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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

LOCALIZAÇÃO DO CORDÃO E MONITORAMENTO DA GEOMETRIA
USANDO VISÃO PASSIVA PARA UM SISTEMA DE MANUFATURA

ADITIVA POR ARCO E ARAME

Marcus Vinícius de Oliveira Couto

Maio/2022

Orientadores: Ramon Romankevicius Costa
Antonio Candea Leite

Programa: Engenharia Elétrica

Apresenta-se nesta dissertação de mestrado o monitoramento das características
geométricas (largura e linha central) de cordões depositados durante a impressão
3D com o uso de câmeras passivas monoculares para manufatura aditiva por arame
e arco elétrico (WAAM).

O desenvolvimento e integração de sistemas de manufatura aditiva (MA), como
WAAM, é um tema de crescente interesse na indústria devido à sua vasta capacidade
de produzir peças com geometria complexa com prazos curtos. No geral, a maioria
do sistema funciona no formato de reprodução (offline), por exemplo, com seus
parâmetros configurados offline, antes de iniciar a impressão da peça.

Para permitir a estimação das características desejadas são utilizados,
segmentação com limite adaptativo, algoritmo de Canny para detecção de bordas,
transformada de Hough para identificação de linhas, e filtragem para atenuar os
ruído do processo. Uma proposta de estimação da posição do cordão também é feita
através da utilização do filtro Kalman estendido (EKF) para atenuar a incerteza da
medição da posição do cordão depositado.

Os experimentos foram realizadas em cenários de cordão único e múltiplo, sendo
essas medições relevantes para WAAM pois ajudam a garantir a qualidade de cada
camada e consequentemente a qualidade da peça produzida. A solução proposta é
implementada experimentalmente em um sistema robótico composto por uma tocha
de soldagem, um braço robótico, uma fonte de alimentação, um alimentador de
arame e uma câmera monocular passiva.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

BEAD LOCALIZATION AND GEOMETRY MONITORING USING PASSIVE
VISION FOR WIRE ARC ADDITIVE MANUFACTURING SYSTEM

Marcus Vinícius de Oliveira Couto

May/2022

Advisors: Ramon Romankevicius Costa
Antonio Candea Leite

Department: Electrical Engineering

This dissertation addresses the online estimation of the geometry characteristics
(width and centerline) of deposited beads while 3D printing with the usage of passive
monocular cameras for wire and arc additive manufacturing .

The development and integration of additive manufacturing system, such as
WAAM, is a topic of growing interest in the industry due to its vast capability
to produce part with complex geometry with reduced lead times. Overall most
system works at playback format, e.g. with its parameters being configured offline
prior to start the printing.

To enable the estimation of the desired characteristics an adaptive threshold is
used for segmentation, a Canny algorithm for edge detection, a Hough-line transform
for line identification, and a filtering step to attenuate process noise. A proposal
to estimate the bead placement is also performed with the usage of an extended
Kalman filter , which uses the unicycle dynamic to predict the deposition trajectory
in a system using plasma deposition (PAW).

The experiments were performed in both single and multi-bead scenarios, which
are relevant to WAAM because it helps ensuring the quality of each layer and
consequently the quality of the part produced. The proposed vision based solution
is experimentally implemented in a WAAM robotic system composed of a welding
torch, a robotic arm, a power source, a wire feeder, and a passive monocular camera.
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Chapter 1

Introduction

Robots and automation plants have more than ever become part of the
manufacturing environments. They are used to improve the quality, production and
also make the work environment safer for humans, where their use and reliability
have already been proven, for example to weld and paint in the automobile industry.
Welding, painting and coating are one of the more common applications of robots
in industry due to their repeatability and accuracy. Small parts assembly are also
largely done by robots. Their use to improve the quality, productivity and safety
has already been proven. It can be said that in industry one of the major benefits
of automation and robotic systems are to improve the safety of the workers. By
reducing or even avoiding the necessity of humans in hazardous operations, e.g. in
Oil & Gas segment, where the ROVs are used to inspect and intervene in subsea
underwater operations.

It is possible to relate some Additive Manufacturing (AM) objectives with other
already established technologies. It makes the work environment safer, increase
revenue and also decrease the lead-time of parts to the end customer. AM can
also increase the part design possibility, decrease the warehouse raw material stock,
and be an advance in the manufacturing process by achieving the safety, quality,
delivery and costs reduction requirements. Regarding the technology development
and maturity stage, it is not yet ready for mass production part delivery or as an
on-the-shelf product. There are many challenges yet to be overcome to make the
technology feasible and spread it on different types of industry segments.

The junction of a wire feedstock with an electric arc as heat source is referred as
Wire Arc Additive Manufacturing (WAAM) . It uses standard off-the-shelf hardware,
like welding power source, torch, wire feeding system, robot arm and others common
welding equipment [64]. In particular, WAAM has got the attention of industry
due its high capability of producing large parts with moderate complexity having
a relative high deposition material rate, capability of decrease material waste and
consequently environmental friendly characteristics [65]. However, some challenges
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rises when using wire as a feedstock, due to the high heat input. Deformation caused
by residual stresses can occur and relative poor accuracy and surface finish also is a
problem due its “layer by layer” build up characteristic [24].

Inspection is also an important stage of manufacturing, it helps defect detection,
which increases the reliability of the product. However, the task of quality evaluation
is not trivial and when defects, such as discontinuities, cracks, porosity, and others,
need to be quantified and coded in terms of computer operation becomes even harder
[15]. Generally to ensure the quality of the part printed, the inspection is performed
with gauges and touching measurement tools, normally carried out by trained and
qualified personnel. Visual inspection is the most used for external inspection. In
welding it is used to check external damage, delamination and corrosion in the
surface for example. One of the limitations in vision inspection is the lack of a clear
acceptance rule which it not very objective in some cases [13].

This work focus on the development of a reliable vision monitoring system, which
is performed with passive vision sensors, where a software capable of gathering
information about the weld bead in real-time is developed. The characteristic to
be estimated by the monitoring system is the bead width. The weld bead width
mapping can be used to improve the quality of the final part, by ensuring the
designed overlapping was successful through the deposition trajectory. In order
to make reliable measurements, the algorithm should be capable of handling the
uncertainties and noises in AM using electric arc for material deposition. Online
monitoring during deposition, also creates a possibility for developing a defect
detection system by monitoring in real time the width variation rate and also a
control algorithm capable of compensating errors due to process inaccuracies [20].
Therefore, the contribution of the current work is focused in development of a reliable
monitoring system capable of be used with HDR cameras without the necessity of
additional algorithm or measurement from the process, also the bead placement
estimation performed creates an opportunity of developing a smart WAAM system,
capable of closed loop control and defect detection as mentioned

1.1 Motivation

During the research about WAAM and its overall implementation in industry, it
was possible to notice the advantages of its use nowadays and also its limitations. A
reliable online measurement of the deposition characteristics can be used in different
scenarios to improve the technology, lowering the necessity of interventions and
manual measurements. As sensing by touching measurements instruments is not
a good option due to the process characteristics, measurement is recommended
through the usage of lasers and cameras.
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The problem of extracting features when using these sensors arises due to the
noise ratio embedded in the process and its nonlinear characteristic, mainly in
process like GMAW-based such as CMT due its short-circuiting characteristic. To
achieve an online and reliable monitoring system in this scenario is a challenge
and requires continuous improvements. The surface quality also suffers from the
impact of having the bead width and its placement through the deposition out of
the designed characteristic.

Due to these factors, a vision-based monitor system is developed using passive-
vision sensors, since it acquires a high amount of valuable data and can be
implemented successfully with the available technology. Vision is also an intuitive
and well understood sensing method by users since today is broadly applied to
monitor, map, measure, and in daily use for photography with the popularity of
smartphones. In additive manufacturing, its development is very important due to
its high data transfer capability, smaller size and lower cost when compared with
other measuring equipment.

The possibility of ensure the quality of the part produced is relevant for the
industry, and to implement the usage of WAAM e.g. in the O&G industry.
Therefore, the development of the current algorithm capable of monitoring the bead
characteristics without the necessity of specific hardware and additional information
from the system is relevant as today the process lacks a commercial software for the
measurement of such information.

1.2 Objective

The objective of this work is to create vision-based algorithm capable of monitoring
the bead characteristics during the deposition process. The algorithm must be able
to reliably perform real-time estimation of the bead width in the single-bead or
multi-bead scenarios, as well as the positioning of the bead centerline.

1.3 Methodology

To reach the objectives, a set of experiments are proposed to test and select the
adequate image smoothing filters, edge detectors, and segmentation method. The
collected data will be used to access the performance of the proposed filtering
algorithms. Therefore, the following experiments are proposed:

1. Single-bead deposition.

2. Single-bead deposition with varying travel speed and a first multi-bead monitor
test.
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3. Multi-bead deposition composed of a single layer and a pad of five deposited
layers.

The monitoring is performed with a single HDR camera for the first two
experiments and with two cameras, one HDR and one IR , for the last deposition
experiment. The deposition setup is composed by the passive vision cameras, a
6-DOF robot arm, and a CMT deposition system. An example of the system used
at the first deposition is shown at Figure 1.1.

Figure 1.1: WAAM system with a Kuka KR90 robot arm, welding torch, Kuka KP2
positioning table, Fronius power source, and wire feeder.

A simulation with Matlab for independent wire processes like PAW with two
cameras (Figure 1.2) is developed to estimate the bead centerline. The first camera
is located in a top-side view configuration where it focus on the bead formation, while
the second one is in a front-view configuration to capture the wire feed deviation in
real-time. The second camera is specially used to predict the bead placement since
it monitors the wire feeding deviation along the deposition trajectory.
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Figure 1.2: Deposition setup proposed for the Matlab simulation. Camera 1
assembled in a top-view configuration to get the bead width and centerline and
camera 2 assembled in a lateral-view configuration to get the wire feeder deviation
angle.
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Chapter 2

Additive Manufacturing System

Additive manufacturing (AM) is the process of producing 3D parts from a
CAD (Computer-Aided Design) without the need of specific process tooling to
manufacture a part with distinct geometry and internal characteristics [38]. In some
references, 3D printing is also used as a synonym for Additive Manufacturing [65].
The technology was originally developed to manufacture polymeric, paper laminates
and waxes materials. It caught the attention in recent years of many industry
segments due its benefits, such as, a reduced material costs and a higher part design
freedom. Basically, it consists of a process in which a material is deposited gradually,
being build up layer-by-layer [58]. Additive Manufacturing consists of a combined
motion and heat system with a chosen feedstock that is used to build up parts
through material deposition [64].

The technology gives Original Equipment Manufactures (OEM) , from different
industry segments an opportunity for reaching new costumers, reducing costs and
attending environmental goals by raising sustainability. The biggest strength of
the technology lies in traditional manufacturing process limitations, enabling a
new approach to engineering part design and manufacturing when requested as
possible new solutions. Overall, it enables the production of complex structures
while maintaining stability in lighter designs [58].

AM has helped small companies and individual personnel to develop customized
parts and easier prototyping, mainly focusing on small parts. One of the interests
is its development for large parts build up. It also has the focus on minimizing
the cost and time spent to manufacture prototypes, optimize profits and results
[34]. However, producing large size parts increases problems like surface roughness
and lower accuracy. For traditional MAM systems, some additional process steps
are used to guarantee the correct material properties of the end part, for example,
heat treatment and machining. Using robot manipulators with AM, helps to work
"outside the box" opening new possibilities for the process [20]. Increasing the
process flexibility and the possibility of producing large structures.
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The part produced with AM is printed in layers with a predefined height. In
the planning stage, the deposition parameters are designed to achieve geometric
accuracy, desired deposition rate, and satisfactory mechanical properties. A generic
additive manufacturing system can be separated in at least eight main stages: (i)

CAD design; (ii) STL conversion; (iii) file transfer to machine; (iv) machine setup;
(v) build up; (vi) remove; (vii) post-processing; (viii) application; as shown in
Figure 2.1 [38].

Figure 2.1: Generic stages of additive manufacturing steps [38].

These stages have specific definitions with “CAD” being the stage which the
part is modeled using a dedicated software (Solidworks, Fusion360, Inventor or
others) and a 3D solid is created, “STL convert” converts previously stage file
output to STL format, “File transfer to machine” transfers the STL file to the
AM hardware and than manipulated as necessary, “Machine setup” the deposition
parameters and energy sources are configured, “Build” is done most automatically
with some monitoring to ensure no errors, “Remove” the part is removed from the
build platform, “Postprocessing” additional material is removed by manual cleaning
or machining and manual manipulation or part produced, and in “Application” part
is ready for use but in some cases it can also need additional treatments such as
painting, washing, heat treatment [38].

Additive manufacturing has been described as a revolutionary technology, with
the possibility of making current manufacturing technologies obsolete if developed
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to its ultimate conclusion. It has a advantage of speeding up, from the concept step
to manufacturing a part. The seamless characteristics of the part produced is also
an advantage, reducing the steps required during manufacturing and delivering the
concept of what you see is what you build (WYSIWYB). Also has the potential to
simplify the manufacturing and to keep the workshop environment much cleaner,
and versatile when compared to traditional manufacturing facilities [38].

2.1 Wire arc additive manufacturing

Recently, wire arc additive manufacturing (WAAM) has got the attention of
manufacturers from different industry segments due to its potential capability to
produce parts with distinct geometry without the necessity of specific tools. It also
benefit industry since it allows rapid, decentralized, and flexible manufacturing as
well as serial production. WAAM is the junction of wire feedstock with an electric
arc as a heat source, all guided by a robotic system to enable the buildup of a
designed part [64]. A research restricting WAAM as the keyword in two science
research databases (SCOPUS and Web of Science) has shown the growing interest
of the academy community as described in Figure 2.2. Which reinforces the relevance
of the proposed theme.

Figure 2.2: Papers contributions published in technical journals within the WAAM
theme. Retrieved from SCOPUS at 05/03/2022.

It is also important to highlight the multidisciplinary characteristics of the
technology, contemplating materials, metallurgy, robotics, automation, and other
disciplines for its development as detailed in Figure 2.3.

In particular, WAAM has the capability to produce large and complex parts with
high deposition rate, little material waste, and consequently, friendly environmental
characteristics [65]. However, some challenges arise when using metal wire as
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feedstock. Due to the high heat input required to print the part and the metallurgical
characteristics of the alloy, deformation can occur during the cooling stage and
cause residual stresses, increasing the risk of defects. A good example of study
that represent numerically the heat transfer in WAAM is performed by FRAGA
et al. [34], where the model considers exchange with the environment by radiation
and convection. Poor geometric accuracy and surface finishing of the part are also
problems during its layer by layer buildup characteristic [24]. Examples of parts
produced with WAAM are shown in Figure 2.4 and Figure 2.5.

Figure 2.3: WAAM treemap contributions divided in theirs big areas of development.
Retrieved from Web of Science at 05/03/2022.

Figure 2.4: Examples of parts printed with WAAM, industrial gas turbine blade
(left) and titanium tank (right). Retrieved from https://waam3d.com/parts, at
04/10/2021.

Wire arc additive manufacturing works by depositing melted metal layer by layer,
it can use different types of power source for melting the wire. The most common
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Figure 2.5: World’s first metal 3D printed bridge [35].

welding technology that are applied in WAAM are gas metal arc welding (GMAW),
gas tungsten arc welding (GTAW), and plasma arc welding (PAW) [28, 50, 65]. The
Table 2.1 describes possible WAAM systems with a set of power sources and its
main features.

The GMAW process operates with metallic alloy wire that is both the electrode
and the buildup material. And in WILLIAMS et al. [64] it is stated that GMAW is
commonly the process of choice to the fact that “the wire is the consumable electrode,
and its coaxiality with the welding torch result in easier tool path". The same group
of researchers supports the usage of CMT, developed by Fronius, due to its controlled
dip transfer which provides lower heat input deposit, great stability, and nearly to
without spatter. By analyzing the table 2.1 and the previous information, it is
possible to conclude that CMT is a reliable option for WAAM. Since it has good
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Table 2.1: Comparison of WAAM techniques with their particular energy source
and features. Adapted from WU et al. [65].

WAAM Energy Source Features

GTAW-
based GTAW

Non-consumable electrode;
Separate wire feed process;
Typical deposition rate: 1-2kg/hour;
Wire and torch rotation are needed;

GMAW-
based

GMAW
Consumable wire electrode;
Typical deposition rate 3-4 kg/hour;
Poor arc stability, spatter;

CMT

Reciprocating consumable wire electrode;
Typical deposition rate: 2-3 kg/hour;
Low heat input process with zero spatter;
High process tolerance;

Tandem
GMAW

Two consumable wires electrodes;
Typical deposition: 6-8 kg/hour;
Easy mixing to control composition for
intermetallic materials manufacturing;

PAW-
based PAW

Non-consumable electrode;
Separate wire feed process;
Typical deposition rate 2-4 kg/hour;
Wire and torch rotation are needed;

deposition rate in comparison with other heat input process while also maintaining
a good level of stability in the deposition process. If compared to regular GMAW is
also has the advantage of a lower heat input, reducing residual stress and distortion
in the produced part.

A schematic of the three main process used in WAAM is show in Figure 2.6. In
GMAW the arc is formed between the consumable electrode and the workpiece, on
the other processes, GTAW and PAW, the arc is formed using a non-consumable
tungsten electrode, with the feedstock being supplied separately. Between the last
two processes the biggest difference is the high temperate zone of the arc being
narrower and the two gas flows (shielding and plasma gas) in the PAW [24].

A side view example of a wall being deposited is shown in Figure 2.7, which
describes a three layers build-up using GMAW as the power source for melting the
wire. The image color gradient “red to gray” is used to shown a simplified version
of the thermal dissipation considering only the last layer single bead. For GTAW or
PAW process the wire would be fed independently of the torch.

2.1.1 Steps used during WAAM

The basic steps to produce a part with WAAM are shown in Figure 2.8, are: (i)

design and adapt the part to be printed inside a CAD software for the desired
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Figure 2.6: Process schematic: (a) GMAW, (b) GTAW and (c) PAW. Adapted from
DING et al. [24].

Figure 2.7: Side view deposition of a wall with GMAW.

manufacturing process requirements, in this case WAAM; (ii) Define the layer height
and proceed to the slicing step with dedicated software, which slices the 3D part
into a set of 2.5D data, since it contains height information; (iii) Define the path
through which the torch will be guided by the robotic system; (iv) specify the desired
bead geometry during the print; (v) define the indirect deposition parameters (IDP)
to achieve the desired characteristics; (vi) setup the deposition parameter to the
power source and send the trajectory to the robot; (vii) build-up the part; (viii)
Execute the post-processing step as required to achieve the designed surface finish
or geometric accuracy [27].

2.2 Path planning

Path planning is an important step in a part production, and it is performed
right after the slicing step. Many path patterns have been developed for additive
manufacturing and are also used for WAAM, however, not all of them are suitable
for WAAM due to some physical requirements and limitations. The path performed
during the print influence the occurrence of distortion and residual stress, so,
choosing a adequate path for the manufacturing process improves the quality of
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Figure 2.8: Block diagram for WAAM stages, adapted from DING et al. [27].

the part [26, 65]. An optimum path planning aims for a smooth layer surface, void-
free deposits and satisfactory thermal dissipation, and needs to respect a defined
distance between adjacent pass (step-over distance) that is directly related to the
width of the bead being deposited. Another concern is to avoid abrupt changes in
the path direction, as it tends to generate localized errors [26].

When selecting a path pattern it is important to consider minimum electric arc
extinguishing points. Complex paths and intersection should be avoided as possible.
The tool-path is defined as a continuous deposition of material with a single start and
stop. Some path generation methods used in additive manufacturing are described
in Table 2.2, being also used to print parts in WAAM.

Thinking in the limitations embedded with the usage of wire as feedstock some
path patterns might be preferred or not recommended for WAAM. For example,
raster pattern have a set of discontinuities, requiring many start and stop points in
the deposition and deposit material in the same direction which can lead to a poor
build quality. Zigzag is derived from raster strategy and is the most popular method
used in AM systems. It is a continuous path and can increase the productivity by
reducing transition motions from start to end, however, it has an accuracy error
in the printed part outline. Zigzag can also present heat accumulation in certain
regions, as frequently changes its direction path. Contour changes the direction
frequently, by following the boundary curves of the path, however, it also present
some potential gaps while printing depending of the geometry and features in the
sliced layer. All these path patterns must cover the layer respecting the distance
specified between adjacent passes [21, 23, 26].
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Table 2.2: Path generation method with examples. Adapted from DING et al. [23].

Path generation method Example Reference

Raster [30]

Zigzag [51, 53]

Contour [32, 43, 73]

Spiral [54, 61]

Continuous [3, 21, 31, 63]

Hybrid [42, 77]

2.3 WAAM-fabricated components common defects

WAAM has a lot of research areas being developed to enable its commercial
distribution as an off-the-shelf technology. For application of these parts in critical
conditions, such as O&G offshore facilities, some defects must be investigated.
Porosity, residual stress, void and cracking are some of the defects that must
be avoided during part production for hazardous conditions. These defects can
occur due to non optimum trajectory design, poor deposition parameter setup,
deformation associated with heat accumulation, bad wire quality, contamination
and other machine malfunctions [65].

These types of failures can also happen with other manufacturing processes.
However, WAAM has an important characteristic, the possibility of monitoring the
deposition characteristics during the entire manufacturing. In WAAM, a part is
manufactured by depositing material layer by layer and this is an opportunity of
improvement when compared to the traditional manufacturing processes. With the
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possibility of monitoring the process with non-touching sensors and extract valuable
information, improvements regarding failure mitigation can be achieved. Figure 2.9
describes a vulnerability ratio between printing with steel and each possible defect.
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Surface 
finish

Crack Oxidation
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Figure 2.9: Correlation between defects presented in WAAM using steel. Adapted
from WU et al. [65].

2.3.1 Residual stress

The part mechanical failure, in this case distortion, is mostly caused by residual
stresses inherited from wire arc additive manufacturing. Avoiding it completely is
not possible, therefore ways to deal with this problem must be developed and studied
for the produced geometry. The residual stress caused by the process as already
mentioned leads to distortion, loss of geometric tolerance, surface delamination and
fractures during the deposition. Controlling and handling with residual stress is a
key aspect of the process [65].

Residual stress is the internal tension that remains in the part after all external
forces are removed. This characteristic is caused by the thermal expansion and
shrinkage during the deposition process and a high heat input, causing several types
of distortion, which is a big problem for large thin wall parts [28, 65].

2.3.2 Porosity

It is another common defect present in WAAM, and must be minimized to keep
adequate mechanical properties of a printed part. Porosity may be caused by several
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factors, such as, contamination in the wire or on the surface where the material is
deposited, gases trapped inside the solid, poor path planning, unstable deposition
process, and insufficient fusion or spatter ejection in complex deposition path that
might create gaps or voids in defined regions (when torch velocity vector orientation
changes fast). Some methods can be adopted to minimize the occurrence of porosity,
like [65]:

1. Suitable deposition process to the material being used;

2. High quality gas supply system;

3. A clean wire and substrate surface before fabrication;

4. High quality feedstock;

5. Optimized bead shapes;

6. Monitor and control the thermal profile;

7. Treatments after deposition, such as rolling.

2.3.3 Delamination

Delamination happens due to insufficient or incomplete melting between adjacent
layers deposited. It appearance in the part produced is related to the thermal
signature during printing and also the characteristics of the material being deposited.
This defect is mainly visible, which can be detected by vision inspection, vision
sensor or thermal reading during manufacturing. It is not possible to correct this
defect with post-process techniques, however, preheating of the substrate might
prevent its occurrence and need to be considered [65].

2.3.4 Quality assurance

Currently, most of the part quality assessment relies completely on human evaluation
based on specifications established in industrial standards. Inspection requires
training and process knowledge, which demands considerable time, increasing the
costs and impacting the lead-time. Usually, inspection is performed with manual
tools, such as gauge, scale and others. Vision inspection is commonly used for
detecting external defect after the print. Many experiments based on vision are
performed in lab environment successfully; however, they need further testing in the
industry to ensure process safety and efficiency [13]. One application of vision-based
sensing is a detection system to analyze the surface of each deposited pass in 3D
printing and to track the joint groove in welding [74].
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The characteristic’s monitoring of the deposited material is also important and
plays an important role in the development of the technology to enable its application
widely in the industry. [33] developed a system for tracking the bead width in PAW
deposition using passive vision with a camera in a top-view layout. This process
has a higher signal-to-noise ratio when compared with GMAW, and the possibility
of acquiring more valuable information from the image, like the wire feeding angle.
[52] used a single high-refresh-rate camera to measure the weld bead height and
width, obtaining satisfactory results. The weld bead width was estimated indirectly
from the measurement of the molten pool width. However, in this case, the width
measurement assumes symmetry in the bead profile. [71] also used passive vision for
seam tracking in GMAW to ensure the correct position of the torch. Passive vision
is widely used during welding and material deposition.

A set of factors contribute to the fabrication of high quality parts and minimize
the occurrence of defects, like: (i) To monitor and compensate possible deviations
in trajectory and/or parameters during the print [76]; (ii) Post-process options, like
the rolling [14], the heat treatment, and others; (iii) feedstock optimization with
high quality wires; (iv) adequate process selection and parameter design. All these
factors contribute to minimize the occurrence of defects during fabrication.

2.4 Direct and indirect deposition parameters

Deposition parameters can be classified in two specific classes, direct deposition
parameters (DDP) and indirect deposition parameters (IDP) , refereed in NAIDU
et al. [48] as welding parameters and adapted in this work to deposition parameters.
DDP are related to the characteristics of the material deposited, such as bead
geometry, reinforcement, fusion zone geometry, mechanical properties of the metal
deposited, and others, they are called deposition characteristics is this document.
IDP are the configurations used to result a desired characteristic, some of them are
the current, voltage, travel speed, and others. In Figure 2.10 it is described the
input/output variables for the deposition process.

For example, the objective of the planning stage is to choose a set of IDP that
result in the desired DDP for the metal being deposited, ideally resulting in a part
without defect and with satisfactory mechanical properties. In Figure 2.10 it is
demonstrated the welding or deposition as a multi-input and multi-output (MIMO)
multivariable system.
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Figure 2.10: Input and output variables. Adapted from [48].

2.4.1 Torch travel speed

Travel speed (TS) is a independent deposition parameter that depends of the robot
trajectory (path and time restrictions) since is determined by the deposition process.
TS is computed as the torch linear velocity tangent the deposition path, as shown
in Equation 2.1. In WAAM it is important that the travel speed is kept constant to
avoid variation in the geometry being deposited.

TS =
√
V 2
x + V 2

y (2.1)

Figures 2.11 and 2.12 describes some of the parameters that must be specified
before a deposition with GMAW. The Travel speed, contact tube to work distance,
and the shielding gas flow rate are some of the parameters defined in the planning
stage and executed by the deposition system during the deposition.

In GMAW the wire is fed through the torch with a shielding gas to protect the
electric arc area during printing, these aspects are represented in Figure 2.12. In
PAW and GTAW, the wire is fed independently of the torch and due to this factor
some additional challenges arise, e.g. the feeding angle deviation caused by a low
quality wire [76].

2.4.2 Travel speed influence on metal deposition

As specified by NAIDU et al. [48], TS influences some of the desired bead
characteristic and must be kept constant during the printing to avoid variation
in the bead geometry. TS also has direct influence in some DDPs, for example,
in the penetration and bead width. So as TS increases, the aforementioned
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Figure 2.11: Torch travel speed and other indirect deposition parameters. Adapted
from NAIDU et al. [48].
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Figure 2.12: Torch side-view with some direct deposition parameters. Adapted from
NAIDU et al. [48].

DDPs decreases. A simple relation of the torch travel speed and some deposition
characteristics, also called direct deposition parameters in this work, is shown at
Figure 2.13.

2.4.3 Travel speed reference

Travel speed (TS) is an important parameter that must be take into account when
planning the deposition of a part, since it has impact the penetration, and also the
bead geometry (height and width). The authors cited in Table 2.3 mainly used the
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Figure 2.13: Relation between torch speed and weld bead characteristics, where the
higher the TS the lesser is the penetration and the penetration width. Adapted
from NAIDU et al. [48].

travel speed within a range of 1.66mms−1 and 8.33mms−1 for their experiments. In
the current work the deposition and also the proposed simulation of the trajectory
performed by the robot arm and the bead placement use a travel speed varying
between 1.66 to 16mms−1.

Table 2.3: References used for the TS used in WAAM.

Authors WILLIAMS et al. [64] RIOS et al. [55] BANDARI et al. [2]

Travel speed 3.33 → 8.33 2.00 7.66
6.00

Units mms−1 mms−1 mms−1

The optimal travel speed values in most cases are achieved through experiments,
which also vary accordingly to the type o material being used during welding or
printing operations. To the robot motion simulation, it is used a tool travel speed
range varying from 1.66 to 16mms−1.

2.5 Vision-based sensing

In welding and WAAM, vision is used to acquire information of the molten pool
and the weld bead, and can be used for tracking, guiding and feed backing control.
Vision-based sensors are divided in two categories, passive and active sensors, which
are classified according to the image light source used [10, 66]. A reliable monitoring
system is a key aspect of quality assurance during an additive manufacturing process.

By analyzing the buildup characteristics of the deposition, it is possible to assume
that if the buildup was finished as planned, then the probability of defects in the final
manufactured part is minimized. Moreover, mapping the bead geometry, mainly the
bead width and its centerline position along the reference trajectory, can also help
the inspection stage. Deposited areas where the geometry is not in accordance with
the specification have greater chance of presenting defects and can be tracked during
the inspection.

Online measurement of the characteristics is important to enable closed loop
control of the deposition parameters during the 3D printing process. This can
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increase the productivity, lower the manufacturing costs and improve the reliability
of the manufactured components. Vision-based sensors are a good option to this
application due to its non-contact measurement capabilities.

The acquisition of the process characteristics in WAAM can be performed
through sound and vision. It is preferable to use good sensors, that have a
higher signal-to-noise ratio [36]. In some cases multi-sensor are also used in the
manufacturing process to improve the accurate of the measurement [8]. Measuring
the same signal with more than one sensor is a good option since it enables better
implementation of filters, decreasing the impact of the noise in the measurement.

2.5.1 Vision-based sensor

Vision-based sensors also provide a large quantity of information to work with, they
are used to gather information of the molten pool, the bead and other welding or
deposition characteristics. Their non-contact capability is also important in welding
and WAAM due the nature of the processes. These information are used for tracking,
guidance and also feedback data to a controller. Vision sensing can be divided in
two types, passive and active sensing, and are mainly classified in according to how
light source is being supplied [11, 66]. The image retrieved always have noise [78]
and need to be filtered to enable a constant and correct feature extraction.

Active vision sensing

Active vision sensing requires an internal light source, for example, a laser or other
assistance light for the process to be monitored. In welding, active vision is used to
restrain the arc’s light interference; however, it is expensive to be applied in common
welding process [11].

Passive vision sensing

On the other hand, passive vision works without the assistance of a light source,
using only the energy provided externally, in this case by the arc itself. Passive
vision is considered a practical way of monitoring weld pool characteristics and it is
also cheaper than active vision, being preferred for monitoring and control welding
processes. It provides enough information and can overcome some problems of laser
tracking systems, like the look-ahead detection [66, 70, 71].

However, the usage of passive vision has the disadvantage that the vision system
becomes more susceptible to process noise, since it uses external energy to acquire
data. So, the implementation of filters to wipe off disturbances in the acquired data
(image) is required, e.g. CMT results in a highly noisy image of the deposition due
to its systematic open and close arc characteristics.
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2.5.2 Active and passive vision sensors application

Some examples of active and passive vision systems are the laser sensors and
cameras. Laser sensor are easier to utilize, they are focused on point recognition,
and have some advantages due its laser light intensity that is little affected by the
electric arc light. Because of this characteristic is a good option in high noisy
environment such as arc welding [75]. Some of the characteristics of a laser sensor
is: (1) in some wave lengths it has a higher light intensity when compared to the
electric arc light; enables a clear observation of the phenomenons while printing; (2)
no time delay; (3) robust to be used in highly noisy environments [75]. However
some of the disadvantages of the active vision-base sensors are: (1) high cost; (2)
usage complexity; (3) large volume [62].

On the other side, charge coupled device (CCD) cameras are capable of supplying
abundant information but their image have more noise. E.g. image splash, dust,
electric arc light variation and others characteristics affects more these cameras and
are considered noise [12, 72]. The most common vision sensors used for monitoring
bead and molten pool characteristics are: (1) laser beam-based equipment (e.g.
profilometer); CCD and CMOS cameras; and thermal cameras.

To extract the desired features and measure the characteristics of the process,
some steps are commonly used: (1) color space conversion; (2) smooth filtering; (3)
segmentation; (4) edge detection; (5) line detection [9].

The implementation of cheaper sensors in WAAM are also relevant to make the
technology more accessible. An example of a low cost vision sensor is implemented
on LUO et al. [44], an off-the-shelf digital camera with HDR capability was used to
collect information during arc welding. It replaces a 120dB dynamic range dedicated
HDR camera with multi-exposure support common used during these types of
monitoring. These digital cameras are a lot cheaper than those build specific for
capturing images during welding. However, more noise reduction algorithms needs
to be used to obtain a high quality image.

2.5.3 Noises present in the vision system during the

deposition

WAAM is performed in a very complex environment, with many types of noise
present during the process. Generating a necessity to process and filter the
information acquired. Some of those noises are: (i) Non-uniformity of the surface
(oxidation, marks, dust, etc); (ii) the arc itself; (iii) Types of material and its unique
characteristics; (iv) mechanical vibration; and many others. The environment,
platform, cable lines, jigs, changing in light and others that can also be considered
as noise, which make the acquisition of data a challenge. When designing processing
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algorithms these details must be taken into account [12].
The amount of noise present in the image is one of the factors that must

be studied during the development of the vision-based algorithm. Some of those
noises can have a big impact in image quality and are hard to be treated without
losing sharpness that is very important to the measuring process. As mentioned
before, the material that is being deposited is also considered noise depending of
the vision sensor used.For example, with 3D scanners a polished surface can be a
problem because of the reflection rate it has, generation of many noises and loss of
data. Figure 2.14 shows examples of noise in WAAM, as fumes, arc radiation, light
variation, and spatter.

(a) Low noise scenario. (b) Fumes. (c) Arc radiation and fumes.

(d) Low light. (e) Arc radiation and fumes. (f) Spatter and fumes.

Figure 2.14: Captured frames during the monitoring and their different noises [17].
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Chapter 3

Bead Geometry and Layer Design

In WAAM, it is crucial to find a relationship between the deposition parameters and
the single bead geometry. Some approaches are based on different mathematical
models to represent the bead geometry and correlate it with the input parameters.
Simple continuous functions are used to model the bead cross-section profile in
WAAM systems, for example, parabolas, sinusoids and circular arcs, but more
advanced ones can also be used such as b-spline, logistic and Gaussian functions.
Overall, it has been concluded that the bead profile is largely dependent on the wire
feed speed (WFS) and the travel speed (TS) [5, 22].

The knowledge of the bead geometry model is very important for an intelligent
additive manufacturing system. It can be used to develop feedback control
algorithms, improve surface quality and perform cost management during the build-
up. The development of a simple model for the bead geometry during deposition
have its benefits, e.g.: (i) make easier to understand the behavior and to troubleshoot
problem of the proposed model; (ii) a simpler control algorithm to be implemented
during the buildup process.

The focus of this chapter is to identify a single-bead and multi-bead model.
They can be used for simulating, testing and other applications like: (i) measuring
comparison; (ii) filter development; (iii) calibration and testing of sensors; (iv) to
achieve indirect deposition parameters. To have Multi-bead overlapping model is
also very important due to its direct relation to the surface quality, part precision,
and also in the presence of discontinuities or defects.

In WAAM a layer is build by moving the torch in a predefined path planing
trajectory [59]. The goal is to fill the path with deposited material creating a 2.5D

structure. It is called 2.5D because the path executed by the torch will generate
a layer with a height. Since the current layer will always be deposited over the
previous layer, it is easy to picture the importance of the surface quality of each layer
in respect to the final layer surface quality since a low surface quality propagates
between layers.
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As stated before, to have a plain surface is important at the end of each layer, the
flatter the surface the better it is for WAAM. High roughness, waviness, and poor
finishing during layers deposition can cause the following problems and unwanted
necessities in the printed part [29, 38]:

• More machining time;

• Increase of waste material;

• Low efficiency;

• Internal voids between layers.

Therefore quality management during additive manufacturing is very important.
Some parameters to monitor and control are the bead width and the overlapping
distance of the adjacent beads, the control of this distance decreases the chance of
defect and improve quality and precision of final product minimizing the probability
of a low surface finish.

3.1 Single-bead model

Single-bead model knowledge and its relation to the chosen IDP is essential for
understanding the overall influence of these parameters with the geometry of the
bead. One of the key aspects of developing WAAM technique is becoming capable
of knowing which parameter directly influence on the deposition rate and the desired
bead geometry. A schematic of the bead profile can be seen in Figure 3.1 with its
main geometric characteristics (width, height and penetration) considered during
parameter design phase. The monitoring of these characteristics is very important
for an intelligent WAAM system. For example, with the usage of a suitable camera
facing directly the substrate and fixed parallel to the torch, it is possible to extract
the width along the material deposition. Other cameras assembly configuration also
enable the extraction of features and measurements of others characteristics during
the deposition.

Acquiring information about the bead width being deposited can be considered
one of the most important variables of the bead geometry, since its undesired
variations during buildup directly influences the quality of the layer. A constant
bead width results in lesser waste of material and in a better deposition fitness and
finish [19].

AIYITI et al. [1], stated that the cross-section profile of the bead is mainly
dependent of WFS (Wire Feed Speed), travel speed and others parameters. He used
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bead width (w)
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Figure 3.1: Cross-section profile of the single bead [17].

lambda (λ) to represent the relation between width(w) and height(h), calling it the
thickness relation (Equation 3.1):

λ =
w

h
(3.1)

With that relation, he established the bead cross-section profile with lambda
values. For values of λ above 2, the cross-section will have an arc profile. However,
it will be demonstrated that a parabola profile shows better fitting to the real bead
profile for the parameter configuration usually used in WAAM.

In SURYAKUMAR et al. [59], the parameters are grouped according with
its interdependence relation for hybrid layer manufacturing. That is, when a
parameter vary another changes in cascade to maintain the arc stability. Within
this characteristics the considered IDP that causes changes in the bead are:

• Wire diameter (wd)

• Wire feed speed (WFS) (ws)

• Torch speed or travel speed (ts)

• The distance between neighbor beads (step-over distance) (d)

The model used for single bead is a symmetric parabola of the form y = a+ c x2,
the terms a and c are represented as the welding bead height(h) and width(w), as
follows:

a = h and c = −4h

w2

Geometric model of the parabola:

y = h

[
1−

(
2

w
x

)2]
(3.2)

The previous expression in terms of the deposition process parameters is
described by 3.3, where vw is the wire feed speed and vt the torch speed.
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y = h

[
1−

(
16h vt

3π vw d2w
x

)2]
(3.3)

The bead formation by wire melting are affected by several physical phenomena.
Although w and h are only affected by the welding parameters, it would be
necessary to take into account several variables like gravity, viscosity, surface tension,
electromagnetism and others to model their relation. So using equation 3.3 is more
useful and satisfies many possible implementation with a simpler but reliable model
[59]. Overall, it has been concluded that the bead profile is largely dependent of the
wire feed rate and the travel speed [22].

The focus of XIONG et al. [68] is to fit the bead profile according to three models:
A parabola, a circular arc and a cosine function with its curves passing through the
point B (w/2, 0) and C (0, h) as detailed in Figure 3.2. The following assumptions
are considered:

1. Symmetry of cross-section profile.

2. Deposition with the same parameter set has uniform cross-section.

3. Section profile of single-beads remaining unchanged at multi-bead application.

Substrate or previous layers

Y

X

h
f(x)

C(0,h)

B(w/2,0)A(0,0)

Figure 3.2: Single-bead cross-section model for the proposed models. Adapted from
XIONG et al. [68].

A relation between each model and welding or deposition parameters is
attempted obtaining the right prediction model to be used during deposition. Where
the following curves of the formulation passes through points B (w/2, 0) and C (0, h)

[68].

• Parabola model expression:

y = −4h

w2
x2 + h (3.4)
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Profile area:

Ap =

∫ w
2

−w
2

h cos
(π x
w

)
dx =

2w h

3
(3.5)

• Cosine model expression:
y = h cos (πx/w) (3.6)

Profile area:

Ac =

∫ w
2

−w
2

h cos
(π x
w

)
dx =

2w h

π
(3.7)

• Arc model expression:

R =
(h2 + w2/4)

2h
(3.8)

y =
√
R2 − x2 + h−R (3.9)

Profile area:

Aa =

∫ w
2

−w
2

(
√
R2 − x2 + h−R) dx (3.10)

= R2 arcsin
w

2R
+
w
√
R2 − w2/4

2
+ w (h−R )

Equation 3.11 express the cross-section profile based on the deposition
parameters, when a 100% efficiency is considered, that is no material loss during
the deposition process. Where ws is the wire feed speed, wd is the diameter of the
wire and ts is the travel speed.

Am = π
ws w

2
d

4 ts
(3.11)

The accuracy of the model proposed is analyzed using the Equation 3.12, that
is used to calculate the difference between the cross-section area of the prediction
bead model and the actual bead. Where, the first element is the area predicted by
the model and the second is the real area of the bead cross-section.

ERn =
|Apredicted(n) − Ameasured(n)|

Aactual(n)

× 100% (3.12)

The experiment index in the equation is represented by the letter n. Since the
bead cross-section geometry is largely influenced by the magnitude of the wire feed
speed to travel speed ratio (WFSTSR), it is used to choose which prediction model
is more adequate for a given 3D print scenario. Unfortunately, the models achieved
still have a consider error and for high surface quality requirements it do not fit its
purpose.

DING et al. [22], also used three popular mathematic functions, just like the
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previous proposed model by XIONG et al. [68]. The authors focused in decreasing
the error to achieve a more accurate prediction model, which in some cases the error
are as high as 15− 20% in the previous works. The expressions used are detailed at
Table 3.1, where the a, b, and c parameters must be identified through experimental
measurements.

Table 3.1: Equations of common bead profile models [22].

Model Bead height(h) Bead width(w) Bead area

Parabola c 2

√
− c

a
Ap =

4c

3

√
−c
a

Cosine a
π

b
Ac =

2a

b

Arc a− b 2
√
a2 − b2 Aa = arccos

−b
a

− b
√
a2 − b2

The relation between the wire feed speed and the travel speed is represented
by the variable lambda (λ). The wire feed speed is kept constant and a variation
range from (200− 550)mm/min is set for the travel speed. This is linked with the
best profile model based on relative error analysis, and laser scanner with a 0.02mm

accuracy is used to measure the specimens profiles [22]. The Lambda parameter is
also used as input to be decide which model is the best fit for a specific job.

In the experiments performed by DING et al. [22], the area error is less than 4%
when comparing the prediction to the actual for all proposed model. The material
loss is not considered and the same assumptions as the ones from XIONG et al.
[68] are taken. The parabola model present a lower error when compared with the
others and better fit the beads deposited. Therefore, the ideal model can be used
for a multi-bead study.

The cross-section bead profile can be seen in Fig.3.1 with its main characteristics,
wherein by using a suitable camera assembled in a specific configuration, e.g. facing
the substrate is only possible to extract the width and the centerline while printing.

3.2 Multi-bead model

WAAM build-up a part by depositing multiple adjacent single-beads forming a
layer. Therefore, the relation between these single beads is important and directly
influences the quality of the surface and the part produced. The intersection area
resulted from the deposition of single beads is called overlapping area and has a
important role in surface quality and smoothness. A generic model of multi-bead is
described at Figure 3.3, where some important characteristics are highlighted, the
distance between adjacent beads centerline also known as step-over distance.
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Figure 3.3: Generic multi-bead example [17].

According with XIONG et al. [68], some studies performed by e.g. AIYITI et al.
[1], CHAN et al. [6], and CAO et al. [5] propose a multi-bead model which details
the overlapping distance, however they are not fit due to the lack of the verification
step. This model is used to define the overlapping distance between adjacent beads.

3.2.1 Surface layer quality

It is possible to see in Figure 3.4 the deposition of adjacent beads forming a layer.
Usually, to produce the final part, many layers need to be stacked. So, the current
layer will always be deposited on the surface of the previous. This emphasizes
the necessity to monitor the deposition characteristics that affects the layer surface
quality.

1 2 3 n...

overlapping distance (d)

valley volume

substrate

valley area

overlapping area

Figure 3.4: Multi-bead deposition example in WAAM [17].

Surface quality can be considered how smooth and flat is the surface of each layer.
In multi-sided beads scenario (Fig.3.4), the cross-section overlapped area between
adjacent single passes has great influence on the surface quality and dimension
accuracy [68].
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3.2.2 Overlapping model

Two overlapping models have been used to show the interaction of beads and ensure a
better surface quality in a multi-bead deposition process: the flat overlapping model
(FOM) [68] and tangent overlapping model (TOM) [22]. A comparison between
both models for a stack of five layers is performed by DING et al. [22]. Both models
propose an optimal distance between the centerline of each adjacent bead, also
named overlapping distance (d), based on a linear relation between d and w.

The overlapping model plays an important role on the surface quality, the
overlapping between adjacent beads begins when the step-over distance (d) becomes
smaller than w. Step-over distance is also called overlapping distance, as this
distance decreases the overlapping area grows reaching an ideal distance, the interval
used to analyze is from w to w/2. The flat and the tangent overlapping model (TOM
and FOM) propose an optimum value for the distance between the centerline (c)

of adjacent beads. These models are described in Figure 3.5 and Figure 3.6, in both
cases, d is specified to make the overlapping area between both beads be equal to
the valley area.

Substrate

First bead
Second bead

w

Overlap area

Valley area

h

Figure 3.5: Flat overlapping model (FOM) for multi-bead deposition, adapted from
XIONG et al. [68].

Substrate

First bead
Second bead

w

Overlap area

Critical area

h

Figure 3.6: Tangent overlapping model (TOM) for multi-bead deposition, adapted
from DING et al. [22].

XIONG et al. [68] conducted a study about the influence of the overlapping
distance (d) on the surface quality, and concluded that a flat layer surface is achieved
when valley area is equal to the overlapping area, with the usage of an ideal step-
over distance. The authors propose that the optimal distance between adjacent
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beads have a direct relation with the bead width (w) and is ruled by the linear
equation: d = 0.667w. DING et al. [22] also propose an optimum step-over distance
(d = 0.738w) and compared the result of the layer surface using both models. In
Figure 3.7, the result of the comparison is described. When compared to the TOM
result (Figure 3.7b), the FOM presents a lower geometric accuracy but achieved a
lower waviness.

(a) 5 layer deposition with FOM (d = 0.667w).

(b) 5 layer deposition with TOM (d = 0.738w).

Figure 3.7: Multi-bead experiment with a 5 layers deposition used to verify the
surface quality with tangent and flat overlapping models [22].

It is possible to see in Figure 3.8 how the step-over distance influence the quality
of the surface as well as the geometry accuracy of the part. So, the overlapped area
must be equal to the area of the valley for achieving adequate results. In Figure 3.8.c
it is shown the ideal layer finish based on the optimum distance (d∗) between the
bead centers proposed by FOM and TOM models.

It is possible to conclude that the bead width tracking is very important for
high-quality additive manufacturing system, due to the fact that its layer surface
finish is directly related to the ideal overlapping distance which is directly related
to the bead width. Therefore, to measure this characteristic improves the capability
of ensuring the quality and accuracy of the deposition process.

3.3 Wire feeding impact on layer quality

For WAAM, the wire feeding pose (position and orientation) has a critical role to
manufacture a part with a stable deposition process and high layer surface quality.
This is specially important for independent wire feed system which the wire is fed
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Figure 3.8: Influence of the overlapping area on the layers surface quality; (a) d≥w,
when there is no overlapping, (b) d<w, when the overlapping area is smaller than
the total valley area, (c) d = d∗, when the overlapping area is equal to the valley
area resulting in a theoretically flat surface, and (d) d < d∗, when the overlapping
area is bigger than the valley area [17].

from the rear, side, or front of the molten pool, like GTAW and PAW [76]. Design a
wire feeding strategy is one of the possibilities to minimize the occurrence of defects
during manufacturing using these processes. However, the feeding position is usually
kept in a unchanged configuration with fixed angle and position [37].

GENG et al. [37] performed a study about the influence of the wire tip distance
(height) to the electrode and the wire feeding angle with GTAW show the impact in
the material deposition starting point and surface quality with the wire configured
in a front feed of the travel direction. The assembly is described in Figure 3.9a and
the parameters considered in Figure 3.9b.

(a) (b)

Figure 3.9: Wire feeding configuration (e.g. PAW) (a) and parameters (b) for front
feeding assembly [37].

The experiment is divided in two steps: (1) the influence of the angle variation
in deposition start position; (2) the influence of the distance (height) of the wire tip
to electrode in the deposition start position. The result is described in Figure 3.10,
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where an influence in the deposition start point is noticed by varying the wire feeding
angle (Figure 3.10a) and also in the feeding height using a fixed feeding angle of
15deg (Figure 3.10b). The influence in the height distance variation ∆h also changes
the transfer mode, which impacts the surface quality of the bead deposited as shown
in Figure 3.11.

(a)

(b)

Figure 3.10: Effect on single beads position start and finishing varying its feeding
angle (a) and height (b) [37].

When using a lower feeding angle and a higher ∆h (distance variation of wire
tip to molten pool surface) , a tendency to decrease the deposition start point error
is noted. However, keeping these parameters respectively lower or higher as possible
also influence the layer quality (Figure 3.10). WU et al. [67] also varies the wire
feeding angle from 50◦ to 70◦ to analyze its effect in the layer quality for WAAM
with GTAW. In the experiment, an adequate result is obtained when feeding the
wire with a angle of 60◦. The usage of angles lower than 50◦ or higher than 70◦

result in a lower layer quality.
One of the aspects that also influence the layer quality is the wire feed orientation.

There are mainly three option for feeding the wire: (i) front feeding; (ii) side feeding;
(iii) and rear feeding (Figure 3.12). The optimal orientation to achieve a good
surface quality has shown to be material dependent. Therefore, an optimal wire
feeding position and orientation to print with a chosen material can be achieved
through experiments [25].

In its manufacturing the wire is affected by tension stress, due this characteristics
it may present certain curvature in its free state. This curvature can lead to
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(a)

(b)

Figure 3.11: High-speed images for the bridge (a) and globular (b) transfer modes,
where in (a) ∆h = 0 and in (b) ∆h = 0.5. The bead surface quality for each transfer
mode is also affected at each transfer mode [37].

Figure 3.12: The three types of wire feed in relation to the deposition direction [25].

poor deposition quality, since a deviation in the wire tip can be perceived during
deposition (Figure 3.13). A vision-based monitor system is developed to measure
the wire tip position deviation [76]. The wire feeding is assembled in a front feeding
configuration (Figure 3.12).

The experiment shows the possibility of measuring online the wire deviation in
WAAM. The deviation angle is measured using the wire centerline and a normal
line to the wire feeder nozzle. These characteristics are described in the following
figure.
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Figure 3.13: Wire feed deviation issue example when monitored with a single camera
[76].

Figure 3.14: Equipment and camera setup to print [76].
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(a) (b)

(c) (d)

Figure 3.15: Wire deflection measuring with passive camera with the camera image
view (a), deflection example (b and c), and the characteristics (nozzle normal line
and wire centerline) used to measure the deviation (d) [76].
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Chapter 4

Robotic, Controls and Computer
Vision

This chapter introduces some of the robotics, controls and computer vision concepts
used in the algorithm development and in the simulations performed inside Matlab,
both with the focus on a proposed WAAM system. The passive vision sensors are
used in this work to extract valuable information from the process during the print
process, which are treated and then transmitted in a local network through the
ROS framework. Therefore, to attenuate the noise and estimate the bead width and
centerline position while depositing it is necessary to used the computed vision and
robotics concepts introduced.

4.1 Robot manipulator kinematics

To print a part, the robotic WAAM cell usually have as one of its components a
6-DOF manipulator to guide the torch and reach all available operational space
configuration. A robot arm (manipulator) is represented as a chain of rigid bodies
(links) and joints (prismatic or revolute). Where one end of the system is the
base and at the other the end-effector. It performs the deposition process with
a set of planned position pe = [x y z ]T and orientation (pose) in respect to a
chosen reference frame. To compute the required joint angles to fulfill a task in
the operational space and also the pose of the end-effector for a joint angle set,
the direct and inverse kinematics equations are used. In this work the orientation
is represented as a set of three angles ϕ = [φ ϑ ψ ]T named roll, pitch, and yaw
and is named minimal representation. The pose of the end-effector 4.1 is described
as a 6x1 dimension vector representation, where the first three are the end-effector
position and the last 3 its orientation [57].
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xe =

[
pe

ϕ

]
(4.1)

4.1.1 Rotation matrix

A convenient way to express the orientation of a rigid body is to use three
orthonormal unit vectors with respect to a reference frame. Let O be the reference
frame and x, y, z its frame axes unit vectors, the orientation of a rigid body frame
O′ in respect to O is expressed by 4.2, with x′, y′, z′ being the rigid body frame
unit vectors.

x′ = x′x x+ x′y x+ x′z x

y′ = y′x x+ y′y x+ y′z x

z′ = z′x z+ z′y z+ z′z z

(4.2)

A compact notation is used to represent the unit vectors 4.2, when combined into
a 3x3 matrix, it is called a rotation matrix and represented as shown in Equation 4.3
[57].

R =

x′ y′ z′

 =

x
′
x y′x z′x

x′y y′y z′y

z′z z′z z′z

 (4.3)

The rotation matrix have the following properties: (i) The column vectors are
mutually orthogonal; (ii) R is a orthogonal matrix RTR = I3, where I3 is the
representation of the identity matrix; (iii) R−1 is equal to the transpose RT ; (iv)
The determinant is equal to 1 or −1 when represented in a right-handed or left-
handed frame respectively.

4.1.2 Direct kinematic

Direct kinematics is the task of mapping from the manipulator joint configuration
to the end-effector pose Xe, and inverse kinematics is the opposite, mapping from
the end-effector pose to the robot arm joint configuration. To perform the part
build-up through a predefined path, the robot arm is configured with a set of joint
angles to reach each desired pose at the operational space. The direct kinematics
from the robot arm base to the end-effector can be represented with the minimal
representation 4.1 or with a homogeneous transformation matrix 4.4 [57]. Where
Rbe is the end-effector orientation represented by a rotation matrix and pbe is the
position represented in relation to its base.
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Tbe =

[
Rbe pbe

01x3 1

]
(4.4)

Therefore with the knowledge of all robot arm joint angles and the tool used,
the transformation from the base to the end-effector provides the position and
orientation of the tool used during a task requested to the robot. These steps
are graphically described in Figure 4.1, the red, green, and blue orthogonal vector
in the base and end-effector frames represent x, y, and z.

E{B1}

E{12}

E{23}
E{34}

E{45}

E{5E}

Figure 4.1: 6-DOF robot printing a glass fiber composites and the homogeneous
transformation representation from its base to the end-effector. Retrieved and
adapted from https://www.compositesworld.com/articles/video-six-axis-robotic-
arm-3d-printing-fiberglass-composites- 03/25/2022

4.1.3 Inverse kinematic

The inverse kinematics problem consists in determining the required joint angles to
a given end-effector pose. This application is fundamental for instance in WAAM,
where the deposition path and parameters like the travel speed are defined at
the operational space using the minimal representation, which contains the desired
position and orientation of the end-effector. So, the inverse kinematic equation 4.5
is used to calculate the required joint angles q for each the end-effector Cartesian
pose xe [16, 57].

q = K−1(xe) (4.5)
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4.2 Computer vision

Vision-based sensors are broadly used in WAAM because of their non-touching
capability of monitoring the process, and also due to the possibility to estimate
the process characteristics when using a proper sensor and vision-based algorithms
as already presented in section2 These information can be used to improve and
ensure the quality of the part produced, to monitor possible discontinuities during
the print, to provide feedback data to a controller, and other possible applications.
Also, the spatial filters presented are used to attenuate the noise present during a
deposition process with WAAM, and the feature detection algorithm to extract the
desired information from the image which will be used for the bead position and
width estimation. Figure 4.2 details the steps used from the image acquisition to
the measurement of the desired characteristics of the process.

[xc,yc]'

7.Measurements
w

6.Feature extraction

1.Grayscale 
conversion

3.Image filtering

2.Region of interest 
configuration

4.Segmentation 5.Edge detection

In

Figure 4.2: Stages used in the vision-based algorithm [17].
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4.2.1 Camera model

The process of image formation in an eye or in a camera, involves a projection
operation from the 3D world onto a 2D surface. Therefore, one dimension (depth)
is lost in the projection operation, and it is not possible to from an image whether
the object closer in the image is larger or smaller than another farther in the image
without a reliable and know reference in the image for example. This transformation
from 3D to 2D is known as perspective projection, and it is detailed in this section.
In the current work the camera model used is the pin-hole. One the important
characteristic of the pin-hole camera is that is has no focus adjustment, therefore,
all information observed in its field of view are considered in focus irrespective of
distance [16].

Perspective projection

A small hole in a surface acts similar to a convex lens to form an image. The
fundamental geometry of the image formation for thin lens is described in Figure 4.3

image plane

inverted image

f -f

image plane

image

focal points

ideal thin lens

pin-hole
Z

object

z0 zi

Figure 4.3: Image formation geometry for thin convex lens and a pin-hole. Adapted
from [16]

The positive Z-axis is aligned with the camera optical axis. Where the z-
coordinate of the object and its image is given by their distance to the camera
lens center, this relation is given by Equation 4.6. Where, z0 is the distance from
the lens to the object, zi is the distance to the image, and f is the focal length of
the lens.

1

z0
+

1

zi
=

1

f
(4.6)

In computer vision it is common to use the central perspective imaging model.
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The rays converge on the origin of the camera frame C and a non-inverted image
is projected onto the image plane located at z = f as shown in Figure 4.4. A point
at the world coordinate P = (X, Y, Z) is projected to the image point p = (x, y) by
4.7. Where both coordinates are represented as Euclidean coordinates.

x = f
X

Z
, y = f

Y

Z
(4.7)

Figure 4.4: Central-projection camera model, with the image plane located at the
lens positive optical length f in front of the camera origin [16].

Perspective camera model

To perform the transformations, the point coordinate must be represented in the
homogeneous form p̃ = (x̃, ỹ, z̃). Where,

x̃ = fX, ỹ = fY, z̃ = Z (4.8)

or in the matrix compact form:

p̃ =

f 0 0

0 f 0

0 0 1


XY
Z

 (4.9)

The non-homogeneous coordinate p = (x, y) = (u, v) are given by 4.10.

x =
x̃

z̃
, y =

ỹ

z̃
(4.10)
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If the world coordinate is written in homogeneous form, P̃ = (X, Y, Z, 1), then
the perspective projection can be described in a linear form as 4.11.

p̃ =

f 0 0 0

0 f 0 0

0 0 1 0

 P̃C ⇒ p̃ = C P̃C (4.11)

Where C is the camera matrix, and the therm P̃C represents the point in
homogeneous form in reference to the camera frame, and p̃ is the point representation
(u, v) at the image plane. Therefore, when the camera pose is not equal to the inertial
coordinate system, an inverse homogeneous transform must be used to discover the
point reference to the new camera pose, as described in 4.12 [16]. An example of is
shown at Figure 4.5.

P̃C = T−1
C P (4.12)

Therefore, the point representation at the image plane p̃ in homogeneous
representation is given by 4.13, and in the image plane it is represented as 4.10.

p̃ = C T−1
C P (4.13)

{C}

z

y

x

P = (X, Y, Z)

PC

{0}

TC

˜

Figure 4.5: Point identified in reference to the camera and the world coordinate
system. Adapted from CORKE [16].

Since the projection operator does not allow inverse, to find the inertial
coordinate of a point based on its coordinates at the image plane it is not possible.
Additional information must be known to perform the inverse operation, they are:
(i) The distance of the camera to the observed point; (ii) The camera pose. The
conversion is performed by the steps described in the Equation 4.14 to 4.15 where all
the points are computed in the homogeneous coordinate (p̃ = [x̃ ỹ z̃]T ), Figure 4.5
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is also used as reference. With the distance from the camera to the point known, the
point of the image plane is represented in homogeneous form at the camera reference
frame as PC . And then, the point representation to the inertial frame is computed
using the homogeneous representation of the camera pose TC and PC .

PC = C−1 p̃ (4.14)

P = TC PC (4.15)

Discrete image plane and the camera matrix

In a digital camera, the image plane is represented by a W ×H grid pixels, and the
pixel coordinate are a 2D vector (u, v) of non-negative integers and its origin is at
the top left, check Figure 4.8.

The camera projection matrix in its general form for a digital camera is
represented at Figure 4.6, and the camera parameter matrix is composed by the
intrinsic parameters which are innate characteristics of the camera and the sensor.
Where ρw and ρh are the pixel width and height, f the focal length, u0 and v0 are
the principal points, and the extrinsic parameters the representation of the camera
case with a minimum of 6 parameters [16].

Figure 4.6: Camera projection matrix with the intrinsic and extrinsic parameters
for digital images.

4.2.2 Spatial filtering for vision sensors

Usually, after acquiring data through a passive vision-based monitoring system, the
first action performed in order to reduce the noise to extract the desired features
is the filtering step. Figure 4.7 describes these noises when a deposition in WAAM
is performed using CMT. Since they are intrinsic of the chosen deposition process,
physical and digital filtering solutions must be developed to improve the quality of
the data acquired during the monitoring. Therefore, the current work is also focused
in testing and developing digital filters applied to this application.

Spatial domain filters operates directly on the pixel of an image, and generally
are computationally efficient and require less processing resources to implement.
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(a) Low noise scenario. (b) Fumes. (c) Arc radiation and fumes.

(d) Low light. (e) Arc radiation and fumes. (f) Spatter and fumes.

Figure 4.7: Captured frames during the monitoring and their different noises [17].

They can be denoted by the expression,

g(x, y) = T [ f(x, y) ] (4.16)

where f(x) is the input image, g(x, y) is the output image, and T is an operator
applied over a neighborhood of a point (x, y). The operator can be applied in a single
image or to a set of images for noise reduction. They are considered also versatile
filters, since they can be used for nonlinear filtering, something that sometimes are
not possible to do with frequency domain filters. Figure 4.8 describes the operation
with a 3x3 kernel operator T , which will be referred as kernel during the text, at a
target image f . The output image g has the same dimension and the input image
f , where the filtering result of each position (x, y) will have the same coordinate in
the new image generated. It is important to highlight that the size of the kernel
operator changes for each application, and its optimal dimension must be achieved
through testing.

4.2.3 Correlation and convolution

There are two concepts used when performing linear spatial filtering, one is
correlation and the other is convolution. Correlation is the process of moving a
filter kernel over the whole image and computing its transform for each pixel, as
briefly detailed before. Convolution uses the same mechanics, however, with the
filter rotated by 180◦.
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Origin
x(u)

(x,y)

y(v)

image f

Spatial domain

Figure 4.8: A 3x3 kernel operator T applied to an image f in the spatial domain.
Where the output image g is the result of T correlated in f . Adapted from
GONZALEZ e WOODS [39].

Two important points must be noted about correlation: (i) it is a displacement
function; (ii) correlating a filter w with a function that contains all 0s and a single 1
results in a copy of w, but rotate by 180◦. A fundamental property of convolution is
that when performed into a function it results in a copy of the function. Therefore,
as the filter is pre-rotated and the same operation from correlation is performed, it is
possible to obtain the desired result. The procedures of correlation and convolution
of a filter w(x, y) of size m × n in a given image f(x, y) are summarized by the
expressions 4.17 and 4.18 respectively.

w(x, y)□ f(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x+ s, y + t) (4.17)

w(x, y)■ f(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t) (4.18)

Where a = (m − 1)/2 and b = (n − 1)/2, and it is assumed that m and n are
odd integers.

4.2.4 Smoothing linear filters

One of the first steps present in the vision-based algorithm, is the step of reducing
the noise of a acquired data. This is performed through the usage of smoothing
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filters, that are used for blurring and for noise reduction. The noise reduction
can be accomplished by blurring the image with linear filters and nonlinear filters.
The idea of these filters is to replace the value of each pixel, e.g. for the average
of a neighborhood defined by a chosen kernel, which reduce ”sharp´´ intensity
transition in an image, since random noises typically are present in these intensity
sharp transitions. One downside of the smoothing filters, is that is can affect some
desired features of the image, like edges, they consist of sharp intensity transitions.
Therefore, its kernel dimension must be considered to avoid affecting the quality
of the desired features. Two examples of smoothing filters kernels are shown in
Figure 4.9, where the first calculates the mean of a region attributing the same
weight to all pixels and the second have a higher weight to some pixels given their
higher importance. The basic strategy of weighting the center pixel as the highest is
to attempt to reduce the blurring effect. The general implementation of for filtering
an M × N image with weighted averaging filter of size m × n is given by the
expression 4.19 [39].

g(x, y) =

∑a
s=−a

∑b
t=−b w(s, t)f(x+ s, y + t)∑a
s=−a

∑b
t=−b w(s, t)

(4.19)

The size of the kernel used directly impact the sharpness of the output image
g, therefore, it must be carefully defined to avoid losing the desired features in the
data. An example of how the dimension of the smooth filter kernel impact the
output image is detailed in Figure 4.10.

1 1 1

1 1 1

1 1 1

1 2 1

2 6 2

1 2 1

1/9 x 1/18 x

Figure 4.9: Two kernels used in the smoothing process are represented. The left
kernel result needs to be divided by 9 and the right by 18, which is the sum of all
the kernel position data.

Order-Statistic (nonlinear) filters

Order-statistic filters are nonlinear spatial filters, their response is based on ranking
the pixels of an image by encompassing a filter, and them replacing the value of the
centered pixel with the one determined by the operation. The best-know filter in
this category is the median filter.

The Median Filter is considered a non-linear filter, the output is the computation
of every entry median considering a defined area or quantity of values around the
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Figure 4.10: Impact of the kernel size at the output image (from left to right): (i)
original image; (ii) output image after an smoothing operation with a 9x9 kernel;
(iii) output image after an smoothing operation with a 35x35 kernel. Adapted from
GONZALEZ e WOODS [39].

chosen entry. Extreme data that can be related to impulse noises wont appear in the
output result of a median filter, being a good choice for treating noises in images.
It is particularly effective against the presence of impulse noise, also called salt-and-
pepper noise. The principal function of median filters is to force points with distinct
intensity level to be more like their neighbors, based on the median value of the
result of each pixel operated by a kernel. Careful analysis must carried out before
the using median filter, e.g. if the image acquired already has low quality, the result
of the median filter wont be satisfactory since it can degrade even more the quality
of the data [7, 39].

Gaussian spatial filter

To generate the output filtered image it is necessary to apply a defined kernel ofm×n
dimension. Keep in mind that the value of each pixel in the output image depends
on the kernel dimension and on the weight wn value of each cell. An example of a
given kernel is given at Figure 4.11, in Gaussian spatial filters the weight values of
the kernel positions x and y is be governed by a Gaussian function represented at
Equation 4.20 where σ is the standard deviation, and the x and y the the kernel cell
coordinate. To generate these values we assume the center as the coordinate origin.

h(x, y) = e−
x2+y2

2σ2 (4.20)

w1 w2 w3

w4 w5 w6

w7 w8 w9

Figure 4.11: An example of a 3x3 kernel size.
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Average spatial filter

The average spatial filter is one of the most simple filter used to blur the output
image to remove undesired noise. Its implementation is straight forward and the
result of each pixel is governed by the Equation 4.21.

R =
1

n

n∑
i=1

zi (4.21)

where n is the dimension of a square kernel matrix, and zi the value of each cell.
A good example of a kernel used in the average filter is shown in Figure 4.9 [39].

A comparison of smoothing filters for a WAAM cell using CMT is performed by
COUTO et al. [18]. The image acquisition is performed using a Xiris HDR welding
camera for a single bead deposition. The experiment and its results is described at
section 6.1.

4.2.5 Sharpening spatial filters

The main objective of a sharpening spatial filter, is to highlight the transition
in intensity of an image. Since averaging can be an analogue to integration, the
sharpening operation can be taken by spatial differentiation. The derivative of a
digital function is defined in therms of the difference between the pixel value of a
certain region. There are two ways to identify it: (i) using first derivative; (ii)

using second derivative. A basic definition of the first-order derivative of an one
dimensional function is given by Equation 4.22 [39].

∂f

∂x
= f(x+ 1)− f(x) (4.22)

Since the image function is composed of the axes x and y, the partial derivative
is performed along these two axes. Equation 4.23 represents the second-order
derivative of an one dimensional function, also applied for the second order image
gradient for both x and y direction [39].

∂2f

∂x2
= f(x+ 1) + f(x− 1)− 2f(x) (4.23)

Second order derivative for image sharpening - the Laplacian

The implementation of a second-order derivative into a 2-D image, is performed by
the definition of a discrete formulation of the second-order derivative 4.23 and then
use a filter kernel based on this formulation. Therefore, for a good implementation,
isotropic filters are used. Their response are independent of the direction of the
discontinuities in the image to which the filter is applied. A simple isotropic
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derivative operator is the Laplacian define at Equation 4.24, which, for a function
(image) f(x, y) of two variables.

∇2f =
∂2f

∂x2
+
∂2f

∂y2
. (4.24)

The expression of this equation in the x direction is obtained by 4.2.5, and by
4.2.5 for the y direction.

∂2f

∂x2
= f(x+ 1, y) + f(x− 1, y)− 2f(x, y),

∂f

∂x2
= f(x, y + 1) + f(x, y − 1)− 2f(x, y),

The implementation of the Laplace filter expression 4.24 is enabled by the use
of the kernel shown in Figure 4.12a. Its application of the image highlights intensity
discontinuities since it is a derivative operator.

0 1 0

1 -4 1

0 1 0

(a)

1 1 1

1 -8 1

1 1 1

(b)

Figure 4.12: Kernels used for the Laplacian operation over a function f(x, y) (image).
Where: (a) Kernel operator user to implement the expression 4.24; (b) Kernel user
to implement the Laplacian operator, however now the diagonal therms are taken
into account.

First-order derivatives for image sharpening

The first-order derivative application on a given image is performed using the
gradient. For a function f(x, y), the gradient at a correspond (x, y) coordinate
is defined by 4.25. It has the important geometrical property that it points in the
direction of the greatest change of the image at the location (x, y) [39].

∇f = grad(f) =

[
gx

gy

]
=

∂f
∂x

∂f
∂y

 (4.25)

The magnitude M(x, y) (length) of the vector ∇f is denoted by 4.26, it value at
(x, y) is denoted as the rate of change in the direction of the gradient vector.
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M(x, y) = mag(∇f) =
√
g2x + g2y (4.26)

An example of kernels used for the first-order derivative is presented in
Figure 4.13. The gradient operator is used frequently for industry inspection, to aid
humans in the failure analysis routines, and also more common, for preprocessing
step in automated processing, such as WAAM [39].

-1 0

0 1

(a)

0 -1

1 0

(b)

-1 0 1

-2 0 2

-1 0 1

(c)

-1 -2 -1

0 0 0

1 2 1

(d)

Figure 4.13: First-order derivative operators. Where (a) and (b) are the Roberts
cross gradient operator, and (c) and (d) the Sobel operator.

These filters are used to highlight important details of an object (borders), and in
many cases when a specific object or known characteristics is aimed it is performed
after the segmentation step to avoid the process of unnecessary noise.

4.2.6 Image Segmentation

The importance of image segmentation is related to the possibility of extracting
useful information easier. The most common way of doing it is with a gray level
image and a threshold. E.g. in welding it has the goal to differentiate the weld seam
and it’s surroundings and help further data analysis [72].

The step of segmenting the image in two well defined color is also be considered
as filtering in some papers of the literature, at this work it will be treated as an
image treatment step. As mentioned, the importance to use it is to simplify the
image, remove extra noises, and unnecessary features. In some scenarios it is used
right after applying the smoothing filters, which is the case of the present work.
Segmentation can sometimes also be called binarization, it helps edge and bead
geometry process detection. On XUE et al. [72], the raw images are represented by
a function f(x, y) and an appropriate threshold T is selected for the segmentation
process. The new image g(x, y) is created accordingly with the Expression 4.27.
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g(x, y) =

{
1 f(x, y) > T

0 f(x, y) ≤ T
(4.27)

Figure 4.14 gives an example of a raw image acquired with a HDR camera and
the segmentation result after using a fixed threshold. On MA et al. [45], the image
segmentation also used the same characteristics as the cited above. A threshold was
also used to separate the target information from the non-desired information, the
author used k = 255 as threshold due the arc intensity.

(a) (b)

Figure 4.14: Image segmentation example. Where (a) represent the raw image
acquired and (b) the binary image with the desired features highlighted. [72].

Several research on image segmentation was done on aluminum joints welding
using GTAW. On GMAW, there are limited published works on ferrous materials, the
detection and segmentation on steel work pieces has a higher degree of complexity
due to almost everything being made of steel. This characteristics makes the image
segmentation algorithm implementation more difficult [44].

4.2.7 Edge Detection

Edge detection is a very important part of image processing step during arc welding
due to the further necessity of a machine to recognize the seam dimension, it
enhances the contour of a image to make the identification of borders, joint and
other characteristics easier by the machine [41]. A good edge detection algorithm
mitigate errors and prevent manufacturing failures during metal deposition.

Edge pixels are the ones that have their intensity changing abruptly, and edges
are the set of these edge pixels. Edge detectors are local image processing methods
designed to detect the edge pixels [39]. The process is mainly performed after a gray
scale conversion. Some modified algorithms are also used to search and diminish
problems or noises embedded in the process. In J. e SB. [41] a modified algorithm
is proposed, it’s objective is to enhance the edge contour before running the edge
algorithm to avoid detection failures.
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The tool of choice to find the edges strength and the direction of an image f ,
is the gradient 4.25, which has a important geometrical property, it points to the
greatest rate of change of f at an analyzed (x, y) location. The magnitude length
vector 4.26 is the value of the rate of change in the direction of the gradient vector.
The direction of the gradient vector is than given by Equation 4.28, and is measured
with respect to the x-axis. The direction of the edge at an image f arbitrary point
(x, y) is orthogonal to the direction of the gradient vector α at the same point.

α(x, y) = tan−1
[
gy
gx

]
(4.28)

The presence of noises like jigs, cable lines, platform, light changes, and others,
makes the edge detection process a challenge [12]. In according to XUE et al. [72],
using edge detection is the key for extracting valuable information. Most of the
algorithms are based on gray scale images and the most used are the differential
ones. The differential algorithm takes into account the first or second derivative to
post process and refine the output. Inside this class, Canny operator and Laplacian
operator are improved algorithms and are commonly used.

On MA et al. [47] a comparison between some operators are performed. The
Prewitt, Roberts, Kirsch and Canny operators are compared for their edge detection
performance. The original image used for the edges operator can be seen in
Figure 4.15, the output image from the edge detection operator are displayed at
Figure 4.16 where the Canny operator as shown in Figure 4.16d presented the best
detection, Canny is also one of the most popular algorithms for edge detection and
broadly used [56]. A similar work is performed on COUTO et al. [18], where a
comparison of the Laplacian, Sobel, Schar and Canny edge operators for single-bead
deposition with a CMT WAAM cell. The Canny operator also presented the best
result for the edge detection in this work. The experiment results are detailed in
section 6.1.

Figure 4.15: Image capture after threshold

Since edge detection is one of the most important steps of a vision-based
algorithm, its application must be well designed, and the possible variations
(material, deposition process) that might happen during the manufacturing must
be considered to make possible the usage of post-processing algorithms responsible
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(a) Prewitt operator (b) Roberts operator

(c) Kirsch operator (d) Canny operator

Figure 4.16: Edge detection operators comparison [47].

to extract the desired features while printing, e.g. the lines, the geometry, and the
object identifications.

Canny edge operator

Since Canny operator is used in the present work, it receives a special attention.
Canny edge detector algorithm in general is superior to the edge detector mentioned
thus far. It approach is based on three basic objectives: (i) Low error rate (ii) Edge
points should be well localized; (iii) Single edge point response.

To implement the optimal edge detector, the first derivative of a Gaussian is
used. To implement this, a Gaussian smooth filter is applied to the input image,
and then is followed by computing the gradient magnitude and direction. Edges
using the gradient are generally thick due the first derivative characteristics when
applied to compute the intensity change in an image f . Therefore the next step
of Canny algorithm is to thin those edges which is performed by the nonmaxima
suppression [39].

The nonmaxima suppression specifies a number of discrete orientations of the
edge normal (gradient vector). For example for a 3 × 3 region it is possible to
define four orientations for an edge passing through the center point of the region
(horizontal, vertical and both diagonals). And by examining the pixel values in a
local neighborhood normal to the edge direction, that is the direction of the edge
gradient, we can find the maximum value and set all other pixels to zero[39].

The final step is the threshold, if a single threshold T is used, if a value is below
the defined threshold the value are set to 0. Therefore if the threshold is set too low,
there will be false edges, and if set too high then actual valid points are eliminated.
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Canny algorithm attempts to improve in this situation by using hysteresis threshold,
which is composed of two thresholds: (i) a low threshold TL and a high threshold
TH . For each nonzero pixel that exceeds the upper threshold a chain is created of
adjacent pixels that exceed the lower threshold, and any other pixels are set to zero.
The algorithm consists of the following basic steps [39]:

1. Smooth the input image with a Gaussian filter.

2. Compute the gradient magnitude and direction.

3. Apply nonmaxima suppression to the gradient magnitude image.

4. Use double threshold and connectivity analysis to detect and link edges.

4.2.8 Line Identification

Once the edge image is acquired, it is used to compute if a set of these pixels is
lied on a predefined shape. Lines are distinct visual features that are commonly
expected in man-man environment, e.g. roads edges, buildings, doorways. In the
WAAM deposition, the single and multi-bead boundaries are both represented by
lines. Suppose that a task is configured to find if a set of the points of the edge image
is part of a straight line, one possible solution is to find all the lines represented by
every pair of points and then find all subsets of points that are close to a particular
line. However this is a prohibitive computational task, therefore not ideal for an
online monitoring application [39].

HOUGH [40] proposed a different approach to identify these geometric features
with a lower computational cost, it is commonly known as Hough Transform.
Consider a point (x1, y1) in xy-plane, and general representation of the line in slope
form is described by 4.29. Infinity lines can be represented passing through the point
(x1, y1), and it also satisfy the Equation 4.29 with varying values for a and b.

y = a xi + b (4.29)

This equation can also be written in the parameters representation as shown in
4.30, and then the a b-plane (parameter space) can be set. Where a line, based on
the value of a point from the xy-plane is now represented as a line in the ab-plane,
with the x and y varying.

b = y − a xi (4.30)

A second line can also be represented in the parameter space when a second point
(x2, y2) is considered. Unless they are parallel both lines intersect at some point
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(ai, bi), where ai is the slope and bi the intercept of the line containing both points
of the x y-plane, Figure 4.17 illustrates this concept. However this representation
has a problem, when the slope of the line approximates 90 degrees, the value of the
slope (a) tends to infinity. One way around this problem is to use the line normal
representation 4.31. Figure 4.18 details this implementation.

x cos θ + y sin θ = ρ (4.31)

y

x

(x1,y1)

(x2,y2)

b

a

b1

a1

b = y1- ax1

b = y2- ax2

Figure 4.17: Line and point representation at xy-plane and ab-plane. Adapted from
[39].
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θ

Figure 4.18: Line and point representation at xy-plane and ρθ-plane. Adapted from
[39].

The computational attractiveness of the Hough transform arises from sub-
dividing the ρθ-plane into accumulators cells A, as shown at Figure 4.18. The cell
at a given coordinate A(i, j) accumulate points for a line which n points of the
xy-plane lie in its path, the dimension of each cell represents the accuracy of the
algorithm but with the expense of computational cost. Therefore, the value in each
cell at the end of the process represent the number of pixels lied above the line
represented by that particular cell position (ρ, θ), and so the dominant line in the
scene. Figure 4.19 shows an example of the Hough transform algorithm applied at
the edge image. The lines, which are the representation of the square four edges at
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the uv-plane, where u = x and v = y, are given by the 4 highest intersection points
of the ρθ-plane since they got the highest amount of votes [16, 39].

Figure 4.19: Example of the Hough transform algorithm. Adapted from [16].

4.3 Gaussian Filters

Gaussian filters historically constitute the earliest tractable implementations of the
Bayes filter for continuous spaces. They are also by far the most popular family
of techniques to date. Gaussian techniques all share the basic idea that beliefs are
represented by a multivariable normal distributions

p(x) = det (2πΣ)−
1
2 exp {−1

2
(x− µ)TΣ−1(x− µ)}. (4.32)

The density function 4.32 is characterized by two sets of parameters: the mean
µ and the covariance Σ. Where the mean posses the same dimension as the state x.
The covariance matrix is quadratic, symmetric, and positive semidefinite.

Consider a system which has a true state that evolves over time according to an
applied input, and that it is not possible to directly measure the state. While sensors
of the system have outputs that are a function of the true state. The challenge is to
estimate the unknown true state x and how certain we are of that estimate, based
on the given inputs and the sensors output.

The estimation problem can be summarized by: given a model of the system
f(.), h(.), V̂ and Ŵ ., the known inputs applied to the system u, and some noisy
sensor measurement z, to find an estimate x̂ of the system state and the uncertainty
P̂ in that estimate.
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4.3.1 Kalman Filter

The Kalman filter is an optimal estimator for the case where the process and
measurement noise are zero-mean Gaussian noise. It is used for continuous states,
and not applied for discrete or hybrid state spaces. Consider the model described
as a discrete-time linear invariant system

x(k) = Fx(k−1) +Gu(k−1) + v(k−1) (4.33)

z(k−1) = Hx(k−1) + w(k−1) (4.34)

Where k is the time step, x ∈ Rn is the state vector, and u ∈ Rm is a vector of
inputs to the system at time k−1. The matrix F ∈ Rn×n describes the dynamics
of the system, and the matrix G ∈ Rn×m the describes how the inputs are coupled
to the system states. The vector z ∈ Rp represents the outputs of the system as
measured by the sensors, and the matrix H ∈ R describes how the system states
are mapped to the system output which we can observe. The error (noise) of the
process and the measurement is represented by v(k−1) and w(k−1) respectively,
which are Gaussian random variables N(0, V ), see Figure 4.20, with zero mean and
covariance V ∈ Rn×n. Covariance is a matrix quantity which is the variance for a
multi-dimensional distribution, a positive definite matrix and therefore symmetric
[16].

Figure 4.20: A random variable graph representation, where 68.3%
of all values are inside the covariance range. Retrieved from
https://www.mathworks.com/videos/understanding-kalman-filters-part-3-optimal-
state-estimator–1490710645421.html at 03/25/2022.

The Kalman filter is composed of two main steps, the prediction and the update.
The prediction step is computed based on the previous states and inputs, where x̂
and P̂ are the estimate for the state and the covariance matrix respectively. They
are described by 4.35 and 4.36.
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x̂k = Fxk−1 +Guk (4.35)

P̂k = FPk−1F
T + V̂ (4.36)

The indicated term P̂ project the estimated covariance matrix from the current
time to the next, it is the result of the computation of two positive-definite matrices,
therefore in this step the uncertainty will increase. However, V̂ must be a reasonable
estimate of the actual process noise to avoid a computed pessimist estimate when
overestimating the uncertainty. To correct the uncertainty growth it is necessary to
add the measurement made by the sensors to the estimation model. The difference
between the prediction and the sensor measurement is given by 4.37.

v = zk −Hx̂k ∈ Rp (4.37)

A portion of this difference is caused by the measurement noise, Equation 4.37
provides valuable information related to the error of the actual and the predicted
state. A good approach for this information is to call it innovation rather then error,
since it is used to adjust the state estimate with the Kalman gain. The second step
of the Kalman filter is the update, that maps the innovation into a correction for the
predicted state, tweaking the estimation based on what the sensors observed, this
tweaking is performed by the Kalman gain 4.38.

K = PkH
T [HKkH

T + Ŵ ]−1 ∈ Rn×p (4.38)

Pk = P̂k −KHP̂k (4.39)

xk = x̂k +Kv (4.40)

The denominator therm of 4.38 is the estimated covariance matrix of the
innovation, and comprises the uncertainty in the state and the estimated
measurement noise covariance. For example, if the innovation has high uncertainty
in some dimensions then the Kalman gain value will be low for that dimensions. In
other words, if the new information is has a high degree of uncertainty then only
small changes are made to the state vector. Some characteristics can be highlighted
for the Kalman filter: (i) It is an optimal filter; (ii) It is recursive, the output of one
interaction is the input for the next; (iii) It is asynchronous, if there is no sensor data
in one of the interactions the algorithm just perform the prediction step [16, 60].

A simple example of the Kalman filter is shown at Figure 4.21. After the car
move from its initial known state estimate xk−1, the a new predicted state estimate
x̂k is computed based on the system dynamics and the control inputs. With the
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updated measurement, the optimal state estimate xk is computed using both the
measurement the predicted state.

Figure 4.21: A car state estimate example after one time step. Adapted from
https://www.mathworks.com/videos/understanding-kalman-filters-part-3-optimal-
state-estimator–1490710645421.html, retrieved at 03/25/2022.

4.3.2 Extended Kalman Filter

The extended Kalman filter (EKF) is used for non-linear systems. Where the state
transition 4.41 and the sensor model 4.42 are described by two non-linear functions
4.41 and 4.42, where the model uncertainty, external disturbances and sensor noise
are represented by two Gaussian random variables v and w .

xk = f(xk−1, uk−1, vk−1) (4.41)

zk = h(xk−1, wk−1) (4.42)

Since the Kalman filter is applied for unimodal distributions and linear systems,
it is a necessity to linearize the state transition function about its current state
estimate xk as shown in Equation 4.43 [60].

xk ≈Fxxk−1 + Fuuk−1 + Fvvk−1 (4.43)

zk ≈Hxxk−1 +Hwwk−1 (4.44)

Where F and H are Jacobians of the functions described at 4.41 and 4.42 around
the current state estimate as previously mentioned. When the disturbances are
considered equal to 0 (vk−1 = 0) in Equation 4.41, the prediction (4.45 and 4.46)
and update (4.47 and 4.48) Equations can be written as:
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x̂(k) = f(x̂(k−1), u(k−1)) (4.45)

P̂ (k) =FxP̂ (k−1)F T
x + FvV̂ F

T
v (4.46)

x(k) = x̂(k) +K v (4.47)

P (k) = P̂ (k)−KHxP̂ (k) (4.48)

It is important to mention that these equations are only valid at the mentioned
linearization point, and that the Jacobian must be computed at every iteration [16].
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Chapter 5

Bead Geometry Estimation and
Localization Algorithms

In this section it is presented the algorithm developed to monitor the deposition and
estimate the bead width and centerline during the print. As mentioned in section 3,
the bead width has a direct influence with the optimum overlapping distance of
adjacent beads, and this parameters directly influence the surface quality of the
layer and the geometric accuracy of a part. Some examples of noise occurrences
while printing is shown at Figure 5.1, where the presence of fumes, arc, radiation,
light variation, and spatter are presented. These characteristics make the estimation
through vision a challenge.

(a) Low noise scenario. (b) Fumes. (c) Arc radiation and fumes.

(d) Low light. (e) Arc radiation and fumes. (f) Spatter and fumes.

Figure 5.1: Captured frames during the monitoring and their different noises [17].

It is important to highlight that in the chapters 6 and 7, it is presented the
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historical setup used for the experiments performed at the current work as well
as the result obtained so far in the development. Each step of the vision-based
algorithm are tested for better performance for the current application and could
be modified and upgraded during the development, where as in this chapter the
algorithm described will be in its last release state.

5.1 Bead geometry measuring algorithm

The vision-based proposed algorithm developed to extract the features and real-time
estimate the bead width and position in a WAAM deposition scenario with CMT is
detailed at Figure 5.2 and in the followed steps:

[xc,yc]'

7.Measurements
w

6.Feature extraction

1.Grayscale 
conversion

3.Image filtering

2.Region of interest 
configuration

4.Segmentation 5.Edge detection

In

Figure 5.2: Stages used in the vision-based algorithm [17].

Step 1: Receive the image from the camera and converted to gray-scale, which
reduces computation cost and standardizes its format;
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Step 2: define the region of interest (ROI), that reduces the CPU cost and process
only the image inside its region;

Step 3: Apply a Gaussian spatial filter4.2.4 at the ROI image to attenuate the
noise and smooth it;

Step 4: Segment the filtered image Iin(x, y) with an adaptive binary threshold
algorithm, resulting in a binary image. The output pixel Iout(x, y) at a location
(x, y) assumes maximum value Imax when it is above the computed threshold
T , or 0 otherwise, as follow.

Iout(x, y) =

Imax , if Iin(x, y) ≥ T ,

0 , otherwise .
(5.1)

The adaptive threshold is computed at every frame, assuming the mean value
of a region inside the ROI, and can also be adjusted with a fitting variable.

Step 5: detect the edges in the segmented image using the Canny algorithm [4].
Edges are the result of intensity change evaluation in an image f at location
(x, y), and are obtained through first or second-order derivative in orthogonal
directions using an image gradient ∇f given by 5.2:

∇f = grad(f) =

[
gx

gy

]
=

[
∂f
∂x

∂f
∂y

]
. (5.2)

Step 6: use a point cloud image from the edge detection algorithm for the line
identification. A subset of this point cloud is tested, and through the Hough-
lines transform, lines are then identified. In general, lines are described in
terms of a minimum representation as y = mx + c where (m, c) are the
lines parameters. However, such a description is troublesome for the case
of vertical lines where m=∞. Then, it is usual to represent lines using (ρ, θ)

parameterization as:
y = −x tan (θ) + ρ

cos(θ)
, (5.3)

where θ ∈ [−π
2
, π
2
) is the angle from the horizontal axis to the line and ρ ∈

[−ρmin, ρmax] is the perpendicular distance between the origin and the line.

Hough-lines transform has a strong anti-noise ability; therefore, it is well
applied to detect feature in low signal-to-noise ratio scenarios [69], and may
be satisfactorily applied in WAAM. However, due to high level of noise and
non-linearity of the process, many undesirable lines are identified and need
to be filtered. To overcome these issues, the filtering is performed by using

65



the orientation of the end-effector velocity in the image plane. Since the bead
edges are parallel to the end-effector velocity vector, lines with a deviation
above a defined threshold are rejected. It is possible to see that the bead
edge formation has little or no deviation when compared to the direction of
the velocity vector (Fig. 5.3). After identifying all possible lines, the undesired
lines (red) are rejected, and the desired (green) accepted.

Figure 5.3: Removing undesired lines.

In many frames analyzed during the printing, multiple lines are identified for
the same bead edge. After comparing all lines, if their parameters (ρ, θ) are
below a given threshold, they are considered the same line and their mean is
computed and adopted as a new line.

Step 7: some previous filtering must also be performed to measure the bead
width and position and avoid undesirable lines. First, an orthogonal line to
the end-effector velocity vector that passes through a configurable point (C0)

is calculated inside the ROI (Figures 3.1 and 5.4). The intersection points of
the orthogonal line with the bead edges (P1 and P2) are used to compute the
bead width (w) and centerline (C).

Figure 5.4: Bead width and centerline computed by the algorithm.

It is assumed a constant and symmetric bead profile for measuring the bead
centerline position. Ideally, the bead centerline (C) (Figure 3.1) follows the
deposition path planned, which is not always the case as its deposition might
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be affected by the metal droplet misplacement, asymmetric temperatures
surrounding the sides of the bead (as for parallel bead deposition) and low
quality wire feedstock. The bead centerline position is also used to find where
the bead width is being measured in the substrate, which creates a database
for future analysis of possible failures and improves quality control of the part.
The bead position is then transformed from the image plane to the substrate
reference frame {S}, using the camera projection matrix and the known poses
of the substrate, torch, and camera.

5.1.1 Multi-Bead width measuring

A common aspect of WAAM is the necessity of depositing many adjacent beads at
a given layer during the part buildup, this particular scenario has a higher degree of
noise when compared with single-bead deposition. The challenge of measuring the
width in multi-bead layer deposition arises because one bead edge cannot be seen
clearly (Fig. 5.5). When a single bead is printed, its edges are identified through
the difference of light emitted in the intersection of the bead with the substrate;
in multi-bead printing, there is overlapping of two beads and the identification of
the edge in the overlap region becomes more complex because it depends on the
light emitted and on the intersection of the two passes, which makes the bead width
measurement problematic.

For the multi-bead width estimation proposal, width variation is detected and
expected in the measurements of the subsequent beadk with k=2 , · · · , n to the first
deposited bead1 provided that the measurement pattern changes. The first bead
width W1 is measured by identifying its two edges which intersects the substrate.
However, the next deposited beads only intersect the substrate in one edge whereas
the second edge intersects the previous bead at the valley area that results in a
different measurement pattern with bead width W2, as described in Fig. 5.5. The
edge intersecting the substrate (the previous layer) has a clearer view and it is much
easier to identify when compared to the other edge, that is influenced by higher
process noise.

5.1.2 Bead placement estimation during the deposition

The bead placement readings performed during the print is achieved through the
centerline estimation by the developed vision-based algorithm. Since the camera,
the robot arm joints, and the end-effector pose are known at every iteration, it is
possible to estimate the bead placement in real-time during a deposition with the
use of the camera perspective model introduced at section 4.2.1.

These information is used to ensure the bead layer quality and can also be used
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Figure 5.5: Multi-bead cross-section profile in WAAM, where d is the overlapping
distance between the beads centerlines, W1 is the width measurement pattern for
the first bead deposited and W2 the width measurement pattern for the subsequent
deposited beads, and beadk represents a quantity k of beads deposited [17].

to develop defect prediction algorithms based on the width and the bead placement.
The detail about how all the items are disposed and the poses relation between the
items of the monitor and deposition system is shown in Figure 5.6. Joint 6 J6 pose
is computed with the forward kinematics algorithm, through a set of homogeneous
transformations from the robot base to is last join as shown in 5.4, and with the same
operation the other references are known in every iteration during the deposition
process.
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Figure 5.6: Multi-bead deposition and vision monitoring setup. Camera, torch and
wire amplified with their coordinate systems [17].

T06 = T01 T12 T23 T34 T45 T56 (5.4)

The camera pose is computed by the transformation T6c = T06 T6c, from the
robot J0 to the camera frame. Accordingly to what was shown at section 4.2.1, and
considering that: (i) The camera pose is known; (ii) The camera distance to the
substrate is known. The estimation is performed using the following assumption:
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1. Bead geometry symmetry during the single-bead deposition.

2. A Gaussian thermal profile for single-bead and multi-bead deposition.

The centerline position representation at the world reference frame {0} is
computed accordingly to the following steps:

Step 1: Convert the feature position from the non-homogeneous representation
p = [u, v] to the homogeneous image plane representation p̃ = [x̃, ỹ, z̃], with
the known camera distance zc.

Step 2: Compute the feature position in reference to the camera frame {C}, with
the 4 × 3 inverse camera matrix as shown in Equation 5.5. Where C is the
camera matrix, p̃ is the point in homogeneous coordinates, and PC the position
of the point in respect to the camera frame. In this step a previously knowledge
about the distance of the camera to the feature observed is necessary, since
this information (DOF) is lost during the projection operation.

PC = C−1 p̃ (5.5)

Step 3: Compute the feature position P in relation to the world frame {0}, with
the camera homogeneous transformation TC . Where 5.6 gives the transform
from the camera frame to the world coordinates frame. See the schematic
presented at Figure 4.5 and the Equation 5.7.

TC = T06 T6C . (5.6)

P = TC P̃C (5.7)

5.1.3 Measurement filtering

To monitor the system characteristics in WAAM particularly using CMT presents
many challenges for the vision system. For online monitoring of the information
desired, it is necessary to develop a filtering approach since CMT frequently
generates reading failure. Therefore, a filter is developed to store valid readings
using outlier rejection, handle data loss by comparing actual with previous identified
features, and output data filtering through a set of stored information. The newly
acquired data is stored in a vector with a user-configurable size (n1) and stacked in
a queue. Then, the latest valid data is stored in the first vector position while the
oldest is discarded.
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This is performed after outlier rejection with a second filter, called SFilter, which
records valid and outlier data with 1 or 0, respectively. When the mean value of
SFilter is equal to 0, outlier data is considered and stored in the main filter. The
steps used for filtering the data measured are described in Figure 5.7. The flowchart
steps happen for every frame delivered by the camera, being a continuous process.
Output data is filtered using mean or low-pass band filtering.

Extracted 
lines

Yes

Outlier?

len(lines)>2? Compare linek 
with linesk-1.

Compute 
bead width 

and position
Is the same 

line?

Consider last 
valid reading

N

Consider new 
reading

Y

Saves new 
data and 

discard oldest
Reset SFilter

Filter output 
data

SFilter 
empty?

End
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band filtering

Begin

NoNo

Yes

Yes Yes

No

Figure 5.7: Filtering steps of the bead geometry estimation and localization
algorithm.
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5.1.4 Centerline estimation for WAAM with independent

wire feeding system

To keep track of the bead position during the deposition with an independent wire
feeding system (PAW, GTAW, etc), and also filter the estimation performed. A
deposition simulation is performed with two cameras, where each of them make
readings of particular characteristics of the deposition. Since the environment and
the monitoring tends to be highly noisy an extended Kalman filter (EKF) is proposed
for filtering and estimate the desired state. This simulation is developed inside
Matlab with the purpose of testing the algorithm performance for the proposed
problem and assumptions considered.

The simulation is configured with a 6-DOF robot arm (Kuka KR90 2700), an
independent wire feeding system, and two HDR monocular cameras with the same
parameter as Xiris XVC-1000 previously detailed. Zero mean Gaussian noise is used
for the estimations performed through the cameras, and the assumptions considered
are described as follows:

1. Globular droplet transfer mode;

2. The droplet is transferred to the substrate considering only the gravity
influence;

3. The bead geometry is considered symmetric;

4. The wire stick-out length is constant;

5. Bead placement deviations are caused by wire tip lateral deviations of the
planned path;

6. Bead width variations are caused by wire tip deviations along the path
planned.

7. The centerline prediction and measurement are performed in the same area.

It is known that the wire quality influences the part quality, as presented by
ZHAN et al. [76]. Figures 3.13 and 3.15 describe a deviation in the wire feeding,
and Figure 5.8 shows an example of reading performed with a camera in the same
configuration as camera 2 from Figure 5.9. This behavior is most noticeable when
a low quality wire is used to build-up a part.

The bead centerline estimation is performed using the camera projection matrix
with Xiris-1100 intrinsic parameters, and are specified in Table 5.1. Since the
pose of the camera in relation to the joint J6 is computed at every iteration using
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Figure 5.8: Wire stick-out orientation using a passive vision sensor. Adapted from
ZHAN et al. [76].

Table 5.1: Camera main parameters used in the camera perspective model.

Characteristics Value
Focal length 32mm
Pixel size 6.8 10−6m
Resolution 1280× 1024
Centre [640, 512]

direct kinematics, the camera extrinsic parameters are known throughout the entire
deposition.

The overall setup of the simulation is described at Figure 5.9. Where camera
1 is responsible to measure the centerline of the bead being deposited, and camera
2 is configured to capture the wire being fed to the system and estimate its angle
deviation. A zero mean Gaussian noise is used to simulate the noise in both readings.

Robot J6

Camera 2

Camera 1
Torch

Wire 
Feeder

Beads

Substrate

Travel 
direction

y

x z

x
y

z

{T}

{C1}

{C2}
{W} x

z y
z

y

x

Figure 5.9: The Deposition setup proposed for the simulation. Camera 1 assembled
in a top-view configuration to get the bead width and centerline and camera 2
assembled in a lateral-view configuration to get the wire feeder deviation angle.

Figure 5.8 shows an estimation of the wire deflection, which presents high noise
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and some problems around the frame sequence 1000 with the deviation angle varying
highly in a short amount of time. Another reading shown at ZHAN et al. [76] work
is presented at Figure 5.10 where the presence of high noise with and high variance
can be noticed.
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)

Figure 5.10: Noisy wire angle deflection reading. Adapted from ZHAN et al. [76].

It is challenging to monitor in a high-noise scenario, the noises embedded
contributes to loss of signal and to increase the variance of the estimation performed.
To overcome the noisy readings and improve the accuracy of the bead placement
estimation, a model is proposed to govern the bead placement dynamics while also
considering the wire deflection during a deposition. The unicycle model 5.8 is used in
this simulation, it is a simple model but with important characteristics that helps to
decrease the level of noise on the reading performed of the bead placement and make
the monitoring system reliable. In this application its nonholonomic characteristics
is an important feature, its orthogonal velocity constraint in relation to its heading
direction (x unit vector) helps to attenuate the centerline estimation problems caused
by the noise from both camera 1 and camera 2, as shown at both Figures 5.8 and
5.10. ẋẏ

θ̇

 =

cos θ 0

sin θ 0

0 1

[
v

w

]
(5.8)

Two discrete forms of the unicycle dynamic are presented at Equations 5.9 and
5.10, which are respectively the result of using the Euler integration method and
the second-order Runge-Kutta integration method [57]. They are tested to check
the impact of the integration method used in the estimation accuracy. The linear
form of the Equations 5.9 and 5.10 are described by Equations 5.11 and 5.12.
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xkyk
θk

 =

xk−1 + vk δt cos θk−1

yk−1 + vk δt sin θk−1

θk−1 + δt ωk

 (5.9)

xkyk
θk

 =

xk−1 + δt vk cos(θk−1 + ωk δt/2)

yk−1 + δt vk sin(θk−1 + ωk δt/2)

θk−1 + ωk δt

 (5.10)
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[
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] (5.12)

It is important to highlight that no control strategy with the purpose of keeping
the bead placement above the desired trajectory is proposed in the current work,
the observer is implemented and used with the intent of improving the quality of
the estimation by filtering the outliers.

The unicycle model is used to pursue the wire tip position during the deposition,
this is performed by the pure pursuit algorithm, a block diagram of the pure pursuit
is detailed in Figure 5.11. The pure pursuit is a simple and effective algorithm for
trajectory following, where the goal moves along the trajectory. The unicycle speed
is computed by a proportional and integral controller, based on the distance between
the current position of the unicycle and the position of the goal. The heading control
is performed by a proportional controller, which is also based on the heading error
of the unicycle and the vector orientation from it to the goal[16].

The pure pursuit is then used in the EKF to pursue the wire tip during
a deposition process, and it is responsible of providing the state update in the
prediction step. Hence, the EFK is used to attenuate the placement estimation
noise. Figure 5.12 shows an upper view of the deposition system with the unicycle
highlighted, the unicycle will follow the tip of the wire during the deposition as
mentioned. The wire-feeder is configured with an angle of 70 degrees and the wire
feeding angle deviation expected is inside the range of [−15, 15] degrees. The droplet
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Figure 5.11: The block diagram of the pure pursuit algorithm with the unicycle
dynamics. Adapted from CORKE [16].

deposition is governed by the gravity alone and the stick-out length is considered
constant.
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Figure 5.12: Topside view of the system simulation with the unicycle representation
above the bead.

Camera 1 is focused at the bead formation area, right after the molten pool, like
presented in Figure 5.4. It will gather bead centerline placement and width in real
time. Camera 2 is used to capture the wire tip deviation angle, as presented also
in Figure 3.15, its usage is based on the results presented in the work publish by
ZHAN et al. [76].

The state transition and measurement covariance matrices are shown at 5.13 and
5.14. The diagonal values from the measurement covariance matrix related to x and
y are estimated with some samples of centerline monitoring and with the use of the
maximum likelihood estimation (MLE) algorithm. The covariance matrix from the
state transition is defined using the data from the work of ZHAN et al. [76], in the
current work the bead deviation is proposed to be the result of the wire feeding
deviation projection in the substrate.
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V̂ =

0.087
2 0 0

0 0.0872 0

0 0 0.04362

 (5.13)

Ŵ =

0.21
2 0 0

0 0.212 0

0 0 0.04362

 (5.14)

The unicycle first orientation is given by the vector between the initial position
and the desired way point. However, its desired trajectory along the deposition
path is defined by the wire-tip projection at the image plane during the print.
Therefore, its desired heading is computed at every iteration with its actual and
desired position using the Matlab “atan2” four quadrant inverse tangent operation,
which returns values between [−π, π].

The wire feed is configured in a front feeding configuration (Figure 3.12) as shown
in Figure 5.9. When a low quality wire is used during the deposition process, the
angle deviation readings from camera 2 is simulated with a random angular velocity
input such as,

θ̇ = ωwire

which makes the feeding angle varies constantly along the trajectory and simulate
the θ deviation.

After fusing the measurement and the prediction data in the update step of
the EKF it must be transformed from the image plane to the inertial reference
frame. This step is performed with the inverse camera perspective model and the
homogeneous transformation from the robot base to the camera, which is detailed at
section 5.1.2. It is important to highlight again that, it is only possible to make the
reference from the image plane to the inertial reference frame with the knowledge
of the distance zc from the camera lens to the object being observed.
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Chapter 6

Experiment and Simulation Setup

To develop the algorithms in this work a set of deposition experiments are performed
using two WAAM robotics cells to deposit single-bead and multi-bead. A passive
vision camera is used to acquire the data during the print, the video is recorded
using the camera proprietary software and the robot joint state is acquired with the
robot operating system (ROS).

6.1 First experiment setup

The first WAAM print setup consists of a robotic cell using CMT process for
material deposition and a single CMOS monocular camera from Xiris Automation.
Cold Metal Transfer (CMT) provides improved stability and lesser spattering, being
both important features for Additive Manufacturing. A great advantage of CMT
is the ability of providing a uniform bead profile and consequently decrease surface
waviness. It also has a lower heat input decreasing part distortion during build up
and better mechanical property chances, producing a higher string quality, which
is expected for WAAM [24, 28]. Due to these properties the CMT is used as the
deposition process.

The deposition trajectory is performed by a 6 DOF Motoman HP20 robot arm
(Figure 6.1) and the welding equipment as well as the camera are both attached to
the robot end-effector. The specifications of the HP20 robot arm are: 20 kg payload;
±0.06mm Repeatability; 1, 717mm H-Reach; 3, 063mm V-Reach; 280 kg Mass;
NX100 controller providing best-in-class path planning and collision avoidance/arm
interference prevention. The path planned is guided by the robot arm with a
constant travel speed.

For acquiring the images of the bead, a regular welding camera from Xiris, model
XVC-1000 was used (Figure 6.2) and configured at a distance of 285mm from the
substrate. The specification of the camera are: up to 55 FPS at 1280 (H)×1024 (V )

pixels; lens with 16mm focal distance; 6.8 ρm square pixel; 998 ρm exposure time.
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Figure 6.1: First WAAM setup configuration with Motoman HP20 robot arm,
welding torch, camera, and NX100 controller [49].

However, any other camera with proper specification for capturing welding and
deposition images by electric arc could be used.

Figure 6.2: Gray-scale camera from Xiris used during metal deposition.

Both welding torch and camera are attached to the robot arm, which guides
them through the planned path with a constant linear velocity of TS =8 mms−1.
The camera is assembled facing the substrate right after the metal pool, the light
emitted by the bead in relation to the other features in the image is higher and
this characteristics is used for highlight and extract the desired features. One set
of single beads specimens are deposited during the deposition step can be seen in
Figure 6.3, which is used to develop the bead geometry monitoring algorithm.
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Figure 6.3: Single-bead specimens of the first experiment.

This experiment is used to test the response of noise reduction filters, the edge
detect algorithm for WAAM using CMT and the development of the algorithm
responsible of measuring the bead width with a passive camera. Therefore, the
adequate smoothing filter and edge detection algorithm can be used in the online
monitoring system. Table 6.1 shows the process parameters used, and the wire and
the substract chemical composition are described in Table 6.2.

Table 6.1: Process parameters of the first print experiment.

Characteristics Value
Process CMT
Wire feed speed 5.0m/min
Travel speed 8.0mm/s
Contact tip to work distance 15mm
Gas Flow 15L/m
Shielding gas 92%Ar and 8% CO2

Filler wire Aristorod 551.2mm

Reference current 165A
Reference voltage 15.2V

Table 6.2: Chemical composition of the wire filler and the substrate.

C Si Mn P S Cr Ni Mo Cu
Wire filler 0.11 0.5 1.1 0.015 0.015 0.5 0.5 0.2 0.07
Substrate 0.16 0.222 1.05 - - 2.5 - - -
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6.2 Second experiment setup

The second deposition experiment is carryout with a set of equipment. The purpose
is to print a set of single-beads and a multi-bead specimens, test the algorithm
response to different deposition parameters settings and width variations during the
deposition as well as the measurement of bead width in a multi-bead scenario. The
WAAM robot cell deposits metal with a 6-DoF Kuka KR90 R2900 extraHA robot
arm with ±0.05mm repeatability (Figure 6.4) over a 2-DoF Kuka KP2 HV1100
positioning table. The torch and the camera (Figure 6.2) are attached to the robot
end-effector. Both KR90 robot arm and KP positioner are managed by a KRC4
controller with the ArcTech and Robot Sensor Interface (RSI) software add-ons
installed, all supplied by Kuka Robotics. The ArcTech provides tools to print with
the welding power source, while the RSI is used to provide the robot joint positions.

Figure 6.4: WAAM system with a Kuka KR90 robot arm, welding torch, Kuka KP2
positioning table, Fronius power source, and wire feeder.

The reference path is covered with constant travel speed (TS), defined as the
linear velocity that the robot end-effector follows the path with respect to inertial
coordinates. To monitor and perform image acquisition during the deposition, a
Xiris XVC-1000 Weld Camera from Xiris Automation is used (Figure 6.5). The
main specification of the camera are: up to 55 fps at 1280(H) × 1024(V) pixel
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resolution, dynamic range 140+ dB, a lens with 35 mm focal distance, 6.8 µm
square pixel, and 998 µs exposure time.

Figure 6.5: Xiris XVC-1000 camera and the welding torch assembly used in the
second deposition setup.

Figure 6.6 shows the multi-bead deposition system. The color gradient used in
the bead represents the temperature distribution during buildup, and shows how it
affects the bead light emission. The camera is focused on the metal being deposited
right after the molten pool. The light emitted by the bead in this area is higher due
to its high temperature, and is used to detect the bead edges.

The specimens are printed on a substrate in a straight line along the end-effector
y-axis. The torch and the camera are mounted in a top-view configuration facing
the substrate and aligned with its z-axis (Figure 6.6).

The robot arm joint positions are acquired by a computer running the robot
operating system (ROS 1) Kuka package connected to a RSI network implemented
on the Kuka robot controller. The ROS is an open source set of libraries and software
tools that provide functionalities and conventions that facilitate the development of
robotic applications. Considering that the robot kinematic chain is known and its
joints positions are measured, it is possible to calculate the camera and the Cartesian
welding electrode positions relative to the KR90 base by using a forward kinematic
algorithm during the deposition. The vision-based algorithm is also coded following
the ROS framework.

1https://www.ros.org/

81



Figure 6.6: Schematic of the multi-bead deposition and vision monitoring setup.
The camera, torch and wire are amplified with their coordinate systems.

6.2.1 Bead mapping

In the WAAM system with CMT, the wire is fed through the torch, and in
most scenarios, their coordinate systems {W} and {T} have no attitude difference
(Figure 6.6). Also, metal transference mode changes are not considered during the
deposition. Assuming a symmetric geometric profile for the molten pool, the bead
centerline is placed above the planned path during the deposition.

The bead centerline (C) is used to relate the bead width with bead position in
the substrate, enabling quality management analysis by verifying the realized with
the planned. The problem in the wire feeding is more common in a deposition
system where the wire is fed independently with a predefined orientation, such as
the GTAW and PAW. A deviation in the wire input angle increases the probability
of part defects.

6.2.2 Bead samples

To validate the algorithm and its measuring accuracy, a set of experiments consisting
of single beads deposition (Figure 6.7) and a layer (Figure 6.8) is carried out. The
first specimen (A) uses a constant WFS, resulting in a continuous and uniform
bead. For the remaining single beads, a step in the WFS is performed to study its
influence on the beads’ widths. Figure 6.7 and Table 6.3 show the single beads and
the deposition parameters, respectively. All specimens are deposited with the same
TS.

The specimens are transversely cut, following the lines (11 to 42 in Figure 6.7)

82



to produce specimens for macrography, then grinded, polished and etched with nital
2%. A Zeiss light microscope measures the width with the AxioVision SE64. The
results of the vision and physical measurements are compared and shown in Section
6.

Figure 6.7: Samples of the second single-bead experiment with constant and varying
wire feed speed (Table 6.3).

Table 6.3: Travel speed and wire feed speed used for the second single-bead
experiment.

Samples WFSinit WFSfinal TS

A 6 6 6
B 4 6 6
C 8 6 6
D 4 8 6
Units mmin−1 mmin−1 mms−1

Figure 6.8: Five bead layer sample of the second experiment. The deposition of all
bead are performed in the same direction.
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6.3 Third experiment setup

Another experiment setup is performed using a similar setup to the one presented
at Figure 6.2 and Figure 6.6, a infrared camera is used in this new setup in addition
with the already used items. The main objective of this test is to acquire data
with an HDR camera from Xiris and an IR camera from NIT with a topside view
configuration, and then use the same algorithm developed to extract the bead width
information and the centerline in reference to the inertial coordinate while printing.
IR camera main specifications used in the camera perspective model are described
in Table 6.4.

Table 6.4: NIT Tachyon 16 IR camera main specification

Tachyon 16k camera
Array format 128× 128
Pixel size 50um× 50um
Focal lens 32mm
Maximum frame rate 2000 fps
Spectral range MWIR (1.0 a 5.0 microns)
Peak wavelength of detection 3.7µ

The setup used of the current experiment is detailed at Figure 6.9, the HDR
and the IR cameras were both positioned at a topside view to capture the same
deposition characteristics.

The bead width estimation is performed in the IR camera for single-bead
deposition, in the multi-bead scenario the bead width is estimated using both IR
and HDR cameras. In this experiment single-bead, multi-bead, and a 5 layer pad
is produced, they are shown at Figures 6.10 and 6.11. Table 6.5 detailed the main
information about the third experiment, the bead width estimation is expected
to be within the 9.30 to 9.59mm range, which is also the measurement reference
to be achieved by the vision-based monitoring system. The step-over distance
used is according to 0.667w, where w is the bead width. Variations in the width
estimation are expected due to the noise present in the deposition process and
detailed in Table 6.5. The multi-bead specimen (Figure 6.10) have the following
width in its 4 sections: (i)9.32mm; (ii) 14.84mm; (iii) 21.11mm; (iv) 27.10mm,
these measurements are referred to the first bead deposited, which has the longest
length, to the set of 4 beads.

6.4 Simulation setup

The third setup is used inside a simulation environment configured at Matlab. It is
configured such as the deposition of single-beads is performed using a 6-DOF robot
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Figure 6.9: The sensors setup used in the third experiment.

Table 6.5: Third experiment deposition information.

Deposition information Value
Process CMT
Travel speed 11.0mms−1

CTWD 10.0mm
Expected bead width 9.30 to 9.59mm

arm that guides the torch and an independent wire feeder. This step is used to
simulate the influence of the wire deviation, which is a result of the wire deflection
during the print as described in section 3.3. The deflection is simulated by a feeding
rotation around the y-axis of the wire feeder coordinate system that result in lateral
deviations along the trajectory. The proposed setup is described in Figure 5.9.

The welding torch is configured facing the substrate surface, with its z-axis
orthogonal to the deposition plane. The wire feeder is assembled in a front
configuration (see Figure 3.12). Camera 01 is assembled facing the substrate to
capture the bead being deposited, which is setup to simulate the bead centerline
measurement. Camera 02 is configured in a position to capture the wire deviation
(θwd) as in the work performed by [76]. Its image view and measurement is simulated
in according with Figure 3.14 and Figure 3.15.
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multi-bead

single-bead

Figure 6.10: Single-bead and multi-bead specimens, where the passes of the multi-
bead specimens have different length.

The robot in the simulation is setup following the datasheet of Kuka KR90 2700,
similar to the robot arm used in the second experiment (Figure 6.4). The camera is
configured using the same specifications of the Xiris XVC-1100 mentioned previously,
a zero mean Gaussian noise with a variance of 0.4 pixels for the wire feeding angle
estimated for camera 2, and a zero mean Gaussian noise with 5 pixels of variance
for the centerline identified is considered in the image plane from camera 1. These
cameras configuration are detailed in Figure 6.12, where a sided-view representation
of the system with some parameters used in the simulation is shown. The KR90
2700 robot arm used for the simulation performed in Matlab is shown at Figure 6.13.
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Figure 6.11: Third deposition experiment five layer pad.
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Figure 6.12: Side view of the deposition system simulation with the stick-out,
distance from torch to the substrate and the wire feeder angle highlighted.
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Figure 6.13: 3D schematic of the Kuka KR90 2700 used in the simulation.
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Chapter 7

Results and Discussion

This section details the results obtained from the three deposition experiment
performed with the vision-based algorithm developed for passive vision sensors.
Followed by the results for the test of the smoothing filters and edge detection
algorithms for the images acquired with the passive vision sensors. Next the
bead width and centerline measurement are presented for both experiment print
configuration. The centerline estimation is carried out from the second to the last
experiment presented. All deposition is performed using CMT.

7.1 First experiment

The first experience performed has the focus on testing the performance of the
smoothing filters and edge detectors and confirm based on the references an approach
to be used in the development of the monitoring system. An initial bead width
measurement experiment is also presented, however without the addition of specific
filtering to increase the robustness of the monitoring system.

7.1.1 Width measurement of single-bead deposition

The images acquired from a single-bead deposition is used to test a set of noise
reduction filters. In Figure 7.1 the result of the test is described, is it noticed that
the median filter in this scenarios have a higher impact in the sharpness of the image
and also has a higher CPU cost when compared with the Gaussian filter. Since the
image sharpness is important for a accurate measurement and the CPU cost impact
the online performance of the algorithm, therefore the Gaussian filter is used in the
noise reduction step.

After defining the region of interest (ROI), the performance of the edge detection
algorithms are tested, the edges detected of the bead being deposited with each
algorithm are shown in Figure 7.2. It evidences the results obtained with each
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Figure 7.1: Median and Gaussian filters results in WAAM. Where low and high light
scenarios are analyzed for both filters [18].

algorithm, with Canny edge algorithm having the best edge identification of them.
A similar conclusion is reached by MA et al. [46], where the authors compared the
Prewit, Roberts, Kirsch and Canny edge detection algorithms for welding images.

Figure 7.2: Edges of the bead (a) detected inside the region of interest using
Laplacian (b), Sobel (c), Schar (d), and Canny (e) edge detection algorithms [18].

The noise reduction and edge detection algorithms tested performances are
described in Figure 7.3. A first measurement experiment with the data acquired
from the camera is also performed in COUTO et al. [18]. The first measurement
test (Figure 7.4) is performed after the line identification and a simple mean filter,
which in further tests showed little robustness to deal with the WAAM non-linear
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noises.

Figure 7.3: Video of deposition using CMT with the region of interest [18].

Figure 7.4: Bead width estimation of the first experiment with the usage of a mean
filter [18].

To improve the reliability of the measured width and attenuate the noise it is used
a low-pass band or moving average filter, the result is described in Figure 7.5. The
information is mapped and recorded at every frame of the print and the measurement
is performed constantly with low variance. The median and low-pass band filter are
represented by the red and blue line respectively.

A comparison between the mean value of both filters and a manually
measurement with a software, shows a deviation of 1%. The mean value of the
bead width from both filters data is 6.27mm and 6.24mm when measured manually
(Figure 7.6).

Since hough-lines identify multiple lines due to a low signal-to-noise ratio
commonly found in WAAM videos using passive vision, another filtering step is used
in this experiment, it considers only the parallel lines for the bead width calculation.
However, to measure based in the parallelism of the lines showed little effectiveness
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Figure 7.5: Bead width measurement with low-pass band and moving average
filtering [49].

in some deposition with low noise-to-signal ration and the rework of the filtering
step is performed for the second experiment.

(a) (b)

Figure 7.6: Single bead width measured manually, where (a) and (b) are respectively
the first and second position measured of the single-bead [49].

7.2 Second experiment

In this section, the results of single-bead and multi-bead depositions carried out with
the second WAAM system are described. The specimens are used to test the bead
geometry measurement vision-based algorithm and the bead placement estimation
for WAAM using CMT.
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7.2.1 Segmentation analysis

With the acquisition of new data, it was perceived that the estimation performed
under a high noisy scenario had a higher variance, failing in the feature identification
step constantly. Therefore, an analysis was performed to increase the reliability of
the width estimation. A comparison of the width estimation are performed with a
fixed and an adaptive segmentation parameters and also without the segmentation
is shown in Figure 7.7. In a low noise scenario, there are no significant differences
between the strategies tested (Figure 7.7b). However, in a high noisy scenario,
the measurement presents low variance readings only using an adaptive parameter
(Figure 7.7a).

Therefore, for all the experiments performed in this work the adaptive threshold
is used to do the segmentation of the intended feature, and improve the reliability
of the vision-based monitoring system.

7.2.2 Single-bead geometry measurement and estimation

Figures 7.8 to 7.11 show all the beads’ width estimation. The small overshooting at
the beginning of Figures 7.8 and 7.10 is expected because more metal is deposited
until the robot starts moving and reaches the desired linear velocity. Considering
all measurements performed in the first and second halves of the plots through
vision, the vision-based algorithm constantly monitored the deposition with a low
variance outcome. The mean of the estimated widths for each specimen are shown
in Table 7.1. It is important also to consider that the vision monitoring system gives
much more information when compared with the macrograph measurement since it
provides the bead width through its full extension.

Table 7.1: Measurements performed in the first and second halves of the plots.

Specimen 1st half 2nd half
A 6.9 7.0
B 6.4 7.1
C 8.5 6.9
D 6.2 8.8
Unit mm mm

7.2.3 Multi-bead width measurement

The developed algorithm also is used to estimate the beads’ widths in a 5-bead
layer (multi-beads layer), as shown in Fig. 7.12. One of the bead edges identified is
sharper than the other because it intersects the substrate or last layer deposited.
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(b) Monitoring in low noise scenarios.

Figure 7.7: Width monitoring plot using different strategies.

For comparison, the other edge that overlaps the neighbor bead is more difficult
to identify, because this edge is the intersection of two beads and the measurements
show a higher noise incidence. This results in width variations, and the edge
identification becomes a challenge.

It is possible to identify the width variation when observing Figure 7.12. Bead 1
and 2 presented a higher width, but when considering the increase numbers of pass
deposited the width estimated tends to decrease and stabilize within a range, which
are the behavior experienced in beads 3, 4 and 5. No width estimation pattern
based on the indirect deposition parameters and the single-bead width estimation
is intended to be achieved in the current work.
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Figure 7.8: Constant WFS, Sample A [17].

7.3 Third deposition experiment result

This section contain result from both HDR and Infra-Red camera. They are
capturing the bead formation right after the molten pool and performing the bead
width estimation in real-time. The multi-bead estimation test are performed with
both cameras, however, the bead placement estimation is performed only using the
IR camera since it is integrated in ROS. The single-bead measurement is performed
only for IR camera.

For the multi-bead deposition of Figure 6.10 the result contains the bead width
information for every pass with both cameras. The purpose is to test the estimation
and check the width variation for every bead observed. Figure 6.11 pad is used to
test again the width estimation and also the bead centerline placement in real-time,
the reading is performed on the last layer. It is also verified if bead placement
deviations can be perceived during the monitoring.

The expected bead width variation for the estimation performed is detailed in
Table 6.5, where the measurement was performed in a single-bead specimen for the
calibration of the parameters.

95



0 20 40 60

time (s)

0

0.002

0.004

0.006

0.008

0.01

w
id

th
 (

m
)

(a) First half: 5.95mm (b) Second half: 7.00mm

Figure 7.9: Varying WFS, sample B [17].

HDR passive vision camera

The results of the experiment using Xiris HDR camera are presented from
Figures 7.14 and 7.15. And the detailed information of the estimation is shown
in Table 7.2 and 7.3. The mean value is computed at the steady period of the
monitoring because the start and end a highly noisy and also the monitoring do not
stop when the electric arc turn-off.

Examples of images acquired with the Xiris HDR camera are presented at
Figure 7.13, where it is possible to see the noise and also variation in the bead
width observed during the monitored, well exemplified at Figures 7.13a and 7.13b.

Table 7.2: Bead width estimation values for the multi-bead deposition using Xiris
HDR Camera.

Samples Width estimation
Bead 01 9.95
Bead 02 9.55
Bead 03 8.77
Bead 04 8.93
Unit mm
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Figure 7.10: Varying WFS, sample C [17].

Table 7.3: Bead width estimation values for the layer 5 of the pad deposited using
Xiris HDR camera.

Samples Width estimation
Bead 01 9.79
Bead 02 9.15
Bead 03 9.05
Bead 04 8.97
Bead 05 8.48
Unit mm

IR passive vision camera

The width estimation results of the experiment using NIT IR camera are presented
at Figures 7.19 and 7.20, where the estimation graph for the multi-bead and PAD
(layer 5) are detailed. The width value is shown at Table 7.4 and 7.5. The mean
value is computed at the steady period of the monitoring because the start and end
of the deposition contains a lot of noise that might be accounted without necessity,
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Figure 7.11: Varying WFS, sample D [17].
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Figure 7.12: Multi-bead width monitoring at current layer [17].
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(a) (b)

(c) (d)

Figure 7.13: Frames captured during the layer 5 deposition of the pad.

e.g. a bead ghost continue present at NIT image even after the deposition stops as
shown in Figure 7.16.

Some frames captured from the multi-bead deposition and the pad deposition
are shown at Figure 7.17 and 7.18 are present to exemplify the characteristic of
the data acquired during the monitoring. The images from the IR camera are less
susceptible to noise variations when it is compared with the images from Xiris HDR
camera as already shown at Figure 2.14.

The estimation performed in a single bead, bead 1 of the multi-bead specimen,
shown constant monitoring but with higher variance when compared with Xiris
at previously experiments. Even so, the monitoring system is able to monitor
constantly the characteristics for every bead deposited for both multi-layer and pad
deposition experiment. Also a function to monitor the characteristics only when the
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(d) Bead 04.

Figure 7.14: Bead width estimation for the multi-bead deposition using HDR
camera.

arc is on can be added to avoid the width estimate acquisition in the areas where the
monitoring presented a lower signal-to-noise ratio, therefore avoiding unnecessary
noises.

Table 7.4: Bead width estimation values for the multi-bead deposition using NIT
IR camera.

Samples Width estimation
Bead 01 10.23
Bead 02 10.05
Bead 03 9.76
Bead 04 10
Unit mm
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Figure 7.15: Width estimation for every bead of bead layer 5 using HDR camera.

Bead placement with the HDR camera

In this section is presented the result obtained by the current experiment for the
multi bead deposition. It is presented the robot arm trajectory for every single-
bead deposited, and the bead centerline localization in the x-y plane for the inertial
coordinate (robot arm base).
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Figure 7.16: Bead ghost present at the IR image even after the end of the deposition.

Figure 7.17: Specific frames captures from the multi-bead 4th pass.

Figure 7.18: Specific frames captures from the pad last layer.
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Figure 7.19: Bead width estimation for the multi-bead deposition using the IR
camera.

Table 7.5: Bead width estimation values for the layer 5 of the pad deposited using
NIT IR camera.

Samples Width estimation
Bead 01 10.07
Bead 02 10.05
Bead 03 9.73
Bead 04 9.75
Bead 05 9.63
Unit mm

It is possible to see that the estimation is noisy but was constantly monitored
during the deposition process. As expected, the noise affects more the readings at the
start and end of every bead. For a more accurate estimation another filtering solution
should be developed to prevent abrupt variations in the placement estimation as the
ones presented at Figure 7.22. The trajectory performed by the robot arm is also
presented individually for each bead at Figure 7.21.
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Figure 7.20: Width estimation for every bead of pad (layer 5) using the IR camera.

7.4 Simulation experiment result

In this section, it is presented the results of the Matlab simulation. The proposed
estimation is performed in two scenarios: (i) linear trajectories; (ii) circular
trajectories. The wire feed varies along the trajectory to simulate a low quality
wire, and the robot manipulability is computed at the beginning of each trajectory.
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(a) 1st trajectory. (b) 2nd trajectory.

(c) 3rd trajectory. (d) 4th trajectory.

Figure 7.21: Trajectory performed by the robot arm during the multi-bead
experiment.

7.4.1 Linear trajectory deposition

The robot arm manipulability is computed to ensure that there is no singularities in
the trajectory that could disturb the desired characteristic estimation, it is shown
at Figure 7.23.

wire orientation: varying

The planned and performed bead placement is shown in Figure 7.26, where it is
possible to notice the influence of the deviation in the wire feed angle along the
deposition path shown at Figure 7.25. The orthogonal deviation from the path
planned caused by the wire feed angle is shown at Figure 7.27. Both Runge-Kutta
and Euler integration method are tested to check its performed in the simulation to
check if each method produces distinct results. Since the integration step and the
linear velocity of the robot arm during the simulation are small, no distinct results
are observed.

The estimated, the predicted, and the measured bead placement for both Euler
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Figure 7.22: Individual beads centerline placement estimation for the linear .

and Runge-Kutta integration methods are presented at Figure 7.28. There is no
variance difference when compared the Euler and Runge-Kutta integration method
for the bead centerline estimated state. The estimation comparison with the real
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Figure 7.23: Manipulability computed for the linear trajectory.

bead placement is described at Figure 7.29.

7.4.2 Circular trajectory deposition

In the circular trajectory the robot arm manipulability is computed again to
ensure there is no singularities along the performed trajectory, which is shown at
Figure 7.24.
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Figure 7.24: Manipulability computed for the circular trajectory.

wire orientation: varying

The planned and performed bead placement is shown in Figure 7.31, it is also
possible to identify the influence of the deviation in the wire feed angle along the
deposition path especially at the end of the trajectory, as shown at Figure 7.30.
Where the orthogonal deviation from the path planned caused by the wire feed
angle is shown at Figure 7.32. Both Runge-Kutta and Euler integration methods
are tested to check if the integration method impact the simulation result in this
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type of trajectory. The result from both integration methods are equivalent as shown
in Figure 7.28, which is expected since the robot linear velocity and the integration
step are small, then for the other results presented the integration method used is
the Runge-Kutta.

The estimated, the predicted, and the measured bead placement for both Euler
and Runge-Kutta integration methods are presented at Figure 7.33. No estimated
variance is noticed when compared the Euler and Runge-Kutta integration method
for the bead centerline state, therefore. The estimation comparison with the real
bead placement is described at Figure 7.34.

7.4.3 Simulation discussion

It is possible to perceive that in both simulated scenarios, linear and circular
trajectories, and respecting the assumptions made, that the bead centerline
deposition along the trajectory deviates from the desired path due to the wire
deflection. The noisy data acquired from camera 1 and camera 2 add more
uncertainty to the measurement, therefore the proposed estimation plays an
important role in improving the quality of the state estimate. An example of a noisy
bead placement measurement were presented at section 7.3 which also reinforce the
importance of improving the quality of the estimation performed.

Since both prediction and measurement are noisy data, the estimation also differs
from the real state. However, as a direct advantage of using the EKF, the state
estimate presented a lower variance when compared with the predicted state from
the pure pursuit (camera 2) and the measured state acquired from camera 1. A
real deposition experiment to test the performance and possible improvements in
the current proposal is necessary, this step is detailed in the future work section.

th
et

a 
(d

eg
)

iterations

Figure 7.25: Real and estimated wire feeding angle along the linear deposition
trajectory for a varying wire feeding angle.
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Figure 7.26: Bead planned and performed path for a varying wire feed angle. The
red circle represents the trajectory start and the green x represents the trajectory
end.
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Figure 7.27: Bead deviation along the linear trajectory for a varying wire feed angle.
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Figure 7.28: Estimated, predicted and measured bead centerline localization along
the trajectory for a varying wire feed angle.

110



1798 1799 1800 1801 1802

x (m)

0

20

40

60

80

100

120

140

160

180

200

y
 (

m
)

bead estimation 2

bead real placement

(a) Linear trajectory (estimation x real).

1799.6 1799.8 1800 1800.2

x (m)

95

100

105

110

115

120

125

130

135

140

y
 (

m
) bead estimation 2

bead real placement

(b) Linear trajectory (estimation x real) zoomed.

Figure 7.29: Estimated and real centerline localization of the bead along the
trajectory for a varying wire feed angle.
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Figure 7.30: Real and estimated wire feeding angle along the deposition (a) for a
varying wire angle and a circular trajectory. (b) and (c) are zoomed areas of the
original angle estimation chart.
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(c) A trajectory segment zoomed.

Figure 7.31: Bead planned and performed path for a varying wire feed angle and
a circular trajectory. The red circle represents the trajectory start and the green x
represents the trajectory end.
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Figure 7.32: Bead deviation along the trajectory for a varying wire feed angle, and
a circular trajectory.
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Figure 7.33: Estimated, predicted and measured bead centerline localization along
the trajectory for a varying wire feed angle, and a circular trajectory.
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Figure 7.34: Estimated and real centerline localization of the bead along the
trajectory for a varying wire feed angle, and a circular trajectory.
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Chapter 8

Conclusion

This work addresses the online extraction of the bead geometry’s characteristics
(width and centerline) of deposited beads with monocular cameras. The
implemented vision-based algorithm proved to be a reliable option for developing
and implementing of a monitoring system for WAAM, making possible corrections
during the printing.

The width monitoring is performed satisfactorily even under a noisy process.
However to achieve this result it is necessary to filter the features, the measurement,
and also use previous states of the process to allow the outlier rejection. The
measurement performed by the algorithm for scenarios with constant and varying
bead width is also satisfactorily achieved, as it perceives and measures the width
variations as proposed. In the case of a layer (multi-bead), it is also possible
to measure the desired characteristics of the beads, despite the slight variations
expected from the beads deposited after the first one (single-bead).

For the multi-bead proposition, the bead width estimation results obtained in
the third experiment with the HDR camera shown similar results when compared
with the ones presented at the second experiment. Where after the first bead (single-
bead) the width estimated tends to decrease and the width estimation also present
a lower variance after the second deposited bead width. The Infra-red camera width
estimation recording is performed under the stable part of the chart, where it present
a lower variance from each bead when compared to the HDR camera. However, the
IR camera present a high noise at the beginning and end of the deposition due to
some characteristics of the equipment (e.g. image ghost). Another aspect observed is
the similar accuracy from NIT and Xiris in the third experiment, since NIT pixel size
is bigger than Xiris HDR camera a lower accuracy in the estimation was expected.

The placement estimation performed presented high variance, however the result
obtained are relevant for the bead placement estimation. The development of an
alternative filtering solution shows necessary which could improved the accuracy of
the measurement while monitoring the bead placement in real-time.
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8.1 Passive vision monitoring system

The monitor system is developed with ROS framework as a set of nodes with specific
functions, these are coded using python and opencv library. It is possible to conclude
that, as showed in the present work, monocular passive cameras are capable of
extracting important information of the process. With a proper computer vision
algorithm, the real-time estimation of the bead geometry characteristics are achieved
constantly for varying scenarios and distinct deposition parameters.

The width monitoring is performed successfully, even under a noisy process. In
particular the short circuit characteristic generates a lot of problems for the image
acquired, saturating and also decreases the light intensity rate between pixels, which
presented to be a problematic characteristic for the edge detection and segmentation
algorithms. However, with the use of the Buffer filter and an adaptive parameter
threshold for the segmentation it was possible to monitor and record the necessary
state to perform properly the outlier rejection and feature comparison for a set of
selected frames.

8.2 Simulated bead placement estimation

The bead centerline placement proposal using the EFK with two simulated camera
shown an improvement in the bead placement estimation, where the estimated state
presented a lower variance when compared to the predicted and measured states. A
5cm wire stick-out is considered to simulate the orthogonal deviation from the path
planned along the deposition, which would impact in the quality of the part being
produced. Therefore, the bead centerline estimated shows to be an improvement,
because as presented in the section 7.4 of the current work, the bead centerline
placement is noisy and the information should be reliable and have a low variance
to enable a feedback control. Where it must be achieved to to keep the wire-tip and
the bead above the trajectory performed.

8.3 Future work

In this section it is specified a proposal for future works based on the developments,
criticality, the and results presented at the current work.

(i) Improve the quality of the bead centerline estimation through the
development of an alternative filtering solution to attenuate the noise observed
during the monitoring. And also consider neural network system to improve the
estimation and reliability.

(ii) Perform a deposition in a WAAM system with independent wire feeding
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system using two cameras as proposed in section 6.4 of the current work, then test
the performance of the algorithm developed and make the possible improvements
to achieve a better accuracy for the real-time bead centerline placement estimation.
It is important to highlight that the algorithm to monitor and extract the wire
deviation must be developed and tested previously.

(iii) Develop a sensor fusion algorithm based on Kalman filter with two passive
cameras at the same configuration capturing the same deposition characteristics.
Since the amount of noise in the process is high and varies for every print process,
it is relevant to improve the accuracy of the estimated state. Which also improve
the chance of success of a feedback control algorithm to be developed.

(iv) The bead placement estimation developed opens the possibility to attenuate
the deviations caused by a wire of low quality. Reducing the necessity of developing
and qualify wire suppliers specifically for this application, which will also increase
the scalability of the technology enabling its usage with lesser restrictions around
the world.

The usage of a feed back control with the bead centerline and wire angle
estimation. It would be possible to guarantee lesser material being deposited outside
the desired path by the control of the robot arms pose automatically during the
print, which will result in lower dependence of the wire quality and improve the
build quality.

An simple schematic of the proposal is presented at Figure 8.1, which used the
robot arm higher DOF when compared to the DOF that the task required to control
the wire tip position above the path despite its lateral deviations.
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position deviation
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Torch
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z
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[2] wad: wire 
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x
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x

X X
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Figure 8.1: Topside view of the system with the deviation caused by a low quality
wire.

Since the camera 1 estimate the position of the bead centerline in real time, and
camera 2 estimate the angle deviation of the wire being fed. Therefore, two control
options arises, and is exemplified [1] and [2] characteristic and actions at Figure 8.1
with a zoomed view at Figure 8.1, about the control proposals: (i) The wire lateral
deviation from path are corrected through the movement of the end-effector on the
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opposite direction; (ii) The wire feeding angle deviation is corrected rotating the
last end-effector joint without changing the electric arc position through the path.

[1] wirepd: wire 
position deviation

path

camera 2

wire feeder

torch

[1]

[2]

s: stick-out

z

x

[2] wad: wire 
angle deviation

X

Figure 8.2: Topside view zoomed of the control proposal for the bead placement and
wire feeding while printing.

Also a deposition experiment with the same objective must be performed to
prove the reliability of the algorithm when applied in a real life application.
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