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In this thesis, two novel methods of extremum seeking control based on slid-

ing modes and output feedback for real-time optimization of a class of uncertain

nonlinear multivariable systems are introduced. Specifically, the methods are: (1)

extremum seeking control based on the monitoring function and cyclic search and (2)

extremum seeking control based on the periodic switching function and cyclic search.

In the former approach, static and dynamic maps are considered, and in the latter

only static maps. It is ensured, in both approaches, that the objective functions

reach, in real-time, a small neighborhood of their optimal operating or equilibrium

points. For dynamic mappings with arbitrary relative degree, singular perturbation

and time-scaling techniques are employed. The stability and convergence analysis for

the monitoring function-based scheme is done through point transformations called

parabolic-recurrence method, while the periodic switching function is based on the

Lyapunov’s stability theory. The obtained results indicate that the proposed control

strategies allow for achieving global convergence and stability properties, while in

the literature such properties are only local or semi-global. Numerical simulations

corroborate with the theoretical results.
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Nesta tese, são apresentados dois novos métodos de controle por busca extre-

mal para a otimização em tempo real de uma classe de sistemas multivariáveis não-

lineares incertos, através do controle por modos deslizantes e realimentação de sáıda.

Especificamente, os métodos são: (1) controle extremal baseado em função de mo-

nitoração e busca ćıclica e (2) controle extremal baseado em função de chaveamento

periódica e busca ćıclica. No primeiro, são considerados mapeamentos estáticos e

dinâmicos e no segundo apenas mapeamentos estáticos, sendo garantido, em am-

bas abordagens, que as funções-objetivo alcançam, em tempo real, uma vizinhança

pequena de seus pontos ótimos de operação ou de equiĺıbrio. Para mapeamentos

dinâmicos com grau relativo arbitrário, utilizam-se as técnicas de perturbação sin-

gular e escalonamento do tempo. A análise de estabilidade e convergência para o

controle via função de monitoração é feita por transformações pontuais que denomi-

namos método de recorrências parabólicas, ao passo que a abordagem via função de

chaveamento periódica, baseia-se na teoria de estabilidade de Lyapunov. Resulta-

dos da pesquisa indicam que as estratégias de controle propostas permitem alcançar

propriedades de convergência e estabilidade globais, enquanto na literatura tem-se

convergência e estabilidade locais ou semi-globais. Simulações numéricas corroboram

os resultados teóricos.
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P2 = (x̃2, ỹ2). This mapping proceeds recursively. The system repre-

sentative point runs the parabola forth and back, generating arcs of

parabola which corresponds to the time evolution of the output −y

(y) close to a directional minimum (maximum). . . . . . . . . . . . . 31

2.4 The zoomed insertion illustrates the final time window of a directi-

onal search where −y converges to a neighborhood of a directional

minimum, performing parabolic arcs bounded by O(µ2). The points

P1, P ′
1, P2 correspond to those of Figure 2.3. . . . . . . . . . . . . . . 32

2.5 Flowchart to summarize the proof of Theorem 1. PRM means Para-

bolic Recurrence Method . . . . . . . . . . . . . . . . . . . . . . . . . 33

x



2.6 Objective function y = h(x) and the convergence to the optimum

value y∗ = 0 (denoted by ∗), starting from three distinct initial

conditions x0 = (−1.5,−1.5) (black), x0 = (−1.5, 1.5) (blue) and

x0 = (1.5, 1.5) (green). . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 The level sets of the objective function y = h(x) and the trajectory

from the initial condition x0 = (−1.5,−1.5). . . . . . . . . . . . . . . 34

2.8 Simulation results: (a) the output of the plant converges to a small

neighborhood of y∗ = 0 and (b) the input vector x converges to a small

neighborhood of x∗ = [0 0], with initial condition x(0) = (−1.5,−1.5). 35

2.9 Monitoring function ϕm and error norm |e|. The left-side detail shows
the simulation starting with incorrect control direction, the right-side

detail shows the switching when (2.23) is violated. . . . . . . . . . . . 36

2.10 Simulation results: (a) control signals u1 e u2 and (b) the cyclic search

direction with period Ts = 1s. . . . . . . . . . . . . . . . . . . . . . . 36

2.11 The plant output y(t) tracks the reference trajectory r(t) in sliding-

mode until a small neighborhood of the desired maximum y∗ = 0 is

reached. Note in the zoomed sub-figure (top), the correct control di-

rection is achieved. Other sub-figure (bottom), directional maximum

is reached at each sub-period 0.5s. . . . . . . . . . . . . . . . . . . . . 37

2.12 Slower responses occur when a gradient-based extremum seeking [1]

is applied to the same objective function. . . . . . . . . . . . . . . . . 37

2.13 Matlab GUI used to run simulations. The GUI has communication

states (input parameters) on the top left and the real time plots on

the bottom left and right side. . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Block diagram for implementation of MESC via cyclic search and

periodic switching function. . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 In (a) the output of the plant converges to a small neighborhood of

y∗ = 0 and (b) the input vector x converges to a small neighborhood

of x∗ = (0, 0), when the initial condition is chosen as x(0) = (−1.5, 1.5). 48

3.3 The plant output y(t) tracks the reference trajectory ym(t) in sliding-

mode crossing several directional maximum until reaching y∗ = 0,

while the strategy proposed in [2] does not do it due to the saturation. 49

3.4 (a) control signals u1 e u2 and (b) the cyclic search direction with

period Ts = 0.5s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 The objective function y = h(z) and the tracking of the optimum

point from three initial conditions. . . . . . . . . . . . . . . . . . . . 57

xi



4.2 Convergence of the variables z and y to expected optimum points,

z∗ = (0 , 0) and y∗ = 5, respectively, from the initial condition z0 =

(3 ,−1.5), in the time-scale t = τ . . . . . . . . . . . . . . . . . . . . . 58

4.3 Control signals u1 and u2 and the cyclic searching functions σ1 and

σ2, with period Ts = 1s. . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 The convergence of the signals z to y their optimum points, z∗ = (0, 0)

and y∗ = 5, respectively, from the initial condition, z0 = (3 ,−1.5)

obeying the time-scale t = ητ . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 The monitoring function, upper bounding and monitoring the error

norm |e(t)| continuously. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 The convergence of the signals z and y to their optimum points fail

as η increases (η = 0.1). . . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



List of Abbreviations

SISO Single-Input Single-Output

MISO Multiple-Input Single-Output

MIMO Multiple-Input Multiple-Output

ESC Extremum Seeking Control

MESC Multivariable Extremum Seeking Control

HFG High-Frequency Gain

VSC Variable Structure Control

SMC Sliding Mode Control

GAS Globally Asymptotically Stable

xiii



Caṕıtulo 1

Introduction

Optimization is the primary motivation for all reasonable human actions. It is

utilized in our daily lives without notice. In general, through our actions, we are

interested in achieving a particular state in which a specific objective is optimal (ma-

ximized or minimized) [3]. Similarly, real-time optimization is one of the objectives

of any control system [4].

A popular real-time optimization technique is extremum seeking, originally pro-

posed in France by Leblanc in 1922. It is a feedback control technique aimed to find

operating set-points that optimizes an uncertain objective function [5]. Extremum

seeking is applicable in situations where there is a nonlinear objective map in the

control problem, and the nonlinearity has a local minimum or a maximum.

Real-time optimization is a difficult problem, specially if little or no model in-

formation is known a priori. However, these problems can be interpreted under

the light of trajectory tracking control and the existing literature shows promising

results for single-input single-output (SISO) systems [6–8] and multi-input single-

output (MISO) systems [9, 10]. In this thesis, we aim to develop multivariable sliding

mode based extremum seeking controllers through monitoring function or periodic

switching function and output feedback to optimize uncertain nonlinear objective

functions.

Control of Uncertain Nonlinear Systems

A typical feedback control system is illustrated in Figure 1.1. Feedback control

systems of this form can be divided into two main classes: output feedback and state

feedback, the later require all state to be measured for implementation, which is

physically difficult or economically expensive, so in this work we will deal only with

output feedback. However, output feedback design is simplified only for systems

with relative degree one. For systems with relative degree greater than one, the

use of state estimation schemes is required. Therefore, in order to keep an output
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feedback control law, state observers must be implemented to produce estimates of

the unmeasured states.

Figura 1.1: Typical feedback control system

Regarding uncertainties in dynamic systems (linear or nonlinear), robust and

adaptive control are the main strategies in the literature for dealing with systems

that have poor modeling, including parametric variations [11].

The main topic of research in this thesis is extremum seeking control (ESC),

which is an adaptive control methodology that optimizes the steady-state perfor-

mance of a plant by automatically adjusting its inputs [9]. On the other hand,

sliding mode variable structure control or simply sliding mode control (SMC) is

a very efficient robust control alternative for controlling uncertain systems [6, 11].

Thus, we want to design controllers based on sliding mode control and output feed-

back to address with uncertain nonlinear systems in optimization problems, leading

to global or semi-global solutions. The term global [12] refers to a stability or trac-

king task that is achieved independently of the initial conditions of the closed-loop

system, while semi-global refers to a property obtained from a compact set of initial

conditions, that can be arbitrarily increased by tuning some controller parameter.

1.1 Objectives

The objective of this thesis is to develop sliding mode control laws for uncertain

nonlinear systems, based on two approaches, (1) monitoring function with cyclic

search and (2) periodic switching function with cyclic search. Specifically, we want

to design new global solutions for real-time optimization of uncertain multivariable

nonlinear systems under unknown control direction (unknown gradient and Hessian).

Monitoring function and periodic switching functions are designed to cope with the

lack of the control direction knowledge, while sliding mode is used to solve the

problem of system uncertainties. On the other hand, cyclic search is introduced to

reduce the multivariable problem to a sequence of scalar sub-problems. Thus, we

expand the applicability of our previous results for static maps [13, 14] and dynamic
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maps [15]. The proposed control designs are followed by the stability analysis based

on the so-called Parabolic Recurrence Method [16], and nonlinear system’s analysis

tools, such as Lyapunov stability theory and singular perturbation theory.

To the best of our knowledge, it is the first time that multivariable sliding mode

based extremum seeking control via monitoring function is introduced in the li-

terature. On the other hand, the earlier approach, based on periodic switching

function has been proposed in the literature [2, 17], however, we have relaxed some

assumptions and make some modifications in the control loop, which improves its

performance, as will be shown throughout the thesis (chapter 3).

1.2 Literature Review

To cover a brief literature review, in the following sections three advanced control

theory techniques are presented, within the scope of this thesis, namely Adaptive

Control and Extremum Seeking Control with or without sliding modes.

1.2.1 Adaptive Control

The concept of adaptive system and adaptive control dates back to the 1950s

[18] and it is still an active research topic [19]. According to Ioannou and Fidan [20],

adaptive control is the combination of a parameter estimator, which generates para-

meter estimates online, with a control law in order to control classes of plants whose

parameters are completely unknown and/or could change with time unpredictably.

Adaptive control can be divided into three main classes, as illustrated in

Figure 1.2: the classical model-based adaptive control (MRAC - Model Reference

Adaptive Control), which mainly uses physics-based models of the controlled sys-

tem; the model-free adaptive control, which is solely based on the interaction of the

controller with the system; and learning-based adaptive control, which uses both

model-based and model-free techniques to design flexible yet fast and stable adaptive

controllers. Extremum seeking control belongs to the class of model-free adaptive

controllers, that allow a lot of flexibility in terms of model structures because they

do not rely on any model. However, they lack some of the stability guarantees which

characterize model-based adaptive controllers.

Depending on the approach used to compensate the model uncertainties, model-

based adaptive control can be classified either in direct MRAC or indirect MRAC. On

the other hand, in terms of the nature of the model and the controller equations, it

can be classified as linear controllers (continuous or discrete) or nonlinear controllers

(continuous or discrete). For convenience, we will not present the details of the

subclasses of either model-based adaptive control or learning-based adaptive control.

3



Figura 1.2: Three main streams of Adaptive Control: model-based, model-free, and
learning-based adaptive control. Sliding Mode based ESC is the main topic in this
thesis.

As told before, extremum seeking control is an example of a model-free adap-

tive control, which will be described in the next section. Another example of a

model-free adaptive control is reinforcement learning algorithms, which is a class of

machine learning algorithms and learns how to map states to actions in such a way

to maximize a desired reward. However, ESC is more powerful (learning online, in

one experiment, not through numerous tests) but this is still understood by too few

as an advantage over machine and reinforcement learning.

1.2.2 Extremum Seeking Control

There are many problems of engineering for which an optimal operating point

or condition exists, but this point or condition is not necessarily well known or easy

to find. ESC belongs to a family of control design methods whose purpose is to

automatically find an optimal system behavior (e.g., equilibrium point or trajectory

to be tracked) for the closed-loop system, while at the same time maintaining stabi-

lity and boundedness of signals. ESC is therefore mainly used to perform real-time

optimization (RTO) for dynamic systems [21].

ESC can be categorized in different manners [21, 22], for instance, in [21] it is ca-

tegorized into two main groups: analog (continuous) optimization-based extremum

seeking control (AOESC) and numerical (discrete) optimization-based extremum se-

eking control (NOESC). Analog optimization-based methods includes gradient based
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design (GESC), perturbation-based design (PESC) and sliding mode based design

(SMESC). The following section briefly describes Analog optimization-based algo-

rithms, which are our object of study.

Perturbation-based ESC and Gradient-based ESC

According to Reference [4], the idea behind the perturbation-based approach,

which is the most popular, is to add a small probing signal (sometimes called dither

signal) to a base input (u), and then measure the change in the output (y) with

respect to this signal. Based on this change, it will be decided to increase or decrease

the input signal (u).

Extremum seeking control received great attention from the control community

after the work of Krstić and Wang [23] in 2000, which established the first rigorous

stability proof for this perturbation-based design, based on standard averaging and

singular perturbation theory, which guarantees at least local convergence. Since

then, many significant theoretical results on stability and performance aspects have

been published by several authors. This section highlights some contributions of

these works, according to the aforementioned branches. For each ESC branch, there

is a scalar and multivariable approach, as well as a continuous time and discrete-time

method.

Since 2000, significant theoretical advances on ESC were carried out, such as the

generalization for multi-input-multi-output (MIMO) plants [24], semi-global conver-

gence proof [25], extension for multi-input-single-output (MISO) maps with output

delays [26] and input delays [27]. Please, refer to Table 1 for more references.

In what follows, we present an intuitive description of the perturbation-based

ESC. For details, the reader can refer to [5] and [28].

Consider a dynamic system given by

ẋ = f(x, u) (1.1)

y = h(x), (1.2)

where u is parameterized by θ, i.e., u = α(x, θ), assuming that there is an unique

equilibrium map l(θ) such that ẋ = 0 if and only if x = l(θ), and the unknown

output y = h(x) has a maximum at some value θ = θ∗.

Figure 1.3 illustrates the perturbation-based control scheme. The dither term

a sin(ωt) is used to perturb the value of θ, in order to search for the optimal control

which maximize the output function y. The value of the output function, y = h(x),

is first passed through the high-pass filter, whose Laplace transform is represented

as
s

s+ ωh

in order to remove any constant terms. The filtered signal is then mixed

with the same term, a sin(ωt), and then low-pass filtered, a process which after
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some averaging analysis results in few oscillating terms, one of which is of the form

sin2(ωt) and proportional to
dh

dθ
, the gradient of the unknown output map. Upon

integration, or low-pass filtering through −k

s
all oscillatory terms has zero average,

except the term k
dh

dθ
sin2(ωt), resulting in θ following a gradient ascent towards the

maximizer value θ∗ of the unknown function y = h(x).

Figura 1.3: Gradient-based ESC

On the other hand, considering the same system (1.1)-(1.2), the gradient-based

ESC [19] is defined as follows:

θ̇ = k
dh

dθ
, k > 0, (1.3)

which convergence can be analyzed using the following Lyapunov function

V = h(θ∗)− h(θ) > 0, for θ 6= θ∗. (1.4)

The derivative of V w.r.t. time results in

V̇ = −dh

dθ
θ̇ = −k

(
dh

dθ

)2

≤ 0, (1.5)

which proves that (1.3) drives θ to the invariant set such that
dh

dθ
= 0, i.e., θ = θ∗.

It is clear from (1.3), the dependence of the algorithm on the gradient of the output

function h. This dependence can be overcome by the sliding mode control technique,

which is introduced in the next section.
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Sliding mode based ESC

The concept of sliding mode control dates back to the 1960s, and it is still an

active research topic. The sliding mode control (SMC) is recognized as one of the

efficient tools to design robust controllers for complex high-order nonlinear dynamic

plants operating under uncertainty conditions. SMC is a special class of the variable-

structure systems (VSS). The sliding mode control method alters the dynamics of

a given dynamical system (linear or nonlinear) by applying a discontinuous control

signal that forces the system to slide along a cross-section (manifold) of the systems

of normal behavior [29].

The main advantage of the sliding mode controllers is their insensitivity to pa-

rameter variations and disturbances during the sliding mode, thus eliminating the

requirement of the exact modeling. The SMC design is composed of two steps:

• In the first step, a sliding surface should be properly designed. While on the

sliding surface, the plant dynamics is restricted to the equations of the surface,

being robust to matched plant uncertainties and external disturbances.

• In the second step, a feedback control law should be designed to provide con-

vergence of the system trajectories to the sliding surface; thus, the sliding

surface should be reached in a finite time. The system’s motion on the sliding

surface is called the sliding mode.

Important types of SMC [29] are: classical sliding mode control (first-order sli-

ding mode control, FOSMC), integral sliding mode control (ISMC), higher-order

sliding mode control (HOSMC), terminal sliding mode control (TSMC), and super-

twisting sliding mode control (STSMC). Fundamental design and analysis tools used

in classical SMC are discussed by Utkin [30]. According to Shtessel et al. [31], ISMC

has the properties of retaining the order of the compensated system’s dynamics in

the sliding mode and disturbance compensation while the HOSM control has the

ability to drive the sliding variable and its k − 1 successive derivatives (a so-called

kth-order sliding mode) to zero in finite time. The STSMC can be understood as a

PID controller with nonlinear proportional and integral actions. TSMC is designed

to achieve finite-time convergence of the state to the origin after the reaching phase.

Sliding mode control has been successfully applied to robot manipulators, un-

derwater vehicles [32], automotive transmissions and engines, high-performance elec-

tric motors, and power systems [33]. In control theory, SMC is applied to other pro-

blems such as regulation, observers, output feedback and trajectory tracking [34].

The latter two problems are considered in this thesis, i.e., first order SMC applied

to extremum seeking control through output feedback and trajectory tracking.

The design of controllers by output feedback of uncertain systems without the

knowledge of the high frequency gain has been an intriguing problem since the
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1980s. In adaptive control, the so-called Nussbaum gain has been used in an attempt

to relax this hypothesis [11, 35]. However, this approach is controversial from a

practical point of view due to large transients, excessive control effort and consequent

lack of robustness [35].

Lately, controllers based on output feedback and sliding modes for tracking un-

certain, linear and non-linear SISO systems with unknown control direction were

introduced in [36] and [37], respectively. In place of Nussbaum gain, the control

direction was adjusted from monitoring functions.

In variable structure MRAC, the MRAC reference model control structure is

used. The integral laws of adaptation are replaced by switched laws, resulting in a

switched control signal, as in the variable structure systems ([38], [39], [40]). Despite

the good transient performance, in general, there is the presence of the phenomenon

of “chattering”

Recalling the system (1.1)-(1.2), it was demonstrated in the previous section that

gradient-based ESC needs the knowledge of the gradient of the objective function,

thus, using the concepts of SMC, we now show how to develop a sliding mode based

ESC, introduced by Korovin and Utkin [41], by defining a tracking error

e = h(θ(t))− href (t), (1.6)

where href (t) denotes a time function, which is monotonically increasing, in case

of maximization problems. The idea is that if h tracks href , then it will increase

until it reaches an invariant set centered around the equality
dh

dθ
= 0. A simple way

to achieve this goal is by choosing the following extremum seeking law, named as

Drakunov-Özgüner’s periodic switching function [42]:

θ̇ = k1 sgn
(

sin
(
πe

k2

))
, k1, k2 > 0. (1.7)

Figure 1.4 illustrate such a sliding mode control scheme. With this controller, at

least one of the sliding surfaces, e(t) = kk2, with k odd or even, would be a stable

sliding surface, independent of the control direction. Moreover, this controller is

shown to steer θ to the set such that
dh

dθ
<

ḣref

k1
, which can be made arbitrarily

small by the proper tuning of k1. In [43], the authors enhanced the sliding mode

ESC approach by utilizing an output-feedback version of the Drakunov-Özgüner

periodic switching function. The authors proved that global exact tracking was

achievable for uncertain plants with unknown control direction, and then employed

it for extremum seeking of SISO systems.

Extremum seeking control has also a large application, such as solar cell manage-

ment, blade adjustment in water turbines and windmills to maximize the generated
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𝑘1
𝑠

sgn sin
𝜋𝑒(𝑡)

𝑘2

ℎ𝑟𝑒𝑓(𝑡)

𝑦(𝑡) = ℎ(𝜃(t))
𝜃(𝑡) 𝑦(𝑡)

⊕
𝑢(𝑡) 𝑒(𝑡)

−

Figura 1.4: Block diagram of the sliding mode based extremum seeking

power, Anti-lock Breaking Systems (ABS), cooling systems and autonomous vehicles

without position sensing, neuromuscular electrical stimulation [5, 44]. In [45] and in

the 180 references therein, many real-world applications are also presented.

Multivariable Extremum Seeking Control

Many problems that require real-time optimization are naturally multivariable

[5], such as in energy conversion systems for renewable energy sources [46] and air-

conditioning systems [47].

The first studies of multivariable extremum seeking control were provided by

Rotea [24] and Walsh [48], and their results were for plants with constant parameters

and a systematic design procedure was absent [21]. Stability analysis for general

multivariable ESC and systematic design guidelines for stability/performance were

thereafter supplied in [49].

There are two types of multivariable ESC schemes [1, 47]:

1. Gradient-based multivariable ESC;

2. Newton-based multivariable ESC.

Gradient-based multivariable ESC is an extension of scalar gradient-based

ESC described in this section, having a dither signal vector with different

frequencies S(t) = [a1 sinω1t · · · an sinωnt] and demodulation signal vector

M(t) = [
2

a1
sinω1t · · ·

2

an
sinωnt], which extract the gradient information, as illus-

trated in Figure 1.5. The positive constants ai and ωi are the dither amplitudes and

frequencies, respectively, associate with each input variable, θ is the plant input, θ̂

is the estimate of the optimizer, Ĝ is the estimated gradient information,
s

s+ wh

and
ωl

s+ ωl

are high-pass and low-pass filters, respectively. By the modulation and

demodulation process, the gradient Ĝ with reference to different input variables can
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be estimated. The integrator is then used to drive the gradient to zero. For a con-

vex performance map, a point with zero gradient would mean that this point is the

optimum working point. This algorithm has the disadvantage of local convergence

and its rate depends on the Hessian [1]. The Newton-based ESC was proposed to

circumvent the latter drawback.

X+
𝑠

𝑠 + 𝜔ℎ

−
𝐾

𝑠

𝜔𝑙

𝑠 + 𝜔𝑙

𝑀(𝑡)𝑆(𝑡)

መ𝜃 𝐺

ሶ𝑥 = 𝑓 𝑥, 𝛼 𝑥, 𝜃

𝑦 = ℎ(𝑥)
𝜃 𝑦

Figura 1.5: Gradient-based multivariable ESC

Figure 1.6 illustrates the Newton-based multivariable ESC algorithm, which can

be divided in two parts: the demodulation matrix N(t), which generates an estimate

of the Hessian denoted by H, and the Riccati equation

Γ̇ = ωrΓ− ωrΓĤΓ, ωr > 0, (1.8)

which generates an estimate of the inverse of the Hessian matrix H−1, even when

the estimate of the Hessian is singular. The key distinction of the Newton algorithm

relative to the gradient algorithm is that, while the convergence of the gradient al-

gorithm is dictated by the second derivative (Hessian) of the map, the convergence

of the Newton algorithm is independent of the Hessian and can be arbitrarily assig-

ned. This is particularly important in non-model based algorithms, like extremum

seeking, where the Hessian is unknown [1]. Experimental results comparing the

gradient and Newton-based methods are performed in [46], in which the authors op-

timize a photovoltaic array system, by tuning the duty cycles of DC/DC converters

employed in the system.

Recently, a multivariable perturbation-based ESC [9] for general nonlinear dyna-

mical plants was proposed, in which the closed-loop plant and controller is globally

asymptotically stable (GAS). This result is based on the amplitude and frequencies

of the perturbations being time varying and asymptotically decaying to zero as the

time goes to infinity. However, one should note that this is usually not desirable,

because if the perturbation vanishes, then any measurement noise is free to drive the

output away from its extremum value. Moreover, it is known that this perturbation-

based ESC has a drawback, the convergence rate slows down within the domain of
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ሶ𝑥 = 𝑓 𝑥, 𝛼 𝑥, 𝜃

𝑦 = ℎ(𝑥)
𝜃 𝑦

X

𝑁(𝑡)

𝐻ሶΓ = 𝜔𝑟Γ − 𝜔𝑟Γ𝐻 Γ
𝜔𝑙

𝑠 + 𝜔𝑙

𝜔𝑙

𝑠 + 𝜔𝑙

Figura 1.6: Newton-based multivariable ESC

attraction [50, 51].

In the context of sliding mode control, in [52] the authors proposed a multivari-

able sliding mode ESC by applying a sliding manifold vector for multivariable con-

trol. The proposed controller is compared to multivariable gradient-based method

through experimental studies, registering advantages in terms of speed, accuracy

and robust performance. However, their stability proof seems to be inconsistent.

Earlier, Korovin and Utkin [41] suggested solving multivariable extremum seeking

control through an one-dimensional network by varying the direction of the search

in space, but they were not clear when the direction should be changed. Then, the

authors in [53] solved this issue by using a minimum peak detector, which tracks

the input signal and holds the minimum of its output from the previous reset, by

using two hysteresis devices. However, for n-dimensional network, additional 2n− 1

relays and parameters would be needed, which may lead to a more complex im-

plementation. Moreover, the oscillations around the optimizers varies according to

such 2n− 1 parameters, which must be also different.

In [17] and [54], the authors also proposed an extremum seeking strategy based on

sliding modes and periodic switching functions in order to address static multi-input

multi-output (MIMO) maps. Both apply the control strategy to Raman optical

amplifiers. The latter relaxes the condition of diagonal dominance to triangular

dominance, although remain the need for a weak coupling between the input and

output channels.

Recently, Salamah and Özgüner [2] proposed a sliding mode-based MESC, simi-

larly to [41, 53], by employing a periodic switching function and a periodic search

function (cyclic search), to optimize energy production in wind farms. Cyclic search

means that each channel is active at a time, in such a way that while the channel is

active, the others are frozen at their previous optimum values. However, the authors

formulate a restrictive assumption about the directional derivatives, which cannot
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be verified due to the multiple extrema in the multiparameter search.

Figura 1.7: Sliding mode based multivariable ESC

Figure 1.7 illustrates the control scheme proposed in [2], where p(t) is a monoto-

nically decreasing function (for a minimization problem), σ(t) is the periodic search

function and u(t) is the sliding mode control law.

We conclude this section with a summary of the theoretical results on multiva-

riable extremum seeking control, shown in Table 1.

In such table, the references are listed in chronological order according to each

approach: Gradient-based, Newton-based and Sliding mode based ESC. The third

column brings the number of inputs and outputs, i.e., if the objective function is

MIMO or MISO. Static/Dynamic and Linear/Nonlinear indicate the underlying pro-

cess dynamics. Column Global/Local concerns to the type of stability/convergence

properties.
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Table 1: Summary of previous theoretical results on multivariable ESC.

Reference ESC approach No. I/O Static/Dynamic map
Global/Local

Convergency
Linear/Nonlinear plant

ROTEA (2000) Gradient-based MIMO Static Local Nonlinear

WALSH (2000) Gradient-based MISO Dynamic Local Nonlinear

ARYUR e KRSTIĆ (2002) Gradient-based MISO Dynamic Local Nonlinear

CREABY et al. (2009) Gradient-based MISO Dynamic Local Nonlinear

FRIHAUF et al. (2012) Gradient-based MIMO Static Local Nonlinear

XIAO et al. (2014) Gradient-based MISO Static Local Nonlinear

OLIVEIRA et al. (2015) Gradient-based MISO Static Local Nonlinear

OLIVEIRA et al. (2017) Gradient-based MISO Static Local Nonlinear

HARING e JOHANSEN (2017) Gradient-Based MISO Dynamic Global Nonlinear

BAGHERI et al. (2018) Gradient-based MISO Static Local Nonlinear

LIU et al. (2018) Gradient-based MISO Dynamic Local Nonlinear

OLIVEIRA et al. (2020) Gradient-based MISO Dynamic Local Nonlinear

GHAFFARI et al. (2012) Newton-based MISO Static Local Nonlinear

OLIVEIRA et al. (2015) Newton-based MISO Static Local Nonlinear

GHAFFARI et al. (2014) Newton-based MISO Static Local Nonlinear

TOLOUE e MOALLEM (2017) Sliding mode based MISO Static Local Nonlinear

SALAMAH e ÖZGUNER (2018) Sliding mode based MISO Static & dynamic Local Nonlinear

PEIXOTO et al. (2020) Sliding mode based MIMO Static Global Nonlinear

Proposed algorithms Sliding mode based MISO Static & Dynamic Global Nonlinear

1.3 List of Publications and Contributions

The following conference papers are not part of the thesis, but served as the

main background works to be extended to the proposed multivariable approaches:

• Aminde, N. O., Oliveira, T. R., Hsu, L. Global Output-Feedback Extremum

Seeking Control via Monitoring Functions. In Proceedings of the 52nd IEEE

Conference on Decision and Control, pages 1031–1036, Florence, Italy, De-

cember, 10-13, 2013.

• Oliveira, T. R., Aminde, N. O., Hsu, L. Monitoring Function based Extremum

Seeking Control for Uncertain Relative Degrees with Light Source Seeking

Experiments. In Proceedings of the 53rd IEEE Conference on Decision and

Control, pages 3456–3462, Los Angeles, California, December, 15-17, 2014.

• Oliveira, T. R., Peixoto, A. J., Hsu, L. Global real-time optimization by

output-feedback extremum-seeking control with sliding modes. Journal of

The Franklin Institute, pages 1397–1415, v. 349, 2012.

The following list of publications forms the basis of this thesis, and consequently

our contributions:

13



• Aminde, N. O., Oliveira, T. R., Hsu, L. Controle Extremal para Mapeamentos

Dinâmicos Multivariáveis usando Função de Monitoração e Busca Ćıclica. XV

Simpósio Brasileiro de Automação Inteligente (SBAI), 2021.

• Aminde, N. O., Oliveira, T. R., Hsu, L. Multivariable Extremum Seeking

Control via Cyclic Search and Monitoring Function. International Journal of

Automation, Control and Signal Processing, 2020 [61]. (CAPES Qualis A2).

• Aminde, N. O., Oliveira, T. R., Hsu, L. Controle Multivariável para Busca Ex-

tremal Ćıclica Usando Modos Deslizantes e Função de Chaveamento Periódica.

Congresso Brasileiro de Automática (CBA), 2020.

• Aminde, N. O., Oliveira, T. R., Hsu, L. Controle Extremal Ćıclico Multiva-

riável via Função de Monitoração. XIV Simpósio Brasileiro de Automação

Inteligente (SBAI), 2019.

These contributions can be summarized in two branches, subdivided in three

main topics:

• Multivariable sliding mode based ESC algorithms for static maps;

(1) Monitoring function-based with cyclic search. Published in [61] and des-

cribed in chapter 2.

(2) Periodic switching function-based with cyclic search. Presented at

CBA 2020, described in chapter 3 and to be submitted to a Journal.

• Multivariable sliding mode based ESC algorithms for dynamic maps with ar-

bitrary relative degree;

(1) Presented at SBAI 2021, described in chapter 4 and indicated by the

conference committee to be published at Journal of Control, Automation

and Electrical Systems (JCAE). This treats the systems with arbitrary

relative degree, relying on a time-scale separation between the process

dynamics and the extremum seeking controller dynamics.

1.4 Overview of the Thesis

The contents of this thesis are as follows.

Chapter 2 presents specifically the design and analysis of multivariable extre-

mum seeking controller for static maps via monitoring function and cyclic search

Chapter 3 presents the design of the multivariable extremum seeking controller

for static maps via periodic switching function.
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Chapter 4 presents the design and analysis of the multivariable extremum see-

king control applied for dynamic maps with arbitrary relative degree.

Chapter 5 summarizes and concludes the thesis.
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Caṕıtulo 2

Multivariable Extremum Seeking

Control via Monitoring Function and

Cyclic Search Directional

In this chapter, we extend our results from [13] to a multivariable approach, i.e.,

we propose a novel multivariable extremum seeking based on cyclic search direction

and monitoring function for sliding-mode tracking with unknown control direction.

The cyclic search was inspired from the periodic search function proposed in [2],

which basically considers the multivariable problem as a sequence of scalar sub-

problems. The latter was based on sliding-mode generated by periodic switching

functions. Unlike earlier publications [1, 2, 52], where just local convergence could be

assured, global convergence properties of the search algorithm are now guaranteed.

Moreover, when compared to the semi-global scheme proposed in [50, 62], our results

have one more advantage, since the rate of convergence does not slow down within

the global domain of attraction. The following section is a substantial transcription

of a published paper at the International Journal of Automation, Control and Signal

Processing, available here.

Notation and Terminology - Throughout this chapter, the Euclidean norm of a

vector x and the corresponding induced norm of a matrix A are denoted by ‖x‖ and

‖A‖, respectively. From a technical standpoint, the theoretical results obtained in

this chapter are based on Filippov’s definition for solution of differential equations

with discontinuous right-hand sides [63]. As in [14, 64], a generic vector function f(t)

is said to be of order O(µ) over an interval [t1, t2] if there exists positive constants

κ and, µ∗ such that, ‖f(t)‖ ≤ κµ, ∀µ ∈ (0, µ∗] and ∀t ∈ [t1, t2]. For the sake of

simplicity, throughout the chapter, we will not give estimates of constants κ and

µ∗ and thus will not quantify a corresponding O(µ) approximations. On the other

hand, we will be satisfied byO(µ) being an“order of magnitude relation”, valid for“µ
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sufficiently small” so that it can be made arbitrarily small. This is our quantitative

characterization of “small neighborhood”.

2.1 Problem Statement

Consider a nonlinear multivariable map h : Rn → R given by

y = h(x), (2.1)

where x ∈ Rn and y ∈ R. The objective is to find the extremum (maximum) point

x∗ ∈ Rn, that maximizes y, as close as possible.

This problem can be recast into the context of ESC by introducing the system,

ẋ = u, (2.2)

y = h(x), (2.3)

with the control input given by a vector u ∈ Rn, which is to be designed so that the

extremum seeking objective is accomplished.

With respect to the controlled plant, the following assumptions are made:

(A1) (Differentiability of h): The function h : Rn → R is continuously differen-

tiable over all domain Rn.

Let the gradient and Hessian matrices of h(.) be defined as

∂h

∂x
=

[
∂h

∂x1

· · · ∂h

∂xn

]T
and

[
∂2h

∂x2

]
ij

=
∂2h(x)

∂xi∂xj

, i, j = 1, . . . , n.

(A2) (Unique maximum of h):

Assume that there exists x∗ ∈ Rn such that y∗ = h(x∗) is the unique maximum

of h(x), where the gradient and the Hessian matrices satisfy, respectively:

∂h

∂x

∣∣∣∣
x=x∗

= 0 and
∂2h

∂x2

∣∣∣∣
x=x∗

< 0,

where x ∈ Rn.

(A3) (Radial unboundedness of h): The function h : Rn → R is assumed radially

unbounded in Rn. This guarantees that if |y| is bounded, then ‖x‖must be bounded.

The mapping h as well as its gradient are considered unknown to the control

designer. We wish to find an output-feedback control law u such that, from any

initial condition, the system is steered to remain in an arbitrarily close vicinity of

the extremum point y∗. Without loss of generality, we only address the maximum

seeking problem.
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It should be noted that more general systems can be considered [13], in which

x would be the state of a control system with more complex dynamics than that

of simple integrators. The objective of considering the simpler system (2.2)-(2.3) is

to focus on the basic ideas of an ESC method for dynamic systems with objective

function depending on several inputs.

The ESC problem can be formulated as an output feedback tracking problem

with unknown control direction, as explained hereafter. From (2.2) and (2.3), the

first time derivative of the output y is given by

ẏ =
∂h

∂x

T

u, (2.4)

where the plant high-frequency gain (HFG), denoted by kp, is given by the gradient

vector, i.e.,

kp(x) := [kp1 · · · kpn ] , (2.5)

kpi(x) :=
∂h

∂xi

. (2.6)

As in [14], the signs of the elements of kp can be seen as control directions.

The assumption (A2) leads us to consider a nonlinear control system with a state

dependent HFG, with respect to each control component ui, which may change sign

with time, around the extremum or optimum point of interest.

2.2 Multivariable Controller via Cyclic Search and Mo-

nitoring Function

The proposed output-feedback multivariable ESC based on a cyclic search and

monitoring function scheme is illustrated in Figure 2.1. The control law for plants

with unknown HFG is defined as in [13]:

u(t) =

{
u(t)+ = −ρ(t)σ(t) sgn(e(t)) , t ∈ T+ ,

u(t)− = ρ(t)σ(t) sgn(e(t)) , t ∈ T− ,
(2.7)

where, the tracking error e is defined as

e(t) = y(t)− r(t) , (2.8)
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and r(t) is a simple ramp time-function generated by the reference model

ṙ(t) = p, r(0) = y(0) , (2.9)

where p > 0 is a design constant. Optionally, and for the sake of practical consis-

tency, such ramp can be saturated at a high enough value. In the control law (2.7),

ρ(t) is a positive scalar modulation function (or gain) to be designed in section 2.4,

and σ(t) is a cyclic vector search function which alternates periodically the search

direction, to be defined in section 2.3.

In Figure 2.1, the search directions correspond to each of the state variable

axes, without loss of generality. The sets T+ and T− satisfy T+ ∩ T− = ∅ and

T+ ∪ T− = [0, tM). Here, tM is the maximal time of existence of a solution for the

closed-loop system, i.e., tM is finite if the system escapes in finite-time or infinite

otherwise. Our design for the ESC system will guarantee bounded system signals

and convergence to the extremum point. Thus, it will be proved that no finite-time

escape may occur, so that tM = ∞.

Figura 2.1: Block diagram of the proposed multivariable ESC via cyclic search. A
monitoring function governs the sign switching (SW) of the output tracking sliding
mode control.

The idea behind using a ramp as reference model and sliding mode control (SMC)

for synthesizing the control signals is simple (see [65]). SMC is known for its capa-

bility of performing precise tracking under uncertainty. Suppose that the optimal

point is a maximum. Then, an increasing ramp (p > 0) is chosen and is to be tracked

by the objective function. This forces it to grow up to reach its maximum value. To

avoid bad transients, the reference ramp can start at the initial output value y(0)

at t = 0. Then, perfect sliding mode (SM) tracking can be achieved from the very
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beginning of the extremum seeking process or after a short transient.

Obviously, for the case of minimum seeking, a decreasing ramp should be chosen

(p < 0). The modulation function ρ(t) in (2.7) is designed so that y(t) tracks r(t) as

long as possible. In this way, y(t) is forced to achieve the vicinity of the maximum

y∗ = h(x∗) and to remain close to the value y∗, i.e, x close to the maximizer point

x∗.

This behavior is simpler to understand in the scalar ESC problem. As explained

in [13], the “hill climbing” sliding mode starts, possibly after a short time interval

taken to identify the correct control gain sign by the monitoring function, until the

control gain becomes exceedingly reduced, tending to zero close to the extremum

point. Then, “controllability” is lost within some small ∆-vicinity of the extremum

point, as introduced later in Assumption (A4). Inside this vicinity, the modulation

function will not be large enough to maintain the sliding mode. However, the control

law will maintain y close to the optimal value y∗.

In the multivariable case, the scenario is more complicated. Even reducing the

problem to piece-wise scalar problems by means of the cyclic search strategy, in

every search direction, extremum points different from the global one generally exist.

These will be referred as “directional maximum or extremum”. Even so, it will be

shown that the global maximum will be ultimately attained by the proposed cyclic

search strategy.

Remark 1 The paper [2] adopts the cyclic search followed in our work. However,

it makes a quite restrictive assumption about the ith directional derivative in that it

must be nonzero when the ith control parameter θi is not equal to its value (θ∗i ) at

the unique extremum of the objective function (see Assumption 2.1). Their assump-

tion is not satisfied even for a quadratic objective function. In our method, such

assumption is not made. This is why, along a directional search, extremum points

can exist and yet convergence to the global maximum can be guaranteed.

2.3 Design of the Cyclic Search Direction

The cyclic directional search is designed so that the change of the search di-

rection takes place periodically. Let σ(t) be a periodic function with period Ts,

i.e., σ(t + Ts) = σ(t) (see detail in Figure 2.1). Let the interval T = [Tl, Tu)

(open right-side to avoid ambiguities) represent the interval of one cycle so that

Ts = Tu − Tl and let the set of initial instants of each directional search be deno-

ted as τ1, τ2, · · · , τn. By convention, let Tl = τ1 < τ2 < · · · τn < τn+1 = Tu, and

let ∆τi = [τi, τi+1),∀i = 1, ..., n, be the n directional search sub-intervals within

each cycle. Let the orthonormal basis be denoted by a1, a2, · · · , an ∈ Rn, so that
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aTi = [0, · · · 0, 1, 0 · · · 0], with the unit element at ith position of the vector. Thus,

the cyclic search direction in (2.7) can be defined as follows:

σ(t) = ai, ∀t ∈ ∆τi, ∀i = 1, ..., n, (2.10)

For simplicity, we choose the duration of each sub-interval ∆τi, equally distri-

buted, i.e., given by
Ts

n
. Therefore, during each sub-interval, the controller will

search in the ith direction before switching to the next direction [2] in the next

sub-interval, i.e., the multivariable controller works as a scalar controller in each

sub-interval ∆τi. Since the search is cyclic with period Ts, to each cycle is attri-

buted an index κ = 1, 2, . . . ,∞. For the κth cycle, a directional extremum can

occur for each ith search direction within the cycle. Such extremum is denoted

y∗i (κ) (= h(x∗
i (κ)), where x∗

i (κ) ∈ Rn is an extremum point along the ith search of

the κth cycle. When the system approaches the global extremum or some directio-

nal extremum, the controllability is “lost”in the sense that the control gains become

too low to ensure the desired output tracking by sliding mode. Thus, the following

assumption and concepts are introduced.

(A4) (Low controllability regions D∆ and D(κ)∆i
):

Let D∆ := {x : ‖x− x∗‖ < ∆/2} and, for each ith directional search of the κth

cycle, indexed κ, D(κ)∆i
:= {x : ‖xi(κ)−x∗

i (κ)‖ < ∆i/2, xj(κ) = constant, j 6= i}.
Both regions will be referred to as ∆-vicinity, for simplicity.

Then, assume that there exists a class K function Lh(.) such that, for any given

constants ∆ > 0 and ∆i > 0,

Lh(∆) ≤
∥∥∥∥∂h∂x

∥∥∥∥ , ∀x /∈ D∆, and Lh(∆i) ≤
∣∣∣∣ ∂h∂xi

∣∣∣∣ , ∀xi /∈ D(κ)∆i
.

From the continuity assumption (A1), Lh(∆) and Lh(∆i) tend to zero as ∆ and

∆i tend to zero. Note that ∆ can be chosen arbitrarily small as Lh is allowed to

be small enough, due to assumption (A1). For simplicity, one can choose ∆ = ∆i.

Moreover, from (2.5) and (A1), kp (∀x /∈ D∆), and kpi (∀x /∈ D(κ)∆i
) satisfy

0 < kp ≤ ‖kp‖ , ‖kpi | ; (2.11)

where the lower bound kp ≤ Lh is a constant.

It is convenient to relate the parameter ∆ or ∆i with a small parameter µ, to be

defined in section 2.5, in such a way that |x−x∗| < µ in D∆ and |xi(κ)−x∗
i (κ)| ≤ µ

in the ith directional domain D(κ)∆i
.

In what follows, we drop the periodic search cycle index κ to avoid clutter,

assuming that the analysis takes place within a generic cycle.
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2.4 Error Dynamics

From (2.3), (2.8) and (2.9), by adding and subtracting λe, the time derivative of

error e (hiding t) one has:

ė =
n∑

i=1

∂h

∂xi

ui − p+ λe− λe , (2.12)

and for the ith search direction,

ė = −λe+ kpi(x)(ui + de) , (2.13)

where λ > 0 is an appropriate constant and

de := (kpi(x))
−1 (−p+ λe) . (2.14)

Suppose that when we start at t = τi, i.e., at the beginning of the ith sub-

period, we have controllability of the error, with kpi ≥ Lh(∆i), to be refereed as the

condition of controllability (see (A4)). Considering de as a perturbation, it can be

upper bounded in absolute value by:

d̄e := L−1
h (p+ λ|e|) ≥ |de| . (2.15)

Based on the monitoring function proposed in [66, 67], one can rewrite the control

law (2.7) for the ith search direction on the system (2.2)–(2.3) yielding the following

sliding-mode control law

ui = −ρU(t) sgn(e) , uj = 0 , ∀j 6= i , and i , j ∈ {1, . . . , n} , (2.16)

where the modulation function ρ is given by

ρ = d̄e + γ, (2.17)

with γ > 0 being an arbitrary design positive constant, and U(t) = +1 or − 1, ac-

cording to the estimated sign of kpi . If correctly estimated, U = sign(kpi), otherwise
U = − sign(kpi). In the control diagram illustrated in Figure 2.1, U corresponds to

the position of the switching key SW.

In order to guarantee the existence and uniqueness of the solutions of (2.2)–(2.3),

the control law should be designed so that the closed loop system satisfies the local

Lipschitz condition required in Filippov’s theory on each side of a sliding surface.

This is indeed the case for the feedback law (2.16), provided kpi(x) is locally Lipschitz

continuous and this is guaranteed by assumption (A1). Although finite-time escape
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is not precluded, it will be shown in Proposition 1 that this does not occur.

In the following section, we design a monitoring function to estimate the correct

sign of kpi and thus assign the value +1 or −1 to U .

2.5 Monitoring Function Design

The monitoring function was introduced and developed in [66, 67] and it was

originally applied to scalar ESC in [13]. Basically, it is constructed by applying the

Comparison Theorem [63, Theorem 7] to (2.13) which satisfies ė ≤ −λe, if the sign

of kpi is correctly estimated and the control law (2.16) is applied. Thus, the solution

of the following first-order differential equation:

ζ̇ = −λζ, ∀t ≥ τ1, ζ(τ1) = e(τ1), (2.18)

where τ1 denotes the initial time for (2.18), satisfies

|e(t)| ≤ |ζ(t)| , ζ(t) := |e(τ1)|e−λ(t−τ1), ∀t ≥ τ1. (2.19)

Noting that (2.19) holds when the control direction is correct, it seems natural

to use ζ as a benchmark to decide whether a switching of u in (2.7) occurs from u+

to u− (or vice-versa), i.e., the switching occurs only when (2.19) is violated.

A simple modification in terms of ζ(t) is made to guarantee that the monitoring

function always upperbounds the tracking error, even in case of starting with wrong

control direction, given by U . Consider the following function for the ith search

direction,

ϕk,i(t) = |e(tk,i)|e−λ(t−tk,i) + µ, k ∈ N>0, (2.20)

where t1,i = τi (beginning of sub-interval) and tk,i, for k > 1, are the switching times

of monitoring function, µ > 0 is arbitrarily small. These switching occur when the

monitoring function meets the error norm and consequently a change of the control

direction occurs.

Note that from (2.19) and (2.20), one has |e(t)| < |ϕk,i(t)| at t = tk,i, defined as

the time instant that the monitoring function ϕmi(t) meets |e(t)|, i.e.,

tk+1,i :=

min{t > tk,i : |e(t)| = ϕk,i(t)}, if exists ,

tM , otherwise .
(2.21)

Multiple switchings may occur when the directional controllability is lost, i.e.,

when x enters D(κ)∆i
so that kpi ≤ Lh(∆). Then, recurrent crossings of a directional
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extremum imply in changes of the control direction which can be detected by the

monitoring function defined, ∀t, as follows,

ϕm(t) := ϕk,i(t), ∀t ∈ [tk,i, tk+1,i), ∀i = 1, ..., n, k ∈ N>0. (2.22)

The following inequality comes from (2.22):

|e(t)| ≤ ϕm(t), ∀t ∈ [0, tM) , (2.23)

where ϕm(t) is the monitoring function generated by the concatenation of the expo-

nential functions (2.20).

Figure 2.2 illustrates the tracking error norm |e(t)| as well as the monitoring

function ϕm(t). Basically, at each switching time occurs a small jump with amplitude

µ. This parameter determines the order of the residual variation’s magnitude with

respect to x∗, as will be demonstrated later on. Moreover, theoretically, µ can be

arbitrary small, however, real systems always have noise and µ should overcome the

measured noise.

Figura 2.2: The trajectories of the monitoring function ϕm(t) and error norm |e(t)|,
illustrating the switching time defined by (2.21) during the ith directional search.

2.6 Dynamic Properties of Control System

The following proposition provides conditions for finding the correct control di-

rection during any ith search direction. It guarantees that the objective function

either grows or enters into a small neighborhood of some directional extremum x∗
i

along the ith search direction. Moreover, finite-time escape is precluded.
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Proposition 1 Consider the system (2.2)–(2.3), reference model (2.9), search direc-

tion (2.10), control law (2.16), modulation function (2.17) and monitoring function

(2.20). Consider any arbitrary initial control direction outside of regions D∆ and

D∆i
. Then, with the ith directional search being active, one can choose γ > 0 in

(2.17) sufficiently large such that (a) the correct control direction is reached before

the time instant τi+ε, where τi > 0 is the beginning of the ith search direction, ε > 0

is sufficiently small and less than the sub-interval Ts/n; (b) the objective function

h(x) either increases or remains constant, modulo small oscillations, initially of or-

der O(µ) and ultimately of order O(µ2) around a ith directional extremum; in D∆

the oscillations remain of order O(µ2) after some finite time; (c) no finite-time

escape occurs in the closed-loop system.

Proof. The properties stated are now demonstrated.

(a) The correct control direction is reached before the time instant τi+ε, where

τi > 0 is the beginning of the ith search direction, ε > 0 is sufficiently small and

less than the sub-interval Ts/n:

If the estimated control sign is incorrect at the beginning of ith search direction,

then U = − sgn(kpi), which yields from (2.13) and (2.14):

ė = +|kpi |ρ sgn(e)− p . (2.24)

Multiplying both sides by sgn(e), one has for e 6= 0:

d|e|
dt

= +ρ|kpi | − p sgn(e) , (2.25)

which implies that |e(t)| increases, since the right-hand-side of (2.25) is positive.

The monitoring function starts at |e(τi)| + µ and decreases exponentially tending

to µ or remains constant at µ, if |e(τi)| = 0. Since from (2.15),(2.17) and (2.25),

the growth rate of |e(t)| is lower bounded by γ, it can be made arbitrarily large by

increasing γ. Hence, the SW switch in Figure 2.1 will switch to the correct sign of

kpi at time (τi+ ε) with sufficiently small 0 < ε < µ/γ. Moreover, |e(t)| ≤ |e(τi)|+µ

in the interval t ∈ [τi, τi + ε].

(b) The objective function h(x) either increases or remains constant, modulo

small oscillations around some directional extremum:

Consider the control law (2.16)–(2.17). If the control direction estimate is wrong

at the start of the ith directional search (t = τi), it is corrected shortly after according

to property (a). After the control direction is correctly estimated (which can occur

from the starting time t = τi), one has U = sgn(kpi) and from (2.13), multiplying
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both sides by e, one gets

eė = −λe2 + |kpi |(−ρ|e|+ dee) (2.26)

which results from (2.17) in

d(e2)

dt
≤ −λe2 − |kpi ||e|γ, (2.27)

As usual, we conclude that, while the error is controllable, the proposed control

law forces the tracking error to decrease and reach the sliding mode e(t) ≡ 0, after

some finite time interval γtri = (|e(τi)| + µ)/γ, arbitrarily small by increasing γ in

(2.17), resulting in the increase of the objective function h(x) after the sliding mode

is reached. Thus, one of the following possibilities occur:

• y = h(x) reaches a sliding mode and increases until the end of ith search

direction, tracking the reference signal exactly.

• In sliding mode, y(t) reaches the neighborhood of a directional extremum

(maximum), before the end of the ith directional search loosing controllability.

Then, similar to what happens in the scalar approach [14, Appendix C (ii)],

[13, Appendix], the output y(t) oscillates with small amplitude, initially of

order O(µ) and ultimately of order O(µ2) around the directional extremum

(not necessarily unique) until the control switches to a new search direction

(see proof of Theorem 1, item (ii)).

• If at the beginning of the ith search, the error is not controllable (in the vicinity

of some directional maximum), (y(t)) remains inside a small interval of order

O(µ) and ultimately of order O(µ2), as in the previous case. In the vicinity

of D∆ similar behavior of y(t) holds, where the residual interval is of order

O(µ2), ∀t after some finite time.

The detailed analysis of oscillations around the directional extrema is made in the

Proof of Theorem 1, item (ii). Thus, in any of the above possibilities, the objec-

tive function either increases or remains practically constant during the ith search

direction.

(c) No finite-time escape occurs in the closed loop system:

This is a simple consequence of properties (a) and (b) since y(t), and thus x(t),

are bounded for all t. �
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2.7 Global Convergence

In this section, the main result of the proposed output feedback multivariable

controller based on a cyclic monitoring function is presented. The control algorithm

drives x(t) to the ∆-vicinity of the unknown x∗ defined in assumption (A4). After

reaching the vicinity of the maximum y∗, the objective function y(t) remains around

y∗, ultimately with variations of order O(µ2).

Theorem 1 Consider the system (2.2)–(2.3), control law (2.7), reference model

(2.9), search direction (2.10), modulation function (2.17) and monitoring function

(2.20)–(2.22). Assume that assumptions (A1)-(A4) hold and Ts is sufficiently large.

Then the region D∆ in (A4) (i) is globally attractive, being reached in finite time

and (ii) once it is reached, the oscillations around y∗ can be made of order O(µ2)

after some finite time by choosing ∆ sufficiently small.

Proof. Outside the ∆-vicinity, the gradient of the cost function h(x) does not

vanish, i.e,

∥∥∥∥∂h∂x
∥∥∥∥ 6= 0 ,∀x /∈ D∆. Thus, from (2.11), ‖kp‖ can be obtained from

the lower bound Lh defined in (A4) which is valid globally. Furthermore, from

Proposition 1, no finite-time escape occurs for the system signals.

Now, we proceed to the proof of the properties (i) and (ii) of Theorem 1.

(i) Attractiveness of D∆

The proof is made by contradiction. According to Proposition 1, for each search

direction, the objective function either increases or remains ultimately constant,

modulo oscillations of order O(µ) or O(µ2). Thus, starting from outside the domain

D∆, by property (b) of Proposition 1, the objective function y can be written as

y(t) = y(t) + ỹ(t)

where y(t) is continuous, upper bounded and nondecreasing and ỹ(t) is small of order

O(µ) or O(µ2). Thus, y(t) must tend to some constant as t → ∞. Assume that this

constant corresponds to a point outside the domain D∆. Then, the cyclic search will

eventually pass by a search direction where the controllability holds. Then, property

(b) of Proposition 1 holds for at least one of the search directions. Therefore, y(t)

would still grow. This is a contradiction, since we have assumed that it would tend

to a constant. Thus, the region D∆ in (A4) is globally attractive, being reached in

finite time.

(ii) Order of oscillations around directional extrema and global extremum

Consider any ith directional search of the κth search cycle. Two possibilities

arise, supposing that the period Ts is large enough.
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1 The system starts controllable, i.e. outside the domain D∆i
of some ith di-

rectional extremum x∗
i (possibly non-unique). Then, according to Proposi-

tion 1, either the ith directional search starts with the correct control direction

(U = sgn(kpi) or the correct direction is estimated in a very short time. In

any case, a sliding mode is realized and perfect ramp tracking shortly after

the ith directional search starts. Thereafter, two possibilities arise:

1.1 The sliding mode persists until the end of the ith search and another

directional search starts.

1.2 The sliding mode ceases at some time t = tout before the search direction

changes by loss of controllability, i.e., the system enters some domain

D∆i
. Then, the output y (objective function) moves away from the ramp,

increasing with positive rate lower than p. This is seen by considering

equation (2.13) cancelling the term in λ, i.e.,

ė = kpi(x)ρU sgn(e)− p . (2.28)

Now, note that, since sliding mode was active, U = sgn(kpi) unless it

changes by the monitoring function. Due to the lack of controllability,

the r.h.s in (2.28) is dominated by −p. Thus, for some ε > 0, ė(t) < 0

in t ∈ (tout, tout + ε) so that y(t) moves away from the ramp. However,

ẏ(t) > 0 in the same time interval since the monitoring function will not

change U for sufficiently small ε due to the continuity of e(t) which is zero

during the sliding mode and will not grow enough (in norm) to activate

the monitoring function.

Since, y(t) starts increasing, and since it is bounded from above (at least

by the global maximum y∗) it will have to decrease after some finite

time. This can happen in two ways. Either y(t) attains its directional

maximum and thereafter will remain below such maximum, or it will start

decreasing before such maximum is attained by virtue of the monitoring

function, which changes U to the opposite sign. In any case, for t ≥ tout

until the change of search direction, e(t) < 0. Under the latter condition,

the control law reduces to ui(t) = ±ρ(t), switching by virtue of the

monitoring function only. Hence, the system dynamic equations (2.2)-

(2.3) reduces to

ẋ = ρU, (2.29)

y = h(x), (2.30)

where U = ±1 and switches by virtue of the monitoring function. To
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characterize the dynamic behavior of such system, some simplifying as-

sumptions are now made.

Note that ρ remains almost constant when the switchings are performed

at some high frequency. Then, during some time-window encompassing

a considerable number of U-switchings, ρ and the tracking error can be

considered constant.

Now, U switches when |e(t)| = ϕk,i(t) (see the definition (2.21)). Since

here e(t) < 0, then |e(t)| = −e so that the switching condition becomes

−e(t) = ϕk,i(t) or equivalently

−y(t) = ϕk,i(t)− r(t) . (2.31)

This is the switching condition of U in terms of the output y. To cha-

racterize the motion regime of the system (2.29)-(2.30) interacting with

the switching condition (2.31), we introduce the Parabolic Recurrence

Method (PRM) described in what follows.

The basic idea is that close to a directional maximum y∗i , taking place

at xi = x∗
i , i.e. inside the domain D∆i

and invoking Taylor series de-

velopment, the objective function deviation is parabolic with respect to

x̃i := xi − x∗
i . Since (2.31) involves −y(t), we define ỹ = y∗i − yi. Then,

ỹ ≈ c2x̃2
i so that in the plane (x̃i, ỹi), a minimum takes place at the origin.

We can geometrically visualize the motion regime as in Figure 2.3 by

observing that, as ui is a pulse width modulated square-wave signal, the

state xi is a triangular wave signal. Then, in the x̃, ỹ plane (here, to avoid

clutter, the i index, in reference to the ith directional search, is dropped),

the motion takes place on the parabola passing through the origin.

Starting from a point P1 = (x̃1, ỹ1) and assuming that U = +1, the

system moves to the right until it meets the monitoring function starting

at (x̃1, ỹ1 +µ) and decreasing approximately linearly with slope given by

the initial slope of the exponentially decaying term of (2.20) minus the

slope of the reference trajectory r(t) at P ′
1 = (x̃′

1, ỹ
′
1). Up to this time the

parabola arc from P1 to P ′
1 has been described from left to right and then

U switches to −1 and the monitoring function restarts with a µ-jump at

the point (x̃′
1, ỹ

′
1 + µ). The motion occurs similarly, but in the reverse

sense, from right to left according to the indicated arrow. The parabolic

arc from P ′
1 to P2 = (x̃2, ỹ2) is then described.

In the time domain, Figure 2.4 depicts the motion described above in the

zoomed sub-picture which illustrates the behavior of the output around a

directional extremum, then different from the global one. It was obtained
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from the simulation results of Section 2.8. Note that the vertical axis is

−ỹ so that, instead of a maximum point, −ỹ tends to a minimum point

and ultimately approaches the global minimum ỹ∗ = 0.

The equations relating the points P1, P
′
1 and P2 are given by

x̃′2
1 + βx̃′

1 − (x̃2
1 + βx̃1 + µ′) = 0 (2.32)

x̃2
2 − βx̃2 − (x̃′2

1 − βx̃′2
1 + µ′) = 0 (2.33)

where c is the constant from the quadratic approximation ỹ = c2x̃2,

µ′ = µ/c2, and β = b/c2 with

b = λe(tk) + ṙ

with −b being the linear slope of the monitoring function at the swit-

ching instants tk minus the slope of the reference trajectory (p when not

saturated and 0 when saturated). Note that the linear approximation of

the exponentially decaying term in the monitoring function is good if the

frequency of switchings is high.

The equations give a recurrence from some initial point P1 = P (k) to

P2 = P (k + 1). An equilibrium or fixed point satisfies P (k + 1) =

P (k). This point is given by x̃1 = x̃2. This can be easily obtained with

x̃′
1 = −x̃1. Then, trivially, x̃2 = x̃1. This fixed point for the recurrence

(2.32)-(2.33) can be shown to be unique and is given simply by:

x̃∗
1 = − µ

2β
. (2.34)

This fixed point can be shown to be globally asymptotically stable (GAS)

for the recurrence (mapping) determined by (2.32)-(2.33). Such recur-

rence can be written as:

x̃(k + 1) = f(x̃(k)) , (2.35)

where f is continuous (2.34). Then, let us change the origin of the

(x̃(k), x̃(k + 1)) plane to the fixed point by defining the new variables

χ(k + 1) = x̃(k + 1) − x̃∗ and χ(k) = x̃(k) − x̃∗. This leads to the

recurrence:

χ(k + 1) = F (χ(k)) , (2.36)

where F (χ) := f(χ(k)+x̃∗)−x̃∗, and the unique fixed point is χ∗ = 0. It is
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Figura 2.3: The Parabolic Recurrence Method: the starting point P1 = (x̃1, ỹ1) is
mapped to the point P ′

1 = (x̃′
1, ỹ

′
1) and this point is mapped to P2 = (x̃2, ỹ2). This

mapping proceeds recursively. The system representative point runs the parabola
forth and back, generating arcs of parabola which corresponds to the time evolution
of the output −y (y) close to a directional minimum (maximum).

well known that global asymptotic stability of the origin of such discrete-

time system is implied if the sector condition holds [68, Lemma 3.4.1]:

|F (χ)| < |χ|, ∀χ ∈ R, χ 6= 0. (2.37)

The sector condition was verified to hold by plotting numerically the

function F for an extensive set of parameters (β, µ′) by solving (2.32)

to obtain x̃′
1 from a given x̃1 and then solving (2.33) to obtain x̃2. An

analytical solution is yet to be obtained.

Thus, the parabolic arcs variations are ultimately bounded by

|ỹ| = c2
(

µ

2β

)2

= O(µ2).

Now note that, reasoning with an almost-static analysis, at the point

where sliding mode ceases, the tracking error is zero so that β can be

initially not so large and thus the y oscillation can be larger, according

to (2.34). Since one is within a ∆-vicinity of the directional extrema

when the sliding mode ceases, the oscillations will be at most of the

order O(µ). Moreover, since the error increases linearly, the oscillations

tend asymptotically O(µ2).

2 If at the beginning of the ith search, the error is non-controllable. The situation
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Figura 2.4: The zoomed insertion illustrates the final time window of a directional
search where −y converges to a neighborhood of a directional minimum, performing
parabolic arcs bounded by O(µ2). The points P1, P ′

1, P2 correspond to those of
Figure 2.3.

is the same as in item [1.2] above, with tout coinciding with the starting time

of the ith directional search.

3 Finally, if the previous case occurs within the region D∆, then y(t) ≈ y∗ and

thus, the error will grow indefinitely or up to a saturated value (more practical

situation), after a finite time. Then, oscillations will remain of the order O(µ2)

thereafter. �

The extensive proof of the Theorem 1 can be summarized through the flowchart

illustrated in Figure 2.5.

2.8 Illustrative Examples

As an example, consider a plant where the objective function is unknown in

cascade with a simple integrator described by

ẋ = u , (2.38)

y = −(x2
1 + (x2 − x2

1)
2) . (2.39)

This objective function is known as Rosenbrock banana function, which is used

as a performance test problem for optimization algorithms [69]. Its general form
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Figura 2.5: Flowchart to summarize the proof of Theorem 1. PRM means Parabolic
Recurrence Method

is f(x1, x2) = (a − x1)
2 + b(x2 − x2

1)
2, with global minimum at (x1, x2) = (a, a2),

where f(x1, x2) = 0. In our case, we just multiplied it by −1 and considered a =

0, b = 1 so that the optimum parameters are x∗ = (0, 0) and y∗ = 0 as illustrated

in Figure 2.6. A sketch of the phase portrait (x1 versus x2) is shown in Figure 2.7.

Note that the level surfaces illustrate that the function is non-convex. In terms of

application, the objective function presented in Figure 2.6 could represent a map of

power optimization of a wind turbine, where the vector x would represent torque

and pitch angle [55].

The control law (2.7) can be applied with the modulation function satisfying

(2.17). However, to simplify the control design we have used a constant modulation

function ρ(t) = 5, which is adequate to reach the optimization objectives in the nu-

merical simulations, maintaining at least local convergence results. It is reasonable

to assume a constant modulation function, since we desire to have a fair comparison

of our global algorithm with respect to other local existing multivariable ESC ap-

proaches found in the literature. The remaining simulation parameters were chosen

according to the following values: p = 3, r0 = y(0), λ = 1, Ts = 1s and µ = 0.1.

Figure 2.8 illustrates the result of the objective control: to find the neighborhood

of x∗ = (0, 0) and y∗ = 0. Note that the oscillations around x∗ are of order O(µ2)

(see detail in Figure 2.8(b)). Figure 2.6 also shows the output signal in each search
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direction, from three initial conditions, x0 = (−1.5,−1.5) (black), x0 = (−1.5, 1.5)

(blue) and x0 = (1.5, 1.5) (green).

-40
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-30

2

-20

1

-10

0

0

0
-1

-2 -2

Figura 2.6: Objective function y = h(x) and the convergence to the optimum va-
lue y∗ = 0 (denoted by ∗), starting from three distinct initial conditions x0 =
(−1.5,−1.5) (black), x0 = (−1.5, 1.5) (blue) and x0 = (1.5, 1.5) (green).

Figura 2.7: The level sets of the objective function y = h(x) and the trajectory from
the initial condition x0 = (−1.5,−1.5).

Figure 2.9 shows the monitoring function ϕm(t) and the error norm |e(t)|. In the

left zoomed part, it is clear that the simulation starts with a wrong control direction,

but rapidly it switches to the correct one and then the error enters in sliding mode.
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Figura 2.8: Simulation results: (a) the output of the plant converges to a small
neighborhood of y∗ = 0 and (b) the input vector x converges to a small neighborhood
of x∗ = [0 0], with initial condition x(0) = (−1.5,−1.5).

The right zoomed part shows the switching process with amplitude µ = 0.1 occurring

when e(t) = ϕm(t). Such switching is caused by the lost of controllability when the

directional maximum or the desired extremum is already achieved. Note that, from

this moment, the error increases according to the reference trajectory with slope

p = 3 and stops at the saturation r(t) = 5 (see equation (2.9)).

Both control signals u1 and u2 are illustrated in Figure 2.10(a) and the switching

of the search direction σ1 and σ2 are depicted in Figure 2.10(b). In the first 0.5s the

direction of x1 is activated and from 0.5s to 1s, in the direction of x2. Then, the

process is repeated cyclically (see Figure 2.8b). The amplitude of the control signals

are defined by the modulation function, i.e, ρ(t) = 5. One can note the sliding-

mode motion and/or high frequency switching in the control signal that could cause

“chattering” [70]. However, it is avoided because the objective function (2.3) receives

only filtered signals x from the integrator in (2.2) and (2.3). In addition, Figure 2.11

shows the output tracking of the reference trajectory accordingly to the description

presented in section 2.2, i.e, the output tracks the reference until it reaches the

vicinity of directional maximum or global maximum y∗ = 0 and remains in their

neighborhoods during the sub-period the loss of controllability.

On the other hand, Figure 2.12 shows the simulation result using the gradient-

based multivariable ESC strategy proposed in [1]. A comparison to our results

(see Figure 2.8) suggests that our approach presents an improved performance in

terms of rate of convergence and faster transient, using the same initial conditions

35



0 2 4 6 8 10
0

1

2

3

4

5

6

0 0.01 0.02
0

0.1

0.2

7 7.1 7.2

4.8

5

Figura 2.9: Monitoring function ϕm and error norm |e|. The left-side detail shows
the simulation starting with incorrect control direction, the right-side detail shows
the switching when (2.23) is violated.
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Figura 2.10: Simulation results: (a) control signals u1 e u2 and (b) the cyclic search
direction with period Ts = 1s.

x(0) = (−1.5,−1.5) and simulation parameters considered in [1].

The framework for the comparative simulation was built in the

MATLAB R2018a/SIMULINK environment with sampling period of ts = 10−4s,
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Figura 2.11: The plant output y(t) tracks the reference trajectory r(t) in sliding-
mode until a small neighborhood of the desired maximum y∗ = 0 is reached. Note
in the zoomed sub-figure (top), the correct control direction is achieved. Other sub-
figure (bottom), directional maximum is reached at each sub-period 0.5s.
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Figura 2.12: Slower responses occur when a gradient-based extremum seeking [1] is
applied to the same objective function.

fixed-step and Euler solver. We also developed a Graphical User Interface (GUI)

design environment, in which the user can select the number of control inputs (up
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to 3), time of simulation, select the method and so on, as illustrate the Figure 2.13.

Figura 2.13: Matlab GUI used to run simulations. The GUI has communication
states (input parameters) on the top left and the real time plots on the bottom left
and right side.

2.9 Conclusion

A new multivariable extremum seeking control via cyclic search and monitoring

function was developed for a class of uncertain nonlinear plants. The resulting ap-

proach guarantees global convergence of the system output to a small neighborhood

of the extremum point. A detailed characterization of residual oscillations around

the optimal point is presented based on a recurrence (point-mapping) approach de-

nominated Parabolic Recurrence Method. Simulation results were carried out to

illustrate the remarkable controller performance in terms of better rate of conver-

gence when compared to an earlier proposed Newton-based method. More specific

guidelines to tune the proposed algorithm are also of interest for future research.
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Caṕıtulo 3

Multivariable Sliding Mode Based

Extremum Seeking Control via

Periodic Switching Function and

Cyclic Search

Considering the same problem statement introduced in section 2.1, including as-

sumptions (A1)–(A4), a new multivariable extremum seeking control approach based

on sliding mode and cyclic search for static nonlinear maps is proposed. Classical

and even similar methods are characterized by possible slow convergence rates and

local or semi-global convergence/stability properties. On the other hand, the propo-

sed approach via periodic switching function guarantees global and fast convergence

to a neighborhood of the extremum of the objective function, due to following mo-

tivations: (1) it does not employ averaging and singular perturbation analysis tools

and (2) in the control law, a sliding manifold with integral action is designed. This

allows the output to track rapidly the reference signal, regardless of recurrent chan-

ges of the search direction. Stability and convergence properties are proved using

Lyapunov stability analysis. Furthermore, the analysis of the residual oscillations

around the extremum is carried out. Numerical simulations are performed to illus-

trate the theoretical results and highlight the advantages of the proposed strategy

in terms of robustness, fast convergence and small residual errors. As in section 2.1,

for each solution of (2.2) there exists a maximal time interval of definition given by

[0, tM), where tM may be finite or infinite.
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3.1 Control Design

The proposed control approach based on sliding modes with periodic switching

function and cyclic search is given by

u=ρ(t)ν(t)sgn
(

sin
[π
ε
σ(t)

])
, (3.1)

where ν(t) ∈ Rn is the directional cyclic search defined as in section 2.3, ρ(t) > 0 is

a scalar modulation function, to be defined in sections 3.2, and

σ(t) = e(t) + λ

∫ t

0

sgn(e(τ))dτ , (3.2)

with λ, ε > 0 being appropriate constants and e(t), the tracking error. Note that

we have just changed the variable σ(t) to ν(t) for directional cyclic search to allow

σ(t) being the sliding surface.

Figure 3.1 illustrates the proposed control scheme based on sliding modes and

periodic switching function.

 

 

 

 

Figura 3.1: Block diagram for implementation of MESC via cyclic search and peri-
odic switching function.

The tracking error e(t) is defined as in section 2.2, repeated here for convenience,

e(t) = y(t)− ym(t) , (3.3)

where ym > 0 is a simple ramp time-function generated by the reference model

ẏm = p, ym(0) = y0 , (3.4)

where p > 0 is a design constant, y0 is the first measurement of the output y. In order

to avoid an unlimited reference trajectory ym(t) in the controller, one can saturate
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it, i.e, an upper bound for the reference is considered with some value greater than

y∗.

The modulation function ρ(t) will be designed so that y(t) can track ym(t),

∀t, until the output reaches the desired extremum. Thus, y is forced to reach the

vicinity of the directional extrema until the global extremum y∗ = h(x∗) is reached

and remain around it thereafter. For this purpose, a new modulation function ρ(t)

is proposed such that the sliding-mode σ̇ = 0 occurs in finite time in one of the

manifolds σ = kε, for some integer k to be defined later on.

By assuming that the following analysis takes place within a generic cycle, we

neglect the cycle counter κ.

Considering the ith searching direction is active, from (3.2), one has

σ̇ = ė+ λ sgn(e) = 0. (3.5)

Thus, the tracking error e is guaranteed to tend to zero, i.e., y = h(x) tracks ym

(and consequently), y must approach the directional extrema y∗i while y remains

outside the vicinity of y∗i , where the high-frequency gain is different from zero. In

contrast, once y reaches the vicinity of y∗i or y∗, the HFG will approach to zero,

which leads to loss of controllability. Consequently, the tracking of ym will cease in

the ith search direction, until it is switched to another, where y∗i is controllable, so

the output tracks again the reference, and so on, until the global maximum y∗ is

reached as desired. The control strategy guarantees that y remains close to y∗, ∀t.

Remark 2 It is important to note that in [2], the sliding manifold σ in (3.2) is de-

signed without the integral term, i.e., σ(t) = e(t), so there is no exact trajectory

tracking, whereas in our approach it is guaranteed by adjusting the parameter λ,

which leads to the convergence rate depending on the ramp parameter p and λ, while

in [2] it depends on p and ym0. Moreover, the integral term allows for better transi-

ents and one can saturate the reference signal without affecting the convergence to

the extremum.

To avoid repetition, please consider the design of cyclic search mechanism and

assumption (A4), as in section 2.3. However, the parameter ∆ and ∆i are now

related with the parameter ε, defined in equation (3.1), so that ||x− x∗|| < ε in D∆

and |xi − x∗
i (κi)| ≤ ε in the ith directional domain D(κi)∆i

.
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3.2 Design of the modulation function

From the objective function (2.3) and equations (3.3)-(3.4), the time-derivative

of the manifold σ(t) is given by:

σ̇ =
n∑

i=1

∂h

∂xi

ui − p+ λ sign(e) , (3.6)

which for the ith searching direction yields,

σ̇ = kpi(x)(ui + dσ) , (3.7)

where

dσ := (kpi(x))
−1 (−p+ λ sgn(e)) . (3.8)

Now, we design the modulation function ρ in order to satisfy

ρ ≥ |dσ|+ δ, (3.9)

with δ > 0 being a constant arbitrarily small.

Suppose that we start at t = τi, at the beginning of the ith sub-period, we have

controllability of the error, with kpi ≥ Lh(∆i), to be referred as the condition of

controllability (see assumption (A4)). Considering dσ as a perturbation, it can be

upper bounded in absolute value by

d̄σ := L−1
h (p+ λ) ≥ |dσ| , (3.10)

which allows one to define the modulation function ρ as

ρ = L−1
h (p+ λ) + δ. (3.11)

Note that the sliding surface dynamic analysis and modulation function design are,

somehow, similar to that presented in section 2.4, i.e., equations (2.12) and (3.6),

equations (2.15) and (3.10), respectively.

In order to guarantee the existence and uniqueness of the solutions of (2.2)–(2.3),

the control law should be designed so that the closed-loop system satisfies the local

Lipschitz condition required in Filippov’s theory on each side of a sliding surface.

This is indeed the case for the feedback law (3.1)–(3.2), provided kpi(x) is locally

Lipschitz continuous and this is guaranteed by assumption (A1).
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Proposition 2 Consider the system (2.2)–(2.3), control law (3.1)–(3.2), reference

trajectory (3.4) and let tσi
< τi(κ)+∆τ be a finite sliding mode’s reaching time. For

the modulation function ρ defined in (3.11), then, for the ith directional search, while

x /∈ D∆i
,D∆, one has: (a) the sliding-mode σ = kε is reached in finite time, for

some integer k, regardless of the search direction, (b) no finite-time escape occurs

in the closed loop (tM → +∞).

Proof. First, for any real α, one has bαc ≤ α < bαc + 1, where bαc denotes the

greatest integer lower or equal to α [54].

Now, consider a non-negative Lyapunov-like function:

V (σ(t)) =
(σ(t)− kε)2

2
, (3.12)

with σ(t) in (3.2) and k an integer to be defined in the following. From (3.7)-(3.8)

and (3.12), the time derivative of V (t) = V (σ(t)) can be written as

V̇ (t) =(σ(t)− kε)
˙︷ ︸︸ ︷

(σ(t)− kε)

V̇ (t) = (σ(t)− kε)

[
n∑

i=1

∂h

∂xi

(ui + dσ)

]
,

which for the ith directional search reduces to

V̇ (t) = (σ(t)− kε)
[
kpi

(
ρsgn

(
sin

[π
ε
σ(t)

])
+ dσ

)]
. (3.13)

From the definition above, the inequality

kπ ≤ π

ε
σ < (k + 1)π, k := bσ(t)

ε
c,

holds ∀t ∈ [0, tM). Therefore, in the neighborhood of k, one has sin
[
π
ε
σ(t)

]
≥ 0 for

an even k and sin
[
π
ε
σ(t)

]
< 0 for an odd k. Note that the function (3.12) is more

restrictive than that considered in [14, Appendix B], a triangular-wave function

which is valid for all k, however, it is enough for the desired demonstration. Thus,

the control signal u in (3.1) can be rewritten as

ui = ρsgn
(

sin
[π
ε
σ(t)

])
= ρ(−1)k. (3.14)

Thus, (3.13) can be rewritten as

V̇ (t) = (σ(t)− kε)
[
kpi

(
ρ(−1)k + dσ

)]
. (3.15)
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It is known that kpi = |kpi | sgn(kpi), then

V̇ (t) = |kpi | (ρ(−1)k sgn(kpi)(σ(t)− kε)) + |kpi | (dσ sgn(kpi)(σ(t)− kε)). (3.16)

On the other hand, it was shown in [14, Appendix B], for scalar ESC, that

sign(kp) < 0 corresponds to an even k and sign(kp) > 0 occurs for an odd k, which

is also valid for sign(kpi), i.e., for the ith search direction, so one has in (3.16)

(−1)k sgn(kpi) = −1, independently of sign(kpi). Thus,

V̇ (t) = |kpi| [−ρ(σ(t)− kε) + dσ sgn(kpi)(σ(t)− kε)]

≤ |kpi| [−ρ|(σ(t)− kε)|+ |dσ||(σ(t)− kε)|]

≤ |kpi| (−ρ+ |dσ|)|(σ(t)− kε)|

Since the modulation function ρ satisfies (3.9) and |kpi
| > Lh (see (2.11)), the

following inequality holds V̇ (t) ≤ −Lh|(σ(t)− kε)|δ < 0, and the condition

(σ(t)− kε)
˙︷ ︸︸ ︷

(σ(t)− kε) < 0,

is verified such that an ideal sliding-mode occurs on the manifold σ(t)− kε = 0, or

equivalently, on the manifold σ(t) = kε in finite time, while x /∈ D∆i
. Hence, there

exists a finite time tσi
< τi(κ) + ∆τ (see (2.10)) such that σ(t) = kε, independently

of sign(kpi).
The sliding mode reaching time tσi

can be easily calculated by supposing that

at t = tσ1 , the surface σ(tσ1) = kε is reached. Then, for σ(0) one has

|σ(0)− σ(tσ1)| = |σ(0)− kε| ≤ ε ,

Thus, the reaching time for the first search direction can be defined as follows [2]:

|tσ1| =
|σ(0)− σ(tσ1)|

|σ̇(t)|
(3.17)

=
|σ(0)− kε|

| dh
dx1

ρ sgn(sin
(

πσ(t)
ε

)
) + p|

(3.18)

≤ ε

Lhρ+ p
. (3.19)

This means that for the first search direction, i.e. t ∈ [τ1, τ2), the sliding-mode

is reached with tσ1 < τ2. Since these steps are valid for all directions, i.e., i =

1, 2, · · · , n, then the output does not escape in finite-time, t < tM , provided in

(2.10), the searching time ∆τi >
ε

Lhρ+p
. �
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3.3 Main Result - Global Convergence

In this section, the main result of the proposed output feedback multivariable

controller based on a periodic switching function and cyclic search is presented. It

is shown that the proposed approach drives x to D∆ of the unknown maximizer x∗

defined in assumption (A2) and guarantees that the oscillations around y∗ can be

made of order O(ε).

Theorem 2 Consider the system (2.2)–(2.3), control law (3.1)–(3.2), reference mo-

del (3.4) and modulation function (3.9). Assume that assumptions (A1)–(A4) hold,

then: (i) the regions D∆i
and D∆ in (A4) are globally attractive, being reached in

finite time and (ii) for Lh sufficiently small, the oscillations around y∗ can be made

of order O(ε).

Proof. In what follows, we present the proofs of properties (i) and (ii) of Theo-

rem 2. This proof correspond to the generalization of our previous results on scalar

ESC [14] to the multivariable scenario.

(i) The regions D∆i
and D∆ in (A4) are globally attractive, being reached in

finite time.

The proof is made by contradiction. Assume that x(t) stay outside the regions

D∆i
and D∆ ∀t, i.e., x /∈ D∆i

,D∆. According to Proposition 2, for each search

direction, there exists a finite-time tσi
< τi(κ) + ∆τ , such that σ = kε, ∀t > tσi

,

∀κth cycle. Thus, σ̇ = 0 and from (3.2), one has that ė = −λ sgn(e), ∀t > tσi
. This

means that, unlike [2], the tracking error e = y − ym → 0, but since ym strictly

increases with time and y = h(x) has a directional maximum value y∗i , for t large

enough but less than τi(κ) + ∆τ , ym > y∗i > y and sign(e) = −1, assuring that

y increases with constant rate ẏ = p + λ, such that y must approach y∗i . So, x is

driven insideD∆i
, which is a contradiction. Thus, D∆i

is attained in some finite time.

Consequently, x(t) remains or oscillates around D∆i
, and similarly y with respect to

some small vicinity of y∗i , ∀t large enough. These oscillations come from the loss of

controllability of kpi whenever the relation kpi
≤ |kpi| is violated, or are due to the

recurrent changes in the HFG signal at the extremum point (y∗i , x
∗
i ), where kpi = 0.

During these oscillations, σ can go from one sliding manifold σ = kε (k even when

sgn(kpi) < 0) to another (k odd when sgn(kpi) > 0). As the sliding-modes occur

in all searching directions, by continuity, the region D∆ is attained in finite time

t < tM , i.e, x(t) remains or oscillates around x∗. In what follows, we show that these

oscillations can be made of order O(ε), with ε defined in (3.1).

(ii) for Lh sufficiently small, the oscillations around y∗ can be made of order

O(ε).

For ith search direction and κth cycle, y(t) follows a ramp with increasing rate
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p (from reference trajectory) until it reaches the directional extremum, i.e., in the

region D∆i
.

Assume that x reaches the frontier of D∆i
(from inside) at some time t1 > ty∗i ,

where ty∗i is the time which any directional maximum y∗i is reached, and assume

also that σ(t) is not in sliding mode at t = t1. As we referred in the property (i),

for t > ty∗i one has sgn(e) = −1, since, ym strictly increases with time and y has a

directional maximum y∗i . Therefore, one can conclude from (3.2) that

σ(t) = y − ym − λt+ C, ∀t > ty∗i (3.20)

where C = λ[ty∗i +
∫ ty∗

i
0 sign(e(t = τ))dτ ] is a constant. Moreover, from (3.20) one

can write

σ̃(t) = ỹ(t)− (δm + λ)(t− t1), t > t1, (3.21)

where σ̃(t) := σ(t) − σ(t1), ỹ(t) := y(t) − y(t1), δm = 0 when ym is saturated and

δm = p, otherwise. In addition, from (3.21) one can also write

|ỹ(t)| ≤ |σ̃(t)|+ [δm + λ](t− t1), t > t1. (3.22)

Let t2 ≥ t1 > ty∗i and t3 ≥ t1 > ty∗i , where t2 is the first time when σ(t) reaches the

next sliding manifold σ(t) = σ(t2) (independently if x(t) is inside or outside D∆i
)

and t3 is the first time when x(t) reaches the frontier of D∆i
again (from outside).

Notice that x(t) /∈ D∆i
,D∆, for t ∈ [t1, t3).

Now, consider two cases: (a) x reaches the frontier of D∆i
with σ in sliding

motion (t3 > t2) and (b) x reaches the frontier of D∆i
with σ not in sliding motion

t3 ≤ t2.

In both cases there is a time interval [t1, t2) where σ(t) is not in sliding motion

before x reaches the frontier of D∆i
: for case (a) one has [t1, t2) = [t1, t3), i.e. t2 = t3

and for case (b) one has [t1, t2) one has [t1, t2) ⊂ [t1, t3), i.e. t2 < t3.

Thus, σ(t) is not in sliding motion ∀t ∈ [t1, t2). Consequently, one has (k−1)ε <

σ(t) < kε, for some integer k. Otherwise, sliding mode occurs at σ(t) = (k − 1)ε or

σ(t) = kε, according to Proposition 2. Therefore, σ̃(t) = σ(t)−σ(t1) is of orderO(ε).

Moreover, t2 − t1 is of order O(ε), also from Proposition 2. Thus, by continuity, ỹ

is of order O(ε), ∀t ∈ [t1, t2), and ỹ(t2) ≈ ỹ(t1).

For case (b), suppose t ∈ [t1, t3]. During this time interval σ is not in sliding

motion. Thus, one can also conclude that ỹ(t) is of order O(ε), ∀ ∈ [t1, t3], following

directly the steps of the first part of the proof of case (a). Note that, the time

interval [t2, t3), when σ is in sliding mode, depends on the design of parameters p

and λ, while the time interval [t1, t2), when σ is not in sliding mode, is of order
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O(ε). By the continuity of the uncertain output function h(x), the boundedness of

y stated in the Assumption (A3) implies that x is uniformly norm bounded (UB),
and also one can easily conclude that all closed-loop system signals are UB, except
for σ, since from (3.20), |σ| → +∞ as t → ∞. However, this phenomenon is not

harmful, since σ is only a modified timescale for the argument of the sine function

in (3.1). �

3.4 Illustrative Example

In order to evaluate the performance of the proposed approach, the simulation

study is performed for the same numerical example in the section 2.8, repeated here

for convenience.

Consider a two-input nonlinear plant where the objective function is unknown

in cascade with a simple integrator described by

ẋ = u , (3.23)

y = −(x2
1 + (x2 − x2

1)
2) . (3.24)

with optimum parameters x∗ = (0, 0) and y∗ = 0. The control law (3.1)–(3.2) can be

applied with the modulation function ρ satisfying (3.9). The simulation parameters

were chosen as p = 0.5, ε = 0.02, Ts = 0.5s, Lh = 0.6, δ = 0.1, λ = 5 and ym0 = −2.

Applying these parameters in (3.9) yields the modulation function ρ = 9.3.

Figure 3.2 illustrates the proposed extremum seeking approach tracking and

remaining at the vicinity of extremum point x∗ = (0, 0) and y∗ = 0, when the initial

condition is chosen as x(0) = (−1.5, 1.5). In the zoomed figure, one can note that

the oscillations around x∗ are indeed of order O(ε).

Figure 3.3 illustrates the time evolution of the plant output, following the refe-

rence trajectory in sliding-mode, except when the output reaches the ith directional

maximum or the global one at y∗ = 0. The dashed-line in black is the result by

implementing the approach proposed in [2]. Note that, after saturating the ramp,

it stops searching the extremum because the argument of the periodic switching

function becomes constant. Thus, our approach seems to be faster and more robust

to the variations on the reference trajectories. The control signals u1 e u2 and the

periodic searching direction ν1 and ν2 with period Ts = 0.5s are shown in Figure 3.4.

From Figure 3.3, in a scenario where the initial condition of the reference is less

(in absolute value) than the first measurement of the output, the convergence of

the proposed approach may be slower than in [2]. This dependence on the initial

condition can be solved in both approaches by setting the reference at ym0 = y(0).

However, even in this scenario, the speed of convergence in [2] will be slower because,
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Figura 3.2: In (a) the output of the plant converges to a small neighborhood of
y∗ = 0 and (b) the input vector x converges to a small neighborhood of x∗ = (0, 0),
when the initial condition is chosen as x(0) = (−1.5, 1.5).

after each change of the search direction, a new sliding mode occurs, in which e(t) =

constant in [2] while e(t) → 0 in our approach, i.e., we guarantee the tracking of the

reference regardless of the search direction. In other words, here, the convergence

depends on the parameters p and λ, whereas in [2] just on p.
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Figura 3.3: The plant output y(t) tracks the reference trajectory ym(t) in sliding-
mode crossing several directional maximum until reaching y∗ = 0, while the strategy
proposed in [2] does not do it due to the saturation.
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Figura 3.4: (a) control signals u1 e u2 and (b) the cyclic search direction with period
Ts = 0.5s.
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3.5 Conclusion

A novel multivariable sliding-mode extremum seeking control via cyclic search

and periodic switching function was introduced for a class of uncertain nonlinear

multivariable static plants. The resulting approach guarantees global finite-time

convergence of the system output to a small neighborhood of the extremum point.

Convergence and stability properties were provided via Lyapunov stability analysis.

The main contribution was to relax some stringent assumptions considered in the

literature and modify the periodic switching function in order to guarantee faster

convergence properties. Moreover, a complete analysis of the oscillations around

the extremum was considered. Simulation results were carried out to illustrate the

remarkable controller performance.
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Caṕıtulo 4

Multivariable Extremum Seeking for

Dynamic Maps with Arbitrary

Relative Degree

In [15, 71], it was introduced the extension of our results on ESC with dynamic

systems from relative degree one [13] to arbitrary relative degree. However, the

authors considered only SISO linear systems. Hereafter, we introduce the extension

to multivariable extremum seeking control with arbitrary relative degree plants, by

considering linear dynamic systems.

It is known that one solution for relative degree mitigation in extremum seeking

problems is achieved by means of a time-scaling technique and singular perturbation

method. Thus, we show that in the new time-scale, an attractive manifold is revea-

led, which essentially reduces the considered system to a single integrator perturbed

by a fast sensor dynamics, which in turn ultimately converges to a small residual set.

We then exploit this particular structure to redesign, with reduced control authority,

our control law (2.7) to show its robustness with respect to the arbitrary relative

degree dynamics at the expense of some time dilation, which slows down the system

response.

Although in this chapter we will address the generalization to dynamical maps

with arbitrary relative degree using the method based on monitoring function

(chapter 2), the same approach to be presented below can also be applied to the

method based on periodic switching function (chapter 3), since the theoretical re-

sults of both methods are similar.

In this sense, we intend to show that the MESC proposed in chapter 2, in the

light of our scalar approach [15], can also be extended to multi-input systems with
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uncertain and arbitrary relative degree (n∗) in the form:

v̇ = u , (4.1)

ẋ = Ax+Bv (4.2)

z = Cx , (4.3)

in cascade with a static subsystem

y = h(z) , (4.4)

where u ∈ Rm is the control input, x ∈ Rn is the state vector, z ∈ Rn is an

unmeasured output of the linear subsystem (4.1)–(4.3) and y ∈ R is a measured

output of the static subsystem (4.4), respectively.

4.1 Basic Assumptions

The matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×n and the order n of the subsystem

(4.2) may also be uncertain. The uncertain nonlinear function h : Rn → R to be

maximized must still satisfy assumptions (A1)-(A4).

The following assumptions are further assumed:

(A5) (On the uncertainties): All the uncertain plant parameters belong to a

compact set Ω.

(A6) (On the linear subsystem): The matrix A in (4.2) must be Hurwitz.

(A7) (On the DC gain of the linear subsystem): The DC gain of the linear

subsystem (4.2)–(4.3) verifies ‖CA−1B‖≥kDC>0 for some known constant kDC .

These assumptions are necessary to obtain the uncertainty bounds for the control

design.

4.2 Singular Perturbation Analysis

In order to present such generalization, consider the system (2.2)–(2.3), written

in the following form

v̇ = u , (4.5)

y = h(v) , (4.6)

can be directly controlled by the method of monitoring function described in sec-

tion 2.5.
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By using the singular perturbation approach [72], it can be shown that extre-

mum seeking control based on monitoring function [13] is robust to fast unmodeled

dynamics such that the perturbed system (4.5)–(4.6) is rewritten in the following

block sensor form [72, p. 50]

v̇ = u , (4.7)

ηẋ = Ax+Bv , (4.8)

y = h(Cx) , (4.9)

and ultimately satisfies the inequality

|y − y∗| ≤ O(
√
η + µ2) , (4.10)

where η > 0 and µ > 0 are sufficiently small constants. The complete demonstration

of (4.10) follows the similar steps presented in [73].

In the singular case η = 0, the differential equation (4.8) is replaced by the

algebraic equation x = −A−1Bu and, from (4.7) and (4.9), the first time derivative

of the output signal y is given by

ẏ = kp(z)u , (4.11)

where the HFG is now rewritten as

kp(z) = −h′(z)CA−1B . (4.12)

From (4.12) and assumption (A4), kp(z) satisfies

0 < kp ≤ ‖kp(z)‖ , |kpi(z)| ; (4.13)

where kp ≤ Lh‖CA−1B‖ is a known constant lower bound for the HFG, considering

all the admissible uncertainties in h(·), A, B, and C.

4.3 Time-Scaling for Control Redesign

By applying an appropriate linear time-scaling [71]

dt

dτ
= η , (4.14)
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the system (4.7)–(4.9) can be rewritten as

v′ = ηu (4.15)

x′ = Ax+Bv , (4.16)

z = Cx , (4.17)

y = h(z) , (4.18)

where v′ :=
dv

dτ
and x′ :=

dx

dτ
. It means that ∃η∗ > 0 such that the input signal u

can be scaled (4.15) to control the original system (4.2)–(4.4) in a different dilated

time-scale governed by t = ητ , ∀η ∈ (0, η∗].

The physical meaning is that since the monitoring function based ESC originally

proposed for systems with relative degree one is robust to fast unmodeled stable

dynamics (η → +0), then it is also adequate to control arbitrary relative degree

dynamics, if properly scaled. As expected, the price to be paid is that the closed-

loop system response slows down as η → +0.

When η 6= 0 in (4.8), the time-scaling (4.14), allow us to consider the original

plant (4.2)–(4.4) in a different time-scale being controlled by the controller (2.7)

properly scaled by ηu, see (4.15).

In order to incorporate it, the modulation function must be redesigned to satisfy

ρ = η[d̄e + γ], (4.19)

instead of (2.17).

From the singular perturbation analysis sketched in section 4.2, if (2.7) was used

again, an upper bound for the tracking error e(t) could be directly obtained, for

η sufficiently small, by adding the steady-state and transient terms in (4.10) and

(2.19), respectively:

|e(t)| ≤ ζ(t) , ζ(t) := |e(τ1)|e−λ(t−τ1) + πe +O(
√
η + µ2), (4.20)

where πe is an exponentially fast decaying term which encompass the effect of the

stable unmodeled dynamics (4.8).

If we knew the control direction (sgn(kpi)) one could implement the control

law (2.7). Thus, based on the monitoring function designed in section 2.5, equation

(2.20) one can rewrite the control law (2.7) for the ith search direction on the system

(2.2)–(2.3) yielding the following sliding-mode control law (2.16), repeated here for

convenience

ui = −ρU(t) sgn(e) , uj = 0 , ∀j 6= i , and i , j ∈ {1, . . . , n} , (4.21)
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with new modulation gain ρ defined in (4.19), U(t) = +1 or −1, according to the es-

timated sign of kpi . If correctly estimated, U = sign(kpi), otherwise U = − sign(kpi).
Notice that, the term πe in (4.20) can be neglected in the monitoring function design

since it only represents a stable and fast mode for which the controller has already

been proved to be robust in section 4.2. According to the definition of monitoring

function in (2.20) subject to (4.20), the ultimate residual set of oscillations will be

of order O(
√
η + µ2).

The next proposition summarizes the new results, which are very similar to

Proposition 1.

Proposition 3 Consider the system (4.1)–(4.4), reference model (2.9), search direc-

tion (2.10), control law (2.16), monitoring function (2.20) and modulation function

(4.19). Consider any arbitrary initial control direction outside of regions D∆ and

D∆i
. Then, with the ith directional search being active, one can choose γ > 0 in

(2.17) sufficiently large such that (a) the correct control direction is reached before

the time instant τi+ε, where τi > 0 is the beginning of the ith search direction, ε > 0

is arbitrarily small and less than the sub-interval Ts/n and (b) no finite-time escape

occurs in the closed-loop system.

Proof. By considering the singular perturbation argument and the time-scaling

(4.14), which show that the systems (4.7)–(4.9) and (4.15)–(4.18) are equivalent for

η sufficiently small, then, the demonstration for the original plant (4.1)–(4.4) follows

the same steps presented in the proof of Proposition 1 for the relative degree one

case. �

Remark 3 Since the control design is developed in the light of the slow time-scale

ηt, it is natural that the parameters p of the reference model (2.9) as well as λ in

the monitoring function (2.20)–(2.22) must be rescaled appropriately as ηp and ηλ.

4.4 Global Convergence Result

Theorem 3 states that the proposed multivariable output-feedback controller ba-

sed on monitoring function drives z to the ∆-vicinity defined in (A4) of the unknown

maximizer z∗. It does not imply that z(t) remains inD∆, ∀t. However, the amplitude

of signal oscillations around y∗ can be kept of order O(
√
η + µ2).

Theorem 3 Consider the system (4.1)–(4.4), control law (2.7), reference model

(2.9), search direction (2.10), modulation function (4.19) and monitoring function

(2.20)–(2.22). Assume that assumptions (A1)-(A7) hold and Ts is sufficiently large.

Then the region D∆ in (A4) (i) is globally attractive, being reached in finite time and
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(ii) once it is reached, the oscillations around y∗ can be made of order O(
√
η + µ2)

after some finite time by choosing ∆ sufficiently small.

Proof. As in the proof of Proposition 3, the demonstration is based on singular

perturbation/time-scaling arguments and follows the steps presented in the proof of

Theorem 1 [61], for η sufficiently small. �

4.5 Numerical Simulation Example

As an example, consider a plant whose objective function is unknown, in cascade

with a linear dynamic system described by

v̇ = u , (4.22)

ẋ =

[
0 1

−4 −2

]
x+

[
1 0

0 1

]
v , (4.23)

z =

[
1 0

0 1

]
x , (4.24)

and an output function

y = h(z) = 5− (z21 + z22 − 2εz1z2) (4.25)

The static map (4.25) consists of the particular representation of functions of

type

y = h(z) = y∗ +
1

2
(z − z∗)TH(z − z∗) (4.26)

where

H =

[
2 2ε

2ε 2

]
< 0

is the Hessian matrix negative definite. It is easy to notice that the optimal para-

meters of the objective function (4.25) are z∗ = (0, 0) and y∗ = 5, for 0 < ε < 1,

condition which h(z) has a maximum point.

A second simulation scenario considers the following system for the same objec-
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tive function (4.25):

v̇ = u , (4.27)

ẋ =

[
0 1

−40 −20

]
x+

[
10 0

0 10

]
v , (4.28)

z =

[
1 0

0 1

]
x . (4.29)

The simulations were performed considering the following control system para-

meters: p = 5, kpmin = 5, λ = 20, γ = 0.1, which result in ρ = 5. Other parameters:

ε = 0.1, µ = 0.1, Ts = 1s.

Figure 4.1 shows the objective function and the trajectories converging to the

extremum y∗ = 5, from three initial conditions, z0 = (−2, 2) (black), z0 = (2,−2)

(blue) e z0 = (−1.5,−1.5) (green). The input variable z and output y regarding first

scenario, i.e, system (4.23)-(4.24), converging to its optimum values are illustrated

in Figure 4.2.
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Figura 4.1: The objective function y = h(z) and the tracking of the optimum point
from three initial conditions.

The control signals u1 and u2 and the cyclic search functions σ1 and σ2 are

illustrated in Figure 4.3, also in time-scale t = τ . Note that the searching period is

1s and, therefore, 0.5s for each searching direction.

In the second scenario, is considered a new time-scale t = ητ , with η = 0.01.

As mentioned in the Remark 3, the parameters p, λ, ρ and the searching period

Ts must be properly scaled, i.e., multiplied by η. Figure 4.4 shows the input and
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Figura 4.2: Convergence of the variables z and y to expected optimum points,
z∗ = (0 , 0) and y∗ = 5, respectively, from the initial condition z0 = (3 ,−1.5), in the
time-scale t = τ .

output signals z and y converging to their optimal points. Note that after an initial

transient, close to 50s, y tracks the reference ym in sliding mode until z reaches the

maximizer z∗ = 0 and y reaches y∗ = 5.

Figure 4.5 shows the monitoring function upper bounding the norm of the trac-

king error. After 350s, note that the reference was saturated at 10, so that the

tracking error is equal to 5. In the zoomed part, it is possible to see the jumps

µ = 0.1, at each change in the control direction.

A limitation of using time-scaling method for compensation of relative degree,

in addition to time dilation, is the fact that this method works for η → 0, i.e, for

fast unmodeled dynamics, as discussed in the introduction of chapter 4 and now is

illustrated in Figure 4.6, for η = 0.1. The input z and, consequently, the output y

try to find their optimal points, but the control is lost.
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Figura 4.3: Control signals u1 and u2 and the cyclic searching functions σ1 and σ2,
with period Ts = 1s.
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Figura 4.4: The convergence of the signals z to y their optimum points, z∗ = (0, 0)
and y∗ = 5, respectively, from the initial condition, z0 = (3 ,−1.5) obeying the time-
scale t = ητ .

4.6 Conclusion

In this chapter, a multivariable sliding mode based extremum seeking for dy-

namic mappings, with arbitrary relative degree, using monitoring function, time

scaling and cyclic search was proposed. This strategy guarantees global stability

and convergence for a small neighborhood of the optimal extremum of the objec-
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Figura 4.5: The monitoring function, upper bounding and monitoring the error norm
|e(t)| continuously.
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Figura 4.6: The convergence of the signals z and y to their optimum points fail as
η increases (η = 0.1).

tive function. Simulations show the applicability of time-scaling in optimization

problems, which brings also the disadvantage of response time delay. One stra-

tegy for nonlinear systems under the addition of slow unmodeled dynamics in view

for relative degree compensation without compromising response time delay is the

application of differentiators based on higher order sliding modes (HOSM) [74].
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Caṕıtulo 5

Conclusion

In this thesis, two novel methods of multivariable extremum seeking control were

considered, namely extremum seeking control based on the monitoring function with

cyclic search in chapter 2 and extremum seeking control based on the periodic swit-

ching function with cyclic search in chapter 3. They are extensions of our previous

results [13, 43] for MISO uncertain nonlinear static plants, based purely on out-

put feedback and sliding mode control. These approaches resulted in the following

contributions:

1. The monitoring function-based method when applied to multivariable extre-

mum seeking control leads to global convergence, despite the unknown control

direction. It is shown that the oscillations around the optimum points can be

made of order O(µ2) through the parabolic recurrence method.

2. Similarly, the periodic switching function-based approach leads also to a global

convergence, provable by Lyapunov stability analysis, with residual oscillations

around the extremum of order O(ε). Moreover, less restrictive assumptions,

than in [2] are considered.

3. A generalization for dynamic maps with arbitrary relative degree is introduced

in chapter 4, through a combination of time-scale and singular perturbation

methods. The oscillations around the desired output are of order O(
√
η+µ2).

A limitation of using time-scaling method for compensation of relative degree,

in addition to time dilation, is the fact that this method works for η → 0, i.e, for

fast unmodeled dynamics. Thus, strategies for nonlinear systems under the addition

of slow unmodeled dynamics in view for relative degree compensation without com-

promising response time delay is the application of differentiators based on higher

order sliding modes (HOSM).
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5.1 Future Works

Every technique developed in this thesis lacks experimental validation to cor-

roborate the theoretical results, although the presented simulations indicate their

functionalities.

In [46], a detailed comparative experimental setup between multivariable

gradient-based and Newton-based approaches (see section 1.2.2) is presented, ap-

plied to a photovoltaic (PV) Maximum Power Point Tracker (MPPT) problem, in

which it is demonstrated that the Newton algorithm has better performance in terms

of uniform and fast transients with low steady-state errors. Thus, we are encoura-

ged to provide a similar experiment to validate our approach and compare to the

aforementioned study.

In chapter 4, we solved the problem of arbitrary relative degree mitigation using

the time-scaling and singular perturbation methods, which are valid for fast plant

dynamics. However, we are limited to linear dynamic systems. Therefore, in the

case of more general systems that include nonlinear and slow dynamics, one can

introduce higher-order sliding modes (HOSM) differentiators [75] for the relative

degree compensation.

Before the results presented here, we have proposed at CBA 2018 our first at-

tempt to solve a problem of multivariable sliding mode based extremum seeking

control via monitoring functions, where we defined a vector of reference trajectories

that generate a vector of tracking errors and apply multiple monitoring functions to

minimize independently each error, resulting in the optimization of all input vari-

ables of the objective function. However, this result and its demonstration (proof )

have not yet been presented in the literature, and represent a possible research topic

to be carried out, since the controller performance in terms of convergence rate of

this scheme seems to be superior.

Similarly to the previous paragraph, and as mentioned in section 1.2.2, reference

[52] presents an interesting approach to multivariable extremum seeking control via

sliding modes and periodic switching function. However, the authors have presented

a questionable demonstration and considered conservative assumptions, which makes

it an open problem.

Finally, in the recent paper [76] was proposed a distributed extremum seeking

control by using dynamic consensus algorithm via periodic switching function to

optimize the total power produced in a wind farm. It is interesting to introduce an

extremum seeking control via monitoring function and consensus algorithm in view

to compare to such results and to our previous one (chapter 2).
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