occurrence of tL, tR in D with tNEW
8: return V
9: end procedure

The process of breaking words into smaller units inherently increases the number
of samples per token. This grants to the algorithm the ability to cope better with the
OOV issue. The original paper [39] compares BPE against segmentation techniques
commonly used in Statistical Machine Translation (SMT), for instance the bi-gram
segmentation. Bi-gram stands for the combination of 2 tokens into a single word.
For more details, please check the original paper. The tests performed against the
other segmentation techniques focused on evaluating translation scores and OOV
coverage, showing that BPE outperforms most of them.

To illustrate better how BPE works, consider a hypothetical corpus with 4 dis-
tinct words, each one having a particular number of occurrences: {”old < /w >

” : 7, ”older < /w > ” : 3, ”finest < /w > ” : 9, ”lowest < /w > ” : 4}, where

42

Figure 4.1: Steps of the BPE algorithm applied to an example corpus.

the token < /w > marks the final word boundary. The whole process of breaking
words into sub-parts is presented in Figure 4.1 and explained below, where each
enumerated bullet represents an equivalent step in the figure:

1. The first step of the algorithm simply counts the number of characters in the
corpus, assuming that each character defines a candidate token. After that,
the frequencies of occurrence of token pairs are inferred, and the most frequent
token pair is identified and added to the list of token candidates, as indicated
in green at the bottom of table in the algorithm step 2.

2. The most common token pair identified in the previous stage is ”es”, occurring
9 + 4 = 13 times. Thus, the tables entries related to the occurrence of these
characters in a stand-alone fashion must be updated, simply by subtracting
the number of common occurrences. Naturally, this happens to distinguish
the occurrences of the single character tokens e and s from those to which the
token es happens, which are now separated. In this case, the row associated
with s is eliminated (represented by the red line), as it only spawns within the
es token.

3. In the step 3, a new token pair that shows the same frequency than es is est,
which by coincidence also contemplates all the occurrences of es and t, leading
to their elimination at this step.

4. In the next step, the merge of est with < /w > results in the most frequent new

43

candidate token having (13) occurrences. This merge results in a reduction of
the frequency associated with < /w > to 10.

5. Another common token pair is ol, which has a frequency of 10 in the given
vocabulary. To represent this new token, the single characters o and l are
subtracted by this number of occurrences (10), reducing their frequency to 4.

6. In this step the token old is formed, incorporating all the occurrences of ol and
removing the token d. Then, the process is interrupted due to the impossibility
of fusing any of the candidate tokens.

7. Table 4.1 summarizes the final tokens integrating the vocabulary. Note that
the final vocabulary size (11) is inferior to the one considered at the start of
this process (12).

The main difference between this method and the one derived from bi-gram
segmentation is that the latter is capable of breaking words into interpretable units.
Finding a clever way to split the words was one of the main challenges at that time.
On the other hand, BPE is a greedy algorithm inspired in a compression algorithm
with the same name, leading to some occurrences to which the subword tokens may
not represent a morpheme with an enclosed meaning. However, despite having some
meaningless tokens, the percentage of the ones that are meaningful are enough for
it to stand out among other techniques.

Table 4.1: Final distribution of tokens (step 7).
Number Token Frequency

1 </w> 10
2 o 4
3 l 4
4 e 3
5 r 3
6 f 9
7 i 9
8 n 9
9 w 4
10 est</w> 13
11 old 10

The effectiveness of this approach is evaluated in SENNRICH and ZHANG [38],
which concentrates on evaluating the practical effects of changing word-level NMT
to subword NMT using BPE. An ultra-low resource setting experiment was the
one that benefited the most, raising a BLEU of 7.2 to 16.6 using the model of
BAHDANAU et al. [15].

44

Figure 4.2: N -grams generated by Fast Text for the word "eating".

4.2.2 Subword variations

Some research has also dedicated attention to using character-level RNNs only when
the process of word-level embeddings generate an OOV word, as in LUONG and
MANNING [41]. Switching to character-level has also its drawbacks since character
level spliting result in longer sequences of tokens wherein each one contains less
information, yielding to computational and modelling challenges. The most basic
one relates to the total of memory required to represent a set of words in a character-
level word representation, as it is substantially higher than subword or word-level
solutions.

Sticking to an unique level of embedding is a paradigm broken in the work of
CHEN et al. [42], wherein different levels of granularity (word, subword and char-
acter) are combined to augment the token representations. These authors extended
the encoder with a character-attention mechanism, aiming to better learn source-
side representations and incorporate information into the decoder with a multi-scale
attention, allowing the character-level conjugated with word-level information to im-
prove the translation. Results show that such models when compared to the single
granularity alternatives achieved higher scores, and the use of multiple levels also
benefited the model to address the OOV issue.

Pre-trained Word Embeddings were also explored in the work published by BO-
JANOWSKI et al. [43], which became popular under the name of Fast Text. This
algorithm was inspired on the Skipgram Word2Vec variant. It treats words as a bag
of character n-grams and adds the special symbols ">" and "<" at the beginning
and end of each word, respectively, to allow the algorithm to distinguish prefixes
and suffixes from other character sequences. A visual distribution of the n-grams
derived from the word "eating" is available at Table 4.2, where n = 6.

Basically, to each word is assigned a number of n-grams, and in practice only
n-grams for 3 ≤ n ≤ 6 are produced to each word. When the word representation
is generated, it is represented by an index and a respective set of n-grams, which
are called subword tokens. Finally, the word is represented by the sum of the vector

45

representations correspondent to this set of n-grams.

4.3 Transfer Learning

Transfer Learning is a common practice in the Machine Learning area, roughly con-
sisting of reusing a model developed for a specific task as a starting point of a
model dedicated to another task, typically reducing the complexity and time of the
training process. This technique was exploited in ZOPH et al. [44], where weights
associated to NMT models developed with a high-resource language pair are trans-
ferred to models targeting a low-resource language pair, both having English as the
target language. By following this approach, the NMT model turns able to out-
perform the previous state-of-the-art Syntax-Based Machine Translation (SBMT)
model. The metric used for evaluation was BLEU, and this happened with one of
the four low-resource language tasks: the Hausa language.

Another transfer learning approach that may optimize the process of learning
vector word representations is the use of Pre-trained Word Embeddings. This may
be achieved by adopting unsupervised language models to adjust their previously
learned vectors and improve them within a N -dimensional space, where N denotes
the word-embedding size. The learned representations (weights) are then reused by
the NMT model as starting values of its embedding layer, instead of proceeding with
the typical random initialization adopted in models trained from scratch.

The Fast Text algorithm presented in Section 4.2.1 was the transfer learning
strategy chosen for evaluation in this work, due to disposing of the benefits from
the Subword Embeddings, analogous to the BPE. The representations loaded in this
case have the advantage of carrying semantical and syntactical relations previously
stored in the Pre-trained language model.

An interesting work that experimentally evaluates the effect of Pre-trained Word
Embeddings in low-resource scenarios is QI et al. [45]. This analysis makes use of the
same dataset considered in this work, TED Talks, which will be further described
later. However, the model explored is based on BAHDANAU et al. [15], trained in
a different framework, and initialized differently than in our work.

One of the experiments described in this paper analysed the effect of loading
Pre-trained Word Embeddings on reduced datasets, considering three distinct lan-
guages. The authors report that there is a "sweet spot" relative to the quantity of
data available used for training that results in more efficient models. When loaded
to a model trained with only 10% of the TED Talks dataset, the Pre-trained Word
Embeddings have yielded small gains as compared to a random initialization. How-
ever, when trained over 30% of the dataset, the BLEU gains suffer a peak, which
monotonically decreases with the increase on this proportion of dataset instances

46

used for training.
Another experiment reported aims to enforce consistent embedding spaces across

both languages, a technique called word embedding alignment. The authors ex-
ploit an approach that learns orthogonal transformations that convert the Word
Embeddings of multiple languages to a common space, and use these transformed
embeddings instead of the traditional learning process. These generated embed-
dings will be used as a starting point for the NMT model as usual. They achieve
this by using linear geometrical transformations that normalize the vectors to the
same range. Unfortunately, mixed results are reported, turning it hard to derive
conclusions regarding its effectiveness. Some experiments report that Pre-trained
Word Embeddings are more effective when applied to more related language pairs
(e.g. Portuguese-Spanish).

Aiming to allow transfering the knowledge from language models trained on
monolingual data to NMT, GULCEHRE et al. [46] proposes 2 solutions to fulfill
this task: shallow fusion and deep fusion. The first uses a language model during
decoding to rescore the candidate words that the translation model is considering
as the next word to be predicted. The other one combines the decoder and the
language model, which are coordinated with a controller mechanism. Unfortunately,
the improvements reported are limited to the range of 0.5 up to 2 BLEU points in
all experiments.

The results reported in the work [45] for several language pairs in a range of sce-
narios seem to be more consistent, whilst the technique presented at [44] is highly
language and dataset dependent, as well as subjected to a high deviation. There-
fore, there is some evidence that employing Pre-trained Word Embeddings tend to
be more effective than using transfer learning with a model trained on a different
dataset.

4.4 Data Augmentation

The quantity of parallel sentences is a key factor to the success of NMT, and data-
hungry complex models may impose difficulties to the researchers aiming to con-
tribute to this field. Unfortunately, large-scale parallel corpora is not available for
the majority of the existing language pairs. On the other hand, it is much easier
to obtain monolingual corpora. The Internet is a good example as disposing of a
range of websites in multiple languages. This scenario motivated us to study data
augmentation strategies to support the NMT task.

47

Figure 4.3: The Augmentation of a dataset with Back Translation

4.4.1 Back Translation

A branch of research in Data Augmentation is dedicated to the study of variations
of the technique referred to as Back Translation (BT). In SENNRICH et al. [47],
the authors extract monolingual data corresponding to the target-side language,
train a model to translate back to the source language and use it to build synthet-
ical translations. Figure 4.3 represents the augmentation process with a simplified
representation. A NMT model is used to translate in the reverse direction (target
to source language), generating artificial sentence pairs that are appended to the
original dataset when training the main NMT model.

BT has shown to be a simple, yet effective method to address low-data availability
in many domains, as shown in PONCELAS et al. [48]. This study concludes that the
translation performance (measured with BLEU) is increased when a certain quantity
of synthetic translations are added, but this gain seems to tail off when the dataset
balance is tipped too far in favour of the synthetic data.

In theory, the reason why the performance increases with the addition of artificial
sentence pairs generated by another model is that when generating new synthetic
pairs, "noise features" are added, which may be beneficial to learning. This sort of
feature engineering technique in NMT is only beneficial in some cases. This strategy
is only effective when the share of synthetic sentences is limited to a small portion of
the whole dataset, thus keeping the "natural" sentences as the majority of instances.
It is hard to define a rule to determine this ideal share, since it varies accordingly
to the languages and text characteristics. Adding too much noise may compromise
the models’ performance, so this technique must be used with caution.

Different strategies for generating synthetic data are presented and compared in
XIA et al. [49]. This study evaluates several augmentation methods in scenarios
wherein English (ENG) is paired with high resource languages (HRL) and low re-

48

source languages (LRL). The strategies include techniques such as pivoting, word
substitution (with the use of a dictionary), and an unsupervised NMT approach. A
two-step pivoting method is also introduced: it uses a ENG-HRL model to create
artificial HRL examples, and then use a HRL-LRL to create artificial sentences to
the LRL. The authors propose methods to perform HRL-LRL translations which
benefit from language characteristics such as word order. They claim that this ends
up approximating better the true LRL sentences than using a ENG-LRL model.
This technique has shown to be particularly useful for languages with even more
restricted resources available than Portuguese.

In some scenarios, this work reported that methods such as two-step pivoting may
outperform Back Translation. However, this study is limited to a few datasets and
the gains reported in BLEU seem to not be expressive. Considering that consistent
results are reported when other works apply the traditional Back Translation in
a wider range of datasets, we decided to use this technique rather than two-step
pivoting for addressing low-resource issues in this work.

49

Chapter 5

Experiments on Neural Machine
Translation

The experimental investigation conducted in this work aim not only to report a
possible score increase when applying a technique X or Y , but also to address
qualitative issues about the translations generated. The correlation between errors
patterns and a specific technique is a process often overlooked in the NLP field,
typically focused in optimizing one or more performance scores. Questions such as
the following are not commonly addressed:

1. How switching to a Subword Embedding may influence on the patterns of
errors that a model makes?

2. Is the sentence complexity or the incorporation of external knowledge a de-
termining factor for model’s performance? Do they induce some qualitative
bias?

3. Is it beneficial to augment the dataset with synthetic data (Back Translation)?
How may the noise introduced by this procedure influence on the patterns of
the errors produced by a model?

These questions require a deeper analysis that goes over just matching words
between the reference and the translations generated by the model, raising a demand
for the definition of a categorization scale of the model’s error with a linguistic focus.
A contribution of this work is proposing a bidimensional criterion to assess the
translation quality. The hypothesis raised here is that by analysing such patterns,
we may enrich the insights that could be extracted from the experiments.

Another goal of this analysis is trying to understand the effects on the translation
quality of the level of complexity of the sentence, as from the dataset nature. In
this direction, in our experiments, datasets from different domains were exploited

50

to validate the hypothesis regarding the effectiveness of using datasets from distinct
domains on BT. Another relevant factor that influenced on the choice of the datasets
considered by this work are the limited GPU memory and data availability. In the
following sections these experiments and their corresponding outcomes are described
in greater details.

5.1 Methodology

Datasets with low to medium complexity levels were carefully selected for the pro-
posed analysis: Tatoeba [50] and TED Talks [51]. Both represent a low-resource
scenario due to the scarce number of sentences, in alignment with some references
[38] [44]. Tatoeba is mainly constituted of basic to intermediate level English sen-
tences, which can be interpreted as a corpus from a "school domain", ranging from
elementary to middle school education constructions. The Tatoeba dataset contains
143.8k small sentences with basic to intermediate English level, posing a low com-
plexity challenge for the NMT task. It includes 26.3k unique words in PT and 15.3k
in EN.

TED Talks is a medium-size dataset covering a range of subjects, including from
low to highly complex sentences. It represents a mixed domain dataset, since it
contains talks from experts on distinct areas. News Commentary v16 [52] is a news
focused domain monolingual dataset, used for BT in this work, and includes a rich
range of sentences in terms of content and complexity.

In the experiments, 10% of Tatoeba was held out for testing, whilst the remaining
data was split into 10% for validation and 90% for training, using a seed equal 0.
Despite TED disposing predefined training, test, and validation sets, the original
validation set is too small (906 sentences), leading us to move the last 20 talks (2081
sentences) from the training set to this set. As a result, the training set contains
236.1k (1918 talks) sentences, randomly sampled to define training batches using a
seed equal to 157, and the test set includes 11.4k sentences. Additionally, all text
was pre-processed to eliminate all XML enclosed sentences and tags, except for the
ones related to title and description.

The experiments were conducted using Python. Gensim was the library used to
deal with Word Embeddings, and Spacy’s Portuguese and English tokenizers were
applied to the previously mentioned datasets. All experiments were performed on
a single GPU, using the Google Colaboratory and Kaggle infrastructure. Typically
such environments dispose of NVIDIA GPUs like Tesla P100, Tesla K80 or Tesla
T4, with a GPU memory size ranging from 12GB to 16GB.

Transformers is the architecture adopted in all experiments, and the parameters
tuned for them are dmodel = 256, dff = 256, 8 attention heads, and the Q, K and V

51

are matrices with dimension 64×64. The Pre-trained Fast Text-based models, which
employed the embeddings described in [53] for Portuguese and [54] for English, are
the only exceptions. In this case, both embeddings had dmodel = 300 and 6 attention
heads. The weights downloaded from the site published in the work of FARES et al.
[54] were Pre-trained on the Gigaword [55] corpus, considering the ID 16 option on
the download list available at their website, after clicking on the repository tab. We
chose this option as it was produced without lemmatization, since this technique is
not applied when processing our datasets. All variants adopted the Adam optimizer
with β ∈ (0.9, 0.98) and ε = 10−8, a learning rate of 10−4 and the beam search
considered a beam with size equal to 3. The early stopping criterion was based on
the validation perplexity behaviour for ten epochs, halting the training in case of
performance stagnation. During training, a new model was saved each time the best
validation perplexity was achieved.

Regarding the BPE implementation, a toolkit developed by Google was preferred
due to an interesting feature added over the original algorithm: it allows a priori
vocabulary size definition instead of using the traditional number of merges. Sen-
tencepiece [56] is a language agnostic fast and lightweight implementation made in
C++, widely used for subword segmentation. It was settled considering a maximum
vocabulary size of 32k tokens.

To assess quantitative performance, Sacrebleu [57] and NLTK [58] were the
BLEU variants exploited in our experiments. The major difference between them
resides in a stronger Sacrebleu’s penalization over cases to which the translated and
reference sentences differ in length.

5.2 Quantitative study

To understand and evaluate the translation outcomes derived from an NMT model,
both quantitative and qualitative aspects must be taken into account. To evaluate
the former, scores such as Sacrebleu and NLTK BLEU provide distinct optics that
allow to isolate the sentence length penalization variable. For the latter, the knowl-
edge of an expert may help to break the problem into smaller parts, categorizing
quality issues with the goal of capturing error patterns.

The main goal of the experiments described in this section is to evaluate how the
candidate techniques react to low-resource conditions quantitatively. The central
idea resides in inferring which of them may help in circumventing issues that might
arise in such cases and how to tune the auxiliary techniques based on a set of
hyperparameters and setup conditions. To aid the reader on the task of following
the rationale, it follows a brief summary describing all the experiments performed
when conducting this evaluation process:

52

1. The impact of restricted dataset content

• The experiment described in Section 5.2.1 evaluates quantitatively the
effect of several adverse limited data conditions on the NMT task perfor-
mance.

2. Effects of switching to subword level and ways of incorporating external knowl-
edge

• In Section 5.2.2, a discussion regarding ways of loading Pre-trained Word
Embeddings and the effectiveness of switching to subword level (BPE)
standalone is made. The experiments consider Fast Text and BPE strate-
gies added to the Transformer.

3. Effectiveness of Back Translation when addressing different low-resource set-
tings

• The experiment shown in Section 5.2.3 evaluates the performance impact
of using BT to extend a dataset, considering different synthetic shares for
the dataset and exploiting data from the same as from a different domain.

4. Comparison of Transformer candidates against the Google Translate bench-
mark

• The last experiment from Section 5.2.4 compares the BLEU score of the
aforementioned low-resource Transformer candidates with the output of
the Google Translate service taken at the date of 11/01/2022.

5.2.1 The impact of restricted dataset content

The process of training a model with constrained data may affect its performance
in different ways. Therefore, different low-resource scenarios were created to try to
unveal such effects. To shed light on such limitations, we considered a hypothetical
experimental scenario, where only a fraction of TED and Tatoeba training sets were
used in training. The following percentages were considered: 33.3%, 50%, 66.6%,
83.3%. According to these percentages, in Tatoeba the quantity of sentences used
for training ranges from 47.9k to over 143k and in TED from 78k to the totality of
236k.

This experiment had the purpose of inferring if there is a minimum number of
sentences that a parallel dataset must have for the model to reach a good perfor-
mance. It should become clear that after a certain size (or fraction, in this case)
the additional performance obtained with the increase on the number of training

53

instances is minimal, so alternatives must be explored to maximize model’s perfor-
mance. Table 5.1 summarizes the outcomes of this experiment.

Table 5.1: Performance obtained with models developed under restricted data (see
text)

Fraction of
the Dataset

Tatoeba TED
Sacre-
bleu

NLTK
BLEU

Batch
Size Epochs

Sacre-
bleu

NLTK
BLEU

Batch
Size Epochs

33.3% 48.64 67.09 512 76 24.7 57.65 30 40
50% 52.53 70.12 512 65 25.18 56.46 30 40
66.6% 55.3 72.12 512 58 26.22 56.81 29 36
83.3% 56.24 73.18 512 58 26.74 56.57 28 30
100% 57.99 74.07 512 58 25.24 55.36 28 30

The results show that the Sacrebleu scores for the Tatoeba dataset were about
twice the same as those achieved with TED, corroborating with the much higher
complexity of the latter. The BLEU metrics for both datasets have shown a mono-
tonic behaviour, with exceptions to TED in two cases: Sacrebleu (100% × 83.3%)
and NLTK (100% × 83.3 and 83.3% × 66.6 %). The reasons for such findings may
include: (1) the possible use of synonyms in the translations, an aspect ignored by
any BLEU metric; (2) a higher incidence of Repetition errors due to data quality
issues (to be discussed further in Section 5.3); (3) the more complex and richer
TED content, which might have led to a wider subject coverage in the training set,
reducing model accuracy, a hypothesis requiring a future investigation.

Models developed with a fraction of the original training datasets (66.6%) per-
formed surprisingly well, with the highest performance occurring at 100% and 83.3%

for Tatoeba and TED, respectively. Besides, the competitive results in these cases
as compared to 66.6% indicate that the latter percentual may be sufficient for the
model not suffering from low-resource data availability issues, but a more accurate
percentage in each case requires a further investigation.

5.2.2 Effects of switching to subword level and ways of incor-

porating external knowledge

Aiming to evaluate the leveraging effects of Pre-trained Fast Text and BPE [39]
strategies in low-resource NMT tasks, BPE models were implemented exploiting
the Texar framework [59] (PyTorch version). In contrast, the alternative models
considered customized PyTorch [60] solutions.

In practical terms, there are a range of alternatives when applying Pre-trained
Word Embeddings for NMT, thus identifying the most cost-effective approach can
only be achieved experimentally. The main processing mechanism of the Trans-
form model includes a embedding layer at the encoder and decoder blocks. The

54

translation task is typically applied to a pair of distinct languages, hence one em-
bedding will be used as the source language weights associated to this layer in the
encoder, whilst the embedding from another language will perform similarly in case
of the decoder. Another option is to replace the randomly initialized weights in
either the encoder or the decoder, inducing the model to be trained from a "partial
warm-start".

Apart from the embedding strategy adopted, when loading the weights us-
ing the Gensim library, some optional parameters need to be specified in the
load_word2vec_format function: binary and unicode_errors. These parameters
are set to False and ”strict” by default, but the reference [54] recommends to load
the embeddings using False and ”replace”. Both combinations were experimented
to evaluate a possible impact over the performance scores, restricting only to the
TED Talks dataset. Table 5.2 exhibits the corresponding results, including in its
first line the last one from Table 5.1 to ease the comparison. All the Fast Text
experiments used the default parameters, except for the 4th row of the table that
used Fares’ recommendations [54].

Table 5.2: Transfer learning and Subword Embeddings translation results
Technique
applied

Tatoeba TED
Sacre-
bleu

NLTK
BLEU

Batch
Size Epochs

Sacre-
bleu

NLTK
BLEU

Batch
Size Epochs

None 57.99 74.07 512 58 25.24 55.36 28 30
Fast Text (en-
coder of [53],
randomly initial-
ized decoder)
with default pack-
age parameters

56.96 69.91 512 50 24.07 61.69 30 45

Fast Text (en-
coder of [53]
+ Gigaword
decoder) with
default package
parameters

N/A N/A N/A N/A 24.54 61.76 32 89

Fast Text (en-
coder of [53]
+ Gigaword
decoder) with
Fares’ parame-
ters [54]

N/A N/A N/A N/A 21.26 52.31 32 80

Subword BPE 66.63 83.02 512 40 40.26 72.20 32 40

Curiously, the adoption of Fast Text embeddings is related with an unexpected
performance drop for both datasets. Conversely, the gains observed with BPE,
which also exploits Subword Embeddings, were impressive. The variants following
the recommendations [54] achieved worse performance than those related to the
default parameters.

55

One possible hypothesis for Fast Text’s bad performance is a possible overspe-
cialization to other corpora domains, since it was produced with Internet data cor-
pus mined by a crawler [53]. The higher relative BPE gain with TED (15.02)
as compared to Tatoeba (8.64) signalizes the effectiveness of BPE in dealing with
more complex NMT scenarios, especially those involving a more diverse vocabulary,
avoiding the OOV occurrences.

5.2.3 Effectiveness of Back Translation when addressing dif-

ferent low-resource settings

One hypothesis still unanswered is whether the noise inserted by a model when
generating synthetic pairs may be beneficial to the performance of another model
or not, and in what extent. Addressing this problem requires an experimental ap-
proach, since different domains, synthetic text ratios, natural languages and model
characteristics constitute unique scenarios. The experiments covered in this section
aim to answer questions like: What may be considered as an ideal synthetic ratio
when applying BT? How the domain of the augmentation dataset impacts on the
performance scores?

The experiments reported here are restricted to the TED dataset, since the low
complexity of Tatoeba poses an easy challenge which could obfuscate possible higher
gains of model performance. Data augmentation was performed with synthetic
sentences produced with the own TED (using its left out sentences) and with the
News dataset. These experiments aim to verify if data augmentation can help to
reach higher BLEU scores under different low-data availability conditions.

Some scenarios of comparable models were created to evaluate the use of dif-
ferent domains versus the original (non-synthetic) dataset in the BT process. The
motivation lies in understanding if the addition of extra data brings a boost in
models’ performance or even if it could compromise BLEU score. Datasets with
different ratios of synthetic sentences were chosen, considering samples that contain
50%, 33.3%, 16.6% and 8.33% in terms of representivity. The artificial samples
were generated by a single Transformer operating with the reverse language pair,
i.e., EN-PT, reaching 27.73 and 63.8 points for the Sacrebleu and NLTK scores,
respectively.

In addition, one extra BT variant was produced assuming a higher number of
sentences than the original dataset size (120%). This variant included 20% of syn-
thetic TED sentences, which somewhat makes it comparable to the 83.3% + 16.6%
of TED dataset version, since both have the same synthetic ratio (20%). The idea
here was checking if adding more synthetic data on the top of the original dataset
might enhance the previously reported scores. One last detail of this experiment

56

is that the subset of back-translated sequences appended to the training sets was
randomly sampled using the following seeds: 157 (TED) and 0 (News). Table 5.3
exhibits the results.

Table 5.3: TED Talks Back Translation results
Technique applied Batch

size
Epochs
Trained

Sacrebleu NLTK
BLEU

Synthetic
Ratio

None (Original TED) 30 27 25.24 53.26 N/A
Reduction of TED to 50% 40 30 25.18 56.46 N/A
BT (50% of News synthetic examples) 34 33 21.80 51.34 50%
BT (50% of TED synthetic examples) 34 28 25.95 56.42 50%
Reduction of TED to 66.6% 36 29 26.22 56.81 N/A
BT (33.3% of News synthetic examples) 34 27 24.12 53.77 33.3%
BT (33.3% of TED synthetic examples) 34 27 27.54 58.95 33.3%
Reduction of TED to 83.3% 28 30 26.74 56.57 N/A
BT (16.6% of News synthetic examples) 34 29 31.28 63.30 16.6%
BT (16.6% of TED synthetic examples) 34 27 34.62 64.61 16.6%
Reduction of TED to 91.67% 34 24 26.74 56.57 N/A
BT (8.33% of News synthetic examples) 36 23 29.66 60.4 8.33%
BT (8.33% of TED synthetic examples) 34 24 32.27 65.13 8.33%
Augmented TED (100% of TED + 20%
of News)

28 24 29.31 60.80 16.6%

One may readily infer that the increasing score trend switches its behaviour,
depending on the size of the synthetic portion with respect to the whole dataset. For
a more severe restriction on the dataset size (50%), using other-domain synthesized
sentences is harmful to model performance, whilst own-domain synthesis resulted
in a marginally better BLEU score. However, for a lower percentage of synthetic
data, positive effects started to appear. Considering a less significant restriction
(≈ 33%), using the same domain sentences in Back Translation led to a mild increase
in both BLEU values when as to the Original TED, signalizing that such "noisy"
sentences may contribute to increasing the translation quality. When applying an
intermediate restriction (≈ 16.6%), the approaches from both domains are quite
effective, resulting in models that largely surpass the model developed over the
original data. Finally, when considering a small restriction (≈ 8.3%), the monotonic
behaviour of scores related to same data domain augmentation switches its trend
and starts decreasing, but still representing an improvement over the benchmark.
Regarding augmentation with synthesized data from other domain, the score also
decreases similarly. It is important to emphasize that the scores of all variants were
generated using the same test data, otherwise the comparison would not be fair.

One intriguing outcome of this experiment was that the Transformer variant
trained on a larger dataset behaved unexpectedly worse than variants considering
the same synthetic ratio on smaller datasets. The decrease in BLEU was significant:
more than 5 points (34.62 vs 29.31) when compared to the 83.3% TED version. On

57

the other hand, when considering the Transformer trained on the original dataset,
the addition of 20% of News data enhanced the original models’ performance. One
possible hypothesis to explain this, but that deserves further investigation, is that
since the TED dataset includes mixed domain content, the last piece of the dataset
(about 16%) may contemplate texts with a vocabulary pretty decorrelated to the
remaining dataset parts. The addition of more Back Translation data may have also
led to an increase on the model’s performance, but exploring this hypothesis further
will remain as a proposal for future work.

5.2.4 Comparison of Transformer candidates against the

Google Translate benchmark

To evaluate how efficient were the previous stategies in tackling low-resource issues,
we compare these models with a benchmark that isolates this limitation. The com-
parison is crucial to understand how well the model has mitigated issues related
to such restricted domains. Therefore, Google Translate was used as a reference
benchmark. Table 5.4 shows the results for BLEU considering the best performing
model candidates among the previous experiments, and for this benchmark.

Table 5.4: Performance comparison between our best performing models and Google
Translate

Model Batch
size

Epochs
Trained

Sacre-
bleu

NLTK
BLEU

Transformer (Original TED) 30 27 25.24 55.36
Subword BPE 32 40 40.26 72.20
Reduction of TED to 83.3% 28 30 26.74 56.57
BT (16.6% of News synthetic examples) 34 29 31.28 63.30
BT (16.6% of TED synthetic examples) 34 27 34.62 64.61
Google Translate (used on 11/01/2022) Unknown Unknown 52.19 78.74

Considering the Sacrebleu BLEU metric that includes sentence length penal-
ization, our best model reached 77.1% of Google’s performance, making use of a
model and computational infrastructure many orders of magnitude inferior in terms
of power consumption and usage cost, than the one associated with Google’s model.
When switching to the NLTK metric, which ignores the sentence length, the gap
between them significantly reduces, as this ratio goes up to 91.69%. We must stress
that the current Google model is able to identify even disease acronyms, such as
ACS (Acute Coronary Syndrome), one achievement almost impossible to be reached
for models developed over only one low-resource dataset. This model is even able
to predict translations having just part of the word as input.

Unfortunately, there is not much to be said regarding the underlying techniques
that empower Google’s model. The last papers over this topic that were made avail-
able suggest the use of a RNN-based encoder and a decoder with attention, but

58

the type of attention mechanism is not mentioned. When looking at more recent
information, based on a blog post of CASWELL and LIANG [61], they grant a
relevant increase in BLEU to the use of Back Translation techniques, specially for
low-resource languages. The latest papers available are heavily outdated [62] [63]
and the techniques have probably been deprecated or updated somehow. Recent
updates are mostly reported in blogs, with the latest one summarizing their Artifi-
cial Intelligence achievements in 2021 [64], with some mentions to the new Google
Translate features, such as the efforts towards reducing the gender bias.

The Google Translate model is probably built upon a carefully curated set of
techniques and parameters. One possibility to bridge the gap between it and other
models is to try a combination of the discussed low-resource strategies, although
there are no guarantees that their positive benefits would necessarily be constructive
when combined. As the main goal from this work is more focused on qualitative
outcomes, and not in boosting some performance score as far as possible, we focused
our energy in quantifying and interpreting patterns of translation errors. The next
section provides more detail of such attempts.

5.3 Qualitative study

Understanding a problem through the lens of a quantitative methodology can al-
ready yield a range of findings, but engineers often underestimate the potential of
a qualitative approach to complement such analysis. In modern tech companies,
both methodologies are commonly used together to provide a richer view of the
problem, which would be too restricted by solely considering a qualitative focus.
When speaking of product management, for instance, designers and analysts are
the left and right arms of the manager in the task of evaluating a scenario of in-
terest in a qualitative and quantitative way, respectively. The same analogy can be
applied here, where computational researchers working on the Natural Language do-
main often refer to linguistics experts to better address and solve a language related
problem.

5.3.1 Challenges of a qualitative analysis

When performing Machine Translation, a number of language, model specific and
data availability nuances might pose a range of challenges with a high potential
of hindering qualitative analysis results. Most of them are fairly widespread and
well-known by most researchers in this area, but depending on whether the dataset
has been curated, how much of its biases have been identified and addresses, and
also how well dimensioned it is; the struggle to create high quality translations can

59

increase significantly.
The first challenge are data quality issues, such as references that do not match

the exact expected translations, i.e., contain some imprecisions or errors. Data
quality issues may have a significant impact on the task of evaluating correctly the
translations from a model, and of course, they are also scattered throughout the
TED Talks dataset [51]. Such data quality issues can also intensify some known
flaws of using BLEU for evaluation, especially considering its lack of ability to catch
synonyms, resulting in an overestimated loss score due to human translation biases
in the references. Table 5.5 shows some sentences arbitrary selected from the TED
Talks database that illustrates these issues.

Table 5.5: Selected references with errors
Original Sentence (PT) Reference Suggested

Correction
A medida que fazíamos nos-
sas futuras expedições Eu es-
tava vendo criaturas em fontes
hidrotermais e às vezes coisas
que eu nunca tinha visto antes, às
vezes coisas que ninguém tinha
visto antes, que realmente não
haviam sido descritas pela ciên-
cia no momento em as vimos e as
imaginamos.

As we did some of our
subsequent expeditions, I was

seeing creatures at hydrothermal
vents and sometimes things that I

had never seen before,
sometimes things that no one
had seen before, that actually

were not described by science at
the time that we saw them and

imaged them.

Switch imaged to
imagined.

Fico feliz em dizer que não
temos este tipo de situação – um
cirurgião com quem conversei al-
guns anos atrás que tinha trazido
para aqui gêmeos xipófagos a fim
de separá-los, em parte para ficar
famoso.

I’m glad to say we don’t have the
kind of situation with - a surgeon
I talked to a few years ago who

had brought over a set of
conjoined twins in order to

separate them, partly to make a
name for himself.

Remove with from
the reference.

Fomos para São Paulo onde os
outdoors foram banidos.

We went to San Paulo where
they have banned outdoor

advertising.

The city must be
correctly

represented
without the tilde:

Sao Paulo.

All models show some sort of error patterns after being evaluated with a num-
ber of curated sentences, which are not usually trivial to explain. Besides, splitting
a qualitative analysis into smaller and focused aspects that can be addressed and
assessed by a bidimensional criterion is not also straightforward. However, the bet-
ter the answer found to this problem, the better the proposed analysis can provide
insights about models’ performance, especially in a practical sense. This scenario
raises a second challenge, regarding how to set the breadth and depth of the qualita-
tive criterion used. To address the complexity of defining such a criteria, the help of
an expert on the field is mandatory. These issues motivated us to hire someone with
9 years of teaching and translating experience in English, that describes himself as
a C1 level english speaker, according to the CEFR scale [4].

60

The participation of a translator in this work was a rewarded interaction. In
other words, he was called on demand to help, and the whole process was constrained
by my personal budget available for it. Since all the interactions were conducted
autonomously, without any type of sponsoring, the number of evaluated sentences
and thus the generalization power of the analysis is somewhat restricted despite
highly valuable in terms of innovation in this field.

Part of the qualitative work conducted here was dedicated to understanding
whether text complexity does influence the error patterns when generating transla-
tions or not. This led the translator to categorize Ted Talks database instances in
different levels according to the CEFR scale [4], which will be better detailed in a
specific section ahead.

The process of creating a qualitative bidimensional criterion turned out to be
the third challenge, especially regarding how to avoid a stronger inductive bias, i.e.,
biases not inherently related with the reference, but with the qualitative criterion
itself. The consulted translator defined some categorization ideas, but understanding
his rationale and giving feedbacks whilst avoiding to not bias the final decision has
demonstrated to be a very subtle process.

The bias question is also strongly linked to the process of sampling database
instances: samples had to be curated to match the expected complexities and reach
a certain number of excerpts per complexity. Random choices of excerpts were
picked when performing this task to avoid bias, demanding a lot of manual work.
However, when getting near the pre-established goal of 15 excerpts, the approach
demanded a more flexible conduction. Whenever a pair of excerpts was near the
threshold between two adjacent complexity levels, we had to discuss whether it could
be switched to the level requiring more samples or if it should remain in the original
level.

It is worth to emphasize that 100 distinct pairs of sentences were considered in
this analysis, but the total number of evaluations is quite higher, as the candidates
have changed in the first steps taken. Also, a higher number of models than what
is actually reported was selected for the qualitative experiments, because we had to
evaluate their pattern of errors and decide upon keeping them or keep exploring.
Increasing the number of evaluated sentences was also necessary to cover all the
complexity levels. Ensuring that all the main types of errors are covered in our
sample of the dataset was the ultimate goal. The clusters defined by each quali-
tative criterion should be well-scoped and avoid intersections to bypass a potential
interpretability loss. The discussion for both complexities and qualitative criteria
was fruitful as it helped to better grasp the consistency of the criteria chosen as the
samples were evaluated.

61

5.3.2 The qualitative criteria

As previously mentioned, two qualitative dimensions were created to validate the
hypothesis stated in the beginning of this chapter: sentence complexity and error
patterns. One relevant hypothesis raised before that is still to be addressed is that
the patterns of errors related to the same model but considering different text do-
mains (or subjects) and text complexities may very. We have chosen to complement
the observed error patterns with sentence complexity level labels aiming to isolate
the effects of both and to be better prepared to validate our initial hypothesis. An-
other intent behind this segmentation in complexity levels is that it also should
help to better understand the associations between text complexity and the error
patterns of the techniques exploited.

Setting the classes of errors

To analyse the patterns of errors generated by the model, a multicategorical criterion
was created along with a human translator to cluster the types of errors. Eight
categories were considered: Reference Matching, Omission, Out of Context, Verb
Tense, Meaning Deviation, Insertion, Repetition and <unk> errors. A detailed
error description of each category can be found at Table 5.6.

Table 5.6: Description of the error classes defined in the process of error analysis
Error class Description
Reference
Matching

A similar, but different word from the reference is used in a context to which
the sentence can still be understood, or the order of words are switched.

Omission Corresponds to ocassions wherein a part of the source sentence is ignored
by the model. Consequently, the translated sentence does not integrate the
corresponding content.

Out of Context The model uses a word that doesn’t fit in the surrounding context, and the
translation loses cohesion. This error also contemplates nonexistent words
created by BPE.

Verb Tense When conjugating a verb, the model misses to capture the right tense and
changes it on its guess, generating an innaccurate translation.

Meaning Devi-
ation

The model produces a sequence of words that is way different from the ex-
pected translation. This usually happens when several words are changed and
the sentence is rephrased to preserve cohesion between these new words, re-
sulting in a loss of meaning when compared to the source sentence.

Insertion This category indicates that the algorithm has inserted words that are unnec-
essary given the context.

Repetition Happens when the likelihood estimate of the next translation becomes biased,
inducing the model to keep translating the same set of words more than once.

<unk> The traditional token that a model outputs whenever none of the words known
by it would fit in a given context.

We must recall that the <unk> error class is inside the list but it naturally hap-
pens when the model sees a word during the inference process that was not explored
in training. This category is directly related to the cohesion and coherence of the

62

model when processing a sentence. All the sentences evaluated in the qualitative
analysis were classified under these 8 classes of errors. For the sake of illustration,
Table 5.7 shows some cherry-picked sentences and their correspondent evaluation
regarding error classes.

Table 5.7: Examples of wrong translations classified according to the proposed error
criterion

Original sentence Reference Model outcome English error diagnostic
E porque isso é ver-
dade?

And why is it
true?

And why is this
true?

Reference Matching
error: switched "it" for
"this", without losing

meaning.
Michael Specter: O
perigo da negação
da ciência.

Michael Specter:
The danger of
science denial.

Michael
<unk>: the
danger of
science.

1) Omission error: denial; 2)
<unk> error: Specter was
interpreted as an unknown

token.
Mas, na verdade,
nós somos muda-
dos. Somos mar-
cados, sem dúvida,
por um desafio,
quer físicamente,
emocionalmente,
ou ambos.

But, in fact, we
are changed. We
are marked, of
course, by a
challenge,
whether

physically,
emotionally or

both.

But in fact,
we’re changed.
We’re <unk>,
of course, by a

challenge,
whether we can

physically,
emotionally, or

both.

1) Omission error: the
model omitted "marked"; 2)
Out of Context error: the

model added "can",
completely changing the
original meaning of the

sentence; 3) <unk> error:
"marked" wasn’t successfully

translated.
Ganhamos um
monte de prêmios.

We’ve won a
bunch of awards.

We won a
bunch of

awards. We
won a lot of
awards.

1) Verb Tense error:
switched the Present Perfect
form in "we’ve won" for

Simple Past in "we won"; 2)
Repetition error: "We won

a lot of awards" was
inserted, repeating the

original reference’s meaning.
E exigiu muita
preparação, tive-
mos que construir
câmeras e luzes e
todo tipo de coisas.

And it took a lot
of preparation, we

had to build
cameras and
lights and all

kinds of things.

And it was a lot
of please, we
had to build
cameras and
lights and all

kinds of things.

Meaning Deviation
error: the model switched

"it took a lot of preparation"
for "it was a lot of please".

A mesma coisa, só
que maior.

Same thing, only
bigger.

The same thing,
only bigger
than that.

Insertion error: the model
inserted "the" and "than
that" in the translation.

The selected examples in Table 5.7 low in complexity and focused on being
didactic. They contain simpler mistakes than the average, as the goal is just to
illustrate the descriptions of error categories. A small piece of text containing many
errors makes the process of distinguishing between these error categories even harder,
which would compromise the didactic purpose of Table 5.7 and might increase the
chance of mislabelling. Another factor that contributes to the same issue is the
sentence complexity, which is covered as one of the qualitative pillars of the analysis.

63

Setting the complexity categories

To define the dataset instances included in this qualitative analysis, random samples
were selected from TED, analysed by the human translator, and stratified according
to the CEFR scale [4]. Due to dataset characteristics, this study restricted its
coverage to sentences classified as A1, A2, B1 and B2. A very few sentences were
classified as from the C1 and C2 levels in this set: less than 5 samples from a total of
100 analysed sentences. As time and budget were natural limitations, we decided to
remove them from the experiments. Thus, from the 100 distinct sentences evaluated,
60 were used for the experiments performed in this work, with 15 belonging to each
category of complexity.

Categorizing sentences solely based on the general descriptions available for the
CEFR levels is a hard task. Table 5.8 illustrates cases found in this analysis, with
the corresponding complexity assigned by the translator and the rationale behind
this classification according to him. It helps in the task of absorbing the scope of
the qualitative criteria, since it has one sample per complexity level and most of the
errors are classified and the reasons for that are exposed.

We must stress that there are no clear hard rules to describe the thought process
behind choosing a given complexity category or error class. The existence of some
error patterns tends to favour the evaluation towards a label, but a broader evalu-
ation and richer exploratory analysis would be necessary to define more embracing
and generic rules. Some other sentences are available in a separate repository for a
more interested reader1.

Design of experiments

The classification in error classes and complexity levels for all the 60 sentences cul-
minated in a dataset with a lot of binary columns labelling each sentence regarding
the occurrence or not of each one of the qualitative error categories. It isn’t trivial to
extract insights from these outcomes by simply inspecting the ordinary frequencies
observed for this dataset in its raw form, as there are bidimensional associations
that couldn’t be easily identified or described by this way. This issue motivated us
to use dimensionality reduction and clustering techniques to unveil bidimensional
patterns.

The set of experiments dedicated to clarify the translation error patterns was
carefully thought to evidence possible associations between the model candidate,
sentence complexity and their respective class of error patterns. To guide the reader
over the qualitative analysis, below there is a summary of the experiments performed:

1Detailed error descriptions and some evaluation samples can be found at https://github.
com/Art31/pt-nmt-low-resource.git.

64

https://github.com/Art31/pt-nmt-low-resource.git
https://github.com/Art31/pt-nmt-low-resource.git

Table 5.8: Evaluation of some translated sentences
Original sen-
tence

Reference Model guess Model
Type

Complexity
and reason

English error
classification

Você não
muda nunca,
né?

You never
change, do

you?

You don’t
change it, do

you?

Trans-
former
with
BPE

A1 - Simple
present

1) Insertion: it was
added. 2) Reference

Matching :
Never/Don’t are
close in meaning

Tente pergun-
tar coisas as-
sim: "Como é
que foi aquilo"
?

Try asking
them things

like, "what was
that like?"

Try to ask
things like

this: "how is
it that?"

Trans-
former
with
BPE

A2 - ING
used as
infinitive
and inter-
mediate
level

question in
Simple
Past

1) Verb Tense:
switched "try

asking" (continuous)
for "try to ask"
(infinitive). 2)

Omission: "them".
2) Insertion: "this".

3) Meaning
Deviation: "what
was that like?" was
changed to "how is

it that?"
E vocês
sabem, uma
epifania é
normalmente
algo que en-
contramos
que tínhamos
deixado cair
em algum
lugar.

And you know,
an epiphany is

usually
something you
find that you

dropped
someplace.

And you
know, an

epiphany is
normally
something
that we’ve
found that
we’d left

somewhere.

Trans-
former
66%
of

TED

B1 - Simple
present and

simple
past, with
uncommon
vocabulary

1) Reference
Matching :

usually/normally. 2)
Meaning Deviation
and Verb Tense:
"we’ve found that

we’d left
somewhere" lost
both its original

meaning and tense
Ele tinha
acabado
de ouvir a
primeira e
a quarta
sinfonia de
Beethoven,
e veio até o
backstage se
apresentar.

He had just
heard a

performance of
Beethoven’s

first and fourth
symphonies,
and came

backstage and
introduced
himself.

He’d just
heard the

first one and
the fourth

symphony of
Beethoven,
and came to
the <unk>
to introduce

him.

Trans-
former
33%
of

TED

B2 - Past
perfect and
past simple

1) Omission: The
model omitted "a
performance of"

that appears in the
original sentence. 2)

Unk error. 3)
Insertion: "first

one".

1. Statistical hypothesis test over the proportion of errors committed by each
model

• Multiple Fisher exact tests were used to infer whether a particular model
and technique combination indeed contributes to mitigate some modali-
ties of errors, or maybe if a given model is more prone to producing an
error than others or not.

2. Hierarchical clustering analysis

• Bidimensional associations between the errors, models and sentence com-
plexity were evaluated in this experiment aiming to shed light on possible

65

patterns of errors associated to each technique.

3. Correspondence analysis

• This algorithm also allows the analysis of bidimensional associations, ex-
ploring a visual 2-D representation that enables interesting visual inter-
pretations, complementing the previous analysis

In the following experiments, only one of the Back Translation Transformers
generated in this work is considered. The model there referred to as BT is the
Transformer trained on a dataset composed 83.3% of the original TED and 16.6%
of the other part of the same dataset subjected to BT.

5.3.3 Error proportion analysis with the Fisher Exact test

The purpose behind this experiment is to understand if solely based on the error
prevalence, we can assume that one variant (model submitted to sentences of some
complexity) is biased to a specific error class, with statistical significance. An ap-
propriate hypothesis test was chosen for this goal, given the limited sample size:
the Fisher Exact Test. Fifteen sentences from each complexity level were presented
to all the four candidate models: (1) the best Back Translation variant, trained on
83.3% of TED augmented with 16.6% of TED back-translated data, (2) the Trans-
former trained over a fraction of 33% of TED, (3) the Transformer trained on 66.6%

of TED, and (4) the BPE variant, trained over the entire dataset.
The rationale for using such candidates is based on their performance on the

previous experiments and the structural differences between them. We must recall
that one of the hypothesis is whether switching to the subword level and using
data augmentation leads to some impact in our qualitative indexes. This analysis
included the reduced TED Transformers to evaluate possible effects of restricting
the dataset size over the error patterns.

Table 5.9 depicts the number of errors committed by each model, stratified by
sentence complexity and error category. The cells inside the complexity category
rows indicate in bold which is the highest prevalence. The cells belonging to the
rows with an average label show numbers in bold if the hypothesis test involving
that error and that model had a statistically significant result, which will be further
detailed in Section 5.3.3. Considering the limitations of this analysis, such as the
reduced sample size and the availability of only one translator, all models performed
quite similarly regarding the Omission and Verb Tense prevalence. Nonetheless,
BPE stands out by having the lowest average prevalence of Insertion, Repetition and
Omission errors. Curiously, the Back Translation variant has the highest prevalence
of Out of Context and Reference Matching errors, which may be an influence of

66

using of artificial data. Both Transformers trained on reduced TED have a very
similar distribution of errors considering the error types as their average prevalences
are usually very close, indicating that this modality of low-resource constraint may
have a significant impact on their errors patterns.

Table 5.9: Ratios of class errors per dataset and sentence complexity (see text)
Model
Name

Com-
plexity

Refer-
ence

Matching

Omis-
sion

Out of
Con-
text

Verb
Tense

Meaning
Devia-

tion

Inser-
tion

Repe-
tition <unk>

error

BT

A1 6/15 3/15 1/15 1/15 0/15 1/15 0/15 1/15
A2 13/15 7/15 2/15 4/15 3/15 6/15 1/15 3/15
B1 13/15 5/15 3/15 5/15 5/15 5/15 0/15 3/15
B2 15/15 11/15 0/15 11/15 7/15 10/15 1/15 8/15

Average 78.3% 43.3% 40.0% 35.0% 25.0% 36.6% 3.3% 25.0%

33%
TED

A1 5/15 3/15 0/15 2/15 3/15 7/15 4/15 4/15
A2 11/15 7/15 5/15 4/15 4/15 6/15 2/15 5/15
B1 13/15 9/15 5/15 6/15 8/15 3/15 2/15 5/15
B2 14/15 11/15 4/15 10/15 13/15 7/15 5/15 9/15

Average 71.6% 50.0% 23.3% 36.6% 46.6% 38.3% 21.6% 38.3%

66%
TED

A1 4/15 3/15 1/15 0/15 4/15 7/15 5/15 3/15
A2 12/15 8/15 3/15 3/15 3/15 6/15 2/15 4/15
B1 12/15 8/15 3/15 6/15 5/15 4/15 4/15 5/15
B2 12/15 11/15 3/15 10/15 9/15 7/15 6/15 7/15

Average 66.6% 50.0% 16.6% 31.6% 35.0% 40.0% 28.3% 31.6%

BPE

A1 5/15 0/15 0/15 1/15 2/15 4/15 0/15 0/15
A2 10/15 9/15 6/15 4/15 4/15 1/15 0/15 0/15
B1 13/15 8/15 1/15 8/15 4/15 3/15 0/15 0/15
B2 14/15 9/15 5/15 9/15 9/15 8/15 1/15 0/15

Average 70.0% 43.3% 20.0% 36.6% 31.6% 26.6% 1.6% 0.0%

Results from Table 5.9 underwent multiple Fisher Exact tests to evaluate if
the differences observed between the error ratios from all different pairs of models
are statistically significant. This analysis considered multiple 2x2 tables (one to
each class of error), with rows defining the model and columns associated with the
occurrence or not of some class of error. The significance level was set to 5%;
thus, the null hypothesis was rejected whenever the p-value was lower than 0.05,
representing a statistically significant difference between the pair of ratios under
comparison.

The experiments considering the Fisher Exact Test will evaluate the effects of
associating 2 different pairs of dimensions: first, the classes of errors and model
variants, and later the classes of errors along with the categories of sentence com-
plexity. Following this approach, at first all the models were compared with each
other considering the percentage of errors among different classes of errors, to check
if the observed differences are statistically significant. The same test was also con-
ducted to compare the percentages of errors between the different classes of sentence
complexity. Each experiment has a different purpose: the first experiment analyses
mainly the hypothesis that different strategies adopted for producing a same model

67

may influence on the error patterns, and the second experiment validates whether
a change in the complexity of a sentence results in a different percentage of errors
per class. The results for each case are discussed below.

Error classes and model variants

This experiment considers 8 error classes and 4 variants, hence a total of 32 test
case scenarios were created. The findings of this analysis are displayed in Table
5.10, considering only the cases to which a statistically significant difference was
observed.

Table 5.10: Summary of the multiple Fisher Exact test outcomes for the error-model
dimension pair, restricted to statistically significant pairs (see text)

Error
class

Benchmark
model

Behaviour Challenger
model

p-value Odds
Ratio

Meaning
Devia-
tion

BT
Transformer

it produces
significantly less

errors than

33%
Transformer

22× 10−3 0.381

Repetition BT
Transformer

it produces
significantly less

errors than

33%
Transformer

4× 10−3 0.125

Repetition BT
Transformer

it produces
significantly less

errors than

66%
Transformer

3× 10−4 0.087

Repetition 33%
Transformer

it produces
significantly more

errors than

BPE
Transformer

98× 10−5 16.319

Repetition 66%
Transformer

it produces
significantly more

errors than

BPE
Transformer

4× 10−5 23.325

<unk> BT
Transformer

it produces
significantly less

errors than

33%
Transformer

17× 10−5 0.146

<unk> BT
Transformer

it produces
significantly less

errors than

66%
Transformer

249×10−5 0.196

<unk> BT
Transformer

it produces errors,
which is not the case

of

BPE
Transformer

57× 10−3 ∞

<unk> 33%
Transformer

it produces errors,
which is not the case

of

BPE
Transformer

174×
10−10

∞

<unk> 66%
Transformer

it produces errors,
which is not the case

of

BPE
Transformer

701×10−9 ∞

The results indicate that models trained on reduced versions of the TED dataset
are prone to reproducing the Repetition error more than the other techniques, as
the related odds ratio are much higher than one in these cases. Also, the Meaning
Deviation error seems to be better addressed by the Back Translation model, as
compared to the 33% Transformer, which has the poorest BLEU score of them.

68

Regarding the <unk> error, naturally the BPE Transformer outperforms any other
variant, as it replaces <unk> tokens for customized words. On top of that, the
Back Translation Transformer also had a statistically significant lower percentage of
<unk>, Repetition, and Meaning Deviation errors as compared to models trained
on reduced versions of the TED dataset.

Error classes and sentence complexity

This experiment has applied the hypothesis test to a combination of 8 error classes
and 6 complexity pairs (considering A1, A2, B1 and B2), resulting in a total of
48 test cases. Speaking of the possible associations between the error patterns
and the categories of sentence complexity, for seven out of eight error classes it
was identified at least one statistically significant difference between two different
classes of sentence complexity. This result corroborates with the hypothesis that
a change in the sentence complexity may affect the type of error. In most error
classes, except for the Repetition error, the complexities that are spaced more than
1 position further away (e.g. A1 and B1 or A2 and B2), the hypothesis test have
rejected the null hypothesis. In the following bullets, the corresponding results are
listed per error class:

1. Reference Matching error: Meaningful differences were reported by all tests,
except for the pairs A2|B1 and B1|B2;

2. Omission error: Meaningful differences were reported by all tests, except for
the pairs A2|B1 and A2|B2;

3. Out of Context error: Meaningful differences were reported by all tests, except
for the pairs A2|B1, A2|B2 and B1|B2;

4. Verb Tense error: Meaningful differences were reported by all tests, except for
the pair A2|B1;

5. Meaning Deviation error: Meaningful differences were reported by all tests,
except for the pairs A1|A2 and A2|B1;

6. Insertion error: Meaningful differences were reported by all tests, except for
the pairs A2|B1, A1|B1 and A1|A2;

7. Repetition error: No relevant difference is reported by the tests;

8. <unk> error: Meaningful differences were reported by all tests, except for the
pairs A2|B1, A1|A2 and A1|B1.

69

In summary, these results signalize that our criterion for segmenting sentences in
levels of complexity seems to be relevant for understanding error patterns, otherwise
most of the previously discussed tests wouldn’t point out any relevant difference.
Also, some techniques have exhibited a very similar prevalence for some classes
of errors, which may be interpreted as some degree of similarity. However, other
multidimensional associations might be hidden in data in the previous analysis.
In order to get further insights over the outlined hypothesis at the beginning of
this chapter, we have explored some multivariate analysis tools as described in the
following.

5.3.4 Hierarchical Clustering (HC) evaluation

Reputed as one of the most classical unsupervised clustering techniques, the
HC algorithm is widely used for segmentation, recommendation, and even for ex-
ploratory data analysis. This algorithm can be roughly summarized as follows: it
starts assigning each data point to a separate cluster, calculates the dissimilarity
between each pair of them, and merges the pair which is most similar. This process
is repeated until no further merges can be made. This algorithm also has a few
hyperparameters to be settled by the practioner: the distance metric used to the
proximity matrix calculations (which must be carefully chosen according to the type
of data) and the linkage method, which defines how these clusters must be merged.
Practical implementations often allow setting the number of clusters or the maxi-
mum dissimilarity (typically distance) measure. All these aspects will be discussed
in the implementation section in the following.

Why use HC for a qualitative analysis?

Our main goal with using clustering was to spot patterns in the models’ outcomes.
As we aim for interpretability, k-means stands out as a nice competitor to HC. Table
5.11 shows a brief summary the major k-means and HC characteristics to support
our decision making.

When compared to k-means Clustering, HC does not require one to define the
number of clusters to partition data in advance, providing a family of nested clus-
tering alternatives which can be freely chosen by the user. HC also disposes of
intuitive visualization techniques, such as the Dendrogram, that may be helpful
when choosing an appropriate number of clusters. Also, k-means may not fit ad-
equately categorical data, as it considers the Euclidian distance between data and
cluster centers. As a result, HC tends to be less biased than its competitor, despite
the linkage parameter inserting some bias on cluster formation. Conversely, HC also

70

Table 5.11: Comparison of k-means and HC techniques
Criteria Hierarchical Clustering k-means Outcome
Bias The linkage algorithm

choice inserts a
particular bias during
merge operations.

It uses the Sum of
Squares Error (SSE)

and assumes
normally distributed

clusters.

HC has a higher
flexibility regarding
bias as compared to
k-means, hence HC

wins.
Scalability O(n2) complexity[65] O(n) complexity k-means wins
Methodology to
find an adequate
number of clus-
ters

The final clustering can
be found by setting a
maximum dissimilarity
threshold or by visually

inspecting the
Dendrogram.

It requires several
experiments and
setting a figure of

merit for evaluation.

HC characteristics
easy the task of

finding an adequate
number.

has a higher computational cost O(n2)[65] than k-means (O(n)).
In summary, the HC algorithm provides a set of linkage approaches that could be

selected to better match the intrinsic structure of data. This turns the algorithm less
susceptible to the choice of hiperparameters and more intuitive to interpret based on
the Dendrogram visualization. It enables HC to be more flexible to match different
kinds of data such as the categorical type, which is the case here. The flexibility in
terms of metrics used for the merging criteria comes with the drawback of the cost
of poor scalability. Since our dataset is quite small, this issue is irrelevant.

The Hierarchical Clustering algorithm

Hierarchical clustering is a broad term that refers to 2 categories of algorithms: those
that work bottom up (agglomerative) and the ones that work top-down (divisive),
with the former being more commonly used. The main difference between both is
that the agglomerative variant sequentially merges small clusters into bigger ones,
whilst the divisive approach does the opposite, starting with all data combined in a
single cluster and then splitting it according to some similarity metric.

To better understand the agglomerative variant, let us assume that the distance
between 2 clusters i and j is defined by dij, with the cluster i containing Ni objects.
Consider also a matrix D representing the set of all remaining distances between the
clusters, and the set of l-dimensional vectors X = {xi, i = 1, . . . , N} that are to be
clustered. This matrix is updated in each iteration, and its elements are defined by
a similarity or dissimilarity metric. The initial clustering R0 consists of N clusters,
each one containing a single element of X . At the first step, the clustering R1 is
produced. It contains N−1 sets, such that R0 ⊂ R1. This procedure keeps iterating
until the final clustering RN−1 is obtained, which contains a single set (X). The
pseudocode for the HC algorithm is as expressed in Algorithm 2.

The distance used to calculate the matrix D is usually of free choice, but de-

71

Algorithm 2 Pseudocode for Hierarchical Clustering (according to the linkage cri-
terion), taken from THEODORIDIS and KOUTROUMBAS [66] (chapter 13)

• Initialization:

– Choose R0 = {Ci = {xi}, i = 1, . . . , N} as the initial clustering
– t = 0

• Repeat:

– t = t+ 1

– Among all possible pairs of clusters (Cr, Cs) in Rt−1 find the one, say
(Ci, Cj), such that

g(Ci, Cj) =

{
minr,sg(Cr, Cs), if g is a dissimilarity function
minr,sg(Cr, Cs), if g is a similarity function

(5.1)

– Define Cq = Ci ∪ Cj and produce the new clustering Rt = (Rt−1 −
{Ci, Cj}) ∪ {Cq}

– Until all vectors lie in a single cluster

pending on the linkage approach there might be constraints in terms of the options
available (e.g. in the Ward linkage). Some possible linkage criteria are:

1. Single Linkage: It can be seen as a nearest neighbor modality of clustering,
where the distance between two groups is defined as the distance between their
two closest instances. Illustratively speaking, this algorithm has a tendency of
sequentially adding instances to a single group, which may lead to a premature
merging of groups when compared to other linkage approaches.

2. Complete Linkage: Here, the similarity between two groups is defined by the
similarity value between the pair of instances that are the farthest from each
other, also known as the furthest neighbor method. This method usually
yields to clusters that are well-separated, but outliers can cause the merging
of groups later than what might be considered as adequate.

3. Simple Average: It is also called as the weighted pair-group method, this
algorithm defines the distance between two groups as the average distance
between each pair of their members. This distance is weighted by the number
of instances integrating each group.

4. Group Average: This linkage algorithm is also known as the unweighted pair-
group method. It is similar to the simple average, differing by not assuming
weighting constants.

5. Ward’s Minimum Variance: This method assumes the Euclidean distance as
the dissimilarity measure, forming groups so that the pooled within-group sum

72

of squares is minimized. At each step, the two clusters selected for fusion are
those which result in the least increase in the pooled within-group sum of
squares.

Interpreting HC outcomes

Before starting to interpret the results derived with Hierarchical Clustering, one
must guarantee that the resulting cluster appropriately reflects the intrinsic struc-
ture of data. This is usually performed by setting a maximum similarity threshold
or using a metric to validate which Dendrogram cut would allow a better data
segmentation.

The Dendrogram is a tree diagram that allows one to visualize each group merg-
ing operation performed by the algorithm, as well as the resulting dissimilarity of
the new clusters formed. The Dendrogram is usually truncated depending on the
number of data points each identified group has, and when that happens, the corre-
sponding numbers in the x axis come between brackets, otherwise they represent the
identifier for that data point. Also, when truncated, in the y axis the visualization
will start with the dissimilarity threshold used for that operation, not 0. An untrun-
cated version of the diagram is depicted in Figure 5.1, and it works by stretching
lines from the x axis for distinct heights (the y axis). The height that they form a
right angle represents the distance threshold where two cluster groups gets merged
into other groups. Each vertical line may represent a single data point (which is the
case) or a set of data points.

The number of clusters that would be formed at a particular cutoff can be easily
determined in Figure 5.1 by drawing a horizontal line at that value in the y axis
and counting the number of horizontal lines intersected by it. For instance, one line
drawn at a dissimilarity value of 1.5 would split the data into 4 different clusters.
An adequate number of clusters can be found by visual inspection, where the cutoff
line can be drawn at any line segment that represent a dissimilarity hop between
group merges.

Regarding the use of similarity metrics for evaluating clustering, the Silhouette
coefficient is one that is most commonly used. It consists in measuring how sim-
ilar a data point is to its own cluster (cohesion) when compared to other clusters
(separation). The Silhouette value s(i) is defined for a data point xi as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (5.2)

where a(i) is the average distance between xi and all the other data points from the
cluster to which xi belongs, and b(i) is the minimum average distance from i to the
data points integrating other clusters. Whenever a(i) = b(i) or the cluster related to

73

Figure 5.1: Dendrogram plot for an illustrative example.

xi contains only a single data point, the Silhouette coefficient is set to 0, following
the orientations of ROUSSEEUW [67], the creator of this metric.

The range of s(i) is [−1, 1]. If it is near its maximum, close to 1, this means
that a(i) is much smaller than the smallest dissimilarity b(i). Therefore, we can
assume that xi is well-clustered, as the distance between it and the other cluster’s
data points is very small. If s(i) is about zero, this means that a(i) and b(i) are
approximately equal, hence it is not clear whether xi is better assigned to either
cluster A or B. The worst scenario takes place when s(i) is close to −1, meaning
that a(i) is much larger than b(i), so xi is on the average closer to the cluster B than
to A. In this case, it makes more sense that xi should have been assigned to B, an
evidence that xi is misplaced. Usually, when analyzing a cluster with the Silhouette
coefficient, a single value is generated for the whole dataset, defined as the average
of the Silhouette values computed for all data points.

The use of both approaches (Silhouette Coefficient and Dendrogram inspection)
or even other literature alternatives is strongly recommended to find an appropriate
number of clusters. It is also recommended to conduct an exploratory analysis over
the clusters identified, firstly to check if all of them contain a reasonable number of
data points, i.e., if they are representative. Then, descriptive metrics can be derived
to evaluate if the cluster unveils multidimensional similarities between its points, or
if it is unclear that they are grouped. If interpreting the cluster outcomes is hard,
then maybe the number of clusters or the algorithm chosen is not the most adequate.

74

Analysis of models and classes of errors

To perform this experiment, all the 15 sentences extracted to match each one of the
4 language complexity classes were labelled with a binary variable indicating the
absence or presence of one or more classes of error described in Table 5.6. There-
fore, each of the 4 models under analysis (described in Section 5.3.3) involves 60
sentences, totalling 240. In practical terms, we are speaking of a dataset that con-
tains one binary column for each type of error (hence, 8 columns), along with other
binary columns that represent the models involved in the translation and columns
that represent the complexity to which each sentence was classified. To avoid the
evaluation of 3 dimensions simultaneously, we only analysed two possible iteractions
between the pairs of interest: models versus classes of errors and classes of sen-
tence complexity versus classes of errors. The former one will be presented in this
subsection, and the latter in the sequence.

Hierarchical Clustering considered the Manhattan distance, appropriate for cat-
egorical data, which is the case here since the columns representing the error classes
are binary. The Linkage criterion was chosen after running some experiments with
different linkage modalities and numbers of clusters, with the goal of better under-
standing how the clusters are composed. The complete linkage approach was chosen
since the other alternatives resulted in many clusters representing few data points,
an issue that could potentially hinder our analysis.

Figure 5.2: Dendrogram related to both HC experiments.

75

Recall that in this case the HC algorithm has fit a dataset with 240 distinct
sentences, which represent its rows with an unique identifier, and 8 binary columns
representing the presence of an error class in the translated sentence. The models
responsible for producing the translations were kept in a separate data structure, but
with the same identifier, so after the algorithm produces its result, we could easily
join and understand how the models were clustered. The Dendrogram corresponding
to the algorithm applied with complete linkage can be seen in Figure 5.2, with a
dissimilarity range starting from 2 since it was truncated.

Inspecting the graph induces the reader to a doubt regarding where to put the
cutoff, since the groups’ dissimilarities are somewhat similar at lower cluster levels.
This is a consequence of using categorical data. It looks like the distances are binned
and the number of clusters could not be inferred by graphical inspection in this case.
Despite such limitations, there seem to have some options such as 2, 5 and 9 clusters.
Additionally, we computed the Silhouette coefficient for some linkage approaches
and a number of cluster groups ranging from 3 to 10. The resulting coefficients are
arranged in Table 5.12.

Table 5.12: Silhouette coefficients per linkage approach and number of clusters.
Linkage Number of

clusters
Silhouette
coefficient

Complete 3 0.1415
Complete 4 0.1442
Complete 5 0.2320
Complete 6 0.2199
Complete 7 0.2368
Complete 8 0.2665
Complete 9 0.2931
Complete 10 0.2930

Considering the coefficients summarized in Table 5.12 and also identifying the
number of sentences per cluster, we concluded that the most appropriate cluster
involves 5 groups. Note that if the number of clusters is increased, the complexity
of interpreting the results also increases significantly, without a meaningful com-
pensation from the coefficient side. For instance, assuming 10 groups would lead to
an increase of only 0.061 points (about 26%), whilst adopting 7 groups would lead
to an increase of 0.048 (about 2%). On the other hand, when choosing a number
of clusters as small as 3, the decrease in the coefficient would be of 0.0905 (about
39%), which is too high.

After setting the number of groups to five, some descriptive metrics were gen-
erated for each cluster to help in understanding how the dataset was segmented:
the percentual incidence of each class of error per cluster, the overall percentage of
errors per cluster, and the number of sentences belonging to each cluster. All these
metrics are exposed in Table 5.13.

76

Table 5.13: Prevalence of the classes of errors and the models involved per cluster.
Dimension
Name

Dimension Value Cluster
0

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Error class

Reference Matching 86.0% 74.0% 97.8% 41.7% 0.0%
Omission 46.0% 58.0% 48.3% 75.0% 20.5%

Out of Context 16.0% 2.0% 18.0% 100.0% 12.8%
Verb Tense 98.0% 52.0% 1.0% 58.3% 2.6%

Meaning Deviation 18.0% 62.0% 29.2% 91.7% 15.4%
Insertion 26.0% 72.0% 23.6% 50.0% 23.1%
Repetition 12.0% 40.0% 2.2% 8.3% 10.3%
<unk> 2.0% 80.0% 14.6% 16.7% 2.6%

Model Name

33% TED Transformer 22.0% 30.0% 23.6% 33.3% 23.1%
66% TED Transformer 22.0% 38.0% 20.2% 16.7% 25.6%

BPE Transformer 34.0% 4.0% 27.0% 41.7% 30.8%
BT Transformer 22.0% 28.0% 29.2% 8.3% 20.5%

Overall error prevalence per cluster 38.0% 55.0% 29.4% 55.2% 10.9%
Total of sentences per cluster 50 50 89 12 39

Table 5.13 shows that the least representative cluster has the highest incidence
of errors, whilst still there is a cluster with 50 sentences that has an incidence which
is high and very close to the previous number. Some errors like Omission are more
evenly spread among all clusters, whilst others like Reference Matching tend to vary
a lot. These are the first impressions of the data, a more detailed analysis combining
everything will be given after this table is complemented with more results.

Another goal of the cluster analysis is to understand what are the underlying pat-
terns that motivated the algorithm to group sentences together, specially in terms of
the types of errors that the model variants produce. Aiming to better derive similar-
ities, we have performed an experiment summarizing the classes of errors observed
in each cluster, considering only pairs of cluster and errors with an overall prevalence
higher than 50%. The expectation here is to list the strongest associations between
the classes of errors and the models, reduce the subjectivity when interpreting the
results, and derive practical conclusions about the error weaknesses or strengths of
each model. To help in performing such analysis, the error prevalence for each model
was ranked per cluster and the results can be found in Table 5.14, where if two or
more models reach the same error prevalence in one cluster, they will be tied at the
same ranking position. In this table, each row represents the group of sentences of
one cluster that were generated by one type of model.

Now each cluster involved in the model-error experiments will be commented,
considering the previous Tables 5.13 and 5.14. Although the cluster highlights and
the ranking of error class prevalences per model are interesting, we still have to
interpret qualitatively the bidimensional relationships by analysing this data to be
able to understand the whole picture. In the bullet points below, statements and
conclusions about the data previously presented in the tables are made. They aim
to clarify some of the relationships that the HC algorithm helped to spot:

77

Table 5.14: Rank of the most frequent errors per model in each cluster
Row Error class Prevalence Sentences Model Name Rank Cluster
1 Verb Tense 100% 11 33% TED Transformer 1 0
2 Verb Tense 100% 11 66% TED Transformer 1 0
3 Verb Tense 100% 17 BPE Transformer 1 0
4 Verb Tense 91% 11 BT Transformer 2 0
5 Reference Matching 91% 11 33% TED Transformer 1 0
6 Reference Matching 82% 11 66% TED Transformer 3 0
7 Reference Matching 88% 17 BPE Transformer 2 0
8 Reference Matching 82% 11 BT Transformer 3 0
9 Insertion 87% 15 33% TED Transformer 2 1
10 Insertion 68% 19 66% TED Transformer 3 1
11 Insertion 100% 2 BPE Transformer 1 1
12 Insertion 57% 14 BT Transformer 4 1
13 Verb Tense 40% 15 33% TED Transformer 3 1
14 Verb Tense 37% 19 66% TED Transformer 4 1
15 Verb Tense 100% 2 BPE Transformer 1 1
16 Verb Tense 79% 14 BT Transformer 2 1
17 Meaning Deviation 87% 15 33% TED Transformer 2 1
18 Meaning Deviation 53% 19 66% TED Transformer 3 1
19 Meaning Deviation 100% 2 BPE Transformer 1 1
20 Meaning Deviation 43% 14 BT Transformer 4 1
21 <unk> 87% 15 33% TED Transformer 1 1
22 <unk> 79% 19 66% TED Transformer 3 1
23 <unk> 0% 2 BPE Transformer 4 1
24 <unk> 86% 14 BT Transformer 2 1
25 Omission 60% 15 33% TED Transformer 2 1
26 Omission 53% 19 66% TED Transformer 3 1
27 Omission 50% 2 BPE Transformer 4 1
28 Omission 64% 14 BT Transformer 1 1
29 Reference Matching 60% 15 33% TED Transformer 4 1
30 Reference Matching 68% 19 66% TED Transformer 3 1
31 Reference Matching 100% 2 BPE Transformer 1 1
32 Reference Matching 93% 14 BT Transformer 2 1
33 Reference Matching 95% 21 33% TED Transformer 3 2
34 Reference Matching 100% 18 66% TED Transformer 1 2
35 Reference Matching 100% 24 BPE Transformer 1 2
36 Reference Matching 96% 26 BT Transformer 2 2
37 Meaning Deviation 100% 4 33% TED Transformer 1 3
38 Meaning Deviation 100% 2 66% TED Transformer 1 3
39 Meaning Deviation 100% 5 BPE Transformer 1 3
40 Meaning Deviation 0% 1 BT Transformer 2 3
41 Omission 100% 4 33% TED Transformer 1 3
42 Omission 50% 2 66% TED Transformer 3 3
43 Omission 60% 5 BPE Transformer 2 3
44 Omission 100% 1 BT Transformer 1 3
45 Verb Tense 100% 4 33% TED Transformer 1 3
46 Verb Tense 50% 2 66% TED Transformer 2 3
47 Verb Tense 40% 5 BPE Transformer 3 3
48 Verb Tense 0% 1 BT Transformer 4 3
49 Out of Context 100% 4 33% TED Transformer 1 3
50 Out of Context 100% 2 66% TED Transformer 1 3
51 Out of Context 100% 5 BPE Transformer 1 3
52 Out of Context 100% 1 BT Transformer 1 3

78

1. Cluster 0: This cluster contains 50 sentences (20.8% of the total). BPE is
associated with the biggest share of sentences (34%), with the other models
having 22%, each. The overall percentage of errors is 38%, ranking it in the
3rd place (exactly in the middle) when compared to the others. Verb Tense
and Reference Matching stand out with a percentual incidence of 98% and
86% respectively, with the least frequent errors being <unk> and Repetition
with 2% and 12%, each.

It seems that the cluster 0 is mostly represented by BPE due to its higher
sentence share. It also concentrates the sentences with the highest prevalence
of Verb Tense and Reference Matching errors, since all models made these
errors in more than 80% of their own sentences, as shown by the Prevalence
column in the first 8 rows. There are signals in this cluster that these errors
are quite common to all models, specially to the dominant model (BPE). This
cluster also has the lowest prevalence of the <unk> error as shown in Table
5.13, which is somewhat coherent with the fact that BPE slightly dominates
this cluster, since the model is immune to this error.

2. Cluster 1: It contains 50 sentences (20.8% of the total). The 66% Transformer
has the highest share of sentences (38%), followed by the 33% Transformer with
30%, BT with 28% and BPE with 4% (2 sentences). The overall percentage
of prevalence of errors is 55%, ranking it in the 2nd place. The <unk> (80%),
Reference Matching (74%) and Insertion (72%) errors stand out as the most
frequent, whilst the Out of Context error almost didn’t happen (2%) and also
the low profile Repetition error (40%) are the least occurring ones.

Although this is the cluster with the second highest prevalence of errors, the
gap is narrow (0.21%) when compared to the first place. It has a strong
participation (68%) of the Transformers trained on a reduced dataset (33%
and 66%), with BPE and BT models associated with less than a third of the
sentence share, hence being mostly represented by the former models. These
2 dominating models demonstrate a high prevalence of errors in Table 5.14,
such as Insertion (rows 9−12), Meaning Deviation (rows 17−20) and <unk>
errors (between rows 9 − 12), losing to BT in the ranking when talking of
Omission and Verb Tense, in the remaining rows related to the same cluster.
The difference on the cluster pattern to the first one is clear: it has the highest
prevalence of the Repetition error, and the prevalence of the <unk> error is
much more expressive. The main characteristic that sets them apart is that
in the first cluster BPE predominates. The differences on the error patterns
between clusters corroborates with the hypothesis that the model plus low-
resource technique choice indeed directly impacts on the translation behaviour.

79

3. Cluster 2: It is the biggest cluster with 89 sentences (37% of the total). The
models share almost the same quantity of sentences, with BT and BPE Trans-
formers being the most occurring (29% and 27%). The overall percentage of
errors is 29%, being the second with less mistakes. Reference Matching is al-
most ubiquitous (98%), whereas curiously the other errors have all less than
50% of prevalence. Verb Tense and Repetition errors almost don’t happen,
with 2% and 1%, respectively.

The most representative cluster is also fairly equally distributed, and the high
prevalence of Reference Matching in this sample, ranging from 95% to 100% in
the ranking (rows 33−36), indicates that this is an error that these models can
hardly avoid. In fact, this error is the most common among all the clusters.
It is a well-known flaw on the standard NMT models’ evaluation process, and
it could be probably addressed by modifying the methodology (such as using
multiple references, provided by several human translators). Moreover, for this
cluster, the models pratically do not perform the Verb Tense or the Repetition
errors.

4. Cluster 3: It is a small cluster with 12 errors (5% of the total), with BPE
responsible for most of the sentences (42%), followed by the 33% Transformer
(33%), and a very small contribution from BT (8%). The overall percentage of
errors is the highest, with 55.2%, where the Out of Context error is unanimous
(100%), followed by Meaning Deviation (92%) and Omission (75%). The least
frequent errors are Repetition (8%) and <unk> (16%).

This cluster has a small share of the total sentences, but it concentrates the
most difficult ones for all models, curiously with a higher share related to
BPE. Noteworthy, the percentages related to the most frequent errors of this
cluster strongly differentiates from those observed with other clusters: from
the Meaning Deviation error (91.67% vs 42.85% on average), Out of Context
(100% vs 29.76% on average) and Omission (75% vs 49.56%). Anticipating one
result from the subsequent analysis of the sentence complexity effects, which
will be reported in the next section, this cluster has about 75% of its sentences
belonging to B2 and B1, whilst the others posess a lower share (from 66%
to 7.6%) of sentences of these higher complexities, which explains the higher
percentage of errors observed here. However, since this cluster contains only
5% of all the sentences, the extension and relevance of the conclusions derived
here are somewhat limited.

5. Cluster 4: It corresponds to a medium-sized cluster including 39 sentences
and encompassing the rest of the dataset, representing 16% of all translations.
The BPE Transformer is the most influential model contributing with 30% of

80

the sentences, whilst the remaining ones are approximately equally distributed
among alternative models, with BT being the least frequent (20.5%). The per-
centage of overall errors in this cluster is low (10.9%), with no errors occurring
more than 50% of the sentences. The Insertion error is the most frequent one
(23%), whilst Reference Matching does not happen at all, followed by <unk>
and Verb Tense, both with 2%.

This cluster contrasts with the last one since the low prevalence of errors
observed seems to be the lower complexity of the involved sentences, from
which 84.6% are A1. This may explain why no errors happen in more than
50% of sentences. Regarding the scarcity of errors, the error classes that drive
more attention are Reference Matching (0% vs 59.88% on average), Verb Tense
(2.56% vs 42.38 on average) and <unk> (2.56% vs 23.17% on average).

The results of this experiment, despite the sample limitations and constraints
established by the classes of errors created, sheds some light on the relations between
models and patterns of errors. There is some evidence that the reduced models tend
to perform the Repetition and <unk> errors, which may be associated with a lack
of vocabulary. Errors like Reference Matching seem to happen independently of the
technique, except for the case of Cluster 4 in Table 5.13, whilst Verb Tense is also
quite common, but it is usually directly correlated with a higher representivity of
BPE in a given cluster, as in Clusters 0 and 3. Whenever the Transformers trained
on reduced TED 33% and 66% appear, their share of sentences in a cluster tends to
be the same (as in clusters 1, 3, 5 and somewhat 1), which can be an evidence that
the algorithm sees some correlation between their error patterns.

Analysis of sentence complexity and classes of errors

The rationale from the last section was applied for experimentally inferring possible
relations between sentence complexity and classes of error. Therefore, the qual-
itative results considered the same cluster but visited with a different label, the
sentence complexity instead of the model variant. Table 5.15 depicts the same met-
rics adopted in Table 5.13, repeating the error class incidences per cluster, but now
comparing with sentence complexities.

Looking how the sentences of different complexities are split among the clusters,
a first look indicates that the overall percentage of errors is somewhat correlated with
the complexity that dominates in that cluster. If we create a matrix whose rows are
the percentage of sentences belonging to a specific cluster and columns represent the
complexities, the Pearson correlation between each of the adjacent complexity pairs
(A1|A2, A2|B1, B1|B2) will indicate how similar their distribution is. The module
of that correlation will also outline if the information of complexity is relevant to

81

Table 5.15: Error class and complexity prevalence per cluster.
Dimension
Name

Dimension Value Cluster
0

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Error class

Reference Matching 86% 74% 97.75% 41.67% 0%
Omission 46.0% 58.0% 48.3% 75.0% 20.5%

Out of Context 16.0% 2.0% 18.0% 100.0% 12.8%
Verb Tense 98.0% 52.0% 1.0% 58.3% 2.6%

Meaning Deviation 18.0% 62.0% 29.2% 91.7% 15.4%
Insertion 26.0% 72.0% 23.6% 50.0% 23.1%
Repetition 12.0% 40.0% 2.2% 8.3% 10.3%
<unk> 2.0% 80.0% 14.6% 16.7% 2.6%

CEFR
Complexity

A1 4.0% 16.0% 19.1% 0.0% 84.6%
A2 32.0% 20.0% 31.5% 25.0% 7.7%
B1 42.0% 8.0% 32.6% 25.0% 7.7%
B2 22.0% 56.0% 16.9% 50.0% 0.0%

Overall error prevalence per cluster 38.0% 55.0% 29.4% 55.2% 10.9%
Total sentences per cluster 50 50 89 12 39

separate the sentences. The value of the correlation between A1 and A2 is 0.85 in
module, for A2 and B1 it is 0.88; and for B1 and B2, 0.12. Most of the combinations
show a high correlation, hence we could consider that the segmentation performed is
somewhat accurate. B2 is an exception, but it is also where the biggest complexity
gap lies, as we had to remove the C1 and C2 levels due to sample constraints, thus
we will consider that this issue is acceptable for our analysis purposes.

Analogously to the analysis performed in Section 5.3.4, a ranking of the complex-
ities per cluster that had at least one class of error with more than 50% of prevalence
has also been generated and is reported in Table 5.16. The data depicted in this
table will be analysed for each cluster as follows:

1. Cluster 0: Most of its sentences are of higher complexities (66% of B1 and
B2), with only 4% belonging to A1. This higher sentence complexity is in line
with the percentage of errors, about 38%. Curiously, for A1 sentences, there
is no Reference Matching errors, whilst for the remaining complexities the ob-
served percentages are all greater than 85%. Regarding the Verb Tense error,
which shows a high prevalence in this cluster, it seems that its appearance is
uncorrelated to the sentence complexities.

2. Cluster 1: This cluster has a bias on the direction of high complexity sentences
(64% of B1 and B2), a bit similar to the previous cluster, but with a higher
share related to A1 (16%). It possesses the second highest percentage of errors
per sentence (55%), much higher than Cluster 1, despite having a similar
complexity distribution. A look in the cluster rank tells that error classes
do not change their percentage of errors proportionally to the complexity of
sentences, for instance with the <unk> (rows 9−12) and Insertion errors (rows
13−16). As one can observe, the percentages does not follow a monotonic trend

82

Table 5.16: Rank of most frequent errors per complexity in each cluster
Row Error class Prevalence Sentences Complexity Rank Cluster
1 Reference Matching 100% 11 B2 1 0
2 Reference Matching 88% 16 A2 2 0
3 Reference Matching 86% 21 B1 3 0
4 Reference Matching 0% 2 A1 4 0
5 Verb Tense 100% 2 A1 1 0
6 Verb Tense 100% 21 B1 1 0
7 Verb Tense 100% 11 B2 1 0
8 Verb Tense 94% 16 A2 2 0
9 <unk> 100% 4 B1 1 1
10 <unk> 90% 10 A2 2 1
11 <unk> 75% 8 A1 3 1
12 <unk> 75% 28 B2 3 1
13 Insertion 80% 10 A2 1 1
14 Insertion 75% 4 B1 2 1
15 Insertion 71% 28 B2 3 1
16 Insertion 63% 8 A1 4 1
17 Meaning Deviation 68% 28 B2 1 1
18 Meaning Deviation 60% 10 A2 2 1
19 Meaning Deviation 50% 8 A1 3 1
20 Meaning Deviation 50% 4 B1 3 1
21 Omission 82% 28 B2 1 1
22 Omission 50% 4 B1 2 1
23 Omission 30% 10 A2 3 1
24 Omission 13% 8 A1 4 1
25 Reference Matching 100% 4 B1 1 1
26 Reference Matching 89% 28 B2 2 1
27 Reference Matching 50% 8 A1 3 1
28 Reference Matching 40% 10 A2 4 1
29 Verb Tense 82% 28 B2 1 1
30 Verb Tense 50% 4 B1 2 1
31 Verb Tense 13% 8 A1 3 1
32 Verb Tense 0% 10 A2 4 1
33 Reference Matching 100% 28 A2 1 2
34 Reference Matching 100% 15 B2 1 2
35 Reference Matching 97% 29 B1 2 2
36 Reference Matching 94% 17 A1 3 2
37 Meaning Deviation 100% 3 A2 1 3
38 Meaning Deviation 100% 6 B2 1 3
39 Meaning Deviation 67% 3 B1 2 3
40 Omission 100% 3 B1 1 3
41 Omission 83% 6 B2 2 3
42 Omission 33% 3 A2 3 3
43 Out of Context 100% 3 A2 1 3
44 Out of Context 100% 3 B1 1 3
45 Out of Context 100% 6 B2 1 3
46 Verb Tense 83% 6 B2 1 3
47 Verb Tense 67% 3 B1 2 3
48 Verb Tense 0% 3 A2 3 3

when the complexity gradually increases, with some of those errors even having
a smaller prevalence among B2 sentences, as per the aforementioned rows
9−16. Conversely, some errors do attend the approximately monotonic trend,

83

namely Reference Matching, Omission and Meaning Deviation. In Reference
Matching, curiously the complexities A2 and B1 have the lowest and highest
prevalence, respectively.

3. Cluster 2: It’s the largest cluster with 89 sentences, wherein 49% of them are of
the challenging complexities (B1 and B2). It has the second smallest overall
error percentage (29.35%), in coherence with the smaller number of higher
complexity sentences. Only the Reference Matching error shows more than
50% of prevalence, it seems to be to be uncorrelated with sentence complexity,
since both A2 and B2 have the same percentage of errors.

4. Cluster 3: This tiny cluster includes 12 sentences, with 75% of them belonging
to B2 and B1 complexities, the highest among all, which is potentially ex-
plained by its highest overall error percentage (55.2%). Curiously, this cluster
did not include A1 sentences, which makes sense if the goal was to concentrate
on more complicated sentences. Some error classes in the rank appear to not
increase their prevalences with an increase in the CEFR complexity, namely
Meaning Deviation (rows 37− 39) and Out of Context (rows 43− 45). On the
other hand, Verb Tense and Omission errors show a relevant difference for A2
and B2 sentences, as expected.

5. Cluster 4: The last cluster contains 39 sentences and shows the lowest overall
percentage of errors, about 10.9%. This is somewhat compatible to the fact
that 84.6% of the sentences in this cluster are A1 level, whilst none belong to
B2. No class of error has shown a prevalence higher than 50%. It seems that
in this case the algorithm preferred to agglomerate easier sentences that are
less prone to translation errors.

A summary of the previous findings are as follows. The algorithm seems to have
agglomerated sentences with similar complexity in some clusters, specially the ones
enumerated as 3 and 4, despite not disposing of this information beforehand. Also,
for a significant share of sentences the percentage of errors also increases with the
sentence complexity, which is an evidence in favour of the criteria considered when
ranking the sentences according to the CEFR levels, which seems to be appropriated.

The diversity and share of errors also differs a lot from cluster to cluster, depend-
ing on the sentence complexity share. For instance the Verb Tense errors seem to
be influenced by the level of complexity of the sentences when looking to Table 5.16,
except for the cluster 0. The same happens with the Omission error, for all clusters.
Nonetheless, this analysis confirmed that the sentence complexity or model chosen
are not isolated factors contributing to the error patterns, acting simultaneously in a

84

bidimensional manner. This fact, not evidenced in the preceeding analysis (Section
5.3.3), was hopefully captured by HC.

5.3.5 Correspondence Analysis (CA) experiment

CA is an exploratory multivariate analysis technique that is able to process a
categorical N -dimensional table, summarizing its content in a N -dimensional coor-
dinate system. These coordinates can be plotted into a N -dimensional figure, which
can help one to infer relations between different variables from the table, expressed
in its corresponding rows and columns. The most common use case involves only 2
dimensions, wherein a co-occurrence matrix is converted to a 2-D mapping, and its
rows and columns are depicted as points. The table containing the number of com-
mon occurrences of a given pair of nominal variables is named contingency matrix,
and may have 2 dimensions or N dimensions, the first called Simple Correspondence
Analysis; and the latter, Multiple Correspondence Analysis.

Why use CA for a qualitative analysis?

CA is popularly considered to be as a Principal Components Analysis (PCA) variant
suitable for categorical data, as mentioned in GREENACRE and HASTIE [68]. The
coordinates generated by the algorithm are analogous to the PCA factors (used for
continuous data), but the key technical difference is that CA assesses the Chi-square
distances between two or more dimensions when testing their independence, instead
of the total variance, as usually performed by PCA [69].

This algorithm also benefits from some properties of Singular Value Decompo-
sition (SVD), such as the capability of generating linear transformations to extract
meaningful features of multidimensional data, similar to PCA. Assuming that the
algorithm is able to represent the table data with a sufficient explained variance,
it is possible to generate a plot that enables a geometric interpretation of the ex-
isting relations between the table dimensions, and use the Chi-square statistic to
determine the distances between the data points. The potential to extract relevant
relations depends on whether the explained variance is considered to be significant or
not. There is no hard rule to describe what must be considered as a good explained
variance, it depends on the rigor of the analysis. Values above 80% considering the
principal components are considered satisfactory and above 90% are assumed to be
an almost ideal fit.

The CA algorithm was applied to the same qualitative dimensions exploited in
the previous experiments (models and classes of errors or sentence complexities and
classes of errors). Literature shows that the conclusions derived with the simple

85

CA are straightforward to interpret, and assessing its effectiveness and reliability is
possible through explained variance. Hence, we believe that this tool has potential
to corroborate, complement or even extend the findings derived from the previous
analysis.

The Correspondence Analysis algorithm

The step by step process to implement CA will be mentioned here, but a further
theoretical description and motivation of this algorithm goes beyond the scope of
this work. For more details the reader is referred to IZENMAN [69]. To allow
a better understanding of the modus operandi of this algorithm, a pseudocode is
provided here, heavily inspired in [70] [69].

A co-occurrence matrix K, also referred to as two-way contingency matrix in
the literature, is a matrix whose cells enumerate the co-occurrences of specific row-
column combinations. Consider the matrix K with dimensions r× s, where r is the
number of rows and s is the number of columns. Each row contains one category
of some arbitrary dimension a (the class of error, for instance), from a total of
r categories. The same must be assumed for the columns, assuming a total of s
categories from some dimension b. This matrix constitutes the input of the CA
algorithm, which involves the following subsequent processing steps:

1. Assure that K ∈ Z∗(r×s)+ , i.e., that all elements of K must be non-negative and
none of the row or column entries sum up zero.

2. Compute the profile matrix P whose entries are given by

pij =
kij∑

i

∑
j kij

. (5.3)

The expected format for the matrix P is given by Table 5.17:

Table 5.17: General matrix P format, after normalizing K
Row Variable B1 B2 . . . Bj . . . Bs Row Total

A1 p11 p12 . . . p1j . . . p1s p1+

A2 p21 p22 . . . p2j . . . p2s p2+
...

...
...

...
...

...
...

...

Ai pi1 pi2 . . . pij . . . pis pi+

...
...

...
...

...
...

...
...

Ar pr1 pr2 . . . prj . . . prs pr+

Column Total p+1 p+2 . . . p+j . . . p+s 1

86

3. The totals sums of both the rows and columns of P can also be embedded in
the vectors r and c, respectively, defined as

P1s =

p1+
...
pr+

 = r, (5.4)

and

PT1r =

p+1

...
p+s

 = c, (5.5)

which are also known as the average row and column profiles. Consider now
the generation of the diagonal matrices Dr and Dc, whose entries are the
vectors of row totals and columns totals from the previous table, respectively.
The vectors r and c can be manipulated to generate the diagonal elements of
these square matrices as

Dr =

p1+ 0 0

0
. . . 0

0 0 pr+

 , (5.6)

and

Dc =

p+1 0 0

0
. . . 0

0 0 p+s

 , (5.7)

that contain the row and column totals r and c in their diagonal.

4. After obtaining the matrices Dr and Dc, one can calculate Pr and Pc, which
represent the row and column profiles of P

Pr = D−1r P

aT1
...
aTr

 , (5.8)

where
aTi =

[
ki1
ki+
, . . . , kis

ki+

]
(5.9)

is defined based on the elements of the previous matrix K, with ki+ repre-
senting the sum of the elements over its rows, and analogously k+j over its

87

columns, whilst

Pc = D−1c PT

bT1
...
bTs

 , (5.10)

where
bTj =

[
kij
k+j
, . . . ,

krj
k+j

]
. (5.11)

5. At this point, a fundamental step of the algorithm enables its output to become
an interpretable graph, wherein the distances would resemble relationships
between the variables in columns or rows. Here, the Chi-square distribution is
used as a measure of distance to compute the degree of relationship between
the rows and columns table dimensions. Please note that the steps below have
been summarized, restricting only to the fundamental manipulations. The
Chi-square distribution is calculated as follows:

• Row profile distances: the squared χ2 distance between the entries of the
two row profies ai and ai′ is given by

d2(ai, ai′) = (ai − ai′)
TD−1c (ai − ai′) =

s∑
j=1

k

k+j
(
kij
ki+
−
ki′j
ki′+

). (5.12)

However, the distance accounting a dimension category regarding its cen-
troid is sometimes of more interest to be represented in the plot. Con-
sidering row profiles, their centroids are represented by c. The value of
the distance from ai to their centroid can be obtained by

d2(ai, c) = (ai− c)TD−1c (ai− c) =
1

ki+

s∑
j=1

k

ki+k+j
(kij −

ki+k+j
k

), (5.13)

which, when summed over all the row profiles, results in

k
r∑
i=1

pi+ + d2(ai, c) =
r∑
i=1

s∑
j=1

(kij − ki+k+j

k
)2

ki+k+j

k

. (5.14)

Taking Eq. 5.14, and matching Oij with kij and Eij with
ki+k+j

k
, we find

out that it can be approximated by the Pearson’s chi-squared statistic as
follows

X2 =
∑
i

∑
j

(Oij − Eij)2

Eij
. (5.15)

In Eq. 5.15, Oij represents the observed cell frequency while Eij is the
expected cell frequency. The calculation of these terms will be crucial for

88

the next steps.

• Column profile distances: the steps involved in the case of columns are
the same adopted with the rows, changing only the axis regarding the
algebraic manipulations. Therefore, the column profiles distances can be
calculated as

d2(bj,bj′) = (bj − bj′)
TD−1r (bj − bj′) =

r∑
i=1

k

ki+
(
kij
k+j
−
kij′

k+j′
). (5.16)

Following the same rationale for the row profiles, the distance from bj to
its centroid is

d2(bj, r) = (bj−r)TD−1r (bj−r) =
1

k+j

r∑
i=1

k

ki+k+j
(kij−

ki+k+j
k

), (5.17)

that can be analogously summed over all the column profiles, reaching
an equation similar to Eq. 5.14. Naturally, this equation related to the
Pearson’s Chi-squared statistic described by Eq. 5.15.

6. Now we must derive the total inertia equation and proceed with its decomposi-
tion. In our experiments that implement CA, we consider the one-hot-encoding
modality of our categorical variables in the matrix dimensions, analogously to
the examples provided in the book [69]. This allows us to proceed with the
same standard assumption of contingency table analysis followed there, ac-
cording to which the row and column totals are assumed to be fixed, and the
cell frequencies in K are allowed to vary given these constraints. The relative
frequency matrix that incorporates such restrictions is given by

P̃ = P− rcT . (5.18)

Using P̃, we can define the matrix K̃ = kP̃, also known as the matrix of
residuals. This name is given because its ijth entry shows the difference be-
tween the observed cell frequency Oij = kij and the expected cell frequency
Eij =

ki+k+j

k
, resulting in k̃ij = Oij − Eij. The last step to reach the inertia

calculation is to calculate the (s× s)-matrix R0

R0 = D
− 1

2
c P̃TD−1r P̃D

− 1
2

c , (5.19)

where D−1r = diag{r−1} and D
− 1

2
c = diag{c− 1

2}. The entry in the jth row and

89

j
′th column of R0 is given by

R0
jj

′ = (k+jk+j′)
− 1

2

r∑
i=1

1

ki+
(kij −

ki+k+j
k

)(kij′ −
ki+k+j′

k
), (5.20)

and the jth diagonal entry of R0 is obtained by setting j = j
′

R0
j
′
j
′ =

1

k+j

r∑
i=1

1

ki+
(kij −

ki+k+j
k

)2. (5.21)

The trace of R0, which corresponds to the sum of its eigenvalues, is given by

s∑
j=1

λ2j = tr{R0} =
r∑
i=1

s∑
j=1

1

ki+k+j
(kij −

ki+k+j
k

)2 =
X2

k
, (5.22)

where X2 is given by Eq. 5.15. Finally, the accumulated contribution of the
first t principal components (or inertias) can by calculated using

Ct =
λ21 + . . .+ λ2t∑s

j=1 λ
2
j

. (5.23)

7. Compute the scaled matrix M where M = D
− 1

2
r P̃D

− 1
2

c , where P̃ is the same
as calculated in Eq. 5.18.

8. Compute the SVD of the matrix M = UDλV
T , where U is an (r× s) unitary

matrix, i.e., UTU = Is; Dλ = diag{λ1, . . . , λs} is a (s × s) diagonal matrix
defined by the singular values, and V is an (s × s) unitary matrix, therefore
VTV = Is

9. Calculate the matrices that represent the principal axes of the row and column
profiles, namely A = D

− 1
2

r U and B = D
− 1

2
c V

10. After obtaining A and B, a series of manipulations are performed to reach
the coordinate matrices, which will not be shown here but are available in
the reference book [69]. The standard principal coordinates matrix can be
obtained by calculating GS = UD

− 1
2

r and HS = D
− 1

2
c V. The columns of GT

S

and HT
S represent the standard coordinates of the row and column profiles,

respectively.

11. To be able to exploit the conventional interpretation criteria over the gener-
ated plot, the coordinates must be scaled, otherwise interpretation guidelines
often explored turn invalid, hindering the extraction of correct insights. The
scaling techniques and their appropriate use cases deserve a deeper explication

90

that is available in [69]. To obtain the scaled coordinates, we compute the ma-
trices containing the principal coordinates of the row and column profiles as
GP = DλUD

− 1
2

r and HP = DλD
− 1

2
c V, where Dλ is as defined in the step 8.

These matrices contain the data that is necessary to extract associations and
properties from both dimensions, and they mark the end of the algorithm.

By following all the previous steps, the (x, y) coordinates will be available for
all categories in both dimensions through the GP and HP matrices, respectively.
Such rows and columns when drawn as a scatter plot in a two-dimensional cartesian
plane can be used to indicate how each category in their dimension is positioned and
how to correlate them. Depending on whether the relation between two points is
intra or interdimensional, there are different methodologies to interpret, which will
be briefly discussed in the next section.

Interpreting CA outcomes

Considering our analysis requirements, we will restrict the following interpretation
guideline to only two-way contingency tables (associations between 2 variables). The
final visualization has 3 graphical features that should be considered for interpreta-
tion.

1. The distance of the categorical variable (row or column) with respect to the
origin.

2. The proximity of data points that belong to the same dimension (comparison of
rows with themselves or columns with themselves). This is the recommended
measure of intradimensional similarity .

3. The angle that connects a row and a column variable to the origin. This is
the recommended measure of interdimensional similarity.

Regarding the first item, whenever a category is far from the origin, it can be
inferred that it is more dissimilar than other categories that are close to the origin.
The category which is furthest from the origin is less correlated with the others and
usually grants characteristics that distinguish it from the other categories within the
same dimension. The opposite is also valid, if a given category is near the origin,
this means that it probably shares characteristics with other nearby categories.

The second item refers to categories of the same dimension that usually share
similar characteristics, thus showing small distances between them. Conversely, if
a pair of categories are far from each other in the cartesian plane, they are some-
what uncorrelated and they probably vary in different degrees with respect to the
categories of the other dimension.

91

Figure 5.3: Correspondence analysis visualization comparing models and error
classes

Lastly, the third interpretation point is related to comparisons of categories be-
longing to distinct dimensions. The practical procedure is as follows: draw a line
between the origin and a row category that you wish to compare, and repeat the
same process for the desired column category. If the angle formed between those
straight lines is very acute (close to 0), such categories are probably highly associ-
ated. If this angle is near 90 degrees, then these categorical variables do not possess
any type of association at all; however, if the angle is close to 180 degrees, such
categories are probably negatively associated.

Analysis of models and classes of errors

We must recall that the dataset explored in this experiment is the same as used in
Section 5.3.4. This dataset was reorganized in a 2-way contingency table, such that
the rows correspond to the model types and the columns represent each one of the
8 error classes. The algorithm had this table as input.

The algorithm has successfully fitted the dataset with an explained variance of
94.6%, wherein 74.6% is related to the first component and 20.01% to the second

92

component. This score indicates a very good representation of data. Figure 5.3
shows the resulting plot of this experiment.

Some errors have stood out from the rest. Particularly, Repetition, <unk> and
Out of Context are all far from the origin, whilst the others are more concentrated
into a smaller area. Reference Matching is located very close to Insertion, whilst Verb
Tense is also close to Omission, indicating that these error patterns share similarities
over the models. All these errors are located in an area with approximately the size
of a box in the current graph scale, which means that despite the pairwise similarity
between them seems to be higher, there is also some level of similarity between them.

Regarding the models, Back Translation stands out from the others, whilst 33%
and 66% are close, indicating that their error patterns share similarities, as expected.
BPE seems to be isolated, so it has a weak relationship with the rest, but not as far
from the origin as Back Translation. BPE error patterns are probably low-correlated
with those from the Back Translation model as they are the furthest models in the
cartesian plane.

Below we report the main findings of this experiment, following a model-centered
perspective:

1. BPE shows a positive correlation with the Omission error, being the model
with the strongest relationship with this error. There is also some positive
correlation with Verb Tense, Out of Context and Meaning Deviation. It is
negatively correlated with the Insertion error and also with the <unk> error,
as its placed in about 180 degrees from them (which makes sense even more
for <unk> since BPE does not produce this error at all). At the same time,
it seems not to correlate with the Repetition and Reference Matching errors,
exhibiting an angle near 90 degrees with them relatively to the origin

2. Both reduced models 33% and 66% exhibit a similar pattern of relationship
with the errors. They have shown to be highly correlated with the Repetition
error, positively correlated with Meaning Deviation and <unk> errors, and
negatively correlated with the Reference Matching and Verb Tense errors.
Besides, these models seem to have almost no correlation with the Omission,
Insertion and Out of Context errors

3. Finally, the Back Translation model has a high positive correlation with the
Reference Matching and Insertion errors, and also some positive correlation
with <unk>, whilst having almost no correlation with Verb Tense and Omis-
sion errors. It also has a strong negative correlation with the Repetition and
Meaning Deviation errors, and in a smaller degree with Out of Context

Some interesting hypothesis can be outlined based on this graphical inspection.

93

Augmenting with data from a different domain induces the model to create transla-
tions that don’t match the reference, potentially indicating that it finds synonyms
for words of the same sentence. BPE seems to frequently omit words although it
is also efficient against the Insertion of unnecessary words. Regarding the models
trained on the reduced TED, they seem to repeat the same words when they do not
possess vocabulary knowledge to finish a sentence with certainty. Also, the reduced
vocabulary seems to prevent the occurrence of synonyms, probably because of the
limited number of words for the algorithm choice.

Analysis of sentence complexity and classes of errors

In this second round of experiments, the table of error patterns per model has been
stratified by sentence complexity, generating a 2-way contingency table with CEFR
complexity levels in the rows and the columns representing the classes of errors.
The explained variance indicates again a successful representation of data: with
two components it reaches 96.29%, with a contribution of 64.28% from the first
component and 32.01% from the second component. The resulting visualization can
be seen in Figure 5.4.

Considering the categorical associations along with both dimensions, all the pos-
itive, negative and absence of correlations derived from graphical inspection that
were observed in Figure 5.4 are highlighted in the following:

1. A1 class exhibits a positive correlation with the Insertion, <unk> and Repeti-
tion errors; a negative correlation with Verb Tense and Omission errors, and a
potential absence of correlation with the Reference Matching, Out of Context
and Meaning Deviation errors

2. The figure indicates that A2 can be positively correlated with Reference Match-
ing, Out of Context and Omission errors, probably negatively correlated with
<unk>, Meaning Deviation and Verb Tense errors and lacks correlation with
the Insertion and Repetition errors

3. B1 has a positive correlation with Omission, Verb Tense and Out of Context
errors. A negative correlation is observed for Insertion, Repetition and <unk>
errors, and also apparently there is no correlation with the Reference Matching
and Meaning Deviation errors

4. Lastly, B2 seems to have a positive correlation with Verb Tense, Meaning
Deviation and <unk> errors; a negative correlation with Out of Context and
Reference Matching errors, and no correlation with the Repetition, Omission
and Insertion errors

94

Figure 5.4: Correspondence analysis visualization comparing complexities and error
classes

The most isolated, thus distinguishing categories reported by this analysis are
Repetition, Out of Context and Verb Tense errors as well as A1 complexity. The
complexity labels are well distributed along the graph area, leading us to conclude
that the process of classifying sentences in complexity levels is somewhat consistent.
The pairs B1 and B2, A2 and B1 are closer to each other, which makes sense as
they represent consecutive complexities. The spread observed between the locations
of the classes of errors has also improved when compared to the last experiment,
which means that the association between sentence complexity and this dimension
is clearer than the one considered in the last section. The proximity of the Insertion
with the Repetition errors indicates some similarity between these errors, which was
also observed in the previous experiment. Omission and Reference Matching errors
are also close to each other, but this relation has only come out in this experiment.

The relations extracted through graphical interpretation have shown some inter-
esting trends. The high explained variance and well distributed data points for both
dimensions indicates that the categories considered in this analysis (sentence com-
plexity and error classes) segmented very well the patterns of errors observed with

95

these models. Qualitatively "simpler" errors such as Insertion and Repetition are
usually correlated with sentences of lower complexity such as A1 and uncorrelated
or negatively correlated with those of higher complexities, such as B1. Conversely,
<unk> and Meaning Deviation errors, which are often more related to complex
translations, are usually positively associated with sentences of higher complexities,
such as from the B2 level, and negatively associated with those from lower complex-
ities, such as A1. The other errors, namely Omission, Reference Matching, Out of
Context and Verb Tense when compared to the complexity points indicate that they
are situated in some sort of "medium level" complexity, as they create acute angles
with A2 and B1. Ideally, to confirm the assertions made here with high confidence,
similar patterns should be spotted in an equivalent experiment with an increased
sample size, but we believe the current scenario brings solid evidences.

5.3.6 Consolidating the qualitative study

Each experiment performed in the qualitative domain allowed us to derive a number
of insights, but being able to visualize the whole picture based on the outcomes of
the isolated experiments is a hard task. In this section we have condensed the
most relevant findings and will try to establish a connection between them, aiming
to provide a clear and concise view about the major outcomes of the qualitative
analysis.

As our goal here is to combine the results previously reported, it is important to
recall why and how the techniques chosen to evaluate the translations qualitatively
complement each other. The Fisher Exact test presented in Section 5.3.3 indicated
relevant differences in the prevalence of error classes when comparing models. The
HC algorithm in Section 5.3.4 helped to trace an unique profile of error statistics
for the prevailing models in a cluster, whilst the CA in Section 5.3.5 experiments
provided an easier interpretation along with richer and clearer associations between
the dimensions of interest. In this case, CA help us to identify the presence of
positive or negative correlation between 2 dimensions, or even the absence of it.

The same approach performed for the experiments will be followed in this section,
analysing separately the qualitative influences of the types of models and sentence
complexity with respect to the classes of errors.

Models and classes of errors

The main challenge in providing a clear view of how the findings connect with each
other is that each experiment is performed with a different methodology. We believe
that a table is the best visualization given this complexity, but before the results
are presented, this section starts with a brief explanation of how to interpret the

96

outcomes that each algorithm provide to a specific model. Independently of the
algorithm, there are 3 potential relationships that the model can have with an error
class:

1. The model has a high prevalence for the class of error X, so an increase in the
percentage of sentences translated by that model in a text will increase the
probability of that error to happen, which can be seen as a positive correlation

2. The model has a low prevalence for the class of error X, so an increase in the
percentage of sentences translated by that model in a text will decrease the
probability of that error to happen, which can be seen as a negative correlation

3. The relationship of the model with the class of error X is inconclusive, being
analogous to having no correlation

Now, to understand the results that will be later discussed in Table 5.18, the cor-
rect way to interpret the results for each model-experiment pair will be explained
here. The interpretation of the results of a given model considering a specific al-
gorithm are complemented by the information between brackets. This is how the
analogy is made, considering each algorithm:

1. Fisher Exact test: Consider the relationship 1, which indicates that the model
frequently produces a specific class of error. In the results table, the model
being analysed will be indicated in the column, and the cell belonging to the
algorithm’s row will enumerate the error class(es) to which a statistically sig-
nificant difference was found, considering the error prevalence of the analysed
model and the model(s) reported in brackets. As the relationship in discus-
sion is 1, then according to the test, the column model has a higher prevalence
than the model in brackets. As an example, consider the Repetition error in
Table 5.18 for both 33% and 66% TED models: the brackets show that Fisher
Exact test indicated with 95% confidence that these models showed a higher
prevalence than both BPE and BT models. The distinction between higher or
lower prevalence depends on whether the odds ratio number is either positive
or negative. The same analogy can be applied to interpret the relationship
2, associated to a negative odds ratio, but for the third relationship, we have
positioned in this table all the error classes we could not refuse the hypothesis
of similar proportions (null hypothesis) with 95% of confidence.

2. Hierarchical Clustering: the results extracted from this algorithm depend on
the relationship being discussed, and for them we have two main sources of
data: Table 5.14 and the enumerated descriptions by cluster from Section 5.3.4.
For the relationship 1, we took the highest prevalence considering one error

97

class and cluster pair from Table 5.14, in some cases adding more models to the
list depending on the gap between their prevalence and the one from the other
models. Some scenarios can be illustrated to help translate that definition
into practice: if 3 models have 100% and one model has 20%, only the latter
will be highlighted with negative tendency, whilst in another experiment if 2
models have 98% and 95% of one error class and the others have <20%, then
we consider the first and second with a positive tendency. However, if all four
models have 98%, 30%, 20% and 8%, then the first model (98%) has a positive
tendency and the last model (8%) has a negative tendency in that cluster.
The goal is to measure how much that prevalence deviates from the mean and
is closer to be classified as an outlier in that cluster, which is an indicator if
that model possesses a different relationship with that specific error class when
compared with others. Note that it is hard to be inconclusive in the case of
HC, but cluster 3 has an example in Table 5.14, where all the four models have
produced the Out of Context error in 100% of the sentences. We consider this
to be inconclusive, since it shows no difference between models, but this result
was registered only for the 33% TED and BPE models, since the others have
a very low sample size of 2 or less sentences in that cluster.

3. Correspondence Analysis: For this algorithm, the methodology to analyse is
easier since it translates directly to its visual interpretation given in Section
5.3.5. There are no brackets for the classes of errors enumerated in this model’s
row. Illustratively, for the relationship 1, the model has an acute angle with
the origin and the error class; for the relationship 2, the closer it gets to 180
degrees, the stronger is the relationship; and for the relationship 3 that angle
is around 90 degrees. Consider for instance the first CA row for BPE, which
shows that this model tends to produce several Verb Tense errors, whilst the
second CA row for the same model indicates that it produces few Insertion
and none <unk> errors.

There are some relevant comments to make before exploring the results. The
findings involving HC for the cluster 3 were discarded since the cluster only repre-
sents 12 sentences, with 1 belonging to the BT model and 2 to 66% TED, thus the
sample size is not enough to be conclusive. Also, the categories of correlation with
no findings were filled with "N/A". The row containing results with "almost zero
correlation" had a different motivation for each experiment: in Fisher it basically
represents the classes to which we could not reject the null hypothesis (neither pos-
itive nor negative correlation), whilst for HC if the prevalence of an error class does
not vary between models, it falls under this category.

When analysing the results, it is important to keep in mind that there is some

98

Table 5.18: Main model-error conclusions extracted from the qualitative experiments
Relation-
ship

Exper-
iment

Models
Back

Translation
33% TED 66% TED BPE

Transformer
The
model
has a
posi-
tive
ten-
dency
related
to
these
classes
of
errors

Fisher
Exact
Test

N/A Meaning
Deviation (vs

BT), Repetition
(vs BT, BPE),
<unk> (vs BT,

BPE)

Meaning
Deviation (vs

BT), Repetition
(vs BT, BPE),
<unk> (vs BT,

BPE)

N/A

HC Omission
(cl1),

Reference
Matching

(cl1)

<unk> (cl1),
Verb Tense

(cl3), Reference
Matching (cl0),
Omission (cl3),
Out of Context

(cl3)

Reference
Matching (cl2),
Out of Context

(cl3)

Reference
Matching (cl1,

cl2), Verb
Tense (cl1),

Insertion (cl1),
Meaning

Deviation (cl1)
CA Reference

Matching,
Insertion,
<unk>

Repetition,
Meaning

Deviation,
<unk>

Repetition,
Meaning

Deviation,
<unk>

Omission,
Meaning

Deviation, Out
of Context,
Verb Tense

The
model
has a
nega-
tive
ten-
dency
related
to
these
classes
of
errors

Fisher
Exact
Test

Meaning
Deviation (vs

33%),
Repetition (vs
33%, 66%),
<unk> (vs
33%, 66%)

N/A N/A Repetition (vs
33%, 66%),
<unk> (vs all

models)

HC Verb Tense
(cl0),

Meaning
Deviation

(cl1),
Insertion (cl1)

N/A Verb Tense (cl1),
Out of Context

(cl1)

<unk> (all
clusters),
Omission

(cl1),
Repetition

(cl0)
CA Repetition,

Meaning
Deviation,

Out of
Context

Reference
Matching, Verb

Tense

Reference
Matching, Verb

Tense

Insertion,
<unk>

The
model
doesn’t
exert
an in-
fluence
on
these
error
classes
of
errors

Fisher
Exact
Test

Omission,
Out of

Context,
Reference
Matching,
Insertion,

Verb Tense

Omission, Out
of Context,
Reference
Matching,

Insertion, Verb
Tense

Omission, Out of
Context,

Reference
Matching,

Insertion, Verb
Tense

Omission, Out
of Context,
Reference
Matching,

Insertion, Verb
Tense

HC N/A Out of Context
(cl3)

N/A Out of Context
(cl3)

CA Verb Tense,
Omission

Omission, Out
of Context,
Insertion

Omission, Out of
Context,
Insertion

Repetition,
Reference
Matching

99

Table 5.19: Main model-error conclusions extracted from CA
Relation-
ship

Models
Back

Translation
33% TED 66% TED BPE

Transformer
The model
has a
positive
tendency
related
to these
classes of
errors

Reference
Matching,
Insertion,
<unk>

Repetition,
Meaning

Deviation,
<unk>

Repetition,
Meaning

Deviation,
<unk>

Omission,
Meaning

Deviation, Out
of Context,
Verb Tense

The model
has a
negative
tendency
related
to these
classes of
errors

Repetition,
Meaning

Deviation,
Out of

Context

Reference
Matching, Verb

Tense

Reference
Matching, Verb

Tense

Insertion,
<unk>

The model
doesn’t ex-
ert an in-
fluence on
these error
classes of
errors

Verb Tense,
Omission

Omission, Out
of Context,
Insertion

Omission, Out of
Context,
Insertion

Repetition,
Reference
Matching

quantitative evidence that the results from the CA algorithm are more reliable than
the ones from HC. We must stress that the explained variance achieved by CA
is about 95%, which may be considered as near to optimal, whilst the Silhouette
coefficient for HC is 0.2320, notably far from the desired target of 1. This leads us
to follow the logic that the findings of CA are statistically more appealing than the
ones from HC. The results for each model are summarized with more depth below:

• Back Translation This transformer is probably more subjected to the Refer-
ence Matching error based on results from HC and CA, as shown in the positive
correlation row of Table 5.18, with potentially the same phenomenon happen-
ing with the Insertion error, denoted by CA. The hypothesis of the Omission
and <unk> errors being positively correlated with this model are discarded
by two factors: (1) the suggestion from CA that Omission has almost zero
correlation, and (2) the Fisher Test accusing that <unk> is less frequent for
the BT model versus the reduced TED models, which also diverges from CA
that shows an angle bigger than 60 degrees (hence, small positive correlation).
The BT model also spawns less often (i.e. has a negative correlation) the
Out of Context error according to CA, which is also true for Repetition and
Meaning Deviation, backed by CA and Fisher (at least when compared to the
low-resource models). Lastly, the Verb Tense error seems to be supported by

100

both Fisher and CA that it isn’t correlated with BT at all, and a similar trend
is followed by Omission.

• Reduced TED models (33% & 66%) These models share similar results
in all experiments. The Fisher test and CA indicate that the Repetition and
Meaning Deviation errors are common errors produced by these models. They
also produce the <unk> token a lot more when compared to BT and BPE
based on Fisher and CA. Both CA and Fisher test showed that the prevalence
of the Omission, Insertion and Out of Context errors seem not to be affected
by an increase of sentences evaluated from the 33% and 66% TED models.
Regarding negative correlation, it seems that the Reference Matching and
Verb Tense errors are pointed out to occur less with the models trained on
reduced TED models by HC and CA.

• BPE Transformer In this transformer, the CA row for positive correlation
in Table 5.18 shows that the prevalence of errors belonging to the Meaning
Deviation, Verb Tense, Out of Context andOmission classes varies in a positive
trend with the number of sentences generated by such model. The <unk>
token exhibited a negative correlation with the BPE model according to all
experiments, which makes sense as in practice the model does not produce
such tokens, it tries to map the translations to a customized word. In the
meanwhile, CA indicates that the Insertion error should not also commonly
appear when using BPE. Fisher tells the same relatively to the Repetition
error. Regarding the absence of correlation, CA points that the Reference
Matching error is uncorrelated with the type of the model.

These were the straightforward findings that correlate models and errors. How-
ever there are some deeper reflections and insights that can be extracted and are
not so evident in such statements. For instance, one hypothesis is that the use of
different domain augmented data induces the model to create translations that do
not match the reference. Besides, it is clear that in the positive correlation row of
Table 5.18 the Back Translation model is the one most associated with this type of
error. This cannot be interpreted as a rule, further studies are required to confirm
or not this claim, but the raise of this hypothesis wouldn’t be even possible with-
out applying the aforementioned algorithms. Another possible claim is that BPE
seems to frequently omit words although it is also efficient against the Insertion of
unnecessary words. This claim is supported by the CA experiment in the positive
and negative correlation rows, respectively.

Speaking more broadly about the models under a more severe low-resource con-
straint, i.e., the ones trained on the reduced TED datasets: they seem to be more

101

prone to repeating the same words as they do not possess enough vocabulary knowl-
edge to accurately complete a sentence, according to CA and Fisher. Moreover,
the reduced vocabulary seems to prevent the occurrence of synonyms, as this is-
sue is more likely to be caught by the Reference Matching error, which might have
happenend because of the limited options of words. In all experiments, both the
models trained on 33% and 66% of the dataset shared similar error distributions, are
situated nearby in the graphical visualizations (CA), or are segmented in clusters
with a similar share of sentences. All these results provide a strong evidence that
these models share some similarities in their behaviour. Despite being subjected to
different levels of low-resource constraints, their prevalences in the classes of errors
are close enough for us to conclude that the constraints had a similar impact on
their performance.

Sentence complexity and error classes

A similar analysis was conducted to integrate the previous findings but now focus-
ing on the relations between the sentence complexity and the classes of errors. As
complexity was included more as a complement to understand how the models be-
have in terms of producing the classes of errors, it does not make sense to analyse
each complexity level following the same methodology previously performed for each
model that participated in the study, as in the previous section. The goal here is to
understand how sentences belonging to different complexity levels exert an influence
in the likelihood of a specific class of error to appear more often or not. Moreover,
it is not convenient to correlate the models directly with the sentences complexities
in this case since there is no clear value expected from such analysis.

One hypothesis to be evaluated for the sentence complexity dimension is to
understand if the criteria established for the CEFR segmentation were correctly
followed, enough to see an impact in the distribution of errors given a change in
the complexity level. A straightforward approach to validate this is checking if
an increase in the sentence complexity level leads to an increase, decrease or no
difference in the number of errors made. This analysis was performed over the results
of each qualitative experiment and summarized in Table 5.20, but before discussing
and extracting its findings, we will start by explaining how it was generated.

Consider the same relationships described at the beginning of Section 5.3.6. Each
experiment followed a distinct approach in the process of consolidating its findings,
which will be explained in the items below:

1. Fisher Exact test: The results taken from this test always compare levels
of sentence complexity distancing two or more CEFR levels, namely A1|B1,
A2|B2 or A1|B2. We believe that skipping only one complexity level might not

102

result in a significant change in the error class distribution, so we will discard
adjacent levels like A1|A2. With this in mind, the tests will also analyse the
odds ratio, which indicates if a model is producing more or less errors than
other, considering one specific class. Therefore, the odds ratio will define what
is the relationship between one class of error with some change in the sentence
complexity (1, 2 or 3, the same as explained in Section 5.3.6).

2. Hierarchical Clustering: In this experiment we evaluate if an increase in the
sentence complexity directly relates to an increase in the prevalence of one
class of error. If the prevalence of 2 adjacent complexity levels are very close,
but the trend is clear given the complexity levels, we will not consider such a
small gap as enough evidence to disqualify the hypothesis that the classes of
errors show a complexity trend. In brackets, the cluster where the relationship
can be observed is specified, and if applicable, an exception may be mentioned
as not strictly following the expected monotonic trend. The three possible
trends are the same as the aforementioned relationships.

3. Correspondence Analysis: The results reported in Section 5.3.5 can be easily
translated into the relationships provided in Table 5.20, where sentence com-
plexities associated with the antecedent class of error are reported in brackets.

Table 5.20: Main complexity-error conclusions extracted from the qualitative exper-
iments (see text).

Relationship Experiment Errors that match the relationship and the circumstances
of occurrence

Errors directly
related to the
sentence
complexity

Fisher Exact
Test

Reference Matching, Omission (except for A2|B2), Out of
Context (except for A2|B2), Verb Tense, Meaning

Deviation
HC Reference Matching (cl0 with B1 diverging, cl1 with B1

diverging, cl2 with A2 diverging), Verb Tense (cl1, cl3),
Meaning Deviation (cl1 with B1 diverging), Omission (cl1,

cl3 with B1 diverging)
CA Insertion (A1), Repetition (A1), <unk> (A1, B2), Meaning

Deviation (B2), Verb Tense (B1, B2), Reference Matching
(A2), Out of Context (A2, B1), Omission (A2, B1)

Errors inversely
related to the
sentence
complexity

Fisher Exact
Test

Insertion (except for A1|B2, A2|B2), <unk> (except for
A1|B2, A2|B2)

HC N/A
CA Omission (A1), Reference Matching (A2, B2), Out of

Context (A2, B2), Insertion (B1), Repetition (B1), <unk>
(A2, B1), Meaning Deviation (A2), Verb Tense (A1)

Almost no
correlation with the
sentence
complexity

Fisher Exact
Test

Repetition

HC Out of Context (cl3), Verb Tense (cl0)
CA Insertion (A2, B2), Repetition (A2, B2), Meaning Deviation

(A1, B1), Out of Context (A1), Meaning Deviation (A1),
Reference Matching (B1), Omission (B2)

103

Most of the classes of errors (5 out of 8) stood out from the rest for being di-
rectly related with complexity: Reference Matching, Omission, Out of Context, Verb
Tense and Meaning Deviation. Some of them in unanimity, like Reference Match-
ing, Omission, Meaning Deviation and Verb Tense. The Out of Context error is
supported by strong evidence provided by Fisher and CA, as indicated in the first
relationship in the errors listed in the rows that matches these experiments, but not
from HC. In addition, there are some errors that appear to have an inverse relation-
ship with the sentence complexity: Insertion, which is supported by Fisher and by
CA in the complexity B1, and <unk>, which is supported by Fisher and by CA in
the complexities A2 and B1. Note that the relationships aren’t always pointed out
in unanimity, but we understand that the most relevant combination of experiments
represent a strong factor where one pattern is the winner. By elimination, all the
experiments but HC have indicated that the Repetition error seem to not be affected
by complexity. This means that presenting more complex or less complex sentences
to a model is unlikely to change its probability to happen. It is the only error that
is potentially more prone to be modified with the change of the model rather than
the complexity of the sentence.

There is a story to tell based on the results that go beyond the straightforward
interpretation of them: all experiments have indicated that the sentences seem to
have been well segmented by the CEFR criteria. The spacial distribution of the
complexity categories in the CA plot in Figure 5.4 endorses the previous insight, the
Fisher test also does by finding relevant changes in most complexity pairs located
at two levels of distance away. To some extent, but in a less evident manner, the
distribution of errors per cluster also supports the argument that a good segmen-
tation must have taken place. The HC algorithm has agglomerated sentences with
similar complexity into the Clusters 3 and 4, despite not receiving this information
beforehand. It is interesting to note a higher occurrence of errors for specific com-
plexity levels. Not always these errors were positively related, but in most times
(5 out of 8, 62.5% to be precise) the errors have shown a positive trend with the
increase in the complexity of the sentences presented to the models, whilst for 2
out of 8 classes of errors (25%), they have shown to be negatively related; and for
the remainder (12.5%, one error) no trend was observed (absence of correlation). A
worrisome scenario would happen if most errors have shown no correlation with the
complexity categories, but numbers show that this is far from reality.

104

Chapter 6

Conclusion

The field of Machine Translation has experienced a sharp growth of architectures
and techniques, but the intricacies involving the errors of such translations are of-
ten overlooked. Translation errors can be produced by either statistical or neural
models, despite the increasing popularity and adoption of the neural ones, which
are also known to be very data hungry. The growth in demand for data has soared
higher than what most datasets can supply, so the MT field is looking for more effec-
tive models that can reach desirable performance levels whilst training over small or
medium sized datasets. Small datasets are the most common size in representativity,
specially in low-resource languages. Moreover, models working under resource con-
strained environments are more prone to producing errors and to suffer from more
complex translation quality constraints. The opportunity to better understand this
phenomenon has motivated this work to investigate qualitatively the patterns of
errors that certain models present in their translations. All the analyses performed
were complemented with experiments that evaluated quantitative metrics such as
BLEU, considering its limitations and drawbacks.

To achieve the goal of first describing the possible translation errors, we have
made a collaboration with a Brazilian translator specialized in English, which accom-
plished the task of defining and labelling classes of errors for evaluating automatic
translations. In addition to specifying error classes, we searched for another quali-
tative dimension that could also help in understanding the reason why a model is
demonstrating some kind of error pattern, and concluded that sentence complexity
is a relevant complement to understand such patterns. The Brazilian translator has
also helped to classify each of the translated sentences into CEFR complexity levels
[4], which was analysed together with the class of error and the type of the model in
an effort to qualitatively understand better the errors that a model produces. The
outcomes of this expert analysis were submitted to Statistical and Machine Learning
tools, such as Fisher Exact Test, Hierarchical Clustering and Correspondence Anal-
ysis, with the goal of extracting hidden insights of model performance considering

105

the error classes created. Before wrapping up the main findings of such experiments,
it is convenient to briefly outline the rationale behind this general work organization
and experiments conduction.

As an effort to better contextualize the reader in the NMT domain, we introduced
the historical NLP models that were the forerunners of the modern Transformer ar-
chitecture in Chapter 2, wherein the challenge for promoting this qualitative analysis
was better defined and also rated in more technical terms. In the following chapter
we focused on the architecture that has prevailed upon the others: the Transformer;
along with its relevant components, such as the Beam Search module, Positional En-
coding and the Attention mechanism. According to the definition of Low-resource
given in Chapter 4, we discussed techniques for dealing with the intrinsic challenges
of this context, such as Subword Embeddings, Transfer Learning (for Word Embed-
dings) and Back Translation, which indeed have proven to improve the quality of the
translations produced by the naive Transformer. This fact motivated us investigate
how such strategies may affect the error patterns observed in these translations..

Some of the hypothesis raised throughout the work regarding ways to address
low-resource effects were evaluated in Chapter 5, where firstly we evaluated the im-
pact of increasingly restricting the number of instances from the dataset used for
training in the BLEU score of a traditional Transformer. This experiment indi-
cated that a relatively small sample size (66% of the TED Talks dataset, around
157K sentences) seem to be surprisingly sufficient. A complementary experiment
compared the benefits of switching to subword with incorporating external knowl-
edge through Word Embeddings, to which BPE demonstrated to be superior to
pretrained Fast-Text in all settings. The effectiveness of using Back Translation to
address low-resource was also analysed in another experiment, which has shown that
augmenting data from the same domain is more effective to our problem. Besides,
the percentage of artificially generated translations contibutes to the effectiveness
of this approach. Finally, we compare our best models against the Google Trans-
late benchmark, aiming to understand how the low-resource strategies succeeded in
terms of performance. The findings of this experiment revealed that our models
were able to reach 77.1% of Google Translate’s performance, when using the most
complete assessment metric (SacreBLEU).

Regarding the qualitative evaluation, this work has considered 2 criteria to anal-
yse the translation quality: the classes of errors, defined with the help of the Brazil-
ian translator, and the sentence complexity, that followed the CEFR criteria. The
aspects around how these criteria were defined and evaluated were object of Chapter
5. In the experiments that exploited these dimensions, our findings indicated that
some techniques are more prone to lead to some classes of errors than others. In
some cases all algorithms identified the same relationship between the model and the

106

classes of errors produced, for instance the Back Translation Transformer showed
a proportion of the Meaning Deviation errors significantly inferior to other mod-
els. All the experiments also showed that BPE is robust against the <unk> error,
matching our expectations, since this model never produces such a token. The ex-
periments involving Fisher Exact test and Correspondence Analysis point out that
the models trained on a reduced dataset are more vulnerable to the Meaning De-
viation and Repetition errors. For all experiments, both reduced models showed a
quite similar pattern of errors. The Correspondence Analysis has also indicated that
BPE produces the smallest percentage of the Insertion error, whilst the opposite
happens for Back Translation. The observed agreement between the outcomes of
different analysis strategies reinforces the fact that some models are indeed better to
mitigate specific classes of errors whilst also being more prone to other error classes.
We mentioned here only some the empirical relations found, and must emphasize
that the relevance of each finding may vary, depending on their supportive metrics
(e.g. explained variance, p-value and confidence interval).

Considering the hypothesis that sentences of higher complexity may exert a
significant influence on the translation quality, we performed an analysis to validate
if the incidence of errors of a particular class of error is higher or smaller when the
sentence complexity increases. These experiments showed that for most of the error
classes (5 out of 8), a monotonic trend between the percentage of error occurrences
and the sentence complexity may be observed. Meanwhile, there are other errors that
might appear to have an inverse relationship with complexity, such as the Insertion
and <unk> types, supported by Fisher and Correspondence Analysis. Both Fisher
and Correspondence Analysis indicate that the Repetition error seems to have no
correlation with changes in sentence complexity. It is the only class of error that is
potentially more prone to happening depending on the choice of the model rather
than with a change in complexity.

We believe that other works in the literature could also benefit from this method-
ology when trying to better explain the outcomes of other model architectures. Be-
fore presenting future study directions, we must stress some challenges that limited
our conclusions.

6.1 Study limitations

One important limitation of this study is the use of only one reference for both the
Tatoeba and the TED Talks datasets. There are situations were the model points
out a synonym that isn’t mapped in the references, and that is considered as an error
when evaluating the BLEU score. This phenomenon was stressed in the qualitative
study discussion, which went into further related challenges, such as data quality

107

issues that range from limitations of only one reference to gramatical errors in the
official dataset references, and including the interaction bias with the translator.
Despite the marginal effect of these issues, we don’t believe that they are relevant
enough to invalidate any of the conclusions brought by our experiments.

Unfortunately, our sample size of unique sentences could not go much further
than 100 sentences, as the interactions with only one translator were under a con-
strained budget. Adding more translators to the analysis and reaching a consensus
could potentially enrich some of the outcomes of our qualitative analysis. The
scarcity of Portuguese papers about NMT at the time of writing has led to some
additional technical and language intrinsic challenges to contribute to the field,
meanwhilst it was also seen as an inspiration to pursue a higher impact.

6.2 Next steps

Among the possible directions of improvement for this study, we believe these are
the most important: improving the depth of the qualitative analysis by adding more
sentences, enriching with more qualitative criteria, or expanding the scope of exper-
iments to contemplate more techniques. We acknowledge the potential of enhancing
the criteria if a bigger sample is analysed by a group of translation experts. Maybe
there are other types of errors that could be covered, or even a category that was set
but could be split into more granular categories to add more details. The qualitative
criteria would benefit from receiving more samples and the review of other linguistic
experts, thriving diversity and becoming more robust, maybe with the caveat of
having to find a consensus to reach an official definition. That would help solving
in more depth the subjectivity challenge and bringing more representativeness for
the analysis.

Considering that the dataset used for the qualitative study is binary and the
variable relationships are complex, algorithms like t-SNE, DBSCAN and Spectral
clustering, to name a few, could also be used to extract multidimensional associa-
tions. They could be applied to tackle the same problem and extract conclusions and
insights that remained hidden in our analysis. We believe that Hierarchical Cluster-
ing, Correspondence Analysis and Fisher Exact Test have complemented each other
very well, but the possibility of another algorithm revealing unknown correlations
exists.

Another study direction could explore expanding the scope to analyse qualita-
tively more recent NMT algorithms, helping to understand if they are being efficient
in addressing the known flaws of the vanilla Transformer, for instance. It would be
enriching to find that they improve translation errors of some kind whilst sacrificing
others, and perhaps a technique which a different qualitative profile can show up as

108

a better candidate with a low prevalence for many classes of error patterns.
We believe that in the future, models will be much more integrated to people’s

lives, hence qualitative issues related to prejudice like gender or race bias have to
be carefully curated to be identified and filtered out from datasets, mitigating the
chances that a model propagates such ideas. A scalable way to achieve this is not
available at the time of writing, but analysing qualitative criteria using a similar
framework to ours is also an interesting path to be further explored in the NMT
field. The applications of NMT are growing in a speed that requires researchers
to switch their focus to also consider translation quality, before it impacts crucial
aspects like intelligibility and ethics more broadly.

109

References

[1] CASELI, H., INÁCIO, M. “NMT and PBSMT Error Analyses in English to
Brazilian Portuguese Automatic Translations”. In: Proceedings of the
Twelfth Language Resources and Evaluation Conference, pp. 3623–3629,
Marseille, France, maio 2020. European Language Resources Association.
ISBN: 979-10-95546-34-4. Available at: <https://aclanthology.org/
2020.lrec-1.446>.

[2] ESTRELLA, A., DE OLIVEIRA E SOUZA FILHO, J. B. “Tackling Neural
Machine Translation in Low-Resource Settings: a Portuguese Case Study”.
In: Simpósio Brasileiro de Tecnologia da Informação e da Linguagem
Humana 2021 (STIL), nov 2021. Available at: <https://sol.sbc.org.
br/index.php/stil/article/view/17807>.

[3] VASWANI, A., SHAZEER, N., PARMAR, N., et al. “Attention is All You
Need”. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, p. 6000–6010, Red Hook, NY,
USA, 2017. Curran Associates Inc. ISBN: 9781510860964.

[4] COUNCIL, E. “The CEFR Levels - Council of Europe (COE)”. https://

tinyurl.com/cefrlcoe, 2021. Acessed: 2021-08-12.

[5] GOOGLE. “Translation AI”. https://cloud.google.com/translate, 2022.
Acessed: 2022-06-02.

[6] MIKOLOV, T., CHEN, K., CORRADO, G., et al. “Efficient Estimation of
Word Representations in Vector Space”. In: 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, 2013. Available at: <http://
arxiv.org/abs/1301.3781>.

[7] RONG, X. “Word2vec Parameter Learning Explained”, Computing Research
Repository (CoRR), v. abs/1411.2738, 2014. Available at: <http:
//arxiv.org/abs/1411.2738>.

110

https://aclanthology.org/2020.lrec-1.446
https://aclanthology.org/2020.lrec-1.446
https://sol.sbc.org.br/index.php/stil/article/view/17807
https://sol.sbc.org.br/index.php/stil/article/view/17807
https://tinyurl.com/cefrlcoe
https://tinyurl.com/cefrlcoe
https://cloud.google.com/translate
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1411.2738

[8] JURAFSKY, D., MARTIN, J. H. “Speech and Language Processing (3rd ed.
draft)”. https://web.stanford.edu/~jurafsky/slp3/, 2021. Acessed:
2021-10-14.

[9] MANNING, C. “Lecture 2: Word Vectors, Word Senses, and
Neural Classifiers. CS224n: Natural Language Processing with
Deep Learning”. http://web.stanford.edu/class/cs224n/slides/

cs224n-2021-lecture02-wordvecs2.pdf, 2021. Acessed: 2021-10-14.

[10] MOSELEY, B., MARKS, P. “Out of the Tar Pit”, Software Practice Ad-
vancement (SPA), 2006. Available at: <http://www.shaffner.us/cs/
papers/tarpit.pdf>.

[11] HUTCHINS, W. J. “Machine Translation: A Brief History”. In: KO-
ERNER, E., ASHER, R. (Eds.), Concise History of the Language Sci-
ences, Pergamon, pp. 431–445, Amsterdam, 1995. ISBN: 978-0-08-042580-
1. doi: https://doi.org/10.1016/B978-0-08-042580-1.50066-0. Avail-
able at: <https://www.sciencedirect.com/science/article/pii/
B9780080425801500660>.

[12] KNIGHT, K. “Decoding Complexity in Word-Replacement Translation Mod-
els”, Computational Linguistics, v. 25, n. 4, pp. 607–615, 1999. Available
at: <https://aclanthology.org/J99-4005>.

[13] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C., et al. “Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Ma-
chine Translation”. In: Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1724–
1734, Doha, Qatar, out. 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1179. Available at: <https://www.aclweb.org/
anthology/D14-1179>.

[14] SHERSTINSKY, A. “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) Network”, Computing Research
Repository (CoRR), v. abs/1808.03314, 2018. Available at: <http:
//arxiv.org/abs/1808.03314>.

[15] BAHDANAU, D., CHO, K., BENGIO, Y. “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: Bengio, Y., LeCun, Y.
(Eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. Available at: <http://arxiv.org/abs/1409.0473>.

111

https://web.stanford.edu/~jurafsky/slp3/
http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture02-wordvecs2.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture02-wordvecs2.pdf
http://www.shaffner.us/cs/papers/tarpit.pdf
http://www.shaffner.us/cs/papers/tarpit.pdf
https://www.sciencedirect.com/science/article/pii/B9780080425801500660
https://www.sciencedirect.com/science/article/pii/B9780080425801500660
https://aclanthology.org/J99-4005
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1409.0473

[16] MANNING, C. “Lecture 7: Machine Translation, Sequence-to-Sequence
and Attention. CS224n: Natural Language Processing with Deep
Learning”. http://web.stanford.edu/class/cs224n/slides/

cs224n-2021-lecture07-nmt.pdf, 2021. Acessed: 2021-11-25.

[17] LUONG, T., PHAM, H., MANNING, C. D. “Effective Approaches to Attention-
Based Neural Machine Translation”. In: Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 1412–
1421, Lisbon, Portugal, set. 2015. Association for Computational Linguis-
tics. doi: 10.18653/v1/D15-1166. Available at: <https://www.aclweb.
org/anthology/D15-1166>.

[18] GRAVES, A. “Sequence Transduction with Recurrent Neural Networks”, Com-
puting Research Repository (CoRR), v. abs/1211.3711, 2012. Available at:
<http://arxiv.org/abs/1211.3711>.

[19] SUTSKEVER, I., VINYALS, O., LE, Q. V. “Sequence to Sequence Learn-
ing with Neural Networks”, Computing Research Repository (CoRR),
v. abs/1409.3215, 2014. Available at: <http://arxiv.org/abs/1409.
3215>.

[20] BRITZ, D., GOLDIE, A., LUONG, M.-T., et al. “Massive Exploration of
Neural Machine Translation Architectures”. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pp.
1442–1451, Copenhagen, Denmark, set. 2017. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D17-1151. Available at: <https:
//aclanthology.org/D17-1151>.

[21] MURPHY, K. P. Probabilistic Machine Learning: An Introduction. MIT Press,
2022. Available at: <https://probml.github.io/pml-book/>.

[22] EISENSTEIN, J. Introduction to Natural Language Processing. Adaptive Com-
putation and Machine Learning series. Florence, Italy, MIT Press, 2019.
ISBN: 9780262042840. Available at: <https://books.google.com.br/
books?id=72yuDwAAQBAJ>.

[23] VOITA, E., TALBOT, D., MOISEEV, F., et al. “Analyzing Multi-Head Self-
Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be
Pruned”, Computing Research Repository (CoRR), v. abs/1905.09418,
2019. Available at: <http://arxiv.org/abs/1905.09418>.

112

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://aclanthology.org/D17-1151
https://aclanthology.org/D17-1151
https://probml.github.io/pml-book/
https://books.google.com.br/books?id=72yuDwAAQBAJ
https://books.google.com.br/books?id=72yuDwAAQBAJ
http://arxiv.org/abs/1905.09418

[24] FAN, Y., XIE, S., XIA, Y., et al. “Multi-Branch Attentive Transformer”, Com-
puting Research Repository (CoRR), v. abs/2006.10270, 2020. Available
at: <https://arxiv.org/abs/2006.10270>.

[25] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., et al. “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting”, Journal of Machine
Learning Research, v. 15, n. 56, pp. 1929–1958, 2014. Available at: <http:
//jmlr.org/papers/v15/srivastava14a.html>.

[26] CALIXTO, I., LIU, Q., CAMPBELL, N. “Doubly-Attentive Decoder for Multi-
modal Neural Machine Translation”. In: Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1913–1924, Vancouver, Canada, jul. 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-1175. Available at:
<https://www.aclweb.org/anthology/P17-1175>.

[27] CUI, H., IIDA, S., HUNG, P.-H., et al. “Mixed Multi-Head Self-Attention
for Neural Machine Translation”. In: Proceedings of the 3rd Workshop on
Neural Generation and Translation, pp. 206–214, Hong Kong, nov. 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-5622.
Available at: <https://www.aclweb.org/anthology/D19-5622>.

[28] DEVLIN, J., CHANG, M., LEE, K., et al. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”, Computing Re-
search Repository (CoRR), v. abs/1810.04805, 2018. Available at: <http:
//arxiv.org/abs/1810.04805>.

[29] BROWN, T., MANN, B., RYDER, N., et al. “Language Models
are Few-Shot Learners”. In: Larochelle, H., Ranzato, M., Had-
sell, R., et al. (Eds.), Advances in Neural Information Process-
ing Systems, v. 33, pp. 1877–1901. Curran Associates, Inc., 2020.
Available at: <https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf>.

[30] QUACH, K. “AI Me to the Moon... Carbon Footprint for ’Training GPT-3’
Same as Driving to our Natural Satellite and Back”. Nov 2020. Avail-
able at: <https://www.theregister.com/2020/11/04/gpt3_carbon_
footprint_estimate/>. Acessed: 2022-02-07.

[31] MEHTA, S., KONCEL-KEDZIORSKI, R., RASTEGARI, M., et al. “DeFINE:
DEep Factorized INput Word Embeddings for Neural Sequence Model-
ing”, Computing Research Repository (CoRR), v. abs/1911.12385, 2019.
Available at: <http://arxiv.org/abs/1911.12385>.

113

https://arxiv.org/abs/2006.10270
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.aclweb.org/anthology/P17-1175
https://www.aclweb.org/anthology/D19-5622
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.theregister.com/2020/11/04/gpt3_carbon_footprint_estimate/
https://www.theregister.com/2020/11/04/gpt3_carbon_footprint_estimate/
http://arxiv.org/abs/1911.12385

[32] MEHTA, S., GHAZVININEJAD, M., IYER, S., et al. “DeLighT: Deep and
Light-weight Transformer”. In: International Conference on Learning
Representations, 2021. Available at: <https://openreview.net/forum?
id=ujmgfuxSLrO>.

[33] TAN, Z., WANG, S., YANG, Z., et al. “Neural Machine Translation: A Re-
view of Methods, Resources, and Tools”, Computing Research Repository
(CoRR), v. abs/2012.15515, 2020. Available at: <https://arxiv.org/
abs/2012.15515>.

[34] RANZATO, M., CHOPRA, S., AULI, M., et al. “Sequence Level Training
with Recurrent Neural Networks”. In: Bengio, Y., LeCun, Y. (Eds.), 4th
International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.
Available at: <http://arxiv.org/abs/1511.06732>.

[35] SHEN, S., CHENG, Y., HE, Z., et al. “Minimum Risk Training for Neural
Machine Translation”. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp.
1683–1692, Berlin, Germany, ago. 2016. Association for Computational
Linguistics. doi: 10.18653/v1/P16-1159. Available at: <https://www.
aclweb.org/anthology/P16-1159>.

[36] CHOSHEN, L., FOX, L., AIZENBUD, Z., et al. “On the Weaknesses of
Reinforcement Learning for Neural Machine Translation”, Computing
Research Repository (CoRR), v. abs/1907.01752, 2019. Available at:
<http://arxiv.org/abs/1907.01752>.

[37] KE, G., HE, D., LIU, T. “Rethinking Positional Encoding in Language Pre-
training”, Computing Research Repository (CoRR), v. abs/2006.15595,
2020. Available at: <https://arxiv.org/abs/2006.15595>.

[38] SENNRICH, R., ZHANG, B. “Revisiting Low-Resource Neural Machine Trans-
lation: A Case Study”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 211–221, Florence, Italy,
jul. 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1021. Available at: <https://www.aclweb.org/anthology/
P19-1021>.

[39] SENNRICH, R., HADDOW, B., BIRCH, A. “Neural Machine Translation
of Rare Words with Subword Units”, Computing Research Repository
(CoRR), v. abs/1508.07909, 2015. Available at: <http://arxiv.org/
abs/1508.07909>.

114

https://openreview.net/forum?id=ujmgfuxSLrO
https://openreview.net/forum?id=ujmgfuxSLrO
https://arxiv.org/abs/2012.15515
https://arxiv.org/abs/2012.15515
http://arxiv.org/abs/1511.06732
https://www.aclweb.org/anthology/P16-1159
https://www.aclweb.org/anthology/P16-1159
http://arxiv.org/abs/1907.01752
https://arxiv.org/abs/2006.15595
https://www.aclweb.org/anthology/P19-1021
https://www.aclweb.org/anthology/P19-1021
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909

[40] BOSTROM, K., DURRETT, G. “Byte Pair Encoding is Suboptimal for Lan-
guage Model Pretraining”. In: Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pp. 4617–4624, Online, nov. 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.414. Available at: <https://aclanthology.org/2020.
findings-emnlp.414>.

[41] LUONG, M.-T., MANNING, C. D. “Achieving Open Vocabulary Neural Ma-
chine Translation with Hybrid Word-Character Models”. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 1054–1063, Berlin, Germany, ago. 2016.
Association for Computational Linguistics. doi: 10.18653/v1/P16-1100.
Available at: <https://aclanthology.org/P16-1100>.

[42] CHEN, H., HUANG, S., CHIANG, D., et al. “Combining Character and Word
Information in Neural Machine Translation Using a Multi-Level Atten-
tion”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pp. 1284–1293, New Or-
leans, Louisiana, jun. 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1116. Available at: <https://aclanthology.
org/N18-1116>.

[43] BOJANOWSKI, P., GRAVE, E., JOULIN, A., et al. “Enriching Word Vectors
with Subword Information”, Transactions of the Association for Compu-
tational Linguistics, v. 5, pp. 135–146, 2017. doi: 10.1162/tacl_a_00051.
Available at: <https://aclanthology.org/Q17-1010>.

[44] ZOPH, B., YURET, D., MAY, J., et al. “Transfer Learning for Low-Resource
Neural Machine Translation”. In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 1568–1575,
Austin, Texas, nov. 2016. Association for Computational Linguistics.
doi: 10.18653/v1/D16-1163. Available at: <https://www.aclweb.org/
anthology/D16-1163>.

[45] QI, Y., SACHAN, D., FELIX, M., et al. “When and Why Are Pre-Trained Word
Embeddings Useful for Neural Machine Translation?” In: Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), pp. 529–535, New Orleans, Louisiana, jun. 2018. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/N18-2084. Available
at: <https://www.aclweb.org/anthology/N18-2084>.

115

https://aclanthology.org/2020.findings-emnlp.414
https://aclanthology.org/2020.findings-emnlp.414
https://aclanthology.org/P16-1100
https://aclanthology.org/N18-1116
https://aclanthology.org/N18-1116
https://aclanthology.org/Q17-1010
https://www.aclweb.org/anthology/D16-1163
https://www.aclweb.org/anthology/D16-1163
https://www.aclweb.org/anthology/N18-2084

[46] GULCEHRE, C., FIRAT, O., XU, K., et al. “On Integrating a Language Model
into Neural Machine Translation”, Comput. Speech Lang., v. 45, n. C,
pp. 137–148, sep 2017. ISSN: 0885-2308. doi: 10.1016/j.csl.2017.01.014.
Available at: <https://doi.org/10.1016/j.csl.2017.01.014>.

[47] SENNRICH, R., HADDOW, B., BIRCH, A. “Improving Neural Machine Trans-
lation Models with Monolingual Data”. In: Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 86–96, Berlin, Germany, ago. 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1009. Available at:
<https://aclanthology.org/P16-1009>.

[48] PONCELAS, A., SHTERIONOV, D. S., WAY, A., et al. “Investigating
Back-Translation in Neural Machine Translation”, Computing Research
Repository (CoRR), v. abs/1804.06189, 2018. Available at: <http:
//arxiv.org/abs/1804.06189>.

[49] XIA, M., KONG, X., ANASTASOPOULOS, A., et al. “Generalized Data Aug-
mentation for Low-Resource Translation”. In: Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, pp. 5786–
5796, Florence, Italy, jul. 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1579. Available at: <https://aclanthology.
org/P19-1579>.

[50] TIEDEMANN, J. “The Tatoeba Translation Challenge - Realistic Data Sets
for Low Resource and Multilingual MT”. In: Barrault, L., Bojar, O.,
Bougares, F., et al. (Eds.), Proceedings of the Fifth Conference on Machine
Translation, WMT@EMNLP 2020, Online, November 19-20, 2020, pp.
1174–1182. Association for Computational Linguistics, 2020. Available
at: <https://aclanthology.org/2020.wmt-1.139/>.

[51] CETTOLO, M., GIRARDI, C., FEDERICO, M. “WIT3: Web Inventory of
Transcribed and Translated Talks”, Proceedings of EAMT, pp. 261–268,
01 2012.

[52] TIEDEMANN, J. “Parallel Data, Tools and Interfaces in OPUS”. In: Proc.
of the Eight International Conf. on Language Resources and Evaluation
(LREC’12), Istanbul, Turkey, may 2012. European Language Resources
Assoc. (ELRA). ISBN: 978-2-9517408-7-7.

[53] HARTMANN, N., FONSECA, E. R., SHULBY, C., et al. “Portuguese Word
Embeddings: Evaluating on Word Analogies and Natural Language

116

https://doi.org/10.1016/j.csl.2017.01.014
https://aclanthology.org/P16-1009
http://arxiv.org/abs/1804.06189
http://arxiv.org/abs/1804.06189
https://aclanthology.org/P19-1579
https://aclanthology.org/P19-1579
https://aclanthology.org/2020.wmt-1.139/

Tasks”, Computing Research Repository (CoRR), v. abs/1708.06025, 2017.
Available at: <http://arxiv.org/abs/1708.06025>.

[54] FARES, M., KUTUZOV, A., OEPEN, S., et al. “Word Vectors, Reuse,
and Replicability: Towards a Community Repository of Large-Text Re-
sources”. In: Proceedings of the 21st Nordic Conference on Computational
Linguistics, pp. 271–276, Gothenburg, Sweden, maio 2017. Association for
Computational Linguistics. Available at: <https://aclanthology.org/
W17-0237>.

[55] PARKER, R., GRAFF, D., KONG, J., et al. “English Gigaword Fifth Edition”,
07 2011. Available at: <https://doi.org/10.35111/wk4f-qt80>.

[56] KUDO, T., RICHARDSON, J. “SentencePiece: A Simple and Language Inde-
pendent Subword Tokenizer and Detokenizer for Neural Text Processing”,
Computing Research Repository (CoRR), v. abs/1808.06226, 2018. Avail-
able at: <http://arxiv.org/abs/1808.06226>.

[57] POST, M. “A Call for Clarity in Reporting BLEU Scores”. In: Proceedings of the
Third Conference on Machine Translation: Research Papers, pp. 186–191,
Belgium, Brussels, out. 2018. Association for Computational Linguistics.
Available at: <https://www.aclweb.org/anthology/W18-6319>.

[58] LOPER, E., BIRD, S. “NLTK: The Natural Language Toolkit”. In: Proceed-
ings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics,
pp. 63–70, Philadelphia, Pennsylvania, USA, jul. 2002. Association for
Computational Linguistics. doi: 10.3115/1118108.1118117. Available at:
<https://aclanthology.org/W02-0109>.

[59] HU, Z., SHI, H., TAN, B., et al. “Texar: A Modularized, Versatile, and Ex-
tensible Toolkit for Text Generation”. In: Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 159–164, Florence, Italy, jul. 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-3027. Available at:
<https://aclanthology.org/P19-3027>.

[60] PASZKE, A., GROSS, S., MASSA, F., et al. “PyTorch: An Imperative
Style, High-Performance Deep Learning Library”. In: Advances in
Neural Information Proc. Systems 32, Curran Associates, Inc., pp.
8024–8035, 2019. Available at: <http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf>.

117

http://arxiv.org/abs/1708.06025
https://aclanthology.org/W17-0237
https://aclanthology.org/W17-0237
https://doi.org/10.35111/wk4f-qt80
http://arxiv.org/abs/1808.06226
https://www.aclweb.org/anthology/W18-6319
https://aclanthology.org/W02-0109
https://aclanthology.org/P19-3027
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[61] CASWELL, I., LIANG, B. “Recent Advances in Google
Translate”. https://ai.googleblog.com/2020/06/

recent-advances-in-google-translate.html, 2020. Acessed:
2022-02-03.

[62] JOHNSON, M., SCHUSTER, M., LE, Q. V., et al. “Google’s Multilin-
gual Neural Machine Translation System: Enabling Zero-Shot Trans-
lation”, Transactions of the Association for Computational Linguistics,
v. 5, pp. 339–351, 2017. doi: 10.1162/tacl_a_00065. Available at:
<https://aclanthology.org/Q17-1024>.

[63] WU, Y., SCHUSTER, M., CHEN, Z., et al. “Google’s Neural Machine Trans-
lation System: Bridging the Gap between Human and Machine Transla-
tion”, Computing Research Repository (CoRR), v. abs/1609.08144, 2016.
Available at: <http://arxiv.org/abs/1609.08144>.

[64] DEAN, J. “Google Research: Themes from 2021 and Beyond”. https://ai.
googleblog.com/2022/01/google-research-themes-from-2021-and.

html?m=1#Trend2, 2022. Acessed: 2022-02-21.

[65] ROY, S., CHAKRABARTI, A. “Chapter 11 - A Novel Graph Clustering Al-
gorithm Based on Discrete-Time Quantum Random Walk”. In: Bhat-
tacharyya, S., Maulik, U., Dutta, P. (Eds.), Quantum Inspired Computa-
tional Intelligence, Morgan Kaufmann, pp. 361–389, Boston, 2017. ISBN:
978-0-12-804409-4. doi: https://doi.org/10.1016/B978-0-12-804409-4.
00011-5. Available at: <https://www.sciencedirect.com/science/
article/pii/B9780128044094000115>.

[66] THEODORIDIS, S., KOUTROUMBAS, K. Pattern Recognition, Fourth Edi-
tion. Academic Press, 2009. ISBN: 9781597492720.

[67] ROUSSEEUW, P. J. “Silhouettes: A Graphical Aid to the Interpretation
and Validation of Cluster Analysis”, Journal of Computational and Ap-
plied Mathematics, v. 20, pp. 53–65, 1987. ISSN: 0377-0427. doi:
https://doi.org/10.1016/0377-0427(87)90125-7. Available at: <https://
www.sciencedirect.com/science/article/pii/0377042787901257>.

[68] GREENACRE, M. J., HASTIE, T. J. “The Geometric Interpretation of
Correspondence Analysis”, Journal of the American Statistical Associ-
ation, v. 82, n. 398, pp. 437–447, 1987. doi: 10.1080/01621459.1987.
10478446. Available at: <https://www.tandfonline.com/doi/abs/10.
1080/01621459.1987.10478446>.

118

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://aclanthology.org/Q17-1024
http://arxiv.org/abs/1609.08144
https://ai.googleblog.com/2022/01/google-research-themes-from-2021-and.html?m=1#Trend2
https://ai.googleblog.com/2022/01/google-research-themes-from-2021-and.html?m=1#Trend2
https://ai.googleblog.com/2022/01/google-research-themes-from-2021-and.html?m=1#Trend2
https://www.sciencedirect.com/science/article/pii/B9780128044094000115
https://www.sciencedirect.com/science/article/pii/B9780128044094000115
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.tandfonline.com/doi/abs/10.1080/01621459.1987.10478446
https://www.tandfonline.com/doi/abs/10.1080/01621459.1987.10478446

[69] IZENMAN, A. J. Modern Multivariate Statistical Techniques: Regres-
sion, Classification, and Manifold Learning. Springer Publishing
Company, Incorporated, 2008. ISBN: 0387781889. Available at:
<https://ce.aut.ac.ir/~shiry/lecture/Advanced%20Machine%
20Learning/Manifold_Modern_Multivariate%20Statistical%

20Techniques%20-%20Regres.pdf>.

[70] NCSS. “Correspondence Analysis”. Jan 2022. Available at: <https:
//ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/

Procedures/NCSS/Correspondence_Analysis.pdf>. Acessed: 2022-03-
07.

119

https://ce.aut.ac.ir/~shiry/lecture/Advanced%20Machine%20Learning/Manifold_Modern_Multivariate%20Statistical%20Techniques%20-%20Regres.pdf
https://ce.aut.ac.ir/~shiry/lecture/Advanced%20Machine%20Learning/Manifold_Modern_Multivariate%20Statistical%20Techniques%20-%20Regres.pdf
https://ce.aut.ac.ir/~shiry/lecture/Advanced%20Machine%20Learning/Manifold_Modern_Multivariate%20Statistical%20Techniques%20-%20Regres.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Correspondence_Analysis.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Correspondence_Analysis.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Correspondence_Analysis.pdf

Appendix A

Academic Publications

This appendix presents the publications produced during the development of this
master’s dissertation.

• ESTRELLA, A., DE OLIVEIRA E SOUZA FILHO, J. B. “Tackling Neural
Machine Translation in Low-Resource Settings: a Portuguese Case Study”.
In: Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana
2021 (STIL), nov 2021. https://doi.org/10.5753/stil.2021.17807 Available at:
<https://sol.sbc.org.br/index.php/stil/article/view/17807>

Abstract: Neural machine translation (NMT) nowadays requires an increasing
amount of data and computational power, so succeeding in this task with limited
data and using a single GPU might be challenging. Strategies such as the use of pre-
trained word embeddings, subword embeddings, and data augmentation solutions
can potentially address some issues faced in low-resource experimental settings, but
their impact on the quality of translations is unclear. This work evaluates some
of these strategies on two low-resource experiments beyond just reporting BLEU:
errors are categorized on the Portuguese-English pair with thehelp of a translator,
considering semantic and syntactic aspects. The BPE sub-word approach has shown
to be the most effective solution, allowing a BLEU increase of 59% p.p. compared
to the standard Transformer.

120

	List of Figures
	List of Tables
	Introduction
	The reenactment of Machine Translation
	Challenges for the Portuguese language
	Contributions of this dissertation
	Dissertation Organization

	A brief introduction to Natural Language Processing
	Feature representation
	Neural Word Embeddings
	Single-word context
	Multi-word context
	Word2Vec: CBOW and Skipgram

	Machine Translation and its challenges
	Word order typology
	Morphological typology
	Word alignment
	Lexical divergences
	Qualitative aspects to evaluate translations
	Ambiguity
	The open vocabulary challenge
	Addressing MT challenges

	Neural networks and Machine Translation
	Machine translation as a task
	The rise of Neural Machine Translation
	A brief introduction to the recurrent neuron
	The first RNN-based machine translator

	NMT by jointly learning to align and translate
	Some intuition behind the attention mechanism
	Attention: Calculus background
	Search algorithms for NMT
	Exploring RNN-based Sequence to Sequence architectures

	Transformer models
	Unveiling self-attention

	Attention variants for Sequence to Sequence learning
	Positional encoding

	Relevant Transformer variations
	Alternative training objectives
	Alternative positional encoding

	The low-resource domain context
	Intrinsic challenges of this work
	Subword Embeddings
	BPE (Byte Pair Encoding)
	Subword variations

	Transfer Learning
	Data Augmentation
	Back Translation

	Experiments on Neural Machine Translation
	Methodology
	Quantitative study
	The impact of restricted dataset content
	Effects of switching to subword level and ways of incorporating external knowledge
	Effectiveness of Back Translation when addressing different low-resource settings
	Comparison of Transformer candidates against the Google Translate benchmark

	Qualitative study
	Challenges of a qualitative analysis
	The qualitative criteria
	Error proportion analysis with the Fisher Exact test
	Hierarchical Clustering (HC) evaluation
	Correspondence Analysis (CA) experiment
	Consolidating the qualitative study

	Conclusion
	Study limitations
	Next steps

	References
	Academic Publications

