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Marcos Vińıcius Silva Alves

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
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He who desires but acts not,

breeds pestilence.

William Blake
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Neste trabalho, considera-se o problema de controle supervisório de Sistemas a

Eventos Discretos em rede com Estrutura Temporizada (SEDRET) sujeitos a atrasos

limitados e perdas intermitentes de observação. Supõe-se que a comunicação entre

a planta e o supervisor seja feita utilizando-se uma rede formada por vários canais

de comunicação, de modo que atrasos de comunicação podem causar mudanças na

ordem das observações. Será proposto um modelo não temporizado equivalente para

SEDRET que caracteriza todas as consequências de atrasos e perdas de observação.

Com esse objetivo, supõe-se o conhecimento prévio dos tempos mı́nimos de ativação

das transições da planta e dos atrasos máximos na comunicação e considera-se,

também, posśıveis perdas de pacote. Um problema de controle supervisório em rede

é formulado com base no modelo proposto e, em seguida, é apresentada uma condição

necessária e suficiente para a existência de um supervisor em rede. Um método para

projetar esses supervisores utilizando a propriedade da observabilidade relativa para

aumentar a permissividade da linguagem obtida será apresentado. Adicionalmente,

outro tópico de pesquisa abordado nesse trabalho é o conceito de observabilidade

relativa. Neste contexto, algoritmos para a verificação da observabilidade relativa

e para o cálculo de sublinguagens relativamente observáveis são propostos. Esses

algoritmos são mais eficientes do que aqueles existentes na literatura.
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In this work, we study the supervisory control problem of Networked Discrete

Event Systems with Timing Structure (NDESWTS), that is subject to bounded

communication delays and intermittent loss of observations. We assume that the

communication between the plant and the supervisor is carried out through a net-

work that can have several channels, so that, communication delays may change

the order of the observations. We will propose an untimed equivalent model for

NDESWTS that represents all possible implications of delays and loss of observa-

tions. For this matter, we assume a priori knowledge of the minimal transition

activation time and the maximal communication delays, and also take into account

possible packet losses. Based on this model, we formulate a networked supervisory

control problem and present a necessary and sufficient condition for the existence

of a networked supervisor. We also present a systematic way to design networked

supervisors, where we use the property of relative observability in order to increase

the achieved language permissiveness. In addition, another research topic addressed

in this work is the concept of relative observability. In this concern, we propose new

algorithms for the verification of relative observability and computation of relatively

observable sublanguages, shown to be more efficient than the previous ones proposed

in the literature.
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Chapter 1

Introduction

In recent decades, the world has increasingly become integrated through communi-

cation networks. Industrial and domestic systems are being connected to communi-

cation networks for reasons, such as, the need for integration/cooperation of devices

usually positioned far away from each other in a distributed system, and to improve

the capacity of human operators remotely interact with devices in the system. In

this context, new concepts, such as, Industry 4.0 [2–4] and Smart Cities [5, 6] have

emerged in recent years, and are exploring, among other features, the interconnec-

tivity between machines, devices, sensors, and people. In this sense, systems that

integrate computing and communication capabilities to monitor and control phys-

ical processes, referred to as Cyber-Physical Systems (CPS), have been received

considerable attention in the literature [7–11].

The quick growth in the use of communication networks has also increased the

demand for new theoretical and practical approaches to deal with data transmis-

sion problems, such as, network delays, jitter, and losses [12, 13]. Furthermore, the

growth of the system complexity creates the need for studying the behavior of a sys-

tem in a higher level of abstraction with a view to understanding its whole behavior

without introducing intractable growth of the method complexity. The behavior of

a wide class of systems can be described, in a higher level of abstraction, by models

in which the dynamic is represented as a function of the occurrence of asynchronous

events. These event-driven dynamic systems, with discrete state spaces, are called

Discrete Event Systems (DES).

In this work, we address the problem of supervisory control of DES, in which

1



the communication between the plant and the supervisor is carried out through a

communication network that is subject to packet losses and non-negligible trans-

mission delays. Such a supervisory control problem is referred in the literature to

as supervisory control of networked discrete event systems [14].

Another research topic addressed in this work is the concept of relative observ-

ability. This new language property was proposed by CAI et al. [15] with a view to

circumventing the deficiency of language observability regarding the non-existence

of the supremal observable sublanguage. Although it has been introduced only re-

cently, relative observability has already received considerable attention in the DES

community [16–20]. As shown in [15], relative observability is closed under set union

operation, as opposed to observability, which does not possess this property, and is

also less conservative than normality [21]; although both the relative observability

and normality share the set union closure property. As a consequence, the supremal

relatively observable sublanguage always exists and is larger compared to the supre-

mal normal sublanguage. The drawback of using relative observability property is

the doubly exponential complexity of the algorithm proposed in [15] for the com-

putation of the supremal relatively observable sublanguage, in comparison with the

exponential complexity of the computation of the supremal normal sublanguage [22].

In the following section, we present an overview on the works that deal with

supervisory control of networked discrete event systems. We also list some works

that study other DES problems in the presence of communication delays and losses.

1.1 Discrete Event Systems Subject to Commu-

nication Delays and Losses

The supervisory control of DES was first proposed by RAMADGE and WONHAM

[23, 24]. In this framework, the supervisor is used to modify the behavior of a DES

in order to prevent the plant from executing some sequences of events that violate

specifications we want to impose on the system behavior. The supervisor observes

some, possibly all, of the events generated by the plant and, then, determines which

events, in the current set of events that can be executed by the plant, are allowed

to occur.
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RAMADGE and WONHAM [23, 24] and most of the subsequent works in su-

pervisory control of DES (e.g., [25–29]) assume that sensors and actuators are not

subject to failures and there is neither loss of data nor communication delay in the

data transmission between the plant and the supervisor. That is, the supervisor

observes the occurrence of an observable event immediately after it is executed by

the plant, and a control action issued by the supervisor is instantaneously applied

to the plant. However, these assumptions are reasonable only if the DES is tightly

coupled with the supervisor, since, when the plant and supervisors are either far

from each other or a more complex network is used to connect them, communica-

tion delays can cause delays in both the control action and the observation of events.

In addition, sensor and low level controller/actuator malfunction can cause losses of

event observation and inappropriate control action.

The problem of controlling input/output discrete event systems with communi-

cation delays has been studied in [30, 31]. In that framework, there are two commu-

nication channels: one from the plant to the supervisor, which is used to send the

outputs of the plant (response events), and, another channel from the supervisor

to the plant, which is used to control the inputs of the plant (command events).

Both channels are considered subject to communication delays, and are modeled by

first-in first-out queues (also referred to as FIFO queues), so that, the order of the

transmitted sequence of events is not affected by delays. The set of command events

(which are controllable) and the set of response events (which are uncontrollable)

are disjoint, and the control specification is represented by a language over the set

of response events. For a given specification language, BALEMI [31] provides neces-

sary and sufficient conditions for the existence of a supervisor. However, an efficient

manner to compute a supervisor is only provided in the restricted case of plants that

generate the so-called memoryless languages.

PARK and CHO [32, 33] considered the supervisory control problem under

full [32] and partial observation [33], in the presence of bounded delays in the trans-

mission of observations and/or control actions. In this architecture, as in [30, 31],

communication delays occur in the interaction between the plant and the supervi-

sor, and it is assumed that communication delays do not modify either the order

of the observations or the order in which the control actions are effectively applied
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to the plant. In such approach, every controllable event is assumed to be disabled

by default and it only occurs when is enabled by the supervisor, i.e., its occurrence

is not spontaneous. Then, due to the occurrence of delays in the transmission of

observations or control actions, a finite number (bounded by some D ∈ N) of un-

controllable events can be executed by the plant between the occurrence of a string

in the plant and the application of the control action computed by the supervisor

based on the observation of this string. In other words, each event executed by the

plant is counted as one step and the maximum delay is equal to D steps. In addi-

tion, in order to prevent the accumulation of delay effects, PARK and CHO [32, 33]

also assume that, when the supervisor sends a control action enabling controllable

events, a new enabling control action can only be issued after observing either the

occurrence of a string of uncontrollable events with the length equal to delay bound

D or the occurrence of one of the enabled controllable events. Notice that, this

additional assumption significantly restricts the behavior of the system and reduces

the speed of the closed-loop system. Another restrictive assumption imposed in [33]

is that each controllable event is also observable.

The approach proposed in [33] was extended in [34–36] to a decentralized version

of the supervisory control problem, where the local supervisors do not communicate

with each other. Similar to [33], it is assumed a bounded delay between the oc-

currence of a string in the plant and the effective application of the control action

computed by each local supervisor based on this string observation. Additionally,

the approach presented in [34] was extended in [37] to the decentralized supervisory

control problem of Timed Discrete Event Systems (TDES) subject to communica-

tion delays, by considering the TDES framework proposed in [38].

The asynchronous implementation of a synchronous supervisor was studied

in [39]. In this approach, the event occurrences are transmitted to the supervi-

sor through a single communication channel and the control actions are sent to the

plant through another communication channel. As in the Park and Cho’s approach,

it is assumed that both channels are subject to bounded transmission delays, which

are measured by using the concept of step, and the channels are modeled by FIFO

queues, which implies that there is no change in the order of event observations

or in the order of applications of the control actions to the plant. A condition
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for the existence of a supervisor is derived by assuming that the behavior achieved

by the closed-loop system under delays must be equal to the behavior achieved by

the closed-loop system without the occurrence of delays. However, this assumption

is rather restrictive since it requires the same specification language be obtained,

independently of the occurrence of communication delays.

More recently, LIN [14, 40] studied the supervisory control of Networked Dis-

crete Event Systems, where the supervisor is connected to the plant by means of a

communication network that can be shared with other devices in the systems, such

as diagnosers and human interface devices. However, he assumes, as in the previ-

ous approaches, that all observations are transmitted to the supervisor through a

single channel and also that the control actions are applied to the plant through

a single channel. Both channels are modeled by FIFO queues subject to bounded

communication delays and losses, and the concept of step is used to measure com-

munication delays. Thus, as in the previous works, there is no change either in the

order of event observations or in the order of applications of the control actions to

the plant. A state-estimate-based supervisor is proposed to solve this problem and

a necessary and sufficient condition for the existence of a state-estimate-based su-

pervisor that is able to achieve a given specification language is provided. However,

no result is presented for the cases when other supervisor may still exist despite

state-estimate-based supervisors do not exist.

The supervisory control problem of networked DES proposed in [14, 40] is revis-

ited in [41–47]. A decentralized supervisory control architecture without communi-

cation between the local supervisors is considered in [41] and a centralized supervisor

is considered in [42–47]. In [41] and [42], the design of supervisors is carried out by

assuming that there is neither losses of control actions nor losses of observations,

and considering a lower and an upper bound on the language generated by the

compensated system. The goal is to design a supervisor such that the behavior of

the compensated system is both safe (i.e., the considered language upper bound is

contained within a given admissible language) and adequate (i.e., the considered lan-

guage lower bound contains a given required language). However, it can be checked

that the language upper bound considered in [41, 42] may have some strings that

cannot be executed by the compensated system even when communication delays
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occur, and, consequently, the design approaches proposed there are too conservative

and may produce less permissive supervisors. KOMENDA and LIN [43], WANG

et al. [44], SHU and LIN [45] and SHU and LIN [46] address centralized versions

of the networked supervisory control problem by assuming modular, robust, predic-

tive and deterministic supervisors, respectively. However, an assumption, as strong

as that made in [39], is imposed in [46] with a view to obtaining a deterministic

closed-loop behavior, namely, to achieve the same language in both cases, with and

without communication delays. In [47], the approach presented in [14] was extended

to the supervisory control problem of TDES subject to communication delays and

losses, by considering, as done in [37], the TDES framework proposed in [38].

Notice that all of the aforementioned approaches assume that there is no change

in the order of observations by the supervisor, which is equivalent to assume the

supervisory control architecture illustrated in Figure 1.1(a), where all observations

are transmitted to the supervisor through a single communication channel modeled

by a first-in first-out queue. However, a single communication channel is usually not

enough, either because it may not have enough capacity to transmit all data, or if

the system is distributed, sensors and supervisor are, in general, far away from each

other [13, 48]. In this case, we need to consider a more general control architecture,

as that illustrated in Figure 1.1(b), where the observations are transmitted to the

supervisor through several communication channels.

Supervisor

Observation
channelchannel

Control

Plant

Supervisor

Observation
channel ochmchannel cch1

Control b b b b b b

Plant

Control
channel cchn

Observation
channel och1

(a) (b)

Figure 1.1: Networked supervisory control architectures with a single FIFO com-
munication channel (a), and with several FIFO communication channels (b).

When multiple channels, subject to communication delays, are used to data

transmission, it is necessary to take into account the possibility of the data received

by the supervisor be in different order of its original order of occurrence [49]. With

a view to softening this problem, we can insert time stamps in the communication
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protocol. Thus, the protocol will be able to reorganize the events by using the time

stamps. However, the supervisor must still deal with incomplete observations since,

differently from the case of a single FIFO channel, the missing event observations

may not correspond to the last event occurrence observation sent from the plant.

In addition, in order to add a time information in the communication protocol, it

is necessary to synchronize the clocks of the devices, which is not a simple task

in distributed systems. Moreover, the synchronization process must be executed

periodically on the whole plant, which increases the maintenance cost [50].

Another common feature of the approaches proposed in [14, 32–36, 39–45] and

[46] is that the proposed models are based on the concept of step to measure the

duration of communication delays; a communication delay bounded by n steps rep-

resents the case when n events can be generated by the plant while the data is being

transmitted. Such an approach cannot represent plants with heterogeneous tempo-

ral behavior, i.e., it cannot consider plants where different transitions are associated

with different amount of time, so that, for example, when an event can precede

two different sequences with the same number of events, a given communication

delay may be such that is possible for an event to be observed after the occur-

rence/observation of one sequence but not after the occurrence/observation of the

other sequence. Another way to approach this problem is by using the TDES model

proposed in [38], as done in [37] and [47], where the time information is modeled

by means of a new event called tick — each occurrence of the tick event represents

that one time unit has elapsed. However, the use of the tick event can increase a

great deal the state size of the corresponding untimed model when the plant has an

heterogeneous temporal behavior.

Supervisory control problem of DES subject to loss of observations has been

investigated by assuming permanent losses [51, 52] and intermittent losses [1, 14, 53].

ALVES et al. [53] presented necessary and sufficient conditions for the existence of

robust supervisors that are able to cope with intermittent loss of observations under

two different contexts: (i) the first context is associated with the concept of strong

robust observability, and concerns the existence of a robust supervisor that is able

to fully achieve a specification language, even if losses of observations occur, and;

(ii) the second context is associated with the concept of weak robust observability,
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and it concerns the existence of a robust supervisor that is able to fully achieve

a specification language, when there is no loss of observation, and to restrict the

behavior of the system to a sublanguage of the specification language in the presence

of intermittent loss of observations.

The decentralized/distributed supervisory control problem of DES with delays

in the communication between the local supervisors has been discussed in [54–58].

TRIPAKIS [54] considered a control architecture formed with a monolithic plant

controlled by two local supervisors that communicate all of the observed event oc-

currences to each other. It is assumed in [54] that the communication between the

supervisors is loss free and the channels are modeled by FIFO queues and subject

to delays. As a consequence, only pairs of event occurrences that arrives to one of

the supervisors, where one of them comes from the other supervisor, and the other

event has been directly observed by the local supervisor, may have their observation

order different from the original order of occurrence in the plant. Two types of de-

lays are considered: (i) unbounded delay, and (ii) k-bounded delay (i.e. the delay

upper bound is equal to k steps), where the same delay bound k is assumed for

all communication channels of the system. TRIPAKIS [54] showed that, in the un-

bounded delay case, the verification of the existence of supervisors is an undecidable

problem. HIRAISHI [55] proposed an automata formalism for communication with

delay in decentralized control, and verifies that the decentralized supervisor problem

is decidable in two special cases: (i) k-bounded delay communication, and (ii) when

every cycle in the state transition diagram of the system contains an event that is

observable by all controllers. SADID et al. [56] studied the problem of synthesizing

robust synchronous communication protocols for decentralized supervisory control,

assuming bounded communication delays that may change the order of event ob-

servations. As in [54] and [55], the same delay upper bound for all communication

channels is assumed. Another important restriction imposed in [56] is that their

approach restricts the problem to those systems whose automaton models have no

loops of communication events (events that are subject to communication delays)

in the original system.

More recently, ZHANG et al. [57] investigate a delay-robustness property in

distributed supervisory control of DES with unknown unbounded communication
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delays. To this end, they introduce 2-state automaton model for the inter-agent

communication channels, which makes possible both the computation of the overall

system behavior, and to verify if a distributed controller is delay-robust. Finally,

ZHANG et al. [58] extend the approach proposed in [57] by adopting TDES, in which

communication delays are measured by using the tick event; a procedure for verifi-

cation of timed delay-robustness is presented, and, when the delay-robust property

does not hold, a bounded delay-robustness is considered with a view to comput-

ing the maximal delay bound (measured by number of ticks) for all communication

channels for which the system remains bounded delay-robust.

In the DES literature, communication delays have also been considered in failure

diagnosis [49, 50, 59] and failure prognosis [60]. In [49], the problem of codiagnos-

ability of networked DES subject to communication delays is addressed by assuming

that the occurrences of events are communicated to each local diagnoser through

a set of channels modeled by FIFO queues, and, consequently, communication de-

lays can cause changes in the order of observations received by the local diagnosers.

NUNES et al. [49] use the concept of step to measure the duration of communica-

tion delays, and assume that each communication channel is subject to delays with

a different delay upper bound. In addition, losses of observations are taken into

account in the problems of failure diagnosis in [61–64] and failure prognosis in [65].

Figure 1.2 shows the main differences between our approach and others previ-

ously presented in the literature regarding the location of the communication chan-

nels subject to delays, the number of communication channels/effect of communica-

tion delays, and the formalism used to measure communication delays.

1.2 Contributions of the Thesis

In this doctoral thesis, we formulate the supervisory control problem of networked

discrete event systems, by assuming the supervisory control architecture depicted in

Figure 1.1(b), where the communication between the plant and the supervisor is car-

ried out through a network that can have several channels, so that, communication

delays can cause changes in the order of the observations. We also consider inter-

mittent loss of observations, but not delay and loss in the transmission of control
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with different delay bounds with the same delay bound Single communication channelSeveral communication channels

Observations may be in different
order of the event occurrence

Observations in the same order
of occurrence as in the plant

Step based approaches TDES approachesTiming Structure approach
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- The minimal activation time
of the plant transitions;
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of the communication channels.

of at most k steps

Communication delays Untimed model with
tick event

This work

This work

[14,30-37,39-47]
[50,54-60]

[49]
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[14,32-36,39-46,49,50,54-56,59,60] [37,47,58]
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order of the event occurrence

Figure 1.2: Comparison among different networked DES regarding the location of
the communication channels subject to delays, the number of communication chan-
nels/effect of communication delays, and the formalism used to measure communi-
cation delays.

actions from the supervisor to the plant.

We propose a model, based on [49], for a class of networked DES, to be referred

to as Networked Discrete Event Systems with Timing Structure (NDESWTS), for

which we assume a priori knowledge of (i) the minimal activation times of the

plant transitions, (ii) the maximal communication delay, possibly different, of each

channel in the communication network, and (iii) the set of events that are subject

to loss of observations. In order to avoid using the concept of step or the TDES

model proposed in [38], we model the consequences of communication delays of the

observations received by the supervisor by directly applying the time information.

To this end, we define an extended language that represents all possible implications

of communication delays and loss in the observations received by the supervisor. In

addition, we present an algorithm for the construction of an untimed deterministic

finite-state automaton that generates the extended language associated with a given

NDESWTS. This model is general enough to allow its application to other research
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topics in NDESWTS, such as, decentralized diagnosis of networked DES [66, 67].

Based on the model for NDESWTS proposed here, we formulate a networked

supervisory control problem, and present a necessary and sufficient condition for

the existence of a networked supervisor. We also present a systematic way to design

networked supervisors, where we use the property of relative observability in order

to increase the achievable language permissiveness.

In order to circumvent the drawbacks regarding the doubly exponential complex-

ity of the algorithm proposed by [15], and, thus, to apply the relative observability

to increase the language permissiveness of the supervisory control for NDESWTS,

we also propose three new algorithms for the application of relative observability.

The first algorithm, which has polynomial time complexity, can be used to verify

if a regular language is relatively observable. The second algorithm computes the

supremal relatively observable sublanguage of a regular language. This algorithm

has exponential complexity, and is, therefore, considerably more efficient than that

proposed in [15]. The key to the success of this algorithm is a new property on

relative observability presented in this work, which ensures that for any ambient

language, there exists an equivalent reduced ambient language that is a subset of

the given language. It is worth remarking that the computational complexity of the

algorithm proposed here for the computation of the supremal relatively observable

sublanguage becomes polynomial when the automaton that marks the admissible

language is state partition. The third algorithm, which is based on the second

one, can be used to compute a controllable and observable sublanguage of a regular

language by using the concept of relative observability.

1.3 Thesis Organization

The remainder of this doctoral thesis is structured as follows. We present some

fundamentals on DES and supervisory control theories in Chapter 2. In Chapter 3,

we introduce a new property of relative observability (Section 3.1) and propose

three new algorithms: an algorithm for the verification of relative observability

(Section 3.2), an algorithm for the computation of the supremal relatively observable

sublanguage (Section 3.3), and an algorithm for the computation of a controllable
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and observable sublanguage of a regular language by using the concept of relative

observability (Section 3.4). In Chapter 4, we address the supervisory control problem

of NDESWTS, and, to this end, we formally define NDESWTS and propose an

equivalent model for this class of discrete event systems in Sections 4.1 and 4.2. In

the sequence, we formulate and solve the supervisory control problem of NDESWTS

(Section 4.3). Finally, in Chapter 5, we present the conclusions and outline future

research directions.
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Chapter 2

Fundamentals of Discrete Event

Systems and Supervisory Control

In this chapter, we present a brief review on Discrete Event Systems (DES) theory

and Supervisory Control of DES, with a view to introducing the main concepts on

DES for novice readers. The theory presented here is based on CASSANDRAS and

LAFORTUNE [68], except for Section 2.4 [62] and Subsection 2.5.3 [15].

The organization of this chapter is as follows. The definition of discrete event

system is presented in Section 2.1. The languages associated with DES are formally

defined together with some of their operations in Section 2.2. An overview on the

automata theory is presented in Section 2.3. A model for DES subject to intermit-

tent loss of observations is presented in Section 2.4. Some concepts of supervisory

control theory are presented in Section 2.5; in Subsections 2.5.1 and 2.5.2 we address

the problem of supervisory control under partial controllability and partial observ-

ability, respectively, and, in Subsection 2.5.3, we review the definition of relative

observability.

2.1 Discrete Event Models

A system can be defined as a set of parts that act jointly to perform a task that

cannot be performed by any of these parts separately. A system is usually formed

by physical parts as, for example, the machines in a manufacturing system, or can

also be associated with abstract phenomena such as financial transactions by using
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digital currency or digital payment systems (e.g., PayPal, Bitcoin, Ethereum).

When a system is studied in engineering, a model is usually created to charac-

terize the behavior of the real system in a given level of abstraction. In order to

construct a model, two sets of measurable variables are frequently chosen to describe

the behavior of the system. The first set comprises the input variables, which can

be directly manipulated. The second set comprises the output variables, which,

although can be measured, they cannot be directly manipulated.

A system is said to be static if the values of its output variables, at every time

instant t = t0, are determined solely by the values of its input variables at t = t0

and, consequently, they do not depend on the previous input values, i.e., for t < t0.

On the other hand, in a dynamic system, the values of its output variables, at all

time t0, depend on the previous values of its input variables. In order to deal with

this fact, the concept of state is introduced, being used to store the information

about the previous behavior of the dynamic system that is needed to determine its

current output values. Namely, the state of a dynamic system at a given time t0

is the information required at t0 such that the outputs of the system are uniquely

determined, for all t ≥ t0, from the knowledge of the state at t0 and the input values

during time interval [t0, t]. The state space of a dynamic system, usually denoted

by X, is the set of all possible values that the state can assume.

In accordance with the features of the system and the task purposes, the model

used to represent the system can have continuous or discrete state variables, where,

in the last case, the state variable can only assume values belonging to a discrete

set. In addition, the model can be continuous-time, i.e., the state variables of the

systems are continuous-time functions, or discrete-time, i.e., the sate variables of

the systems are discrete-time functions and, thus, functions defined only at discrete

instants in time.

A distinct class of systems with discrete state space is that formed by systems in

which the state transitions are associated with events that occur asynchronously at

discrete points over time. An event can be seen as an instantaneous occurrence that

causes a transition from one state value to another. They can be associated with a

specific action, such as, somebody activates a machine, or spontaneous occurrences,

e.g., a shutdown of a computer due to an unknown agent, or, still, the result of sensor
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measurement. Such systems, whose state transitions are driven by the occurrence

of events, are called Discrete Event Systems, being formally defined as follows.

Definition 2.1 (discrete event system [68]) A discrete event system (DES) is

a dynamic system with discrete state space, where the state evolution is dictated by

the occurrence of asynchronous discrete events over time.

Because of the asynchronous nature of the state transitions of discrete event

systems, their dynamics are, frequently, modeled as a function of sequences of events.

For this reason, we review, in the next section, the concept of language.

2.2 Languages

The logical behavior of a DES can be described by the sequence of states visited by

the system, and the sequence of events (strings) that induced these state transitions.

The set of all strings that can be generated by a system characterizes its language,

which is formally defined as follows.

Definition 2.2 (language) A language defined over a finite event set Σ (alphabet)

is a set of finite-length strings formed with events in Σ.

The concatenation is the operation of linking events and/or strings together in

a series, and is the basic operation for the creation of strings and, consequently,

languages. For example, string abb formed from events in Σ = {a, b}, can be formed

by the concatenation of string ab with event b, and string ab is obtained from the

concatenation of events a and b. The empty string, denoted by ε, is the identity

element of concatenation, i.e., sε = εs = s, for every string s.

The Kleene closure of an event set Σ, denoted by Σ∗, is the set of all finite-length

strings formed from events in Σ, including the empty string ε. All languages defined

over Σ are, therefore, subsets of Σ∗. In particular, ∅, Σ and Σ∗ are languages defined

over Σ.

Example 2.1 Consider the set of events Σ = {a, b}. Then, Σ∗ = {ε, a, b, aa, ab,
ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, . . .}, and L1 = ∅, L2 = {ε, a, aa, aaa, . . .},
L3 = {aa, ab, ba, bb} and L4 = Σ∗ are languages defined over Σ.
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Before presenting the operations on languages, we need to define some termi-

nology about strings. Let us consider a string s arbitrarily partitioned as s = tuv,

where t, u, v ∈ Σ∗, being, therefore, substrings of s, in particular, substring t is a

prefix of s, whereas substring v is a suffix of s. Notice that, ε and s are both sub-

strings, prefixes and suffixes of s. Additionally, ‖s‖ denotes the length of string s.

The length of the empty string ε is equal to zero.

2.2.1 Operations on Languages

Since languages are sets whose elements are strings, the usual set operations, such

as union, intersection, difference and complement with respect to Σ∗, can be also

applied to languages, as we illustrate in the following example.

Example 2.2 Consider event set Σ = {a, b, c} and languages K1 = {ε, a, ab, abc}
and K2 = {a, bc} defined over Σ. Then, the union, the intersection and the difference

between K1 and K2, and the complement of K2 with respect to Σ∗ are, respectively,

K1 ∪K2 = {ε, a, ab, bc, abc},

K1 ∩K2 = {a},

K1\K2 = {ε, ab, abc},

KC
2 = {ε, b, c, aa, ab, ac, ba, bb, ca, cb, cc, aaa, ...}.

In addition to set operations, the following operations on languages are frequently

used in DES theory.

Concatenation

Let K1 and K2 denote languages defined over a set of events Σ. The concatenation

of K1 with K2 is the language

K1K2 := {s ∈ Σ∗ : (∃(s1, s2) ∈ K1 ×K2)[s = s1s2]} .

That is, a string belongs to K1K2 if it can be formed by the concatenation of a

string in K1 with a string in K2.
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Prefix-closure

Let K ⊆ Σ∗. The prefix-closure of K is the language

K := {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ K]} .

In words, K is the language formed by all prefixes of all strings in K. Notice that

K ⊆ K. Additionally, a language K is said to be prefix-closed if K = K.

Kleene-closure

Let K ⊆ Σ∗. The Kleene-closure of K is the language

K∗ = {ε} ∪ K ∪ KK ∪ KKK ∪ · · ·

That is, the Kleene-closure of K is the set of all finite-length strings created by the

concatenation between strings in K and also includes the empty string ε.

Example 2.3 Consider the event set Σ and the languages K1 and K2 presented

in Example 2.2. Firstly, notice that K1 = K1, and, thus, K1 is prefix-closed. The

concatenation of K1 and K2, the prefix-closure of K2 and the Kleene-closure of K2

are, respectively,

K1K2 = {a, aa, bc, aba, abc, abca, abbc, abcbc},

K2 = {ε, a, b, bc},

K∗2 = {ε, a, aa, bc, aaa, abc, bca, aaaa, aabc, abca, bcaa, bcbc, . . .}.

Let Σs and Σl denote two sets of events such that Σs ⊂ Σl. The following

operations are used, respectively, to remove and to add some events from the strings

that belong to a language.

Natural Projection [23]

The natural projection P of a string s ∈ Σ∗l is the mapping:

P : Σ∗l −→ Σ∗s

s 7−→ P (s)
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defined as follows:

P (ε) := ε,

P (σ) :=

 σ, if σ ∈ Σs,

ε, if σ ∈ Σl \ Σs,

P (sσ) := P (s)P (σ), for s ∈ Σ∗l and σ ∈ Σl.

The natural projection operation is extended to a language K ⊆ Σ∗l by applying P

to all string in K, that is,

P (K) := {t ∈ Σ∗s : (∃s ∈ K)[P (s) = t]} .

Throughout the text the terms projection and natural projection will be used with

no distinction.

Inverse Projection

The inverse projection P−1 of a string t ∈ Σ∗s is the mapping:

P−1 : Σ∗s −→ 2Σ∗l

t 7−→ P−1(t)

defined as follows:

P−1(t) := {s ∈ Σ∗l : P (s) = t} .

In addition, the inverse projection P−1 of a language Ks ⊆ Σ∗s is the union of the

inverse projections of all strings in Ks, that is:

P−1(Ks) := {s ∈ Σ∗l : (∃t ∈ Ks)[P (s) = t]} .

Example 2.4 Consider event sets Σl = {a, b, c} and Σs = {a} and the projection

P : Σ∗l → Σ∗s. The projection of language Kl = {a, b, c, aab, aba, aca, aaabc}, defined

over Σl, is P (Kl) = {ε, a, aa, aaa}. On the other hand, the inverse projection of

language Ks = {a}{a}∗, defined over Σs, is P−1(Ks) = {b, c}∗{a}{a, b, c}∗.

We can use languages to describe the behavior of a DES and apply the operations
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described above to manipulate the discrete event model. However, it could be hard

to directly work with them. For example, language Ks = {a}{a}∗ is the set of

all finite strings in Σ∗s = {a}∗ except for the empty string ε. Notice that it is

difficult to list all strings in Ks and, thus, the manipulation of this language is

quite difficult. In order to circumvent this problem, we can use some formalisms to

represent the languages of a DES in an appropriate manner, e.g., automata [68, 69]

and Petri nets [70, 71]. In the following section, we will present some fundamentals

on automata theory, that we intend to use throughout this work.

2.3 Automata

Automata are devices that can be used to represent an important class of languages

according to well-defined rules. This formalism represents languages by using a state

transition structure, that is, by specifying which events can occur at each state of

the system [68].

Definition 2.3 (deterministic automaton [69]) A deterministic automaton G

is a six-tuple

G = (X,Σ, f,Γ, x0 , Xm),

where X is the set of states, Σ is the set of events associated with G, f : X×Σ→ X is

the partial transition function, such that f(x, σ) = y means that there is a transition

labeled by event σ from state x to state y, Γ : X → 2Σ is the set of active events 1,

that is, for all x ∈ X, Γ(x) = {σ ∈ Σ : f(x, σ)!}, where ! means that f(x, σ) is

defined, i.e., ∃y ∈ X : f(x, σ) = y, x0 is the initial state, and Xm is the set of

marked states.

The dynamic behavior of an automaton G occurs as follows: at the beginning,

the automaton is in the initial state x0; when some event σ ∈ Γ(x0) occurs, G goes

from state x0 to state x = f(x0, σ) and remains there until some event in Γ(x)

occurs, in which case, the automaton either moves to another state or can even

remain in x (self-loop). After that, this process repeats according to the definition

of transition function f .

1Strictly speaking, the use of Γ in the definition of G is redundant. However, we will keep it
throughout the text because it sometimes makes the description of new automata easier.
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Definition 2.3 do not impose that the set of states X must be finite. When X is

finite, the automaton is said to be a finite-state automaton. Henceforth, the term

finite-state deterministic automaton will be referred simply to as automaton.

A graph representation is a simple form of depicting an automaton. The state

transition diagram of an automaton is a graph where each vertice is a state of the

automaton, and the edges of the graph are associated with the transitions of the

automaton. In addition, the initial state is identified by an arrow, and the marked

states are highlighted by double circles. From the state transition diagram of an

automaton, it is possible to infer some information about its elements, as shown in

following example.

Example 2.5 Consider the state transition diagram of automaton G1 depicted in

Figure 2.1. From this picture, it can be concluded that the set of states of G1 is

X = {0, 1}, the initial state is x0 = 0, the set of marked states is Xm = {0}, the

transition function is defined for the following pairs belonging to X×Σ: f(0, α) = 0,

f(0, σ) = f(0, β) = 1, f(1, α) = 1 and f(1, σ) = 0, and the sets of active events for

each state of G1 are Γ(0) = {α, β, σ} and Γ(1) = {α, σ}. Moreover, from Figure 2.1,

Σ ⊇ {α, β, σ}. Notice that Σ can have other events that do not directly affect the

dynamic of G1, but they can affect the results obtained when G1 is applied to the

composition operations that we will present further in this chapter.

0 1

α

α

σ, β

σ

G1 :

Figure 2.1: Example of state transition diagram of an automanton.

Each directed path that can be followed along the state transition diagram of

an automaton can be associated with a string obtained by the concatenation of

the event labels of the transitions composing this path. Frequently, two languages

are associated with automaton behavior, as follows: (i) the language generated

by automaton G, denoted as L(G), that is the set of all strings associated with

each directed path starting at the initial state, and (ii) the language marked by

automaton G, denoted by Lm(G), that is the subset of L(G) composed by all strings
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that reach a marked state. If a language can be marked by a finite-state automaton,

it is said to be a regular language.

In order to formally define the languages generated and marked by an automaton,

let us extend the transition function to the domain X×Σ∗, as follows: (i) f(x, ε) :=

x; (ii) f(x, sσ) := f(f(x, s), σ), for all x ∈ X, s ∈ Σ∗ and σ ∈ Σ such that

f(x, s) = y and f(y, σ) are both defined.

Definition 2.4 (generated and marked languages) The language generated by

automaton G is defined as L(G) := {s ∈ Σ∗ : f(x0, s)!}. The language marked by G

is defined as Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}.

Notice that, in accordance with Definition 2.4, ε ∈ L(G), for all G with a

nonempty set of states. In addition, L(G) is prefix-closed and Lm(G) ⊆ L(G). Con-

sequently, Lm(G) ⊆ L(G). Then, there are two possibilities: (i) Lm(G) = L(G),

or (ii) Lm(G) is a proper subset of L(G), i.e., Lm(G) ⊂ L(G). When (i) Lm(G) =

L(G), G is said to be nonblocking. On the other hand, when (ii) Lm(G) ⊂ L(G),

automaton G is said to be blocking.

2.3.1 Operations on Automata

In this subsection, we review some operations on automata. Initially, we present

unary operations that can be used to modify the state transition diagram of an

automaton. In the sequence, we show composition operations that can be applied

to combine two or more automata.

Accessible Part

A state x ∈ X of an automaton G is accessible if there exists a string s ∈ Σ∗ such

that f(x0, s) = x. Otherwise, x is a non-accessible state.

The Ac operation removes all non-accessible states of an automaton G, and is

formally defined as follows:

Ac(G) := (Xac,Σ, fac,Γac, x0, Xm,ac),

whereXac = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]}, fac = f |Xac×Σ→Xac , Γac = Γ|Xac→Xac ,

and Xm,ac = Xm∩Xac. The notation f |Xac×Σ→Xac (resp. Γ|Xac→Xac) means that the
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domain of transition function f (resp. Γ function) was reduced to pairs in Xac × Σ

(resp. states in Xac). Notice that, Ac operation does not affect the languages

generated and marked by the original automaton.

Coaccessible Part

A state x ∈ X of an automaton G is coaccessible if there exists a string s ∈ Σ∗ such

that f(x, s) ∈ Xm. Otherwise, x is a non-coaccessible.

The CoAc operation excludes all non-coaccessible states of an automaton G,

being formally defined as:

CoAc(G) := (Xcoac,Σ, fcoac, x0,coac, Xm),

where Xcoac = {x ∈ X : (∃s ∈ Σ∗)[f(x, s) ∈ Xm]}, fcoac = f |Xcoac×Σ→Xcoac , Γcoac =

Γ|Xcoac→Xcoac , and x0,coac = x0, if x0 ∈ Xcoac, or undefined, otherwise.

Notice that, CoAc operation can affect the language generated by the original

automaton, but it does not modify the marked language. In addition, when G =

CoAc(G), G is said to be coaccessible, and L(G) = Lm(G), which implies that

coaccessibility is closely related to nonblocking.

Trim Operation

Trim operation is equivalent to applying Ac and CoAc, consecutively, that is, for

an automaton G, Trim(G) := CoAc[Ac(G)] = Ac[CoAc(G)]. When G = Trim(G),

G is said to be a trim automaton.

Complement Operation

The automaton obtained by applying the complement operation to a deterministic

automaton G is defined as:

GC = (X ∪ {xd},Σ, f c,Γc, x0, X
c
m)

where

f c(x, σ) =

 f(x, σ), if σ ∈ Γ(x),

xd, otherwise,
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Γc(x) = Σ, for all x ∈ X ∪ {xd}, and Xc
m = (X ∪ {xd}) \Xm.

Notice that the language generated by automaton GC is equal to Σ∗, and the

language marked by GC is equal to the complement of Lm(G) with respect to Σ∗.

Example 2.6 Consider automaton G2 depicted in Figure 2.2(a). It can be checked

that state 3 of G2 is not accessible, and states 1 and 4 are not coaccessible. There-

fore, the state transition diagrams of Ac(G2) and CoAc(G2) are those presented in

Figures 2.2(b) and 2.2(c), respectively. Moreover, from the definition of Trim op-

eration, we can conclude that states 1, 4 and 3 are not states of trim(G2), whose

state transition diagram is depicted in Figure 2.2(d). Finally, automaton GC
2 , ob-

tained from G2 by applying the complement operation, is depicted in Figure 2.2(e).

Notice that, Lm(GC
2 ) = Σ∗ \ {βσ}{α, β, γ}∗, which is equal to the complement of

Lm(G2) = {βσ}{α, β, γ}∗ with respect to Σ∗ = {α, β, γ, σ}∗.

We will now present two composition operations on automata, product and par-

allel composition, that model different types of interconnection among automata

that work concurrently. To do so, let us denote G1 = (X1,Σ1, f1,Γ1, x01 , Xm1) and

G2 = (X2,Σ2, f2,Γ2, x02 , Xm2). The difference between the product of G1 and G2,

to be denoted by G1×G2, and the parallel composition of G1 and G2, to be denoted

by G1‖G2, concerns the private events of these automata. In both, product and

parallel composition, a transition labeled by a common event (i.e., those events in

Σ1 ∩ Σ2) can occur if, and only if, it occurs simultaneously in G1 and G2. On the

other hand, product G1 ×G2 does not have transitions labeled by private events of

G1 or G2, whereas these transitions can occur asynchronously in the parallel com-

position G1‖G2. The product and the parallel composition of two automata are

formally defined as follows.

Product

The product of automata G1 and G2 is the automaton

G1 ×G2 := Ac (X1 ×X2,Σ1 ∪ Σ2, f1×2,Γ1×2, (x01 , x02), Xm1 ×Xm2)
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Figure 2.2: State transition diagrams of automata G2 (a), Ac(G2) (b), CoAc(G2)
(c), trim(G2) (d), and GC

2 (e).

where

f1×2((x1, x2), σ) :=

 (f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

undefined, otherwise,

and Γ1×2(x1, x2) = Γ1(x1)∩ Γ2(x2). It can be seen that the language generated and

the language marked by G1 ×G2 are, respectively,

L(G1 ×G2) = L(G1) ∩ L(G2),

Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2).
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Parallel Composition

The parallel composition of automata G1 and G2 is the automaton

G1‖G2 := Ac
(
X1 ×X2,Σ1 ∪ Σ2, f1‖2,Γ1‖2, (x01 , x02), Xm1 ×Xm2

)
where

f1‖2((x1, x2), σ) :=



(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

(f1(x1, σ), x2), if σ ∈ Γ1(x1) \ Σ2,

(x1, f2(x2, σ)), if σ ∈ Γ2(x2) \ Σ1,

undefined, otherwise,

and Γ1‖2(x1, x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1) \ Σ2] ∪ [Γ2(x2) \ Σ1]. The language

generated and the language marked by G1‖G2 are, respectively,

L(G1‖G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)],

Lm(G1‖G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)],

where Pi : (Σ1 ∪ Σ2)∗ → Σ∗i , for i = 1, 2.

From the definitions of product and parallel composition, we can see that both

operations are associative, and can be extend to three (or more) automata as follows:

G1 ×G2 ×G3 := (G1 ×G2)×G3 = G1 × (G2 ×G3);

G1‖G2‖G3 := (G1‖G2)‖G3 = G1‖(G2‖G3).

Example 2.7 Consider automata G3 = (X3,Σ3, f3,Γ3, x03 , Xm3) and G4 = (X4,Σ4,

f4,Γ4, x04 , Xm4), depicted in Figures 2.3(a) and 2.3(b), respectively, and assume

that Σ3 = {α, β, γ} and Σ4 = {α, β, ω}. The automata obtained by the product

and parallel composition of G3 and G4 are presented in Figures 2.4(a) and 2.4(b),

respectively. Notice that, although the private event γ (resp. ω) is active in state 2

of G3 (resp. 0 of G4), this event is not active in state (2, 0) (resp. states (0, 0) and

(2, 0)) of automaton G3 × G4, however, event γ (resp. ω) is active in states (2, 0)

and (2, 1) (resp. (0, 0) and (2, 0)) of G3‖G4.
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Figure 2.3: State transition diagrams of automata G3 (a) and G4 (b).
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Figure 2.4: State transition diagrams of automata G4 ×G5 (a) and G4‖G5 (b).

2.3.2 Subautomata

Let G1 = (X1,Σ1, f1,Γ1, x01 , Xm1) and G2 = (X2,Σ2, f2,Γ2, x02 , Xm2) denote au-

tomata. We say that G1 is a subautomaton of G2 if the state transition diagram of

G1 is a subgraph of the state transition diagram of G2. Formally, G1 is a subau-

tomaton of G2, denoted by G1 v G2, if

(∀s ∈ L(G1), f1(x01 , s) = f2(x02 , s)) ∧ (Xm1 = Xm2 ∩X1).

Notice that this condition implies that X1 ⊆ X2, x01 = x02 , L(G1) ⊆ L(G2) and

Lm(G1) ⊆ Lm(G2).

2.3.3 Language Projections and Observer Automaton

The observer automaton is used to model the behavior of an automaton G =

(X,Σ, f,Γ, x0 , Xm) over a set Σo ⊆ Σ of observable events. Namely, the observer of

G with respect to Σo, denoted by Obs(G,Σo), is a deterministic automaton whose

generated and marked languages are, respectively, Po[L(G)] and Po[Lm(G)], where
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Po denotes the projection Po : Σ∗ → Σ∗o.

In order to formally define Obs(G,Σo), let us first define the unobservable reach

of a state x ∈ X as:

UR(x,Σo) := {y ∈ X : (∃t ∈ (Σ \ Σo)
∗)[f(x, t) = y]}

and, similarly, for all B ∈ 2X ,

UR(B,Σo) :=
⋃
x∈B

UR(x,Σo).

We can now define the observer of G with respect to Σo as:

Obs(G,Σo) := Ac(2X ,Σo, fobs,Γobs, UR(x0,Σo), Xmobs
),

where

fobs(B, σo) = UR({x ∈ X : (∃x′ ∈ B)[f(x′, σo) = x]},Σo),∀(B, σo) ∈ 2X × Σo,

Γobs(B) = {σo ∈ Σo : fobs(B, σo)!},∀B ∈ 2X ,

Xmobs
= {B ∈ 2X : B ∩Xm 6= ∅}.

The observer automaton can be constructed by using the following algorithm.

Algorithm 2.1 (Construction of Observer Automaton [72])

Inputs:

• G = (X,Σ, f,Γ, x0 , Xm);

• Σo: set of observable events.

Output:

• Obs(G,Σo) := (Xobs,Σo, fobs,Γobs, x0,obs, Xm,obs).

Step 1: Define x0,obs = UR(x0,Σo), Xobs = {x0,obs} and Xnew
obs = Xobs.

Step 2: Set X temp
obs = Xnew

obs and Xnew
obs = ∅.

Step 3: For each B ∈ X temp
obs :

◦ 3.1: Γobs(B) =
(⋃

x∈B Γ(x)
)
∩ Σo.

◦ 3.2: For each σ ∈ Γobs(B):
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(a) xobs := fobs(B, σ) = UR({x ∈ X : (∃y ∈ B)[x = f(y, σ)]},Σo).

(b) If xobs /∈ Xobs, then Xnew
obs ← Xnew

obs ∪ {xobs}.

Step 4: If Xnew
obs 6= ∅, then Xobs ← Xobs ∪Xnew

obs and return to Step 2.

Step 5: Xm,obs = {B ∈ Xobs : B ∩Xm 6= ∅}.

The following example illustrates the use of Algorithm 2.1.

Example 2.8 Consider automaton G3 initially shown in Figure 2.3(a), and also

depicted in Figure 2.5(a), and assume Σo = {β, γ}. Automaton Obs(G3,Σo), de-

picted in Figure 2.5(b), was obtained by using Algorithm 2.1 as follows:

Step 1: x0,obs = {0, 1}, Xobs = {{0, 1}} and Xnew
obs = Xobs;

Step 2: X temp
obs = {{0, 1}} and Xnew

obs = ∅;
Step 3: Γobs({0, 1}) = {β}, fobs({0, 1}, β) = {2, 3} and Xnew

obs = {{2, 3}};
Step 4: Since Xnew

obs 6= ∅, Xobs ← {{0, 1}, {2, 3}} and we return to Steps 2;

Step 2: X temp
obs = {{2, 3}} and Xnew

obs = ∅;
Step 3: Γobs({2, 3}) = {γ}, fobs({2, 3}, γ) = {0, 1} and Xnew

obs = ∅;
Step 4: Since Xnew

obs = ∅, then the accessible part of Obs(G3,Σo) is complete;

Step 5: Xm,obs = {{2, 3}}.
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Figure 2.5: State transition diagrams of automata G3 (a) and Obs(G3,Σo) (b).

State Partition Automaton

Let G = (X,Σ, f,Γ, x0 , Xm) and Obs(G,Σo) = (Xobs,Σo, fobs,Γobs, x0obs , Xmobs
) be

an automaton and its observer with respect Σo, respectively. Automaton G is said to

be state partition if, for all B,B′ ∈ Xobs, B 6= B′ implies that B∩B′ = ∅ [22, 73–75].

When automaton G is not state partition, an equivalent state partition automaton
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can always be obtained by computing [76]

Gsp = G‖Obs(G,Σo),

such that L(Gsp) = L(G) and Lm(Gsp) = Lm(G). The state partition property

is useful in the computation of the supremal normal sublanguage [74], and, as we

will present in Chapter 3, we use this concept to compute the supremal relatively

observable sublanguage of a given language.

Inverse Projection

We sometimes need to compute an automaton that represents the inverse projections

of the generated and marked languages of an automaton G = (X,Σ, f,Γ, x0, Xm)

with respect to a projection Pl : Σ∗l → Σ∗. To do so, we can add self-loops at each

state of G labeled by the events in (Σl \ Σ). The generated and marked languages

of the automaton obtained through this procedure are P−1
l [L(G)] and P−1

l [Lm(G)],

respectively.

2.4 Discrete Event Systems Subject to Loss of

Observations

In this section, we present the model for DES subject to intermittent loss of obser-

vations proposed by CARVALHO et al. [62], which can be used to handle loss of

observations caused by either sensor malfunction or communication problems. CAR-

VALHO et al. [62] consider the case when the set of events of a DES is partitioned

as follows:

Σ = Σuo∪̇Σlo∪̇Σnlo ,

where Σuo is the set of unobservable events, Σlo is the set of observable events subject

to loss of observations, and Σnlo is the set of observable events that are not subject

to loss of observations. In order to represent loss of observations, the renaming

function ` is defined in domain Σlo , where, for all σ ∈ Σlo , `(σ) = σl. In addition,

the set of events Σl
lo = {`(σ) : σ ∈ Σlo} is defined, and, thus, the set of events

becomes Σdil = Σ∪Σl
lo . The operation that determines the language over Σdil that
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is generated by the DES in the presence of loss of observations is formally defined

as follows.

Definition 2.5 (Dilation [62]) Dilation is the mapping D : Σ∗ → 2Σ∗dil , recur-

sively defined as:

D(ε) := {ε} ;

D(σ) :=

 {σ}, if σ ∈ Σ \ Σlo ;

{σ, σl}, if σ ∈ Σlo ;

D(sσ) := D(s)D(σ), for all s ∈ Σ∗ and σ ∈ Σ.

The extension of D to domain 2Σ∗, i.e., to languages, is defined as D(L) =⋃
s∈LD(s).

The idea behind the definition of dilation is to represent the loss of observation of

an event σ by replacing it with σl = `(σ). For example, by assuming Σ = {α, β}
and Σlo = {β}, the dilation of string s = βαβ is D(s) = {βαβ, βlαβ, βαβl, βlαβl},
where: (i) string βαβ represents the case when no loss of observation occurs, (ii)

string βlαβ (resp. βαβl) represents the case when only the observation of the first

(resp. the second) occurrence of event β is lost, and (iii) string βlαβl represents the

case when both observations of event β are lost.

Consider a DES modeled by an automaton G and let Σo = Σlo∪̇Σnlo denote the

set of observable events and Pdil,o : Σ∗dil → Σ∗o the natural projection from Σ∗dil over

Σ∗o. Then, for a string s ∈ L(G), Pdil,o(D(s)) is the set of possible strings that can

be observed when the plant executes s in the presence of loss of observations.

An automaton model Gdil that takes into account loss of observations was pro-

posed in [62], being formed by adding to the transitions labeled with event σ ∈ Σlo ,

parallel transitions labeled with the corresponding event σl ∈ Σl
lo . Gdil is formally

defined as:

Gdil = (X,Σdil , fdil,Γdil, x0, Xm), (2.1)

where Σdil = Σ ∪ Σl
lo , Γdil(x) = D(Γ(x)), and fdil is defined as follows: ∀x ∈ X,

fdil(x, σ) = f(x, σ) for σ ∈ Σ, and fdil(x, σl) = f(x, σ) for σl ∈ Σl
lo . As proved in

[62], L(Gdil) = D(L(G)) and Lm(Gdil) = D(Lm(G)).
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The following example illustrates the use of dilation and the construction of

automaton Gdil.

Example 2.9 Let us consider the generated and marked languages of automaton

G5 depicted in Figure 2.6(a), where Σ = {α, β, σ, µ, η} and Σo = {α, β, γ}. If we

assume that Σlo = {β}, then D(L(G)) = {αβµγ, αβlµγ, αηγ}, and D(Lm(G)) =

{αβµγ, αβlµγ, αηγ}. Notice that, for string s1 = αηγ, D(s1) = {αηγ}, which

implies that the unique string that can be observed when the plant executes s is

αγ. On the other hand, when the plant executes string s2 = αβµγ, either string

αβγ or string αγ is observed since Pdil,o(D(s2)) = Pdil,o({αβµγ, αβlµγ}). Finally,

automaton G5dil, whose generated and marked languages are, respectively, D(L(G))

and D(Lm(G)), is depicted in Figure 2.6(b).
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Figure 2.6: Automata G5 (a) and G5dil (b).

Let s, s1, s2 ∈ Σ∗, and K, K1 and K2 languages defined over Σ. Let Kdil be a

subset of Σ∗dil not necessarily obtained by dilating some K ∈ Σ∗. Table 2.1 presents

some properties of dilation proved in [1].

2.5 Supervisory Control

In the classical control theory, feedback control systems are frequently used to modify

the behavior of a system. In the same way, in discrete event systems theory, we

can use a feedback control to modify the behavior of the DES, when the language

generated by the DES contains strings that violate specifications that we want to

impose on the behavior of the system. This feedback control is called Supervisory

control.

Let the behavior of the open-loop system be modeled by an automaton G. Then,

the control specifications are defined with a view to preventing unacceptable strings
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Table 2.1: Properties of Dilation [1].

P1 K ⊆ D(K)

P2 s1 6= s2 ⇔ D(s1) ∩D(s2) = ∅
P3 D(K1K2) = D(K1)D(K2)

P4 D(K1) ∪D(K2) = D(K1 ∪K2)

P5 D(K1) ∩D(K2) = D(K1 ∩K2)

P6 D(K) = D(K)

P7 D(K1 \K2) = D(K1) \D(K2)

P8 K1 ⊆ K2 ⇔ D(K1) ⊆ D(K2).

P9 K = Kdil ∩ Σ∗, for all K ⊆ Kdil ⊆ D(K)

P10 D(s) ∩D(K) 6= ∅ ⇔ D(s) ⊆ D(K)

of L(G) from happening; for example, when the order of certain events is not correct,

or strings that reach deadlocks, livelocks, or unacceptable states, e.g., a state that

represents a buffer overflowed or the collision between machines. In accordance with

the control specifications, we define the sublanguage La of L(G), usually referred

to as admissible language, that represents the legal behavior of the compensated

system. When the compensated system behavior remains inside La, it is said to be

safe. In the supervisory control problem, we want to design a supervisor that is able

to make the compensated system be safe. We also have the following additional

requirements: (i) the compensated behavior must be as permissible as possible, and

(ii) blocking cannot occur.

In accordance with the supervisory control paradigm proposed by RAMADGE

and WONHAM [23, 24], the supervisor can observe some, possibly all, of the events

generated by G and, then, determines those events in the current set of active events

of G that are allowed to occur. In other words, the supervisor can disable some, but

not necessarily all, of the active events of G. Notice that, the supervisors can be

restricted to observe a subset of the events generated by G (observable events), and

they can be limited to disabling only a subset of the feasible events of G (controllable

events).

In the following subsection, we define the supervisory control problem under full

observation, i.e., we assume that the supervisor is able to observe all of the events
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generated by the DES.

2.5.1 Supervisory Control Problem

Consider a DES modeled by a language L defined over a set of events Σ, where

L = L is the set of all strings that can be generated by the system. Without loss

of generality, assume that L is the language generated by an automaton G, i.e.,

L = L(G). The supervisory control problem consists in designing a supervisor S

that is able to interact with G in a feedback manner, as depicted in Figure 2.7,

and make the compensated system S/G (read as “S controlling G ”) be safe, i.e.,

L(S/G) = La ⊆ L(G).

S

s

G

S(s)

Figure 2.7: The feedback loop of supervisory control.

Formally, a supervisor is a function S : L(G) −→ 2Σ, from the language gener-

ated by G to the power set of Σ, such that the new set of active events ΓN [f(x0, s)],

i.e., the events that G can execute at state f(x0, s) under the control of S, is equal

to Γ[f(x0, s)] ∩ S(s). In other words, G is not able to execute an event σ at state

f(x0, s) if σ does not belong to S(s).

The compensated system S/G is a DES and its generated language is recursively

defined as follows:

(i) ε ∈ L(S/G);

(ii) ∀s ∈ Σ∗ and ∀σ ∈ Σ, sσ ∈ L(S/G) ⇔ s ∈ L(S/G) ∧ sσ ∈ L(G) ∧ σ ∈ S(s).

The language marked by S/G is defined as:

Lm(S/G) := L(S/G) ∩ Lm(G).
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Supervisory Control Under Partial Controllability

Assume, now, that the set of events Σ is partitioned as Σ = Σc∪̇Σuc, where Σc is the

set of controllable events, that is, the events that can be disabled by a supervisor

S, and Σuc is the set of uncontrollable events that cannot be disabled by S. In

this regard, a supervisor is said to be admissible if Σuc ∩ Γ[f(x0, s)] ⊆ S(s), for all

s ∈ L(G). Hereafter, we will consider admissible supervisors only.

Definition 2.6 (controllability) Let K and L denote languages defined over a

set of events Σ, such that K ⊆ L and L = L, and assume that Σ is partitioned as

Σ = Σc∪̇Σuc. Then, K is controllable with respect to L and Σuc if KΣuc ∩ L ⊆ K.

Definition 2.6 can be interpreted as follows. If K is controllable, then for all string

s ∈ K and for all uncontrollable event σuc ∈ Σuc, if string sσuc belongs to L, it also

belongs to K. Notice that, controllability is a property of the prefix-closure of a

language, i.e., a language K is controllable if, and only if, K is controllable.

Controllability becomes an important property because, as stated by the follow-

ing theorem, it is associated with the existence of a supervisor that is able to make

the language generated by the compensated system equal to the prefix of a given

admissible language.

Theorem 2.1 (controllability theorem) Consider a DES modeled by an au-

tomaton G, where Σ = Σc∪̇Σuc. Let K ⊆ L(G), where K 6= ∅. Then, there exists

a supervisor S such that L(S/G) = K if, and only if, K is controllable with respect

to L(G) and Σuc.

In order to satisfy the language permissiveness objective when an admissible

language K is not controllable, we must restrict to a sublanguage (i.e., a subset)

of K that is controllable, and search for the “largest” sublanguage of K that is

controllable, where “largest” here concerns set inclusion. This language is called the

supremal controllable sublanguage of K and is denoted by K↑C .

It can be checked that controllability is closed under set union, that is, if lan-

guages Ki, i = 1, 2, . . . , n, are controllable with respect to L(G) and Σuc, then so

is language K1 ∪ K2 ∪ . . . ∪ Kn. As a consequence, it can be concluded that the
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supremal controllable sublanguage of a given language K always exists. In the worst

case, K↑C = ∅. On the other hand, if K is controllable, then K↑C = K.

Another important language associated with K is the infimal prefix-closed and

controllable superlanguage of K, denoted by K↓C . This language is such that all

prefix-closed and controllable languages that are supersets of K, are also supersets

of K↓C . The existence of K↓C is proved by using the following property of controlla-

bility: if the prefix-closed languages Ki, i = 1, 2, . . . , n, are controllable with respect

to L(G) and Σuc, then so is the prefix-closed language K1∩K2∩ . . .∩Kn. Moreover,

in the worst case, K↓C = L(G). On the other hand, K↓C = K if K is controllable.

Let K and L be regular languages, and consider automata H = (Xh,Σ, fh,Γh,

x0h , Xmh
), where L(H) = K and Lm(H) = K, and G = (Xg,Σ, fg,Γg, x0g , Xmg),

whose generated language is L. The computational complexity of checking if K

is controllable with respect to L and Σuc is O(|Xh| · |Xg| · |Σ|), where notation | |
is used to denote the cardinality of a set. In addition, the computation of K↑C is

O(|Xh|2 · |Xg|2 · |Σ|), and becomes O(|Xh| · |Xg| · |Σ|) when K is prefix-closed. The

computation of K↓C is also O(|Xh| · |Xg| · |Σ|) [68, ch.3].

2.5.2 Supervisory Control Under Partial Observation

In the supervisory control problem described in Subsection 2.5.1, we assume that

the supervisor is able to observe all of the events generated by the system. We

now assume that the set of events Σ is partitioned as Σ = Σo∪̇Σuo, where Σo is the

set formed with the observable events, i.e., those events whose occurrences can be

observed by the supervisor, and Σuo is the set formed with the unobservable events,

i.e., those events whose occurrences cannot be directly observed by the supervisor.

The main reason why an event is unobservable is the lack of sensors that are able

to record its occurrences.

It is worth remarking that, when Σuo 6= ∅, the supervisor decides which events

will be disabled based on the projection over Σ∗o of the string generated by the plant.

This is equivalent to saying that the supervisor makes its decision based on Po(s),

where Po : Σ∗ → Σ∗o, and not on s, as illustrated in Figure 2.8. As a consequence

of this partial observation, two different strings s1 and s2 with the same projection

lead to the same control action.
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Figure 2.8: The feedback loop of supervisory control under partial observation.

Formally, a partial observation supervisor, or simply, a P-supervisor, is a map-

ping

SP : Po(L) → 2Σ

Po(s) 7→ SP [Po(s)]

where SP [Po(s)] is such that ΓN [f(x0, s)] = Γ[f(x0, s)] ∩ SP [Po(s)].

The existence of unobservable events makes necessary an admissibility condition

for P-supervisors different from that presented in the previous subsection. To this

end, let t = t′σ ∈ Po(L(G)) and σ ∈ Σo and define language Lt = P−1
o (t′){σ}(SP (t)∩

Σuo)
∗ ∩ L(G). Then, supervisor SP is admissible if, for all t ∈ Po(L(G)),

Σuc ∩
[⋃
s∈Lt

Γ[f(x0, s)]

]
⊆ SP (t).

The compensated system SP/G is a DES and its generated and marked languages

are defined as follows.

Definition 2.7 The language generated by SP/G is recursively defined as:

(i) ε ∈ L(SP/G);

(ii) ∀s ∈ Σ∗ and ∀σ ∈ Σ, sσ ∈ L(SP/G) ⇔ (s ∈ L(SP/G) ∧ (sσ ∈ L(G)) ∧ (σ ∈
SP [Po(s)]).

The language marked by SP/G is defined as:

Lm(SP/G) := L(SP/G) ∩ Lm(G).

Under partial observation, the existence of a supervisor that is able to achieve a

given specification is not only associated with controllability, but also must satisfy

the following property.
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Definition 2.8 (observability[77]) Let K and L denote languages defined over a

set of events Σ, such that K ⊆ L and L = L, and let Po : Σ∗ → Σ∗o with Σo ⊆ Σ.

Then, K is observable with respect to L and Po if, for all s′ ∈ K and for all σ ∈ Σ,

(s′σ ∈ L \K)⇒ (6 ∃s ∈ K)[(Po(s
′) = Po(s)) ∧ (sσ ∈ K)]

or, equivalently,

(s′σ ∈ L \K)⇒ P−1
o [Po(s

′)]{σ} ∩K = ∅.

Let K and L be regular languages, and consider automata H = (Xh,Σ, fh,Γh,

x0h , Xmh
) and G = (Xg,Σ, fg,Γg, x0g , Xmg) whose generated languages are K and L,

respectively. We can check if K is observable with respect to L and Po in polynomial

time, by using the algorithm proposed in [78], that has worst-case complexity equal

to O(|Xh|2 · |Xg| · |Σ|).
The following theorem concerns the language generated by the compensated

system SP/G.

Theorem 2.2 (controllability and observability theorem) Consider a DES

modeled by an automaton G and assume that Σ = Σc∪̇Σuc = Σo∪̇Σuo. Let Po

denote the projection Po : Σ∗ → Σ∗o. Then, for a sublanguage K of L(G), where

K 6= ∅, there exists a P-supervisor SP such that L(SP/G) = K if, and only if, K is

controllable with respect to L(G) and Σuc and observable with respect to L(G) and

Po.

In contrast to controllability, observability is not closed under set union, i.e., if

two languages K1 and K2 are observable, then K1 ∪K2 need not be observable. As

a consequence, the supremal observable sublanguage does not exist in general. On

the other hand, it can be checked, from Definition 2.8, that language observability

is closed under the intersection of prefix-closed languages, i.e., if the prefix-closed

languages Ki, i = 1, 2, . . . , n, are observable with respect to L(G) and Po, then so is

the prefix-closed language K1∩K2∩ . . .∩Kn. As a consequence, there always exists

the infimal prefix-closed controllable and observable superlanguage of a language

K, denoted here by K↓CO, that satisfies the following conditions: (i) K↓CO ⊇ K is

prefix-closed, controllable and observable; (ii) if there exists a prefix-closed language
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K ′′ ⊇ K, controllable and observable, then K↓CO ⊆ K ′′. RUDIE and WONHAM

[79] and KUMAR and SHAYMAN [80] have proposed algorithms that compute

K↓CO in exponential time, for a given regular language K. More recently, MASO-

PUST [81] has shown that the state complexity of the infimal prefix-closed observ-

able language K↓O is exponential in the worst case, i.e., the number of states of the

minimal deterministic finite automaton required to represent K↓O is exponential in

the worst case. Based on these observations, we may conjecture that there may

not exist an algorithm for the computation of a deterministic finite automaton that

generates K↓CO, which has, in the worst case, polynomial time complexity, since all

known methods to compute K↓CO requires the calculation of K↓O.

The Property of Normality

Let us assume that the admissible language K is not observable. In this case, since

the supremal observable sublanguage of a given language does not exist in general,

we cannot deal with observability directly in order to remain within the admissible

behavior. One way to circumvent this drawback is by replacing the property of

observability with normality [21] in order to design P-supervisors that achieve a

controllable and observable sublanguage of K.

Definition 2.9 (Normality) Let K and L denote languages defined over a set of

events Σ, such that K ⊆ L and L = L. Let Σ be partitioned as Σ = Σo∪̇Σuo and

Po : Σ∗ → Σ∗o. Then, K is normal with respect to L and Po if

P−1
o (Po(K)) ∩ L = K.

Definition 2.9 can be interpreted as follows: a language K is normal with respect

to L and Po if, and only if, K can be recovered from its projection Po(K) and

language L. Notice that, like the properties of controllability and observability,

normality is a property of the prefix-closure of a language, i.e., a language K is

normal if, and only if, K is normal. Furthermore, it can be checked that the property

of normality is closed under set union, and, consequently, for every language K ⊆
L, the supremal normal sublanguage of K, denoted by K↑N , and the supremal

controllable and normal sublanguage of K, denoted by K↑CN , always exist.
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It can be proved that, if K is normal with respect to L and Po, then K is

observable with respect to L and Po, but the reverse is not true in general. Thus,

according to Theorem 2.2, there exists a P-supervisor such that L(SP/G) = K if K

is controllable with respect to L(G) and Σuc and normal with respect to L(G) and

Po. Finally, when Σc ⊆ Σo (i.e., all controllable events are also observable), it can

be shown that the properties of normality and observability become equivalent.

Remark 2.1 Let us consider two languages K and L, defined over a set of events

Σ = Σo∪̇Σuo, such that K ⊂ L. Notice that, if there exist a string s ∈ K and

an event σuo ∈ Σuo such that sσuo ∈ L \ K, then P−1
o (Po(K)) ∩ L 6⊂ K since

sσuo ∈ P−1
o (Po(K)) ∩ L, which implies that K is not normal with respect to L and

Po. Therefore, we can conclude that the property of normality cannot be used to

design supervisors that must disable unobservable events.

Realization of P-supervisors

After constructing the automaton that models a controllable and observable ad-

missible language K, where K ⊆ L, we need to represent the P-supervisor in a

convenient manner, since listing the control action SP (so), for each so ∈ Po(K),

may be somewhat hard.

When K and L are regular languages, supervisor SP can be represented by

a finite-state automaton. Moreover, the parallel composition, shown in Subsec-

tion 2.3.1, can be used to determine the behavior of the compensated system SP/G.

The automaton that models P-supervisor SP , called realization of SP and de-

noted by Rs, can be constructed by using the following algorithm.

Algorithm 2.2 (Realization of a P-supervisor)

Inputs:

• G: deterministic automaton whose generated language is L;

• H: deterministic automaton whose marked language is K (controllable and

observable);

• Σo: set of observable events.

Output:

• Rs = (Xs,Σ, fs,Γs, x0s , Xms): realization of the P -supervisor.
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Step 1: Compute automaton R := Trim(H) = (Xr,Σ, fr,Γr, x0r , Xmr) whose gen-

erated language is K.

Step 2: Construct observer Robs = Obs(R,Σo) by using Algorithm 2.1.

Step 3: Construct automaton Rs from Robs by adding, for each state xobs of Robs,

self-loops labeled by the unobservable events that belong to
⋃
x∈xobs Γr(x). In addition,

mark all states of Rs.

Automaton RS obtained with Algorithm 2.2 is such that

Sp(so) = Γs(fs(x0, so)), for all so ∈ Po(K),

and, consequently, L(RS‖G) = L(SP/G) = K and Lm(RS‖G) = Lm(SP/G) =

Lm(G) ∩K.

2.5.3 Relative Observability

Another way to circumvent the deficiency of language observability regarding the

non-existence of a supremal observable sublanguage, a new definition of observ-

ability, called relative observability, has been recently proposed [15], being formally

defined as follows.

Definition 2.10 (relative observability) Given a language C ⊆ Lm(G), we say

that a language K ⊆ C is relatively observable2 with respect to C, G and Po, or

simply C-observable, if ∀s, s′ ∈ Σ∗ such that Po(s) = Po(s
′), and ∀σ ∈ Σ,

(sσ ∈ K) ∧ (s′ ∈ C) ∧ (s′σ ∈ L(G))⇒ s′σ ∈ K. (2.2)

Language C is referred to as ambient language.

Conditional statement (2.2) can be better explained with the help of the diagrams

depicted in Figures 2.9(a) and 2.9(b). It can be seen, with the help of Figure 2.9(a),

that observability (Definition 2.8) requires that, for every pair (s, s′) such that s, s′ ∈
K and Po(s) = Po(s

′), the one-step continuations of s in K be consistent with

those continuations of s′. On the other hand, according to Figure 2.9(b), relative

2In [15], there is an additional condition for relative observability as follows: ∀s, s′ ∈ Σ∗ if
Po(s) = Po(s′), then (s ∈ K) ∧ (s′ ∈ C ∩ Lm(G)) ⇒ s′ ∈ K. However, this second condition is
necessary only if marking nonblocking supervisors are applied.
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observability enlarges the range of verification for every pair (s, s′) such that s ∈ K,

s′ ∈ C and Po(s) = Po(s
′). It can also verified from Figures 2.9(a) and 2.9(b),

s
K

L(G)

s′

σ

σ

s

s′3

σ

K

C
L(G)

s′2s′1

σ

σσ

(a) (b)

Figure 2.9: Illustrative diagrams of observability (Definition 2.8) (a), and relative
observability (b). If Po(s) = Po(s

′), then K is not observable. On the other hand, if
Po(s) = Po(s

′
i), for i = 1, 2 or 3, then K is not C-observable.

that the relative observability implies observability. In addition, when C = K,

relative observability is equivalent to observability. Finally, notice that the larger

the ambient language, the stronger (i.e., more restrictive) the relative observability

property will be.

CAI et al. [15] proved that relative observability is closed under set union op-

eration, as opposed to observability, that does not possess this property; thus, the

supremal relatively observable sublanguage always exists. Moreover, it is also proved

in [15] that, the relative observability is weaker than normality [21], which implies

that the supremal relatively observable sublanguage is larger compared to the supre-

mal normal sublanguage, in general.

An algorithm for the computation of the supremal relatively observable sub-

language of a regular language K with respect to K, G and Po, i.e., the ambient

language is set as K, has been proposed in [15]. This algorithm has doubly exponen-

tial complexity, namely, its complexity is O(2[(2|Xh|·|Xh|+1)|Xg |+|Xh|] · |Xh| · |Σ|), where

|Xg| (resp. |Xh|) is the number of states of G (resp. the automaton that recognizes

K), and |Σ| is the cardinality of the set of events of G. More recently, CAI et al. [20]

proposed a new algorithm for the computation of the supremal relatively observable

sublanguage of a regular language K with respect to K, G and Po whose compu-

tational complexity is O
(
23|Xg |·|Xh| · |Xg|6 · |Xh|7 · |Σ|

)
. In the next chapter, we will

propose algorithms for the verification of relative observability of regular languages,

that has polynomial time computational complexity, and for the computation of
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the supremal relatively observable sublanguage, that has computational complexity

lower than those of the algorithms proposed in [15] and [20].

The following example illustrates the use of relative observability.

Example 2.10 Let us consider automaton G, depicted in Figure 2.10(a), where

Σ = {β, γ, δ, µ, ν, η} is the set of events, and Σo = {β, γ, δ} and Σuo = {µ, ν, η} are

the sets of observable and unobservable events, respectively. In addition, consider

languages C and K marked by the automata depicted in Figures 2.10(b) and 2.10(c),

respectively. We can verify that K is not C-observable with respect to G and Po since,

for example,

(i) For strings s1 = ε ∈ K and s′1 = η ∈ C and event β, Po(s1) = Po(s
′
1) = ε, and

s1β ∈ K but s′1β ∈ L(G) \K;

(ii) For strings s2 = β ∈ K and s′2 = βν ∈ C and event δ, Po(s2) = Po(s
′
2) = β,

and s2δ ∈ K but s′2δ ∈ L(G) \K.

Notice that, case (i) also violates the observability condition (with respect to L(G)

and Po), whereas case (ii) solely violates the C-observability condition. The supremal

C-observable (with respect to L(G) and Po) sublanguage of K is the language marked

by the automaton depicted in Figure 2.10(d). Finally, we can check that the supremal

normal (with respect to L(G) and Po) sublanguage of K is empty, since, for all

nonempty language K ′ ⊆ K, s = ε ∈ K ′, s′ = µν ∈ L(G)\K ′ and s′ ∈ P−1
o (Po(s))∩

L(G).

Computation of Controllable and Observable Sublanguages by Using Rel-

ative Observability

Consider a system modeled by an automaton G with set of events Σ = Σc∪̇Σuc =

Σo∪̇Σuo, and let K and C be languages such that K ⊆ C ⊆ Lm(G). The supremal

controllable (with respect to L(G) and Σuc) and C-observable (with respect to G

and Po) sublanguage of K, to be denoted here by supCRO(K,C) can be computed

by using the following iterative procedure [15]:

1. Set i = 1 and K0 = K;
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Figure 2.10: System automaton G (a), and automata whose marked languages are
C (b), K (c) and K↑RO (d), respectively.

2. Compute the supremal controllable (with respect to L(G) and Σuc) sublan-

guage of Ki−1, denoted here by K↑Ci−1;

3. Compute the supremal C-observable (with respect to G and Po) sublanguage

of K↑Ci−1, referred here to as Ki;

4. If Ki = Ki−1, then supCRO(K,C) = Ki. Otherwise, set i = i+ 1 and return

to Step 2.

Notice that the language obtained at the end of this procedure is relatively ob-

servable with respect to an ambient language C previously determined. In order

to obtain a more permissive controllable and observable sublanguage, CAI et al.

[15] shrink the ambient language at each iteration, by making it be equal to K, in

the first step, and equal to K↑Ci−1 in the next steps. The idea behind this choice of

ambient languages comes from the intuition that at each iteration i, the language

computed in Step 3 is a sublanguage of K↑Ci−1, and, thus, by setting this language

as the ambient language, we may obtain a more permissive sublanguage since the

smaller the ambient language, the weaker the relative observability property will

be. Furthermore, the fact that the language computed after this step is relatively

observable guarantees (regardless of the ambient language) that it is also observ-
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able, besides being controllable. In order to distinguish language supCRO(K,C)

from that computed as proposed by CAI et al. [15] (i.e., by shrinking the ambient

language), the latter will be denoted by K↑Cro.

In Chapter 3, we will propose an algorithm, for the computation of a controllable

and relatively observable sublanguage, that has the same steps of the procedure

presented above. In this algorithm, besides shrinking the ambient language at the

beginning of each execution of Step 3 as proposed by CAI et al. [15], we additionally

shrink the ambient language during the execution of this step, i.e., at each iteration

of the algorithm used to compute the supremal relatively observable sublanguage of

K↑Ci−1. As a consequence, the computed sublanguage may be more permissive than

supCRO(K,C) and K↑Cro. In order to distinguish the controllable and relatively

observable sublanguage to be obtained by the algorithm to be proposed in Chapter 3

from the aforementioned sublanguages, it will be denoted by K↑CRO.
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Chapter 3

New Algorithms for Relative

Observability

In this chapter, we propose three new algorithms on relative observability. The

first algorithm verifies if a regular language K is relatively observable with respect

to a given ambient language C a plant G and a projection Po. This algorithm

has polynomial complexity, and, since the relative observability is equivalent to

observability when K is chosen as ambient language, it can be also applied to verify

if a language K is observable with respect to L(G) and Po.

The second algorithm computes the supremal relatively observable (with respect

to C, G and Po) sublanguage of a regular language K. This algorithm has exponen-

tial complexity, and is more efficient than those proposed in [15] and [20]. The key

to the success of this algorithm is a new property on relative observability which

ensures that for any ambient language C, there exists an equivalent reduced ambi-

ent language that is a subset of C. It is worth remarking that the computational

complexity of the algorithm proposed here for the computation of the supremal rela-

tively observable sublanguage becomes polynomial when the automaton that marks

K is state partition [22, 73–76].

The third algorithm, which is based on the second one, computes a controllable

and observable sublanguage of a regular language K by using the relative observ-

ability property and shirking the ambient language at each algorithm iteration with

a view to obtaining more permissive languages.

Preliminary versions of the results presented in this chapter were published in
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[82, 83], and the current version was published in [84].

This chapter is organized as follows. We present and prove a new property of

relative observability in Section 3.1. We propose an algorithm for the verification

of relative observability in Section 3.2, and an algorithm for the computation of the

supremal relatively observable sublanguage of regular languages in Section 3.3. We

propose an algorithm for the computation of a controllable and relatively observable

sublanguage of a regular language in Section 3.4. In Section 3.5, we analyze the

complexities of the algorithms proposed in Sections 3.2, 3.3 and 3.4. Finally, we

present some conclusions in Section 3.6.

3.1 An Equivalent Reduced Ambient Language

We will consider in this section the problem of finding a language Cs ⊆ C for

which if K is relatively observable with respect to C, G and Po, it is also relatively

observable with respect to Cs, G and Po, and conversely. This result will play

a key role in the algorithms proposed later on this chapter for the verification of

relative observability and for the computation of the supremal relatively observable

sublanguage. For simplicity, we only consider the case when the set of unobservable

events of the plant is nonempty, i.e., Σuo 6= ∅, since observability and relative

observability conditions are automatically satisfied in the case when Σuo = ∅.

Lemma 3.1 Let K ⊆ C ⊆ Lm(G). Then, K is relatively observable with respect

to C, G and Po if, and only if, K is relatively observable with respect to Cs =

(KΣ∗uo ∩ C), G and Po.

Proof: (⇒) It is straightforward and comes from the fact that Cs ⊆ C.

(⇐) Assume, now, that K is not relatively observable with respect to C, G and

Po. Then, there exist s ∈ K, s′ ∈ C and σ ∈ Σ such that sσ ∈ K, s′σ ∈ L(G) \K
and Po(s) = Po(s

′). Without loss of generality, write s′ = s′ps
′
s, where s′p is the

longest prefix of s′ in K and s′s ∈ Σ∗. Notice that, s′s must satisfy one of following

conditions: (i) s′s ∈ Σ∗uo or (ii) s′s ∈ Σ∗ \ Σ∗uo, i.e. s′s has, at least, one observable

event. Let us now consider each one of these possibilities:

(i) s′s ∈ Σ∗uo. In this case, s′ = s′ps
′
s ∈ KΣ∗uo ∩ C. Therefore, K is not relatively

observable with respect to Cs, G and Po.
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(ii) s′s ∈ Σ∗\Σ∗uo. Without loss of generality, write s′s = s′spαs
′
ss, where s′sp ∈ Σ∗uo,

α ∈ Σo and s′ss ∈ Σ∗. Thus, Po(s
′) = Po(s

′
ps
′
sp)αPo(s

′
ss). Since Po(s) = Po(s

′), we can

write s as s = spαss, where Po(sp) = Po(s
′
ps
′
sp) and Po(ss) = Po(s

′
ss). Defining, now,

t = sp and t′ = s′ps
′
sp, it can be seen that tα ∈ K, t′ ∈ (KΣ∗uo ∩ C), t′α ∈ L(G) \K

and Po(t) = Po(t
′), which implies that K is not relatively observable with respect

to Cs, G and Po.

Therefore, in accordance with Lemma 3.1 instead of considering the ambient

language C, we can equivalently consider the reduced ambient language Cs =

(KΣ∗uo ∩ C) in all computations regarding relative observability.

3.2 Verification of Relative Observability

An equivalent way to state the relative observability definition given in (2.2) is as

follows: a language K is C-observable with respect to L(G) and Po if,

(∀(s, σ) ∈ K × Σ),

sσ ∈ K ⇒ (@s′ ∈ Cs)
[
(s′σ ∈ L(G) \K) ∧ (Po(s) = Po(s

′))
]
.

(3.1)

Notice that, in Expression 3.1 C has been replaced with Cs, as guaranteed by

Lemma 3.1.

According to conditional statement (3.1), C-observability is violated when there

exist sσ ∈ K and s′σ ∈ CsΣ ∩ KC ∩ L(G) (where K
C

denotes the complement

of K with respect to Σ∗), such that Po(s) = Po(s
′). This observation suggests

an algorithm for the verification of relative observability based on the comparison

between the projections of languages K and CsΣ ∩KC ∩ L(G), like the algorithm

proposed in [85] for the verification of codiagnosability.

Let ΣR = {σR : σ ∈ Σuo} ∪ Σo. Define the renaming function R, recursively,

as follows: R : Σ∗ −→ Σ∗R, where: (i) R(ε) := ε, (ii) R(σ) := σ, if σ ∈ Σo, (iii)

R(σ) := σR, if σ 6∈ Σo, and (iv) R(sσ) = R(s)R(σ) for s ∈ Σ∗ and σ ∈ Σ. The

inverse renaming function is the mapping R−1 : Σ∗R −→ Σ∗, where R−1(sR) = s,

such that R(s) = sR. Both the renaming and the inverse renaming functions can be

extended to languages by applying R(s) and R−1(s) to all strings s in the language.

The following result provides the basis for the algorithm we propose here.
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Lemma 3.2 Consider automata G1 = (X1,Σ, f1,Γ1, x01 , Xm1) and G2 = (X2,Σ, f2,

Γ2, x02 , Xm2), whose event sets are partitioned as Σ = Σuo∪̇Σo. Let GR
m := (X1,

R(Σ), fR,ΓR, x01 , X1) where, ∀x ∈ X1, ΓR(x) = R(Γ1(x)) and fR(x,R(σ)) =

f1(x, σ), ∀σ ∈ Γ1(x), and define V = GR
m‖G2 = (Xv,Σ ∪ R(Σ), fv,Γv, x0v , Xmv).

Then, for any event σ ∈ Σ and a pair of strings (svσ, svR(σ)) ∈ Lm(V )× L(V ) for

which fv(x0v , sv) = (x1, x2), there exists a pair of strings (s1σ, s2σ) ∈ L(G1)×Lm(G2)

such that Po(s1) = Po(s2), f1(x01 , s1) = x1 and f2(x02 , s2) = x2, and conversely.

Proof: Define projections PR : [Σ ∪R(Σ)]∗ → R(Σ)∗ and PΣ : [Σ ∪R(Σ)]∗ → Σ∗.

(⇒) Assume that there exists a pair of strings (svσ, svR(σ)) ∈ Lm(V ) × L(V )

such that fv(x0v , sv) = (x1, x2). Notice that L(V ) = P−1
R [L(GR

m)] ∩ P−1
Σ [L(G2)] and

Lm(V ) = P−1
R [Lm(GR

m)]∩P−1
Σ [Lm(G2)], since V = GR

m‖G2. Define s1R = PR(sv) and

s2 = PΣ(sv), then: (i) svR(σ) ∈ P−1
R [L(GR

m)]⇒ PR[svR(σ)] ∈ L(GR
m)⇒ s1RR(σ) ∈

L(GR
m), and; (ii) svσ ∈ P−1

Σ [Lm(G2)]⇒ PΣ(svσ) ∈ Lm(G2)⇒ s2σ ∈ Lm(G2).

Since GR
m is obtained from G1 by applying the renaming function R and marking

all of its states, it is easy to check that L(GR
m) = Lm(GR

m) = R[L(G1)]. Therefore,

by defining s1 = R−1(s1R), and since s1RR(σ) ∈ L(GR
m), we have that s1σ ∈ L(G1).

Notice that, Po(s1) = PΣ(s1R) and Po(s2) = PR(s2), and since s1R = PR(sv) and

s2 = PΣ(sv), we can conclude that Po(s1) = PΣ[PR(sv)] and Po(s2) = PR[PΣ(sv)].

Finally, as PΣ[PR(sv)] = PR[PΣ(sv)], then Po(s1) = Po(s2).

Since GR
m is obtained from G1 by renaming its unobservable events, then the

renamed unobservable events, R(Σuo), and the unobservable events, Σuo, become

private events of GR
1 and G2, respectively, in the parallel composition V = GR

1 ‖G2.

Then, by the construction of V , it can be seen that, if a transition is labeled by an

unobservable (resp. a renamed unobservable) event occurs, the first (resp. second)

component of state of V does not modify. Therefore, we may conclude that x1 =

fR(x01 , s1R) = f1(x01 , s1) and x2 = f2(x02 , s2).

(⇐) Take now a pair of strings (s1σ, s2σ) ∈ L(G1)×Lm(G2) such that Po(s1) =

Po(s2), f1(x01 , s1) = x1 and f2(x02 , s2) = x2. Since Po(s1) = Po(s2), we have that

s1 and s2 are different only in the unobservable events. Therefore, P−1
R [R(s1)] ∩

P−1
Σ (s2) 6= ∅, which implies that there exists sv ∈ P−1

R [R(s1)] ∩ P−1
Σ (s2). Notice

that, as L(GR
m) = Lm(GR

m) = R[L(G1)], then L(V ) = P−1
R {R[L(G1)]} ∩ P−1

Σ [L(G2)]

and Lm(V ) = P−1
R {R[L(G1)]} ∩ P−1

Σ [Lm(G2)]. Initially, consider the case when
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σ ∈ Σo. In this case, it can be seen that svσ = svR(σ) ∈ P−1
R [R(s1)R(σ)]∩P−1

Σ (s2σ).

Therefore, as s1σ ∈ L(G1), s2σ ∈ Lm(G2), then svσ = svR(σ) ∈ Lm(V ). Consider,

now, the case when σ ∈ Σuo. In this case, it is not difficult to see that svσ ∈
P−1
R [R(s1)] ∩ P−1

Σ (s2σ) and svR(σ) ∈ P−1
R [R(s1)R(σ)] ∩ P−1

Σ (s2). Therefore, as

s1 ∈ L(G1) and s2σ ∈ Lm(G2), then svσ ∈ Lm(V ), and, as s1σ ∈ L(G1) and

s2 ∈ L(G2), then svR(σ) ∈ L(V ).

Finally, since the first (resp. second) component of the states of V does not

modify if a transition labeled by an event in Σuo (resp. R(Σuo)) occurs and Po(s1) =

Po(s2), then fv(s0v , sv) = (x1, x2).

Algorithm 3.1 (Verification of relative observability)

Inputs:

• G = (Xg,Σ, fg,Γg, x0g , Xmg): automaton whose marked language is Lm(G);

• A = (Xa, Σ, fa,Γa, x0a , Xma): nonblocking automaton whose marked language

is C;

• H = (Xh,Σ, fh,Γh, x0h , Xmh
): nonblocking automaton whose marked language

is K.

Output:

• K is relatively observable wrt C, G and Po: true/false.

Step 1: Compute automaton Gm by marking all states of G, i.e. Gm := (Xg,Σ,

fg,Γg, x0g , Xg).

Step 2: From automaton A, construct automaton M := (Xa ∪ {xd},Σ, fm,Γm,
x0a , Xa ∪ {xd}), where (i) Γm(x) = Σ,∀x ∈ Xa, and Γm(xd) = ∅; and (ii) ∀(x, σ) ∈
Xa × Σ, fm(x, σ) = fa(x, σ), if σ ∈ Γa(x), and fm(x, σ) = xd, otherwise.

Step 3: Compute automaton Mg := M ×Gm.

Step 4: From automaton H, construct automaton N := (Xh ∪ {xd1, xd2},Σ, fn,
Γn, x0h , {xd1, xd2}), where (i) Γn(x) = Σ, ∀x ∈ Xh ∪ {xd1}, and Γn(xd2) = ∅; (ii)

∀(x, σ) ∈ Xh × Σ: fn(x, σ) = fh(x, σ), if σ ∈ Γh(x), fn(x, σ) = xd1, if σ ∈ (Σuo \
Γh(x)), and fn(x, σ) = xd2, if σ ∈ (Σo \Γh(x)); and (iii) fn(xd1, σ) = xd1, if σ ∈ Σuo

and fn(xd1, σ) = xd2, if σ ∈ Σo.

Step 5: Compute automaton Hc := CoAc(Mg ×N).

Step 6: Construct automaton HR
m := (Xh, R(Σ), fR,ΓR, x0h , Xh), where ΓR(x) =

Γh(x) and fR(x,R(σ)) = fh(x, σ), ∀x ∈ Xh and ∀σ ∈ Σ.

49



Step 7: Compute the verifier automaton V := HR
m‖Hc = (Xv,Σ ∪ ΣR, fv,Γv,

x0v , Xmv).

Step 8: For all (x, σ) ∈ Xv × Σ such that fv(x, σ) ∈ Xmv , verify if the following

conditions hold true

(a) σ ∈ Σo;

(b) (σ 6∈ Σo) ∧ (R(σ) ∈ Γv(x)).

If there exists a transition fv(x, σ) such that either condition (a) or (b) holds, then

K is not relatively observable with respect to C, G and Po. Otherwise, K is relatively

observable with respect to C, G and Po.

In Step 1 of Algorithm 3.1, we obtain automaton Gm from G that marks the

language generated by G, i.e., Lm(Gm) = L(G). In Step 2, we construct automaton

M from the nonblocking automaton A, whose marked language is Lm(M) = CΣ ∪
{ε}. In Step 3, we build automaton Mg = M × Gm that marks language (CΣ ∪
{ε})∩L(G). In Step 4, we construct automaton N from the nonblocking automaton

H for which Lm(N) = KΣ∗uoΣ∩K
C

. In Step 5, we obtain automaton Hc = Mg×N ,

which has the following property.

Lemma 3.3 Lm(Hc) = (KΣ∗uo ∩ C)Σ ∩ K
C∩ L(G).

Proof: The proof is done in three steps as follows:

1st Step: Lm(M) = {ε} ∪ CΣ. Notice that, automaton M is constructed from

automaton A by creating new transitions labeled by the non active events connecting

each state of A to the dump state, xd, and by marking all states of M . Then,

∀s ∈ Σ∗, s ∈ C ⇔ fm(x0a , s) ∈ Xa. It is then straightforward to see from the

construction of M , that every string s ∈ {ε} ∪ CΣ also belongs to Lm(M). Take,

now, a string s ∈ Lm(M). If s = ε, then s ∈ {ε} ∪ CΣ. If s 6= ε, then it is possible

to write s as s = spσ where sp ∈ Σ∗ and σ ∈ Σ. From the construction of M ,

fm(xd, σ) is undefined, and thus, x = fm(x0a , sp) ∈ Xa, which ultimately implies

that s = spσ ∈ CΣ.

2nd Step: L(N) = KΣ∗uoΣ ∩K
C

. Notice that we construct automaton N from

the nonblocking automaton H, by creating two new states, xd1 and xd2, making the

set of marked states equal to {xd1, xd2}, and adding new transitions labeled by the

non active unobservable events connecting each original state of H to state xd1, and
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transitions labeled by the non active observable events to state xd2, and create self-

loops in state xd1 labeled with all unobservable events, and transitions from state

xd1 to state xd2, labeled with all observable events. Since L(H) = K, then, ∀s ∈ Σ∗,

s ∈ K ⇔ fn(x0h , s) ∈ Xh, and, consequently, every string s ∈ Lm(N) also belongs

to K
C

. In addition, from the construction of N , we can conclude that: (i) if s

reaches state xd1, it can be written as s = spsuo, where sp is the largest prefix of s

in K and suo ∈ Σ∗uo \{ε}; (ii) if s reaches state xd2, it can be written as s = spsuoσo,

where sp is the largest prefix of s in K, suo ∈ Σ∗uo and σo ∈ Σo. In both situations

described above, we have that s ∈ KΣ∗uoΣ. Let, now, s ∈ KΣ∗uoΣ ∩ K
C

. Then s

can be written as s = spsuσ, where sp ∈ K, su ∈ Σ∗uo and σ ∈ Σ. Write su as

su = su1su2 where su1 is the largest string in Σ∗uo such that spsu1 ∈ K and su2 ∈ Σ∗uo.

Let x′ = fn(x0h , spsu1). Thus x′ ∈ Xh. In addition, from the construction of N ,

fn(x′, su2) = xd1, and, either fn(x′, su2σ) = xd1, if σ ∈ Σuo, or fn(x′, su2σ) = xd2, if

σ ∈ Σo, which implies that s ∈ Lm(N).

3rd Step: Since Hc = CoAc(Mg ×N) = CoAc((M ×Gm)×N), then Lm(Hc) =

Lm(M)∩L(G)∩Lm(N). Therefore, Lm(Hc) = (CΣ∪{ε})∩L(G)∩KΣ∗uoΣ∩K
C

=

CΣ ∩ L(G) ∩KΣ∗uoΣ ∩K
C

= (KΣ∗uo ∩ C)Σ ∩ K
C∩ L(G), since for two languages

L1 and L2 and an event set Σ, L1Σ ∩ L2Σ = (L1 ∩ L2)Σ.

In Step 6, we compute automaton HR
m by applying the renaming function to the

events of H and marking all of its states. In Steps 7 and 8 we construct the verifier

automaton V = HR
m‖Hc, and check if K is C-observable. The following theorem

demonstrates the correctness of Algorithm 3.1.

Theorem 3.1 Let H, A and G denote the automata whose marked languages are,

respectively, K, C and Lm(G) such that K ⊆ C ⊆ Lm(G), and consider the verifier

automaton V = (Xv,Σ ∪ ΣR, fv,Γv, x0v , Xmv) computed using Algorithm 3.1 with

the inputs G, A and H. Then, K is not relatively observable with respect to C, G

and Po if and only if there exists (x, σ) ∈ Xv × Σ that satisfies fv(x, σ) ∈ Xmv with

either (σ ∈ Σo) or [(σ 6∈ Σo) ∧ (R(σ) ∈ Γv(x))].

Proof: (⇒) Assume that K is not C-observable wrt G and Po. Then, according

to Lemma 3.1, K is not (KΣ∗uo ∩ C)-observable wrt G and Po. Therefore, there

exist s ∈ K, s′ ∈ (KΣ∗uo ∩ C), and σ ∈ Σ, such that Po(s) = Po(s
′), sσ ∈ K and

s′σ ∈ L(G) \K.
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Notice that sσ ∈ L(H), since L(H) = K. On the other hand, since s′ ∈ (KΣ∗uo∩
C) and s′σ ∈ L(G)\K, it can be concluded that s′σ ∈ (C∩KΣ∗uo)Σ ∩ K

C∩ L(G) =

Lm(Hc). Therefore, from the construction of verifier automaton V and according to

Lemma 3.2, there exists a pair of strings (svσ, svR(σ)) ∈ Lm(V ) × L(V ). Finally,

defining x = fv(x0v , sv), then fv(x, σ) ∈ Xmv . Moreover, since svR(σ) ∈ L(V ) and

R(σ) ∈ Γv(x), it is possible to conclude that either (σ ∈ Σo) or [(σ 6∈ Σo) ∧ (R(σ) ∈
Γv(x))].

(⇐) Assume, now, that there exists (x, σ) ∈ Xv×Σ such that fv(x, σ) ∈ Xmv and

(σ ∈ Σo) ∨ [(σ 6∈ Σo) ∧ (R(σ) ∈ Γv(x))]. Then, from the construction of automaton

V , there exists sv ∈ L(V ) such that fv(x0v , sv) = x and svσ ∈ Lm(V ). Moreover,

since R(σ) = σ, if σ ∈ Σo, and R(σ) ∈ Γv(x), if σ 6∈ Σo, then svR(σ) ∈ L(V ).

Consequently, according to Lemma 3.2, there exists (sσ, s′σ) ∈ L(H)×Lm(Hc) such

that Po(s) = Po(s
′). Notice that, sσ ∈ K, s′ ∈ (KΣ∗uo ∩ C), and s′σ ∈ L(G) \ K,

which implies that K is not (KΣ∗uo ∩ C)-observable with respect to G and Po.

Remark 3.1 (Verification of language observability) Algorithm 3.1 can be also ap-

plied to verify if a language K, marked by a nonblocking automaton H, is observable

with respect to G and Po, just by making A = H.

Remark 3.2 As it will be shown in Section 3.3, the use of the reduced ambient

language is crucial for the application of Algorithm 3.1 in the computation of the

supremal C-observable sublanguage of a language K. However, when we want only

to verify if a language K is C-observable (or observable, by making C = K), we

can use ambient language C instead of Cs, and thus, Step 4 of Algorithm 3.1 should

be modified so as to compute automaton N such that Lm(N) = K
C

. However, this

change does not improve the computational complexity of the algorithm, since the

original and the modified versions of automaton N have |Xh|+2 and |Xh|+1 states,

respectively, but with the same number of transition (|Xh|+ 1)|Σ|.

The following example illustrates Algorithm 3.1.

Example 3.1 Consider automata G, A and H depicted in Figure 3.1, where

Σ = {α, β, σ, µ} and Σo = {α, β, σ}. Automaton M , constructed in Step 2, and

automaton N , constructed in Step 4, are shown in Figures 3.2(a) and 3.2(b), re-

spectively. Automata Hc and HR
m obtained in Steps 5 and 6, respectively, are depicted
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in Figures 3.2(c,d). Finally, the verifier automaton V computed in Step 7 is depicted

in Figure 3.2(e), from where, it can be checked that transition ((1, 0), α, (2, 1)) sat-

isfies condition (a) of Step 8. Therefore, K is not C-observable with respect to G

and Po. Notice that, since (2, 1) ∈ Xmv , the following strings can be obtained from

V : s = µ ∈ K, s′ = ε ∈ C, sα = µα ∈ K and s′α = α ∈ L(G) \ K, and

Po(s) = Po(s
′) = ε.

0

1β, µ
G :

5
σ

4

2
α

3
σ

α

0

1β, µ
A :

4

2
α

3
σ

α

(a) (b)

0 1
β, µH :

2
α

3
σ

(c)

Figure 3.1: System automaton G (a), automaton A that marks ambient language
C (b), and automaton H whose marked language is K (c).
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µR(0, 0) (1, 0)
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Figure 3.2: Automata obtained in Example 3.1 by Algorithm 3.1: M (a), N (b), Hc

(c), HR
m (d) and V (e).
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3.3 Computation of the Supremal Relatively Ob-

servable Sublanguage

Consider nonblocking automata A and H such that Lm(A) = C and Lm(H) = K,

and let fg, fa and fh (resp. x0g , x0a and x0h) denote the transition functions (resp.

initial states) of automata G, A and H. We make the following assumptions.

A1. For all s, s′ ∈ L(A) such that fa(x0a , s) = fa(x0a , s
′), then fg(x0g , s) =

fg(x0g , s
′);

A2. For all s, s′ ∈ L(H) such that fh(x0h , s) = fh(x0h , s
′), then fa(x0a , s) =

fa(x0a , s
′).

Notice that, if A (resp. H) does not satisfy Assumption A1 (resp. A2), then another

automaton A (resp. H) that satisfies Assumption A1 (resp. A2) can be obtained

by computing the completely synchronous composition A×G (resp. H × A). It is

worth remarking that Assumptions A1 and A2 are less restrictive than assuming

that H and A are subautomata of G. Finally, when K = C, Assumptions A1 and

A2 reduces to a single one, equivalent to that made in [15].

We will propose an algorithm to obtain a deterministic automaton that marks the

supremal C-observable sublanguage of K with respect to G and Po, whose main idea

is to remove, from an automaton that marks K, all transitions that correspond to

transitions in verifier automaton V that violate the relative observability condition

according to Theorem 3.1 and Algorithm 3.1. It is worth remarking that not every

automaton H has the correct structure to prevent that other strings, besides those

which actually violates the relative observability condition, are removed from K.

This fact is illustrated by the following example.

Example 3.2 Let us consider languages L(G), C and K, generated, respectively,

by automata G, A and H of Example 3.1, shown in Figures 3.1(a,b,c). In verifier

automaton V computed in Example 3.1, and depicted in Figure 3.2(e), transition

((1, 0), α, (2, 1)) satisfies condition (a) of Step 8 of Algorithm 3.1. This is due to

string s = µ ∈ K that violates the relative observability since s′ = ε ∈ (KΣ∗uo ∩ C),

Po(s) = P (s′) but sα ∈ K and s′α ∈ L(G) \K. However, if we remove transition

(1, α, 2) of H (Figure 3.1(c)), we not only remove string µα, but also exclude string
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βα which must not be removed. In such case, the computed supremal relatively

observable sublanguage will be ε, which is incorrect. However, if we use the state

partition automaton Hsp = H‖Obs(H,Σo), depicted in Figure 3.3, we successfully

eliminate string µα and preserve string βα when we exclude transition (1′, α, 2);

therefore leading to the correct supremal relatively observable sublanguage.

0

1β
Hsp :

1′
2

α

3
σ

µ α

Figure 3.3: Automaton Hsp = H‖Obs(H,Σo) obtained from the automaton H de-
picted in Figure 3.1(c).

Let us define the state partition automaton Hsp = H‖obs(H,Σo). It is not

difficult to see that L(Hsp) = L(H) = K, Lm(Hsp) = Lm(H) = K, and that Hsp also

satisfies Assumption A2. Let us define the uncertainty set [15] of an automaton H

after the occurrence of a string s ∈ L(H) as: Uh(s) := {x ∈ Xh : (∃s′ ∈ L(H))[(x =

fh(x0,h, s
′)) ∧ (Po(s

′) = Po(s))]}. The following results can be stated.

Lemma 3.4 Let H = (Xh, Σ, fh,Γh, x0h , Xmh
) and Hsp = H‖Obs(H,Σo) = (Xsp,

Σ, fsp,Γsp, x0sp , Xmsp). Then, fsp(x0sp , s) = (fh(x0h , s), Uh(s)), ∀s ∈ L(Hsp).

Proof: In accordance with the construction of Hsp, fsp(x0sp , s) =

(fh(x0h , s), fobs(x0obs , Po(s))), for all s ∈ L(Hsp), where x0obs and fobs denote the

initial state and the transition function of Obs(H,Σo), respectively. Thus, using

the definition of the estimate of possible states of H after string s proposed in

[86], which is equivalent to the definition of uncertainty set Uh(s), we conclude that

fobs(x0obs , Po(s)) = Uh(s).

Lemma 3.5 Let H = (Xh, Σ, fh, x0h ,Γh, Xmh
), Hsp = H‖Obs(H,Σo) = (Xsp,

Σ, fsp,Γsp, x0sp , Xmsp) and Hs = (Xs,Σ, fs,Γs, x0s , Xms) such that Hs v Hsp and

Lm(Hs) = Ks ⊆ K. Assume that there exist s, s′ ∈ Ks and σ ∈ Σ such

that sσ, s′σ ∈ Ks and fs(x0s , s) = fs(x0s , s
′). If ∃s′′ ∈ (KsΣ

∗
uo ∩ C) such that

Po(s
′′) = Po(s

′) and s′′σ ∈ L(G) \ Ks, then ∃sc ∈ C such that Po(sc) = Po(s) and

scσ ∈ L(G) \Ks.
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Proof: Assume that there exist s, s′ ∈ Ks, σ ∈ Σ and s′′ ∈ (KsΣ
∗
uo ∩ C) such that

sσ, s′σ ∈ Ks, fs(x0s , s) = fs(x0s , s
′), Po(s′′) = Po(s

′) and s′′σ ∈ L(G) \Ks.

Without loss of generality, write s′′ as s′′ = s′′ps
′′
s , where s′′p is the longest

prefix of s′′ in Ks and s′′s ∈ Σ∗uo. Since fs(x0s , s) = fs(x0s , s
′), according to

Lemma 3.4, Uh(s) = Uh(s
′) = Uh(s

′′
p), where the last equality is a consequence

of the fact that Po(s
′) = Po(s

′′) = Po(s
′′
p). According to the definition of uncer-

tainty set, fh(x0h , s
′′
p) ∈ Uh(s

′′
p), and, since Uh(s

′′
p) = Uh(s), there exists scp ∈ K

such that Po(scp) = Po(s) and fh(x0h , scp) = fh(x0h , s
′′
p). Thus, using Lemma 3.4,

fsp(x0sp , scp) = (fh(x0h , s
′′
p), Uh(s

′′
p)), i.e., strings s′′p and scp reach the same state

of Hsp and also Hs, which implies that these strings are continued in Hs with the

same strings. Therefore, scps
′′
sσ 6∈ Ks, since s′′p is not continued with s′′sσ in Ks.

Moreover, according to Assumptions A2 and A1, since s′′p and scp reach the same

state of H, they also reach the same states of A and G, which, together with the

fact that s′′ps
′′
s ∈ C and s′′ps

′′
sσ ∈ L(G), imply, respectively, that scps

′′
s ∈ C and

scps
′′
sσ ∈ L(G). Finally, defining sc = scps

′′
s , we have that sc ∈ C, Po(s) = Po(sc)

and scσ ∈ L(G) \Ks.

Lemma 3.5 shows that, when H, A and G satisfy Assumptions A1 and A2,

then for an automaton Hs (Hs v Hsp = H‖Obs(H,Σo)) where Lm(Hs) = Ks, if

a string s′σ ∈ Ks violates (KsΣ
∗
uo ∩ C)-observability, then all strings s ∈ Ks that

reach the state of Hs reached by s′ are such that sσ also violates C-observability.

As a consequence, if we remove transitions of Hs associated with the strings of Ks

that violate (KsΣ
∗
uo∩C)-observability, we only eliminate from Ks those strings that

violate C-observability. This fact suggests the following algorithm for computing

the supremal C-observable sublanguage of a language K.

Algorithm 3.2 (Computation of the supremal relatively observable sub-

language)

Inputs:

• G = (Xg,Σ, fg,Γg, x0g , Xmg): automaton whose marked language is Lm(G);

• A = (Xa, Σ, fa,Γa, x0a , Xma): nonblocking automaton whose marked language

is C;
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• H = (Xh,Σ, fh,Γh, x0h , Xmh
): nonblocking automaton whose marked language

is K.

Output:

• Hsup: nonblocking automaton whose marked language is the supremal C-

observable sublanguage of K with respect to G and Po.

Step 1: Compute Hsp := H‖Obs(H,Σo) = (Xsp,Σ, fsp,Γsp, x0sp , Xmsp);

Step 2: Set Hs = Hsp;

Step 3: Compute verifier automaton V = (Xv,Σ ∪ ΣR, fv,Γv, x0v , Xmv), by using

Algorithm 3.1 with inputs G, A and Hs;

Step 4: If V is not an empty automaton, then form the following set:

XΣ = {(xv, σ) ∈ Xv × Σ : (fv(xv, σ) ∈ Xmv) ∧

((σ ∈ Σo) ∨ ((σ 6∈ Σo) ∧ (R(σ) ∈ Γv(x))))}.

Step 5: If XΣ 6= ∅, then:

◦ 5.1: For all (xv, σ) ∈ XΣ, exclude from Hs transition (x, σ, fs(x, σ)), where

x is the state of Hs equal to the first component of xv;

◦ 5.2: Hs ← Trim(Hs);

◦ 5.3: Return to Step 3;

Step 6: Hsup ← Hs.

Notice that in Algorithm 3.2, after the computation of the state partition au-

tomaton Hsp, we execute Steps 3 to 5 iteratively. For each iteration, we compute

the verifier automaton V in Step 3 by using Algorithm 3.1 with the inputs G, A

and Hs. In Step 4, we form set XΣ, which represents all pairs (xv, σ), xv ∈ Xv and

σ ∈ Σ, responsible for the loss of relative observability according to Theorem 3.1.

Notice that, when XΣ = ∅, language Lm(Hs) is C-observable with respect to G and

Po. If XΣ 6= ∅, then, according to Lemma 3.2, for each (xv, σ) ∈ XΣ, there exists

a string s that reaches state x, equal to the first component of xv, and is continued

by σ such that sσ ∈ L(Hs) violates C-observability; in Step 5.1, we remove tran-

sition (x, σ, fs(x, σ)) of Hs and, in order to remove possible non-accessible and/or

non-coaccessible states, we apply Trim() operator in Step 5.2. When we remove
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transitions in Step 5.1, it is necessary to verify if the language marked by the new Hs

is C-observable, therefore, after carrying out Step 5.2 we return to Step 3. Notice

also that, at each iteration of Algorithm 3.2, we remove at least one transition from

automaton Hs v Hsp, which implies that the number of iterations is at most equal

to the number of transitions of automaton Hsp. Therefore, Algorithm 3.2 terminates

in finite steps.

Theorem 3.2 Consider automaton G and nonblocking automata A and H such

that Lm(A) = C, Lm(H) = K and K ⊆ C ⊆ Lm(G), and assume that automata

G, A and H satisfy Assumptions A1 and A2. Then, automaton Hsup obtained by

Algorithm 3.2 with inputs G, A and H marks the supremal C-observable sublanguage

of K with respect to G and Po.

Proof: Let K ′sup denote the supremal C-observable sublanguage of K with re-

spect to G and Po. Algorithm 3.2 finishes when XΣ = ∅. Therefore, according to

Theorem 3.1, Lm(Hsup) is C-observable with respect to G and Po, which implies

that Lm(Hsup) ⊆ K ′sup. Then, we only need to prove that K ′sup ⊆ Lm(Hsup). The

proof will be done using mathematical induction over the (finite) set of iterations in

Algorithm 3.2.

Basis step. At the beginning of the first iteration, Hs = Hsp. Therefore, K ′sup ⊆
Lm(Hs) = K;

Induction hypothesis. Suppose that K ′sup ⊆ Lm(Hs), up to the beginning of the

i-th iteration;

Inductive step. Let us now consider the (i+1)-st iteration. Notice that in the

i-th iteration, we have removed transitions from Hs in Steps 5.1 and 5.2. Since Trim

operator applied in Step 5.2 does not modify the marked language of an automaton,

strings are only removed from Lm(Hs) in Step 5.1. Thus we need only to analyze

Step 5.1.

By using Lemma 3.5, it can be concluded that for each string sm ∈ Lm(Hs) that is

removed from Lm(Hs) in Step 5.1, there exist s ∈ {sm}, s′ ∈ C and σ ∈ Σ such that

sσ ∈ {sm}, s′σ ∈ L(G) \L(Hs) and Po(s) = Po(s
′), i.e., sσ violates C-observability.

In accordance with the induction hypothesis, K ′sup ⊆ Lm(Hs) at the beginning of the

i-th iteration, and thus, at the beginning of the i-th, (L(G)\L(Hs)) ⊆ (L(G)\K ′sup),
which implies that s′σ ∈ L(G) \ K ′sup, and thus, since K ′sup is C-observable, sσ 6∈
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K ′sup, we conclude that sm 6∈ K ′sup. Therefore, all string sm removed from Lm(Hs)

does not belong to K ′sup,which implies that K ′sup ⊆ Lm(Hs) at the beginning of the

(i+1)-st iteration.

Finally, since Hsup is equal to the Hs obtained in the last iteration of Algo-

rithm 3.2, then K ′sup ⊆ Lm(Hsup), which concludes the proof.

We will now illustrate the application of Algorithm 3.2.

Example 3.3 Let us consider automata G, A and H of Example 3.1, shown in

Figures 3.1(a,b,c). When we apply Algorithm 3.2 with inputs G, A and H, we

obtain, in Step 1, automaton Hsp, which is depicted in Figure 3.3, and, in the first

iteration, we obtain the verifier automaton V depicted in Figure 3.4(a). Therefore,

according to Step 4, we obtain XΣ = {((1′, 0), α)} 6= ∅. This implies that Steps 5.1 to

5.3 must be performed: in Step 5.1 we remove transition (1′, α, 2) of Hs (Hs = Hsp),

because this transition is associated with string µα that violates C-observability. In

Step 5.3(a), we exclude state 1′ of Hs by applying the CoAc operation, because this

state becomes a blocking one after the exclusion of transition (1′, α, 2). Finally, at

the end of the first iteration, we obtain automaton Hs depicted in Figure 3.4(b).

In the second iteration, we obtain XΣ = ∅. Therefore automaton Hsup is equal

to automaton Hs, shown in Figure 3.4(b), and marks the supremal C-observable

sublanguage of K with respect to G and Po.

µR(0, 0) (1′, 0) α
(2, 1)

V :
0 1

βHs :
2

α
3

σ

(a) (b)

Figure 3.4: Automata obtained in the first iteration of Algorithm 3.2: V (a) and Hs

(b).

Remark 3.3 It could be argued that instead of using Cs = KΣ∗uo ∩C, we could use

C to compute V in order to identify the transitions that must be removed. However,

in doing so, we could eliminate strings that do not violate C-observability. In order

to illustrate this fact consider verifier Vc, shown in Figure 3.5, computed by using,

in Algorithm 3.1, C in the place of Cs. Notice that, transition ((2, 1), σ, (3, 2)) of

Vc satisfies condition (a) in Step 8 of Algorithm 3.1, since string s = µα ∈ K is

such that sσ ∈ K violates the C-observability, because s′ = α ∈ C, s′σ ∈ L(G) \K
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µR(0, 0) (1′, 0) α
(2, 1)

Vc : σ
(3, 2)

Figure 3.5: Verifier obtained with Algorithm 3.1 by using C instead of Cs.

and Po(s) = Po(s
′). However, if we remove transition (2, σ, 3) from Hsp (depicted

in Figure 3.3), we also eliminate string βασ, which must remain. On the other

hand, if we use the reduced ambient language Cs, string sσ does not violate Cs-

observability, but its prefix s does, which leads to the exclusion of transition (1′, α, 2),

and consequently the removal of string sσ from K, as expected from the proof of

Lemma 3.1.

3.4 Computation of Controllable and Observable

Sublanguages by Using Relative Observabil-

ity Property

Consider a system modeled by an automaton G whose set of events is Σ = Σc∪̇Σuc =

Σo∪̇Σuo, and let K be a language such that K ⊆ Lm(G). In this section, we will

present an algorithm for the computation of a controllable and observable sublan-

guage of K by using the concept of relative observability. This algorithm follows

the procedure presented in Subsection 2.5.3 for the computation of the supremal

controllable and C-observable sublanguage of K with respect to a previously de-

fined ambient language C. However, in the algorithm we will propose here, we

iteratively shrink the ambient language, as done in [15], with a view to obtaining a

more permissive controllable and observable sublanguage. The difference between

the algorithm proposed by CAI et al. [15] and our algorithm is that the former only

shrink the ambient language at the beginning of each computation of a relatively ob-

servable sublanguage, whereas in our algorithm, we shrink the ambient language at

the beginning and during each computation of a relatively observable sublanguage.

Algorithm 3.3 (Computation of K↑CRO)

Inputs:

• G = (Xg,Σ, fg,Γg, x0g , Xmg): automaton whose marked language is Lm(G);
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• H = (Xh,Σ, fh,Γh, x0h , Xmh
): nonblocking automaton whose marked language

is K.

Output:

• HCRO: nonblocking automaton whose marked language is a controllable (with

respect to L(G) and Σuc) and observable (with respect to G and Po) sublanguage of

K.

Step 1: Compute Hsp = H‖Obs(H,Σo);

Step 2: Set Hsr := Hsp ×G = (Xsr,Σ, fsr,Γsr, x0sr , Xmsr);

Step 3: Form the following set of states:

Xcont = {((xh, xobs), xg) ∈ Xsr : Γg(xg) ∩ Σuc ⊆ Γsr(((xh, xobs), xg))}.

Step 4: If (Xs \Xcont) 6= ∅, then:

◦ 4.1: Define X ′sr = Xcont, f
′
sr = fsr|Xcont, Γ′sr = Γsr|Xcont and X ′msr

= Xmsr ∩
Xcont;

◦ 4.2: Set Hsr = Trim(X ′sr,Σ, f
′
sr,Γ

′
sr, x0sr , X

′
msr

), and, if x0sr is deleted in

the previous calculation, then make HCRO be equal to an empty automaton and

STOP the algorithm;

◦ 4.3: Return to Step 3;

Step 5: Compute verifier automaton V = (Xv,Σ ∪ ΣR, fv,Γv, x0v , Xmv), by using

Algorithm 3.1 with inputs G, Hsr and Hsr;

Step 6: If V is not an empty automaton, then form the following set:

XΣ = {(xv, σ) ∈ Xv × Σ : (fv(xv, σ) ∈ Xmv) ∧

((σ ∈ Σo) ∨ ((σ 6∈ Σo) ∧ (R(σ) ∈ Γv(x))))}.

Step 7: If XΣ 6= ∅, then:

◦ 7.1: For all (xv, σ) ∈ XΣ, exclude from Hsr transition (x, σ, fs(x, σ)), where

x is the state of Hsr equal to the first component of xv;

◦ 7.2: Hsr ← Trim(Hsr);

◦ 7.3: Return to Step 3;
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Step 8: HCRO ← Hsr.

In Step 1 of Algorithm 3.3, we compute the state partition automaton Hsp from

H, and, in Step 2, we compute automaton Hsr = Hsp × G that refines G, i.e.,

∀s1, s2 ∈ L(Hsr), when fsr(x0sr , s1) = fsr(x0sr , s2), then fg(x0g , s1) = fg(x0g , s2). It

can be checked that Lemma 3.5 still holds when we replace Hsp with Hsr = Hsp×G.

Steps 3 and 4 of Algorithm 3.3 correspond to the procedure proposed by [87] for

the computation of the supremal controllable sublanguage of a regular language.

Finally, Steps 5 to 7 are similar to Steps 3 to 5 of Algorithm 3.2, except for the

following difference:

• When we remove some transition in Step 5 of Algorithm 3.2, we return to

Step 3 with a view to checking if the new Lm(Hs) has strings that violate the

relative observability with respect to ambient language Lm(A);

• When we remove some transition in Step 7 of Algorithm 3.3, we return to

Step 3 in order to compute the supremal controllable sublanguage of the new

Lm(Hs), which agrees with the fact that, since we only seek controllable sub-

languages, we can reduce the ambient language to the supremal controllable

sublanguage computed in Steps 3 and 4, and, thus, to achieve a more permis-

sive sublanguage by applying this smaller ambient language in Step 5.

The following proposition demonstrates the correctness of Algorithm 3.3 and

the improvement achieved by it in the language permissiveness. To this end, let

supCRO(K,K) denote the supremal controllable and K-observable sublanguage of

K, which can be obtained by applying Algorithm 3.2 in the procedure described in

Subsection 2.5.3.

Proposition 3.1 Consider automaton G with set of events Σ = Σc∪Σuc = Σo∪Σuo,

Po : Σ∗ → Σ∗o, and nonblocking automaton H such that Lm(H) = K and K ⊆
Lm(G), and let HCRO denote the automaton obtained by Algorithm 3.3 with inputs

G and H. Then, (i) Lm(HCRO) is controllable with respect to L(G) and Σuc and

observable with respect to L(G) and Po, and (ii) supCRO(K,K) ⊆ Lm(HCRO).

Proof: (i) Algorithm 3.3 finishes when ((Xs \ Xcont) = ∅) ∧ (XΣ = ∅). Then,

according to [87, Proposition 6.1], Lm(HCRO) is controllable with respect to L(G)
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and Σuc since (Xs \ Xcont) = ∅. In addition, according to Theorem 3.1, XΣ = ∅
implies that Lm(HCRO) is Lm(HCRO)-observable with respect to G and Po, and,

consequently, it is also observable with respect to L(G) and Po.

(ii) The proof will be done using mathematical induction over the (finite) set of

iterations in Algorithm 3.3.

Basis step. At the beginning of the first iteration, Hsr = Hsp × G. Therefore,

supCRO(K,K) ⊆ Lm(Hsr) = K;

Induction hypothesis. Suppose that supCRO(K,K) ⊆ Lm(Hsr), up to the be-

ginning of the i-th iteration;

Inductive step. Let us now consider the (i+1)-st iteration. Notice that in the

i-th iteration, we have removed states and/or transitions from Hsr either in Step 4

or in Step 7. According to [87, Proposition 6.1], every string sm removed from

Lm(Hsr) in Step 4 violates the controllability condition, that is, ∃s ∈ {sm} such

that {s}Σuc ∩ L(G) 6⊂ Lm(Hsr). Thus, in accordance with the induction hypoth-

esis, {s}Σuc ∩ L(G) 6⊂ supCRO(K,K), which implies that sm 6∈ supCRO(K,K)

since supCRO(K,K) is controllable. In addition, it can be concluded, by using

Lemma 3.5, that for each string sm removed from Lm(Hsr) in Step 7 of Algo-

rithm 3.3, there exists s ∈ {sm} that violates Lm(Hsr)-observability, that is, there

exist s′ ∈ Lm(Hsr) and σ ∈ Σ such that sσ ∈ {sm}, s′σ ∈ L(G) \ Lm(Hsr) and

Po(s) = Po(s
′). As a consequence, s′ ∈ K since Lm(Hsr) ⊆ K and, in accordance

with the induction hypothesis, s′σ ∈ L(G) \ supCRO(K,K), which implies that

sm 6∈ supCRO(K,K) since supCRO(K,K) is K-observable.

Finally, since HCRO is equal to the Hsr obtained in the last iteration of Algo-

rithm 3.3, then supCRO(K,K) ⊆ Lm(HCRO), which concludes the proof.

3.5 Computational Complexity Analysis of The

Proposed Algorithms

3.5.1 Computational Complexity of Algorithm 3.1

Steps 1 to 5 of Algorithm 3.1 are employed to construct automaton Hc by the

product composition of N , M and Gm that have (|Xh| + 2), (|Xa| + 1) and |Xg|
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states, respectively. Then, Hc has (|Xh| + 2) · (|Xa| + 1) · |Xg| states at most.

Since V = HR
m‖Hc and HR

m has |Xh| states, then V has, at most, |Xh| · (|Xh| +
2) · (|Xa| + 1) · |Xg| states. The search for transitions of V executed in Step 8 of

Algorithm 3.1 can be done with linear complexity with respect to the number of

transitions of V , therefore, the computational complexity of Algorithm 3.1 is equal

to |Xh| · (|Xh|+ 2) · (|Xa|+ 1) · |Xg| · |Σ|, i.e., O(|Xh|2 · |Xa| · |Xg| · |Σ|).
Consider now the following proposition.

Proposition 3.2 Let G1 = (X1,Σ1, f1,Γ1, x01 , Xm1) and G2 = (X2,Σ2, f2,Γ2, x02 ,

Xm2) such that L(G1) ⊆ L(G2), Lm(G1) ⊆ Lm(G2). In addition, assume that for

every s, s′ ∈ L(G1) such that f1(x01 , s) = f1(x01 , s
′), then f2(x02 , s) = f2(x02 , s

′).

Construct two automata G′1 and G′2 from G1 and G2 by adding n1 and n2 new

states, respectively, and only adding new transitions from the states of G1 and G2 to

the new states and between the new states. Then, automaton G′1 × G′2 has at most

|X1|+ n1(|X2|+ n2) states.

Proof: In accordance with the construction of G′1 and G′2, we conclude that

(G1 × G2) v (G′1 × G′2) and every state of G′1 × G′2 outside G1 × G2 has the first

component equal to one of the new states added to G1. Therefore, G′1 × G′2 has,

at most, |X1×2| + n1(|X2| + n2) states, where X1×2 denotes the set of states of au-

tomaton G1×G2. Define function Θ : X1×2 → X1 as the mapping Θ((x1, x2)) = x1,

∀(x1, x2) ∈ X1×2. Function Θ is bijective since, for every s, s′ ∈ L(G1), f1(x01 , s) =

f1(x01 , s
′) ⇒ f2(x02 , s) = f2(x02 , s

′) and L(G1) ⊆ L(G2). Therefore, |X1×2| = |X1|,
which concludes the proof.

In the verification of observability, H = A and, thus, applying Proposition 3.2

with G1 = H, G2 = A = H, G′1 = N and G′2 = M , we conclude that automaton

N ×M has at most 3|Xh|+ 2 states, and, consequently, automaton V = HR
m‖(N ×

M×Gm) has |Xh| ·(3|Xh|+2) · |Xg| states, at most. Therefore, the complexity of the

verification of language observability by applying Algorithm 3.1 is O(|Xh|2·|Xg|·|Σ|),
which is equal to the complexity of the algorithm for the verification of observability

proposed by [78].
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3.5.2 Computational Complexity of Algorithm 3.2

In the first step of Algorithm 3.2, we compute automaton Hsp, that has, at most,

2|Xh| · |Xh| states and 2|Xh| · |Xh| · |Σ| transitions. Since we execute Steps 3 to

5 iteratively, and, for each iteration, at least one transition is removed from au-

tomaton Hsp, then, the number of iterations is at most equal to the number of

transitions of Hsp. In addition, at each iteration, we compute verifier V using Al-

gorithm 3.1 with inputs Hs (subautomaton of Hsp), A and G. Since Hs and A

satisfy Assumption A1, by applying Proposition 3.2 with G1 = Hs, G2 = G′2 = A

and G′1 = N , we conclude that automaton N × A has at most |Xs| + 2|Xa| states,

where |Xs| ≤ 2|Xh| · |Xh|. Moreover, since A and G satisfy Assumption A2, by

using Proposition 3.2 with G1 = N × A, G2 = G′2 = Gm and G′1 = N ×M , we

conclude that automaton Hc = N × M × Gm has at most |Xs| + 2(|Xa| + |Xg|)
states and, consequently, automaton V has, at most, |Xs|2 + |Xs| · 2(|Xa| + |Xg|)
states and, thus, the computational complexity of one iteration of Algorithm 3.2 is

O([|Xs|2 + |Xs| · (|Xa|+ |Xg|)] · |Σ|). Therefore, the complexity of Algorithm 3.2 is

O
([

23|Xh| · |Xh|3 + 22|Xh| · |Xh|2 · (|Xa|+ |Xg|)
]
· |Σ|2

)
.

When Algorithm 3.2 is applied for the computation of the supremal K-observable

sublanguage of K with respect to G and Po, then A = H, and, thus, the complex-

ity of Algorithm 3.2 becomes O
([

23|Xh| · |Xh|3 + 22|Xh| · |Xh|2 · |Xg|
]
· |Σ|2

)
, which is

smaller than those complexities of the algorithms proposed in [15] and [20], which are

O(2[(2|Xh|·|Xh|+1)|Xg |+|Xh|] ·|Xh|·|Σ|) and O
(
23|Xg |·|Xh| · |Xg|6 · |Xh|7 · |Σ|

)
, respectively.

Remark 3.4 It is important to remark that, when H is already a state parti-

tion automaton, i.e. when Hsp = H, the complexity of Algorithm 3.2 becomes

O ((|Xh|3 + |Xh|2 · |Xg|) · |Σ|2), being therefore polynomial. Notice that the state

partition assumption was made in [15], but the complexity of the algorithm pro-

posed in [15] is still exponential, being O(2(|Xh|+1)|Xg | · |Xh| · |Σ|). Therefore, even in

this situation, the algorithm proposed here performs better.

3.5.3 Computational Complexity of Algorithm 3.3

In Step 2 of Algorithm 3.3, we compute automaton Hsr, that has, at most,

2|Xh| · |Xh| · |Xg| states and 2|Xh| · |Xh| · |Xg| · |Σ| transitions. Since we execute
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Steps 3 to 7 iteratively, and, for each iteration, at least either one state (and its

associated transitions) or one transition of Hsr is removed from automaton Hsr,

then, the number of iterations is at most equal to the number of transitions of Hsr.

Steps 3 and 4 are computed with linear complexity with respect to the number

of transitions of Hsr. In Step 5, we compute verifier V using Algorithm 3.1 with

inputs G, Hsr, and Hsr. Notice that, since A = Hsr, we conclude that automa-

ton M × N has |Xsr| + 2 states, where the new states are (xd, xd1) and (xd, xd2).

Moreover, in accordance with the construction of Hsr in Step 2, ∀s1, s2 ∈ L(Hsr),

if fsr(x0sr , s1) = fsr(x0sr , s2), then fg(x0g , s1) = fg(x0g , s2). Thus, by using Propo-

sition 3.2 with G1 = Hsr, G2 = G′2 = Gm and G′1 = M × N , we conclude that

automaton Hc = N ×M ×Gm has at most |Xsr| + 2|Xg| states and, consequently,

automaton V has, at most, |Xsr|2 +2|Xsr| · |Xg| states and (|Xsr|2 +2|Xsr| · |Xg|) · |Σ|
transitions, which implies that the computational complexities of Steps 5 to 7 of

Algorithm 3.3 are O ((|Xsr|2 + |Xsr| · |Xg|) · |Σ|). From the computational com-

plexities of Steps 3 to 7, we can conclude that each iteration of Algorithm 3.3

is O ((|Xsr|2 + |Xsr| · |Xg|) · |Σ|). Therefore the complexity of Algorithm 3.3 is

O
(
23|Xh| · |Xh|3 · |Xg|3 · |Σ|2

)
.

3.6 Concluding Remarks

In this chapter, we presented a new property of relative observability which was

leveraged in order to derive three new algorithms: the first one for the verification

of relative observability and the second one for the computation of the supremal rela-

tively observable sublanguage; the former has polynomial time complexity, whereas

the latter, although, in general, has exponential complexity, it will have polyno-

mial complexity when the automaton that marks the specification language is state

partition. The third algorithm, which is based on the second one, can be used to

compute a controllable and observable sublanguage of a regular language by using

the concept of relative observability.
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Chapter 4

Supervisory Control of Networked

Discrete Event Systems With

Timing Structure

In the standard supervisory control problem described in Section 2.5 [23, 24], it was

assumed that supervisors observe the occurrence of an event immediately after it

has been executed by the plant and without loss of observation. In [1] and [53], we

have weakened this assumption by assuming loss of observations caused by either

intermittent sensor malfunction (when a sensor fails intermittently to issue a signal

associated with an event occurrence) or intermittent communication problems (a

signal issued by a sensor sometimes does not reach the supervisor). As a conse-

quence, the event occurrence is not observed by the supervisor. Nevertheless, we

still assumed, in [53] and [1], that the supervisor instantaneously observes the occur-

rences of observable events. When the plant and supervisors are either far from each

other or a more complex network is used to connect them, communication delays

are unavoidable and must be taken into account. Such a control problem is referred,

in the literature, to as supervisory control of networked discrete event systems [14].

In this chapter, we consider the supervisory control problem of Networked Dis-

crete Event Systems With Timing Structure (NDESWTS) subject to bounded com-

munication delays and intermittent loss of observations. We assume that the com-

munication between the plant and the supervisor is carried out through a network

that can have several channels, so that communication delays can cause changes in
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the order of the observations. Preliminary versions of the results presented in this

chapter have been published in [88, 89]. In addition, the model for NDESWTS pro-

posed here has also been used to address the codiagnosability of NDESWTS subject

to event communication delays and loss of observations [66, 67].

It is worth remarking that, in this chapter, we will not address the blocking

properties of supervisory control, which is equivalent to assuming only prefix-closed

admissible languages. Therefore, the sets of marked states will be, from this point

onwards, omitted in the automaton definition.

The remainder of this chapter is structured as follows. In Section 4.1, we for-

mally define NDESWTS, and present a motivating example, and propose a new

model for NDESWTS in Section 4.2. In section 4.3, we formulate the supervisory

control problem for NDESWTS (Subsection 4.3.1), present some new results, such

as, a necessary and sufficient condition for the existence of networked supervisors

(Subsection 4.3.2), and combine these results to present a systematic way to de-

sign networked supervisors (Subsection 4.3.3). We present some final comments in

Section 4.4.

4.1 Networked Discrete Event Systems With

Timing Structure

We will consider the system structure depicted in Figure 4.1, where the plant is

modeled by an automaton G = (X,Σ, f,Γ, x0) which communicates with the su-

pervisory control system through a communication network; the information flow is

indicated by dashed lines. The occurrence of observable events are communicated

to the supervisor through m different communication channels (referred here to as

observation channels), and the supervisor control action is transmitted to the low

level controllers through n different communication channels (referred here to as

control channels).

We make the following assumptions.

A1. No event can be transmitted through two different observation channels.

A2. Each observation channel ochi, i = 1, . . . ,m, is modeled by a first-in first-out
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Figure 4.1: Networked supervisory control architecture.

(FIFO) queue, and the events whose occurrences are transmitted through ochi

are subject to observation delays1 whose upper bound is known a priori to be

equal to Ti, where Ti is a finite positive real number different from zero.

A3. The set of observable events is partitioned, with respect to loss of observations,

as Σo = Σlo∪̇Σnlo , where Σlo (resp. Σnlo) is the set of observable events that

are subject (resp. not subject) to loss of observations.

A4. The control actions corresponding to controllable events transmitted through

control channels are not subject to transmission delays or losses.

According to Assumption A1, the set of observable events is partitioned as Σo =⋃̇m

i=1Σo,i, where Σo,i, i = 1, . . . ,m, is the set of observable events whose occurrences

are transmitted through observation channel ochi. Assumption A2 implies that the

maximal observation delays must be different from zero for all observable events and

are determined in accordance with their associated observation channels. According

to Assumption A3, the events that belong to Σlo are subject to losses of observa-

tions caused either by package losses in the observation channels or malfunctioning

sensors. Finally, according to Assumption A4, we will not consider delays and losses

of control actions.

In order to model the effects of the dynamic behavior of real systems, we define

the partial function tmin : X × Σ → R+ (R+ denotes the set of non-negative real

numbers) where tmin(x, σ) = τ , for σ ∈ Γ(x), means that event σ can only occur at

1The observation delay of an event corresponds to the time interval elapsed between its occur-
rence in the plant and its successful observation by the supervisor, that is, the observation delay
includes the time intervals taken to record and to transmit the event occurrence.
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state x if the time elapsed from the last transition is greater than (but not equal

to) τ . In addition, we assume that, for all x ∈ X and σ ∈ Γ(x), tmin(x, σ) > 0.

The need for excluding τ = 0 is imposed by a technical constraint to allow the

NDESWTS to be converted into an untimed finite-state automaton. With a slight

abuse of language, we will refer to tmin(s, σ) as the minimal activation time. Partial

function tmin is extended to domain X × Σ∗ in the following recursive manner: for

all x ∈ X, tmin(x, ε) = 0, and tmin(x, sσ) = tmin(x, s) + tmin(f(x, s), σ) for s ∈ Σ∗

and σ ∈ Σ.

Example 4.1 Consider the NDESWTS whose communication network is depicted

in Figure 4.2(a). The plant is modeled by automaton G = (X,Σ, f, Γ, x0) depicted

in Figure 4.2(b), where Σ = {α, β, γ, µ, η}, Σo = {α, β, γ}, Σc = {α, γ, µ, η} and

Σlo = ∅. In Figure 4.2(b), the time value attached to each transition (x, σ, f(x, σ))

of G represents the minimal activation time tmin(x, σ). According to Figure 4.2(a),

the occurrences of events in Σo,1 = {α} are transmitted through observation channel

Supervisor

channel och1 channel och2channel cch1

Plant G

Σc,1 = {α, γ, µ, η} Σo,1 = {α} Σo,2 = {β, γ}
T1 = 0.9s T2 = 0.3s

(a)

0.25s/α

0.01s/α

x0 x1
G :

x5x4

0.8s/µ x2
0.2s/γ x3

0.24s/η 0.5s/β

x6

0.1s/γ

(b)

Figure 4.2: Networked discrete event system: communication network (a) and au-
tomaton G (b).
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och1 and their maximal observation delay is T1 = 0.9s, and the occurrences of events

in Σo,2 = {β, γ} are transmitted through observation channel och2 and their maximal

observation delay is T2 = 0.3s.

Let us assume that plant G generates string s1 = ηαβγ, formed with a single

unobservable event (η). As illustrated in Figure 4.3, the occurrence of event α is

transmitted through channel och1, and, thus, its maximal observation delay is T1 =

0.9s, whereas the occurrence of events β and γ are transmitted through channel och2,

and, thus, their maximal observation delay is T2 = 0.3s. As a consequence, event α

may be observed by the supervisor in the following ways: (i) before the occurrence of

γ, when the delay of the observation of α is smaller than the time elapsed between

the occurrences of α and γ; (ii) between the occurrence and observation of event γ,

since the observation of α can be delayed by at most 0.9s and the plant can generate

βγ after 0.7s has elapsed since the occurrence of event α; (iii) after the observation

of γ, since, as shown before, α can be observed after the occurrence of γ and the

occurrences of α and γ are transmitted through different channels. The supervisor

may also observe event β after the occurrence of event γ, since T2 = 0.3s and γ may

occur after 0.2s has elapsed since the execution of event β. However, regardless of

the interval of observation of β overlaps the interval of observation of γ (red interval

in Figure 4.3), the supervisor cannot observe γ before observing β, since β and γ

are transmitted through the same channel, which, according to Assumption A2, is

modeled by a FIFO queue.

Let us now assume that plant G generates string s2 = αµγ. As illustrated in

Figure 4.4, in this case, although event α may be observed after the occurrence of

α β γ

at least 0.5s

at most 0.3s

η

at least 0.01s

at most 0.9s

transmission of α

transmission of β

at least 0.24s at least 0.2s

at most 0.3s

transmission of γ

Figure 4.3: Possible cases of observation of string s1 = ηαβγ.
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at least 0.8sat least 0.25s

at most 0.9s

transmission of α

at least 0.2s

at most 0.3s

transmission of γ

Figure 4.4: Possible cases of observation of string s2 = αµγ.

event µ (which is unobservable), it cannot be observed after the occurrence of γ,

since the plant can only generate string µγ at least 1s after executing event α, whose

observation can be delayed by at most 0.9s.

Therefore, although both strings s1 = ηαβγ and s2 = αµγ have one event be-

tween α and γ, event α can be observed by the supervisor after the occurrence (or

observation) of γ when the plant generates string s1, but it cannot be observed after

the occurrence (or observation) of γ when the plant generates string s2.

Based on the previous example we may draw the following conclusions:

1. When several communication channels are used to transmit event occurrences

to the supervisor, changes in the order of the received observations are likely

to occur. Such a possibility does not arises in the previous approaches [14, 30–

37, 39–47], since they assume that the observations are always received in the

same order as the event occurrences.

2. The concept of step [14, 32–36, 39–46, 49, 50, 54–56, 59, 60] cannot be used to

correctly model the system presented in the example. This is so because string

s1 = ηαβγ requires two steps to model all possible delays in the observation of

event α, whereas string s2 = αµγ requires only one step to model all possible

delays in the observation of event α. Therefore, if we assume T1 = 2 steps,

then the supervisory control problem may become more restrictive, since we

are considering that α can be observed after the occurrence (or observation)

of γ when the plant executes string s2, which cannot occur in practice. On

the other hand, assuming T1 = 1 step may lead to wrong control actions when

α is observed after either the occurrence or the observation of γ during the

execution of string s1.
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3. If we use the model based on the TDES framework proposed in [38], which is

used in [37, 47, 58], the state dimension of the corresponding untimed model

would be huge; for example, as we can see in Figure 4.2(b), tmin(x1, µ) =

80× tmin(x4, α), which implies that, in the automaton model proposed in [38],

transition (x1, µ, x2) becomes a path with at least 80 states connected by

transitions labeled by the tick event since tmin(x4, α) = 0.01s forces the tick

event to be smaller than 0.01s.

4.2 An Untimed Discrete Event System Charac-

terization of NDESWTS

In this section, we will propose a new model formalism for NDESWTS subject

to delays and losses of observations that allows us to represent distributed systems

with heterogeneous temporal behavior and a multi-channel communication network.

We will improve the observation delay model proposed in [49] to directly apply time

information instead of using the concept of step. The modeling of loss of observations

will be carried out by using the Dilation operation approach proposed in [62] to

model intermittent loss of observations in the context of codiagnosability of DES.

We will model the behavior of a NDESWTS by means of an automaton Ge =

(Xe,Σe, fe,Γe, x0e) whose generated language is defined over the extended set of

events,

Σe := Σ ∪ Σs
o ∪ Σl

o, (4.1)

where the added event sets Σs
o and Σl

o are used to model, respectively, the successful

observation and the loss of observation of observable events, being defined as follows:

Σs
o := {σs : σ ∈ Σo} and Σl

o := {σl : σ ∈ Σlo}. (4.2)

As shown in the motivating example presented in Subsection 4.1, a given string

executed by the plant can generate a set of different observations. As a consequence,

every string s ∈ L(G) can be represented by a set of extended strings in Σ∗e defined in

accordance with Σo,i and Ti, i = 1, ...,m, tmin and Σlo , as illustrated in the following

example.

73



Example 4.2 Consider the NDESWTS presented in Example 4.1, and depicted in

Figures 4.2(a,b), where Σ = {α, β, γ, µ, η} and Σo = {α, β, γ}. Assume that event

β is subject to loss of observations, i.e., Σlo = {β}. Let us suppose that the plant

generates string s = ηαβ. Then, due to delays and loss of observations, the following

extended strings can be generated:

• se,1 = ηααsββs, that models the case when the delay of the observation of α

is smaller than the time interval between the occurrences of α and β (inside

Time Interval 1 of Figure 4.5);

• se,2 = ηαβαsβs, that models the case when the supervisor observes α between

the occurrence of β and its observation (inside Time Interval 2 of Figure 4.5);

• se,3 = ηαββsαs, that models the case when the supervisor firstly observes event

β and only observes event α after observing β (inside Time Interval 3 of

Figure 4.5);

• ηααsββl, ηαβαsβl and ηαββlαs that model the cases when the observation of

β is lost. Notice that these strings have been obtained from the previous ones

by replacing βs with βl.

• Extended strings ηααsβ, ηαβ, ηαβαs, ηαββs and ηαββl model the cases when

some observations have not reached the supervisor yet, being, therefore, prefixes

of the aforementioned extended strings.

α β βs, βl

at least 0.5s
at most 0.3s

α is observed

observation of β
after the

at most 0.9s

η

at least 0.01s

α is observed between

and its observation
the occurrence of β

α is observed

occurrence of β
before the

Interval 1 Interval 2 Interval 3

Figure 4.5: Possible cases of observation of string s = ηαβ modeled by extended
strings over Σe.
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Let us now define the following functions:

• ψ : Σ∗o → Σs
o
∗, where ψ(ε) = ε, ψ(σ) = σs, for all σ ∈ Σo, and ψ(sσ) =

ψ(s)ψ(σ), for all s ∈ Σ∗o and σ ∈ Σo. Function ψ is extended to languages by

applying it to all strings in the language.

• ψ−1 : Σs
o
∗ → Σ∗o, which is the inverse function of ψ.

In addition, let us define the following projections: Pe : Σ∗e → Σ∗ and Pe,s : Σ∗e →
Σs
o
∗.

Example 4.3 Consider the NDESWTS presented in Example 4.1, which is depicted

in Figures 4.2(a,b), where Σ = {α, β, γ, µ, η}, Σo = {α, β, γ} and Σlo = {β}, and

assume again that string s = ηαβ has been generated by the plant.

Firstly, notice that, all extended strings presented in the previous example have

the same projection over Σ∗, being equal to s.

Now, observe that an extended string se ∈ Σ∗e models the case when the plant

generates string Pe(se), and the supervisor observes string ψ−1(Pe,s(se)); for ex-

ample, extended strings se,1 = ηααsββs and se,2 = ηαβαsβs represent the case

when the supervisor observes αβ since ψ−1(Pe,s(se,1)) = ψ−1(Pe,s(se,2)) = αβ,

whereas extended string se,3 = ηαββsαs models the case when the supervisor ob-

serves ψ−1(Pe,s(se,3)) = βα. On the other hand, extended string se,4 = ηαββlαs

models a case when the supervisor makes its decision based on the observation of

ψ−1(Pe,s(se)) = α, since the observation of β is lost.

In order to characterize the set of extended strings associated with a string, or

a sublanguage, of L(G), we will first introduce a function that models the effects of

possible observation delays. To this end, let us define projections Pe,i : Σ∗e → Σ∗o,i

and Pe,si : Σ∗e → [ψ(Σo,i)]
∗. In addition, for σ ∈ (Σ ∪ Σs

o) and w ∈ (Σ ∪ Σs
o)
∗, let

σ(j) ∈ w denote that there are, at least, j occurrences of event σ in string w, being

σ(j) the j-th occurrence of σ in w. In addition, let wσ(j) be the prefix of w that

finishes at the j-th occurrence of σ in w, if σ(j) ∈ w, or w, if σ(j) 6∈ w.

Definition 4.1 (delay extension function) The Delay extension function is the

mapping

Dd : L(G) → 2(Σ∪Σs
o)∗

s 7→ Dd(s)
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where w ∈ Dd(s) if w satisfies the following conditions:

1. Pe(w) = s.

2. For all σ ∈ Σo,i, i = 1, . . . ,m, and σ(j) ∈ w:

tmin(x0, Pe(wσ(j)
s

))− tmin(x0, Pe(wσ(j))) < Ti. (4.3)

3. For all σs ∈ ψ(Σo,i), i = 1, . . . ,m, and σ
(j)
s ∈ w:

σ(j) ∈ w
σ
(j)
s

(4.4)

and

‖Pe,i(wσ(j))‖ = ‖Pe,si(wσ(j)
s

)‖. (4.5)

The extension of Dd to domain 2L(G) is defined as Dd(L) :=
⋃
s∈LDd(s).

Condition 1 of Definition 4.1 ensures that w is obtained from s by inserting events

only from Σs
o. Condition 2 enforces that the delay between the occurrence of an event

σ ∈ Σo,i and its observation σs = ψ(σ) is not larger than the delay upper bound

Ti (Equation (4.3)). Finally, Condition 3 ensures that the observation of an event

σs ∈ Σs
o can only occur after event σ = ψ−1(σs) has occurred in w (Equation (4.4)),

and that observations of events transmitted through the same observation channel

must be in the same order of their occurrences in s (Equation (4.5)).

We now redefine dilation operation [1, 62] in domain (Σ∪Σs
o)
∗, which is denoted

by Dl and models the effects of loss of observations in extended languages, i.e., when

an event σ ∈ Σlo occurs, either σs or σl will occur.

Definition 4.2 (dilation function [62]) The Dilation function Dl : (Σ ∪Σs
o)
∗ →

2Σ∗e is recursively defined as:

Dl(ε) := {ε},

Dl(σ) := {σ},∀σ ∈ Σ,

Dl(σs) :=

{σs}, if σs ∈ Σs
o \ ψ(Σlo),

{σs, σl}, if σs ∈ ψ(Σlo),

Dl(wσ) := Dl(w)Dl(σ), ∀w ∈ (Σ ∪ Σs
o)
∗, ∀σ ∈ (Σ ∪ Σs

o).
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The extension of Dl to domain 2(Σ∪Σs
o)∗ is defined as Dl(L) :=

⋃
w∈LDl(w).

Finally, in order to characterize the joint effects of delays and losses of observa-

tions, we define the extension operation as the composition of the delay extension

function with the dilation function, as follows.

Definition 4.3 (extension function) The Extension function is the mapping

E : 2L(G) → 2Σ∗e

L 7→ E(L) := Dl(Dd(L)).

According to Definition 4.3, for a given string s ∈ L(G), extended language

E({s}) (hereafter, denoted simply by E(s)) is formed by those extended strings

that can be generated when s is executed by the plant in the presence of delays and

loss of observations. The following example illustrates operations Dd, Dl and E.

Example 4.4 Consider again the NDESWTS depicted in Figures 4.2(a,b), where

Σ = {α, β, γ, µ, η}, Σo = {α, β, γ} and Σlo = {β}.
In order to highlight how Definition 4.1 works, consider string s1 = αµγ ∈ L(G)

and extended strings w = ηααs, v = αµγαsγs and u = ααsµγβsγs. Notice that these

strings cannot be generated when string s1 is executed by the plant since: (i) string w

cannot be generated when s1 is executed since Pe(w) = ηα, which implies, according

to Condition 1 of Definition 4.1, that it corresponds to the execution of string ηα;

(ii) regarding string v, notice that, although the delay upper bound of the observa-

tion of α is 0.9s, its observation, modeled by event αs in v, accounts for a delay of,

at least, 1s. This is so because, according to Condition 2 of Definition 4.1 (Equa-

tion (4.3)), tmin(x0, Pe(vα(1)
s

)) − tmin(x0, Pe(vα(1))) = tmin(x0, αµγ) − tmin(x0, α) =

1.25−0.25 = 1 > 0.9, and; (iii) finally, u has one occurrence of event βs which is not

possible since, although β is an observable event, there has not been any occurrence

of event β in string s1, which is captured by Condition 3 of Definition 4.1 (Equa-

tion (4.4)), since β(1) 6∈ u
β
(1)
s

= ααsµγβs. Consider now string s2 = ηαβγ ∈ L(G)

and extended string z = ηααsβγγsβs. Notice that this extended string cannot be

generated when the plant executes string s2 since the observations of events β and

γ (βs and γs, respectively) are incorrect, since these events are transmitted through
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the same observation channel and event γ has occurred after event β in s2, which is

also captured by Condition 3 of Definition 4.1 (Equation (4.5)).

Finally, consider that string s = ηαβ has been generated by the plant. By apply-

ing Definition 4.1, we obtain, as shown in Example 4.2, the following set of extended

strings in (Σ∪Σs
o)
∗ that can be generated when the plant executes s and only delays

of observations are taken into account:

Dd(s) = {ηαβ, ηααsβ, ηαβαs, ηαββs, ηααsββs, ηαβαsβs, ηαββsαs}.

Notice that all strings in Dd(s) satisfy Conditions 1, 2 and 3 of Definition 4.1. By

applying Dilation operation to Dd(s), we obtain, according to Definitions 4.2 and 4.3,

the following set that is formed with all extended strings in Σ∗e that can be generated

when the plant executes s in the presence of delays and loss of observations:

E(s) = Dl(Dd(s)) = Dd(s) ∪ {ηαββl, ηααsββl, ηαβαsβl, ηαββlαs}.

We will now propose an algorithm to construct, recursively, automaton Ge such

that L(Ge) = E(L(G)). In order to do so, each state of this automaton will have

two components, as follows: the first component will account for the corresponding

state x of plant G, and the second component will account for the observable events

that were generated by G in order to reach state x and whose observations are being

transmitted to the supervisor together with the minimum time elapsed between the

occurrences of these observable events. For example, as illustrated in Figure 4.6,

state (x3, α0.5β0.2γ) of Ge corresponds to the case when the plant has reached

state x3 after the execution of a string s ∈ L(G) that contains, in that order, the

observable events α, β and γ whose observations are still being transmitted to the

supervisor, and the times elapsed between the occurrences of α and β (resp. β and

γ) are, at least, equal to 0.5 (resp. 0.2) time units. Finally, it is important to remark

that state (x3, α0.5β0.2γ) is viable since it is possible, as shown in Example 4.1, for

string ηαβγ to occur before α is observed.

The definition of the second components of the states of Ge is carried out by

manipulating observable events and non-negative real numbers. To this end, let

Q := {q = q1q2 · · · ql : ∀i ∈ {1, 2, ..., l}, (qi ∈ Σo) ∨ (qi ∈ R+)} be a set whose
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x3,

Associated plant state

α → β → γ

Observable events whose occurrences
are still being transmitted

Order of occurrence in the plant:

Minimal time elapsed between
the occurrences of β and γ

Minimal time elapsed between
the occurrences of α and β

α 0.5 β 0.2γ)(

Figure 4.6: Example of a possible state of automaton Ge.

elements are strings formed by observable events and non-negative real numbers.

In the following definition, we propose some operations over Q, and a function

that relates an observable event with the observation channel used to transmit its

occurrence to the supervisor.

Definition 4.4

• The function link : Q×Q → Q is a mapping where, for every pair q = q1 · · · qk
and p = p1 · · · pv belonging to Q,

link(q, p) :=

 q1 · · · qk−1 (qk + p1) p2 · · · pv, if qk, p1 ∈ R+

q1 · · · qk p1 · · · pv, otherwise.

• The function cut : Q → Q is a mapping where, for all q = q1q2 · · · qk ∈ Q,

cut(q) :=

 qy qy+1 · · · qk, if (∃y ≤ k)[(qy ∈ Σo) ∧ (qj ∈ R+,∀j ∈ {1, ..., y − 1})]
0, if qy ∈ R+,∀y ∈ {1, 2, ..., k}.

• The function add : Q×X ×Σ→ Q is a mapping where, for all q ∈ Q, x ∈ X
and σ ∈ Σ,

add(q, x, σ) :=


cut(link(q, tmin(x, σ)σ)), if (σ ∈ Σo) ∧ (σ ∈ Γ(x))

cut(link(q, tmin(x, σ))), if (σ ∈ Σuo) ∧ (σ ∈ Γ(x))

undefined, otherwise.

• The function removal, rem : Q × N → Q is a mapping where, for all q =
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q1q2 · · · qk ∈ Q,

rem(q, y) :=



cut(q2 · · · qk), if (y = 1)

link(q1 · · · qy−1, qy+1 · · · qk), if (1 < y < k)

cut(q1 · · · qk−1), if (y = k)

undefined, otherwise.

• The observation channel index function is the mapping och : Σo → {1, ...,m}
defined as och(σ) = i, for all σ ∈ Σo,i and i ∈ {1, ..., n}.

According to Definition 4.4, string link(q, p) is obtained by concatenating strings

q and p in the usual manner except when the last element of q and the first element

of p are numbers; in this case, these elements are added. String cut(q) is formed

from q either by removing the largest prefix that is composed with numbers only,

or is set as 0, when q is solely formed by numbers. Function add() will be used

to define the second component of the state reached from a state (x, q) of Ge by a

transition that is labeled by an event σ ∈ Σ, and, thus, string add(q, x, σ) is formed

by concatenating q with the minimal activation time tmin(x, σ) and, in the case

when σ ∈ Σo, by also concatenating with σ. Function rem() will be used to define

the second component of the state reached by a transition labeled by an event in

(Σs
o ∪ Σl

o) (i.e., a transition that represents either a successful observation or a loss

of observation), and, consequently, string rem(q, y) is formed from q by removing its

y-th element, which corresponds to the event whose observation has been finished or

lost. Finally, och(σ) is equal to the index i associated with the observation channel

used to transmit the occurrences of event σ.

We now present an algorithm for the construction of automaton Ge. The reader

may find useful to follow the algorithm with the help of Example 4.5.

Algorithm 4.1 (Construction of automaton Ge)

Inputs:

• G = (X,Σ, f,Γ, x0): automaton that models the plant of the NDESWTS;

• Σo,i and Ti, for all i ∈ {1, ...,m}: sets of observable events and delay upper

bounds of each observation channel;

• Σlo: set of events subject to losses of observations;
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• tmin(x, σ), ∀x ∈ X and ∀σ ∈ Γ(x): minimal activation times.

Output:

• Ge = (Xe,Σe, fe,Γe, x0e).

Step 1: Define the initial state x0e = (x0, 0) and Xe = ∅;
Step 2: Define event sets Σs

o, Σl
o and Σe according to Equations (4.1) and (4.2);

Step 3: Create a FIFO queue F = [x0e ];

Step 4: While F 6= ∅ do:

◦ 4.1: (x, q)← head(F ) and dequeue(F ).

◦ 4.2: Xe ← Xe ∪ {(x, q)};

◦ 4.3: Let q = q1 q2 · · · qk. Define the set of indexes Io = {j ∈ {1, . . . , k} : qj ∈
Σo};

◦ 4.4: If Io 6= ∅, then, ∀y ∈ Io, set minet(y) as the sum of the real numbers on

the right of qy in q;

◦ 4.5: For all σ ∈ Γ(x):

(a) x̃e = fe((x, q), σ) =
(f(x, σ), add(q, x, σ)), if (Io = ∅) ∨ [(minet(y)+

+tmin(x, σ)) < Toch(qy),∀y ∈ Io];
undefined, otherwise.

(b) If x̃e is defined and (x̃e 6∈ Xe) ∧ (x̃e 6∈ F ), then enqueue(F, x̃e);

◦ 4.6: For each observation channel ochi, i = 1, ...,m, form set Yi = {j ∈ Io :

qj ∈ Σo,i}. If Yi 6= ∅, then:

(a) Compute y = min(Yi);

(b) Define x̂e = fe((x, q), ψ(qy)) = (x, rem(q, y));

(c) If qy ∈ Σlo, then define fe((x, q), qy l) = x̂e;

(d) If (x̂e 6∈ Xe) ∧ (x̂e 6∈ F ), then enqueue(F, x̂e);

Step 5: Define Γe(xe) = {σ ∈ Σe : fe(xe, σ) is defined}, for all xe ∈ Xe.

Example 4.5 Consider the NDESWTS depicted in Figures 4.2(a,b), where Σ =

{α, β, γ, µ, η}, Σo = {α, β, γ} and Σlo = {β}. Using Algorithm 4.1 with inputs G,
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Σo,1 = {α}, Σo,2 = {β, γ}, T1 = 0.9s, T2 = 0.3s, Σlo = {β}, and tmin, defined

according to Figure 4.2(b), we obtain automaton Ge depicted in Figure 4.7, whose

construction can be explained as follows.
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Figure 4.7: Automaton Ge obtained by using Algorithm 4.1 in Example 4.5.

In Step 1, we define the initial state of automaton Ge as x0e = (x0, 0),

where the second component indicates that no observation is being transmitted to

the supervisor at state (x0, 0). In Step 2, we create the sets of events Σe =

{α, β, γ, µ, η, αs, βs, γs, βl}, Σs
o = {αs, βs, γs} and Σl

o = {βl}. In Step 3, we cre-

ate a queue of states F = [(x0, 0)], and, in the sequence, we repeat Step 4 until F

becomes empty.

In Steps 4.1 and 4.2, we set (x, q) = (x0, 0), F = [ ] and Xe = {(x0, 0)}. In

Step 4.3, we create the set of indexes Io that records the indexes of the events be-

longing to Σo inside q. Thus, Io = ∅, since q = 0. The next step, Step 4.4, should

be skipped since Io = ∅. In Step 4.5 (resp. Step 4.6), we define the transitions from

state (x, q), labeled by events in Σ (resp. Σs
o or Σl

o) associated with the occurrences of

events in the plant (resp. successful or lost observations). Since Γ(x0) = {α, η} and

q = 0, we define, in Step 4.5, two transitions from state (x0, 0) labeled by events α

and η, which define new states (x1, α) and (x4, 0); thus F = [(x1, α), (x4, 0)]. Notice

that, event α (resp. η) is added (resp. not added) to the second component of the

reached state because it is an observable (resp. unobservable) event. Finally, since

Io = ∅, then sets Yi, to be formed in Step 4.6 for each observation channel ochi, are

also empty. Therefore, no transition will be defined in Step 4.6.

Assume that after some iterations of Step 4, state (x, q) = (x5, α) is the first
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state of queue F . Then, in Steps 4.3 and 4.4, we obtain Io = {1} and minet(1) = 0.

In Step 4.5, we define a unique transition labeled by β, because Γ(x5) = {β}, and

since minet(1) + tmin(x5, β) = 0.5 < T1 = 0.9, β can occur before the observation of

α. Thus the state reached through this transition will be (f(x5, β), add(α, x5, β)) =

(x2, α0.5β). Finally, in step 4.6, we define the transition labeled by αs to state

(x5, 0), that represents the successful observation of α.

Let us now assume that (x, q) = (x2, α0.8) at the beginning of Step 4. Notice that

although γ ∈ Γ(x2), a transition labeled by γ from state (x2, α0.8) cannot be defined

since the time elapsed between the occurrences of α and γ is larger than the delay of

the observation of α.

To conclude the example, let us consider state (x, q) = (x3, α0.5β0.2γ). Notice

that although γ is in q, its observation cannot be recorded by the supervisor since

event β has occurred before γ, β has not been observed yet and both β and γ are

transmitted through the same observation channel.

The following results concern automaton Ge obtained by Algorithm 4.1.

Lemma 4.1 Let w ∈ L(Ge) and define (x, q) = fe(x0e , w). Then:

(a) x = f(x0, Pe(w));

(b) q = 0 if, and only if, every event σ in w that belongs to Σo has its oc-

currence either successfully transmitted (σs) or lost (σl) in w. Otherwise,

q = q1q2 . . . qk ∈ Q, where q1 ∈ Σo and every qy ∈ Σo, y ∈ {1, 2, . . . , k},
corresponds to one occurrence of event qy in w whose occurrence is still being

transmitted, with minet(y) (stated in Step 4.4 of Algorithm 4.1) equal to the

minimal time interval elapsed since the occurrence of qy in the plant.

Proof: The proof is done by induction in the length of the strings w ∈ L(Ge).

Basis step. According to Step 1 of Algorithm 4.1, the initial state of Ge is equal

to x0e = (x0, 0). Thus, for w = ε, fe(x0e , w) = (x0, 0), which agrees with the facts

that: (a) f(x0, Pe(ε)) = x0, and (b) there is no event in w whose occurrence has not

been transmitted.

Induction hypothesis. For all w ∈ L(Ge), such that ‖w‖ ≤ p, fe(x0e , w) =

(f(x0, Pe(w)), q), where q = 0 if, and only if, every event σ in w that belongs to Σo
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has its occurrence either successfully transmitted (σs) or lost (σl) in w. Otherwise,

q = q1q2 . . . qk ∈ Q where q1 ∈ Σo and every qy ∈ Σo, y ∈ {1, 2, . . . , k}, corresponds

to one occurrence of event qy in w that has not been observed yet, with minet(y)

being equal to the minimal time interval elapsed since the occurrence of qy in the

plant.

Inductive step. Consider a string wσ ∈ L(Ge) such that ‖w‖ = p and σ ∈ Σe.

We will prove initially item (a) and, after that, item (b).

(a) Notice that, according to the induction hypothesis, the first component of

state fe(x0e , w) is equal to f(x0, Pe(w)). Let us first consider the case when σ ∈ Σ.

Then, according to Step 4.5 of Algorithm 4.1, σ ∈ Γ(f(x0, Pe(w))) and the first

component of the reached state is equal to f(f(x0, Pe(w)), σ) = f(x0, Pe(w)σ) =

f(x0, Pe(wσ)). Let us now consider the case when σ ∈ (Σs
o ∪ Σl

o). Since, according

to Steps 4.6(b) and 4.6(c) of Algorithm 4.1, the transitions of Ge labeled by events

in (Σs
o ∪ Σl

o) do not modify the first component of the state, the first component of

fe(x0e , wσ) is equal to f(x0, Pe(w)), which is equal to f(x0, Pe(wσ)) since Pe(w) =

Pe(wσ).

(b) Let q denote the second component of state fe(x0e , w). Then, according to

the induction hypothesis, q satisfies part (b) of the lemma statement with respect

to string w. According to Algorithm 4.1, the second component of the state reached

from state fe(x0e , w) by a transition labeled by an event σ ∈ Σe is determined as

follows:

(i) If σ ∈ Σ, then, according to Step 4.5(a), the second component of the reached

state is add(q, x, σ), where, according to Definition 4.4, function add links, to

the right of q, either string tmin(x, σ)σ, if σ ∈ Σo, or tmin(x, σ), if σ ∈ Σuo, and

also removes the largest prefix formed only with non-negative real numbers.

In this case, the second component of the state reached from fe(x0e , w) by

the transition labeled by σ will be as follows: tmin(x, σ) must be added to

the right of q after the occurrence of σ in the plant with a view to enforcing

that minet(y), defined according Step 4.4 of Algorithm 4.1, be equal to the

minimal time interval elapsed since the occurrence of the y-th event of the

second component of the reached state; in addition, σ has to be added to q

when σ ∈ Σo, since its occurrence has not been observed in wσ, whereas, in
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the case when σ ∈ Σuo, nothing else has to be added to q.

(ii) If σ ∈ Σs
o or σ ∈ Σl

o, then, according to Steps 4.6(b) and 4.6(c), respectively,

the second component of the reached state is rem(q, y), where y, computed

in Step 4.6(a), is the index of the first occurrence of event ψ−1(σ) in q and,

according to Definition 4.4, function rem removes qy from q, and also removes

the largest prefix formed only with non-negative real numbers. Thus, the

occurrence of an event σ belonging to either Σs
o or Σl

o represents, respectively,

either the successful or the loss of the observation of an event in w, namely, it

models either the successful or the loss of the observation of event qy stored in

q. Thus, it is straightforward to conclude that we must remove qy from q to

obtain the second component of the reached state, as done by using function

rem in Algorithm 4.1. In addition, notice that, functions add and rem are

defined using function cut, which removes, from q ∈ Q, the largest prefix

formed only with non-negative real numbers.

Finally, notice that, in both cases, (i) and (ii), functions add and rem guarantee

that the first element of the second component of the reached state belongs to Σo,

if the second component of the reached state has at least one element belonging to

Σo, or that the second component of the reached state is equal to 0, otherwise. In

both cases, the lemma statement holds true, and the proof is complete.

Lemma 4.2 L(Ge) = E(L(G)).

Proof: Let us initially consider the case when Σlo = ∅, that is, there is no event

subject to loss of observations. Thus, Σl
o = ∅ and, according to Definitions 4.2 and

4.3, E(L(G)) = Dd(L(G)). The proof that L(Ge) = Dd(L(G)), in the case when

Σlo = ∅, is done by induction in the length of strings w ∈ Σ∗e.

Basis step. Let w = ε. Then, w ∈ Dd(L(G)) since Pe(ε) = ε ∈ L(G) and ε

satisfies Conditions 2 and 3 of Definition 4.1. In addition, we can also conclude that

w ∈ L(Ge) since the initial state of Ge is defined (which is equal to (x0, 0)).

Induction hypothesis. For all extended string w ∈ Σ∗e such that ‖w‖ ≤ p, w ∈
L(Ge)⇔ w ∈ Dd(L(G)).

Inductive step. Let wσ ∈ Σ∗e be such that ‖w‖ = p and σ ∈ Σe. It can be

seen, from Definition 4.1, that if w 6∈ Dd(L(G)), then wσ 6∈ Dd(L(G)). In addition,
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since L(Ge) is, by definition, prefix-closed, if w 6∈ L(Ge), then wσ 6∈ L(Ge). As a

consequence of the induction hypothesis, we can only consider the case when w ∈
L(Ge) and w ∈ Dd(L(G)). The last statement implies, according to Definition 4.1,

that there exists s ∈ L(G) such that s = Pe(w) and that w satisfies Conditions 2

and 3 of Definition 4.1. We will first consider the case when σ ∈ Σ, and, in the

sequel, the case when σ ∈ Σs
o.

(i) σ ∈ Σ. In this case, Condition 3 of Definition 4.1 is satisfied for wσ since

it is satisfied for w. Regarding Condition 1 of Definition 4.1, notice that

transitions from state fe(x0e , w) labeled by events in Σ are defined, in Step 4.5

of Algorithm 1, for those events that belong to Γ(f(x0, s)) since, according to

statement (a) of Lemma 4.1, the first component of state fe(x0e , w) is equal

to f(x0, s). This agrees with the fact that, since Pe(wσ) = sσ, wσ satisfies

Condition 1 of Definition 4.1 only for string sσ, which implies that sσ must be

in L(G) for wσ to be in Dd(L(G)), or equivalently, σ must be in Γ(f(x0, s)). In

order to verify if wσ satisfies Condition 2, let q denote the second component

of state fe(x0e , w), and consider the problem of evaluating the possibility of

occurrence of event σ ∈ Σ before the observation of one of the events belonging

to Σo that form q. According to Step 4.5(a), this evaluation is made by

checking if q = 0 or, when q 6= 0, by comparing, for every qy ∈ Σo that forms

q, the minimal time elapsed since the occurrence of qy with the delay bound

of the channel that transmits the occurrences of qy to the supervisor. Thus,

the transition labeled with an event σ ∈ Γ(f(x0, s)) from state fe(x0e , w) is

defined if, and only if, either q = 0 or, for every qy ∈ Σo that forms q, the

delay bound Toch(qy) is bigger than minet(y) + tmin(f(x0, Pe(w)), σ). Notice

that, in accordance with statement (b) of Lemma 4.1, verifying this condition

is equivalent to checking if every event in Σo, that has occurred in wσ and

whose observation has not occurred, satisfies Equation (4.3). In addition,

since w satisfies Condition 2, every event in w whose occurrence has been

observed in w also satisfies Equation (4.3). Therefore, we can conclude that,

when σ ∈ Σ, wσ ∈ L(Ge)⇔ wσ ∈ Dd(L(G)).

(ii) σ ∈ Σs
o. In this case, Pe(wσ) = Pe(w), which implies that wσ satisfies Condi-

tion 1 of Definition 4.1 for s ∈ L(G). Moreover, wσ also satisfies Condition 2
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of Definition 4.1 since it is satisfied for w. Thus, it remains to check if Con-

dition 3 holds true for string wσ. In order to do so, consider the possibility

of creating a transition from state fe(x0e , w), labeled by event σ ∈ ψ(Σo,i),

carried out in Step 4.6, which is repeated for each observation channel ochi,

i = 1, . . . ,m. In Step 4.6, the set of indexes Y is computed with respect to the

second component of state fe(x0e , w), denoted by q, and set Σo,i. Notice that,

in accordance with Lemma 4.1, wσ satisfies Equation (4.4) if, and only if, there

exists ψ−1(σ) in q. Thus, when Y is nonempty, index y = min(Y ), computed

in Step 4.6(a), determines event qy that corresponds to the first event in q

whose occurrence is transmitted through channel ochi. Consequently, ψ(qy)

is the unique event in ψ(Σo,i) such that wψ(qy) satisfies Equations (4.4) and

(4.5), and, according to Step 4.6(b), it is also the unique event in ψ(Σo,i) that

is used to create a new transition from state fe(x0e , w). Therefore, it can be

concluded that, when σ ∈ Σs
o, wσ ∈ L(Ge)⇔ wσ ∈ Dd(L(G)).

Let us now consider the case when Σlo 6= ∅. As stated in [62], in this case, an au-

tomaton that generates the dilation of Dd(L(G)), that is E(L(G)) = Dl(Dd(L(G))),

can be constructed from an automaton that generates Dd(L(G)) by adding to all

transitions labeled with events in Σs
o ∩ ψ(Σlo), parallel transitions labeled with the

corresponding events in Σl
o. Notice that, according to Step 4.6(c), a parallel tran-

sition labeled by σl ∈ Σl
o is defined whenever a transition labeled by an event

σs ∈ Σs
o ∩ ψ(Σlo) is defined in Step 4.6(b), which completes the proof.

Theorem 4.1 Let L ⊆ L(G). Then, E(L) = P−1
e (L)∩L(Ge), where Pe : Σ∗e → Σ∗.

Proof:

(⊆) Let us consider a string w ∈ E(L). Then, w ∈ E(L(G)) since, according

to Definitions 4.1, 4.2 and 4.3, E(L) ⊆ E(L(G)). Thus, using Lemma 4.2, we can

conclude that w ∈ L(Ge). In addition, because E(L) = Dl(Dd(L)) is formed from

Dd(L) by adding new strings obtained, from the strings in Dd(L), by replacing some

events in Σs
o ∩ ψ(Σlo) with events in Σl

o, we can see that either (i) w ∈ Dd(L) or

(ii) there exists t ∈ Dd(L) such that w ∈ (Dl(t) \ {t}) and Pe(w) = Pe(t). As a

consequence w ∈ P−1
e (L) since, according to Condition 1 of Definition 4.1, there

exists s ∈ L such that, in case (i) s = Pe(w) and, in case (ii), s = Pe(t) = Pe(w).

Therefore, w ∈ P−1
e (L) ∩ L(Ge).
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(⊇) Consider now a string w ∈ P−1
e (L) ∩ L(Ge), and define string s = Pe(w).

Thus, w ∈ L(Ge) and w ∈ P−1
e (L), where the last inclusion relation implies that

s ∈ L. Let us now analyzing w ∈ L(Ge). In this case, according to Lemma 4.2,

w ∈ E(L(G)), which implies, according to Definitions 4.2 and 4.3, that either (i) w ∈
Dd(L(G)), and, in this case, w ∈ Dd(s) ⊆ E(L), or (ii) there exists t ∈ Dd(L(G))

such that w ∈ (Dl(t) \ {t}) and Pe(w) = Pe(t), and thus, t ∈ Dd(s), which also

implies that w ∈ E(s) ⊆ E(L). Therefore, in both cases, (i) and (ii), w ∈ E(L).

Remark 4.1 (size of the state space of Ge) Let us define the following vari-

ables: T = max{Ti : i ∈ {1, . . . ,m}}, t = min{tmin(x, σ) : ((x, σ) ∈ X × Σ) ∧ (σ ∈
Γ(x))}, and T = max{z ∈ Z : z < T/t}, where Z is the set of integer numbers.

In order to compute the maximal number of states of Ge, let us assume that

link(q, p) only concatenates q and p, i.e., it does not add the last element of q

with the first element of p when they are real numbers. In this case, every state

of Ge has either (i) the form (x, q0) where x ∈ Xg and q0 ∈ Σo ∪ {0}, or (ii) the

form (x, q0e1e2 . . . ek) where x ∈ Xg, q0 ∈ Σo and, for j = 1, 2, . . . , k, either ej

is a real number (which is the minimal activation time that corresponds to either

an event in Σuo or an event in Σo whose transmission has been finished), or ej is

a real number concatenated with an event belonging to Σo (which corresponds to a

minimal activation time and its associated event in Σo whose occurrence is still being

transmitted). In the worst case, Ge will have |Xg| ·(|Σo|+1) states with the form (i),

and |Xg|2 · |Σo| · (|Σ|+ |Σo|)k states with the form (ii). In addition, by assuming that

all minimal activation times are equal to t and all maximal observation delays are

equal to T , it can be seen that k ≤ T since, if k > T , then the maximal observation

delay of event q0 is violated. Thus, we can conclude that, in the worst case,

|Xe| = |Xg| · (|Σo|+ 1) + |Xg|2 · |Σo| ·
T∑
k=1

(|Σ|+ |Σo|)k.

Therefore, |Xe| is O
(
|Xg|2 · |Σo| · (|Σ|+ |Σo|)T

)
. Finally, notice that the number

of states in the worst case may only decrease if we compute link(q, p) as stated by

Definition 4.4, i.e., by adding the last element of q with the first element of p when

they are real numbers.

In the design of networked supervisors for a given admissible language K ⊂ L(G),
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we will use the extended language E(K) in order to model the execution of the

strings belonging to K in the general case, i.e., when we assume that delays or loss

of observations may occur. Besides considering the performance of the compensated

system in the general case, we also intend to take into account the performance

of the compensated system under nominal operating conditions, i.e., assuming no

observation loss and only negligible delays, which, in practice, corresponds to the

case when all delays of observations are smaller than the time intervals between

the event occurrences. To this end, we characterize, in the following definition,

the sublanguage of E(K) that models the execution of the strings belonging to a

language K under nominal operating conditions.

Definition 4.5 (null extension function) The null extension function is the

mapping En : L(G)→ 2Dd(L(G)) defined as:

(i) En(ε) := {ε};

(ii) En(s) := {σ1 . . . σk ∈ Dd(s) : (@j ∈ {1, . . . , k − 1})[(σj ∈ Σo) ∧ (σj+1 6=
ψ(σj))]}, ∀s ∈ L(G) \ {ε}.

The extension of En to domain 2L(G) is defined as En(L) :=
⋃
s∈LEn(s).

According to Definition 4.5, for a string s ∈ L(G), En(s) is formed by those

extended strings in Dd(s) in which every occurrence of an event σ ∈ Σo is followed by

the occurrence of event σs ∈ Σs
o, where the latter models the successful observation

of the former. The following example illustrates the null extension function.

Example 4.6 Consider the NDESWTS depicted in Figures 4.2(a,b), where Σ =

{α, β, γ, µ, η}, Σo = {α, β, γ} and Σlo = {β}. Figure 4.8(a) shows the subautomaton

of Ge (which was constructed in Example 4.5) that generates those extended strings

that form E({αµγ}). It can be seen, with the help of Figure 4.8(a), that the strings

in {αµαsγγs} correspond to those strings in E({αµγ}) that violate Condition (ii)

of Definition 4.5, since event µ occurs before the observation of event α, which is

denoted by αs. Thus, we can conclude that the null extended language En({αµγ})
is equal to the language generated by the automaton depicted in Figure 4.8(b).

Notice that, for every string s ∈ L(G), En(s) will have just one element if the last

event of s belongs to Σuo, for instance, En(αµ) = {ααsµ}, whereas En(s) will have
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Figure 4.8: Automata whose generated languages are E({αµγ}) (a) and
En({αµγ}) (b).

just two elements in the case when the last event of s belongs to Σo, for example,

En(αµγ) = {ααsµγ, ααsµγγs}.

The following algorithm can be used to construct automata whose generate lan-

guages are the extension and the null extension of a given prefix-closed sublanguage

of L(G).

Algorithm 4.2 (Construction of automata He and Hn)

Inputs:

• Ge = (Xe,Σe, fe,Γe, x0e): automaton whose generated language is E(L(G));

• H = (Xh,Σ, fh,Γh, x0h): automaton whose generated language is K ⊆ L(G);

• Σo and Σuo: sets of observable and unobservable events of automaton G, re-

spectively.

Outputs:

• He: automaton whose generated language is E(K).

• Hn: automaton whose generated language is En(K).

Step 1: Compute He := H‖Ge

Step 2: Define automaton A := ({y0, y1},Σe, fa,Γa, y0), where: (i) Γa(y0) = Σ and

Γa(y1) = Σs
o, and; (ii) fa(y0, σ) = y0, if σ ∈ Σuo, fa(y0, σ) = y1, if σ ∈ Σo, and

fa(y1, σ) = y0, if σ ∈ Σs
o.

Step 3: Compute Hn := A‖He.
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Example 4.7 Consider the NDESWTS depicted in Figures 4.2(a,b), where Σ =

{α, β, γ, µ, η}, Σo = {α, β, γ} and Σlo = {β}, and the language K generated by

automaton H, depicted in Figure 4.9(a). Consider also automaton Ge computed in

Example 4.5, which is depicted in Figure 4.7. Automaton He, computed in Step 1 of

Algorithm 4.2, is depicted in Figure 4.9(b). Notice that, automaton A computed in

Step 2 of Algorithm 4.2 has always the state transition diagram, which is presented

in Figure 4.9(c). Finally, automaton Hn, computed in Step 3 of Algorithm 4.2 is

depicted in Figure 4.9(d).

The following proposition asserts the correctness of Algorithm 4.2.

Proposition 4.1 Let K ⊆ L(G), and let H and Ge be automata such that

L(H) = K and L(Ge) = E(L(G)). Consider automata He and Hn computed by

using Algorithm 4.2 with inputs Ge, H, Σo and Σuo. Then, (a) L(He) = E(K), and

(b) L(Hn) = En(K).

Proof: (a) L(He) = L(H‖Ge) = P−1
e (L(H)) ∩ L(Ge), which implies, according to

Theorem 4.1, that L(He) = E(K).

(b) Since L(He) = E(K) and Hn = A‖He, it is straightforward to see that, if

K = ∅, then L(Hn) = En(K) = ∅, and, otherwise, ε ∈ L(Hn) and ε ∈ En(K).

In addition, notice that E(K) can be partitioned as E(K) = Dd(K)∪̇(E(K) \
Dd(K)), where (E(K) \Dd(K)) is formed with those extended strings that have at

least one event belonging to Σl
o, i.e., those extended strings that model the cases

when loss of observations occurs. Thus, since automaton A does not allow the

occurrence of events in Σl
o and L(Hn) = L(A) ∩ L(He), we can infer that L(Hn) ⊆

Dd(K). Therefore, it remains to be verified if, ∀σ1 . . . σk ∈ Dd(K) with k ≥ 1, string

σ1 . . . σk ∈ L(Hn) if, and only if, it satisfies the following condition

(@j ∈ {1, . . . , k − 1})[(σj ∈ Σo) ∧ (σj+1 6= ψ(σj))] (4.6)

To do so, let us first consider a string σ1 . . . σk ∈ Dd(K) that satisfies (4.6). Notice

that σ1 . . . σk ∈ L(He) since L(He) = E(K) ⊇ Dd(K). In addition, according to

Condition 3 of Definition 4.1 (Equation (4.4)), the first event of every string inDd(K)

belongs to Σ, which implies that either σ1 ∈ Σo or σ1 ∈ Σuo, and, additionally,

according to (4.6), all event in σ1 . . . σk−1 that belongs to Σo is followed by an
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Figure 4.9: Automaton whose generated language is K (a), and automata He (b),
A (c) and Hn (d) computed using Algorithm 4.2 in Example 4.7.

event belonging to Σs
o. Thus, we can conclude, from Step 2 of Algorithm 4.2, that

σ1 . . . σk ∈ L(A), and, consequently, σ1 . . . σk ∈ L(Hn).

Let us now suppose a string σ1 . . . σk ∈ L(Hn) that does not satisfy (4.6), and
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let j denote the smaller index for which (σj ∈ Σo) ∧ (σj+1 6= ψ(σj)). Thus, since all

transitions that are active in A after the occurrence of an event in Σo are labeled by

events in Σs
o, we can infer that σj+1 ∈ Σs

o \ {ψ(σj)}. However, since j is the smaller

index for which (σj ∈ Σo) ∧ (σj+1 6= ψ(σj)), all events in σ1 . . . σj−1 that belong to

Σo were observed in σ1 . . . σj−1, and, consequently, extended string σ1 . . . σk does not

satisfy Condition 3 of Definition 4.1 (Equation (4.4)), which implies that σ1 . . . σk 6∈
Dd(K) and, thus, σ1 . . . σk 6∈ L(Hn), which is a contradiction and completes the

proof.

4.3 Supervisory Control of NDESWTS

4.3.1 Networked Supervisory Control Problem

Because of the presence of delays and loss of observations, the feedback structure

for networked supervisory control is no longer that presented in Figure 2.8 (Subsec-

tion 2.5.2) for supervisory control under partial observation. As seen in Figure 4.10,

Ge

Snet(so)

G E

ψ−1

Pe,s

sso ∈ Pe,s(E(s))

se ∈ E(s)s

Snet

so ∈ ψ−1(Pe,s(E(s)))

Figure 4.10: Feedback structure for the networked supervisory control problem
under delays and loss of observations.

the observed language is no longer Po(L(G)) but ψ−1(Pe,s(E(L(G)))), namely, when

a string s is generated by the plant, the networked supervisor Snet makes its decision

based on one of the strings in ψ−1(Pe,s(E(s))). Thus, there may exist ambiguities

regarding the control action, which requires that three languages associated with

the compensated system Snet/G be taken into consideration.
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Definition 4.6 (languages associated with Snet/G)

(a) Extended language Le(Snet/G), which is formed solely by those extended strings

belonging to E(L(G)) that can be generated by the compensated system Snet/G

with or without the occurrence of delays and loss of observations, is recursively

defined as:

(i) ε ∈ Le(Snet/G);

(ii) ∀se ∈ Σ∗e and ∀σ ∈ Σe, seσ ∈ Le(Snet/G) ⇔ se ∈ Le(Snet/G) ∧ seσ ∈
E(L(G)) ∧ σ ∈ [(Σe \ Σc) ∪ Snet(ψ−1(Pe,s(se)))].

(b) Language Ln(Snet/G), which corresponds to the language generated by the com-

pensated system under nominal operating conditions (i.e., assuming no loss of

observation and only negligible delays), is defined as:

Ln(Snet/G) := {s ∈ L(G) : En(s) ⊆ Le(Snet/G)}.

(c) Language L↓(Snet/G), which is the language upper bound formed solely by those

strings belonging to L(G) that can be generated by the compensated system

Snet/G with or without the occurrence of delays and loss of observations, is

characterized as:

L↓(Snet/G) := {s ∈ L(G) : E(s) ∩ Le(Snet/G) 6= ∅}.

Based on these language definitions, we may consider the supervisory control

problem where, for a given nonempty prefix-closed language K such that K ⊂ L(G),

we intend to find a networked supervisor Snet : ψ−1(Pe,s(E(L(G)))) → 2Σ that

satisfies the following requirements: (i) Ln(Snet/G) = K, and (ii) L↓(Snet/G) ⊆
K. The first requirement ensures that, under nominal operating conditions, the

compensated system Snet/G must be able to achieve K, and requirement (ii) ensures

that Snet/G must stay inside K when there are non-negligible delays and/or loss of

observations. The following proposition makes possible to combine requirements (i)

and (ii) to form a single condition.
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Proposition 4.2 A networked supervisor Snet : ψ−1(Pe,s(E(L(G)))) → 2Σ satis-

fies requirements (i) Ln(Snet/G) = K and (ii) L↓(Snet/G) ⊆ K, if, and only if,

Ln(Snet/G) = L↓(Snet/G) = K.

Proof: It is straightforward to see that, if Ln(Snet/G) = L↓(Snet/G) = K, then Snet

satisfies requirements (i) and (ii). In order to prove that the reverse statement also

holds true, suppose a networked supervisor Snet that satisfies requirements (i) and

(ii). Then, K = Ln(Snet/G) and L↓(Snet/G) ⊆ K. Thus, we only need to prove that

Ln(Snet/G) ⊆ L↓(Snet/G). To this end, suppose a string s ∈ Ln(Snet/G). Then,

according to Definition 4.6(b), En(s) ⊆ Le(Snet/G), and, according to the null ex-

tension definition (Definition 4.5), En(s) ⊆ E(s). Therefore, we can conclude, from

Definition 4.6(c), that s ∈ L↓(Snet/G), which implies that Ln(Snet/G) ⊆ L↓(Snet/G).

In accordance with Proposition 4.2, we can formulate the following supervisory

control problem.

Problem 4.1 Given a NDESWTS that satisfies Assumptions A1 to A4 and whose

plant is modeled by an automaton G, and a nonempty prefix-closed language K such

that K ⊂ L(G), find a networked supervisor Snet : ψ−1(Pe,s(E(L(G)))) → 2Σ that

satisfies the following condition:

Ln(Snet/G) = L↓(Snet/G) = K. (4.7)

It is worth remarking that, although the extended language Le(Snet/G) was not

directly used to propose the previous networked supervisory control problem, it

has a key role in the characterization of the language permissiveness of networked

supervisors.

4.3.2 Existence and Design of Networked Supervisors

In order to tackle the design of networked supervisors, let Σeuc denote the extended

set of uncontrollable events Σeuc = Σuc∪̇Σs
o∪̇Σl

o. Notice that, for every prefix-closed

extended language Ke ⊆ E(L(G)), controllable with respect to E(L(G)) and Σeuc

and observable with respect to E(L(G)) and Pe,s, we are able to compute a P-

supervisor Se : Pe,s(E(L(G))) → 2Σe such that L(Se/Ge) = Ke by following the
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standard supervisory control theory [68, 77], considering plant Ge and assuming

sets Σeuc and Σs
o as the sets of uncontrollable and observable events, respectively.

In addition, we can also obtain, from Se, the following networked supervisor:

Snet : ψ−1(Pe,s(E(L(G)))) → 2Σ

so 7→ Snet(so) = Se(ψ(so)) ∩ Σ.
(4.8)

The languages achieved by the NDESWTS under the action of the networked su-

pervisor defined in Expression (4.8) are stated by the following result.

Lemma 4.3 Let Ke ⊆ E(L(G)) be a prefix-closed extended language that is control-

lable with respect to E(L(G)) and Σeuc and observable with respect to E(L(G)) and

Pe,s, and consider a P-supervisor Se : Pe,s(E(L(G))) → 2Σe such that L(Se/Ge) =

Ke, and the networked supervisor Snet defined from Se in accordance with Expres-

sion (4.8). Then, the following statements hold true:

(a) Le(Snet/G) = Ke.

(b) Ln(Snet/G) = Pe(Ke ∩ En(L(G))).

(c) L↓(Snet/G) = Pe(Ke).

Proof:

(a) The proof that Le(Snet/G) = Ke is done by induction in the length of strings

w ∈ E(L(G)).

Basis step. Let w = ε. Then, by definition, w ∈ Le(Snet/G), and w ∈ Ke since

Ke = Ke.

Induction hypothesis. For all w ∈ E(L(G)) such that ‖w‖ ≤ p, w ∈
Le(Snet/G)⇔ w ∈ Ke.

Inductive step. Consider a string wσ ∈ L(Ge) such that ‖w‖ = p and σ ∈ Σe.

Suppose that wσ ∈ Le(Snet/G). Then, according to Definition 4.6(a), w ∈
Le(Snet/G) and σ ∈ [(Σe \ Σc) ∪ Snet(ψ−1(Pe,s(w)))]. Thus, in accordance with the

induction hypothesis, w ∈ Ke. In addition, it can be seen that (i) if σ ∈ (Σe \Σc) =

Σeuc, then wσ ∈ Ke since Ke is controllable with respect to L(Ge) and Σeuc, and;

(ii) if σ ∈ Snet(ψ−1(Pe,s(w))), then, according to Expression (4.8), σ ∈ Se(Pe,s(w)),
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which implies, according to Definition 2.7, that wσ ∈ L(Se/Ge) = Ke. Therefore,

in both cases, (i) and (ii), wσ ∈ Ke.

Suppose now that wσ ∈ Ke. Then, according to Definition 2.7, w ∈ Ke

and σ ∈ Se(Pe,s(w)). Thus, in accordance with the induction hypothesis, w ∈
Le(Snet/G), and, additionally, we can conclude, from Expression (4.8), that σ ∈
Snet(ψ

−1(Pe,s(w))). Therefore, according to Definition 4.6(a), wσ ∈ Le(Snet/G).

(b) Suppose s ∈ Pe(Ke ∩ En(L(G))). Then, there exists w ∈ P−1
e (s) such that

w ∈ (Ke ∩ En(L(G))), which implies, according to Definition 4.5, that:

(∃w ∈ En(s))[w ∈ Ke]. (4.9)

We will first consider (i) the case when the last event of s belongs to Σuo, and, in

the sequence, (ii) the case when the last event of s belongs to Σo. In case (i), it can

be seen, from Definition 4.5, that En(s) = {w}. Thus, according to statement (4.9),

En(s) ⊆ Ke. Therefore, according to Definition 4.6(b), in this case, s ∈ Ln(Snet/G).

In case (ii), it can be seen, from Definition 4.5, that En(s) = {w, v} with either

v = wψ(σ) or w = vψ(σ) where σ is the last event of s. Thus, since ψ(σ) ∈ Σeuc

and Ke is controllable with respect to L(Ge) and Σeuc, statement (4.9) implies that

En(s) ⊆ Ke. Therefore, in this case, s ∈ Ln(Snet/G).

Suppose now s ∈ Ln(Snet/G). Then, according to Definition 4.6(b), En(s) ⊆
Le(Snet/G) = Ke. Since, by definition, En(s) ⊆ En(L(G)), we can conclude that

En(s) ⊆ Ke ∩ En(L(G)), and, thus, s ∈ Pe(Ke ∩ En(L(G))).

(c) Notice that, for all s ∈ L(G),

s ∈ L↓(Snet/G) ⇔ E(s) ∩ Le(Snet/G) 6= ∅ (Defition 4.6(c))

⇔ E(s) ∩Ke 6= ∅ (Since Le(Snet/G) = Ke)

⇔ (∃w ∈ Ke)[Pe(w) = s],

where the last equivalence relation is a consequence that, in accordance with Theo-

rem 4.1, E(s) = P−1
e (s)∩L(Ge). Therefore, we can conclude, by using the definition

of natural projection, that s ∈ L↓(Snet/G)⇔ s ∈ Pe(Ke).

In order to obtain networked supervisors that solve Problem 4.1 (i.e.,

Ln(Snet/G) = L↓(Snet/G) = K), we define, by taking into account the previous
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result, the following class of extended languages:

KCO(K) := {Ke ⊆ Σ∗e : (En(K) ⊆ Ke = Ke ⊆ E(K))

∧ (Ke is controllable wrt E(L(G)) and Σeuc)

∧ (Ke is observable wrt E(L(G)) and Pe,s)}.

Notice that, every extended language Ke ∈ KCO(K) satisfies the inclusion relation

illustrated by the Venn diagram depicted in Figure 4.11. In addition, Ke is con-

trollable with respect to E(L(G)) and Σeuc and observable with respect to E(L(G))

and Pe,s, and, thus, we can design a P-supervisor Se : Pe,s(E(L(G))) → 2Σe such

that L(Se/Ge) = Ke, and also define a networked supervisor Snet as stated by Ex-

pression (4.8). The following results concern the use of the extended languages in

KCO(K) to design networked supervisors.

E(K)

L(Ge)

En(K)

Ke = Ke

Figure 4.11: The Venn diagram that illustrates the inclusion relations between
Ke ∈ KCO(K), E(K), En(K) and L(Ge).

Lemma 4.4 Let Ke ∈ KCO(K), and consider a P-supervisor Se : Pe,s(E(L(G)))→
2Σe such that L(Se/Ge) = Ke, and the networked supervisor Snet defined from Se

in accordance with Expression (4.8). Then, Le(Snet/G) = Ke and Ln(Snet/G) =

L↓(Snet/G) = K.

Proof: Let us consider extended language Ke ∈ KCO(K). Then, accord-

ing to Lemma 4.3, Le(Snet/G) = Ke, Ln(Snet/G) = Pe(Ke ∩ En(L(G))) and

L↓(Snet/G) = Pe(Ke). Thus, it remains to be verified if (i) Pe(Ke) = K and (ii)

Pe(Ke ∩ En(L(G))) = K.

(i) Notice that, according to the definition of KCO(K), En(K) ⊆ Ke ⊆ E(K),

which implies that Pe(En(K)) ⊆ Pe(Ke) ⊆ Pe(E(K)). Moreover, according to
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Definition 4.5, Pe(En(K)) = K and, according to Definition 4.3, Pe(E(K)) =

K. Therefore, Pe(Ke) = K.

(ii) Notice that, Pe(Ke ∩ En(L(G))) ⊆ Pe(Ke) ∩ Pe(En(L(G))) = K ∩ L(G) = K.

On the other hand, En(K) ⊆ Ke implies that Pe(Ke∩En(L(G))) ⊇ Pe(En(K)∩
En(L(G))) = Pe(En(K)) = K. Therefore, Pe(Ke ∩ En(L(G))) = K.

Lemma 4.5 Let Snet : ψ−1(Pe,s(E(L(G)))) → 2Σ be a networked supervisor such

that Ln(Snet/G) = L↓(Snet/G) = K. Then, Le(Snet/G) ∈ KCO(K).

Proof: Let us consider a networked supervisor Snet such that Ln(Snet/G) =

L↓(Snet/G) = K. In addition, assume, without loss of generality, that Le(Snet/G) =

K ′e where K ′e ⊆ E(L(G)). Notice that, according to Definition 4.6(a), K ′e is prefix-

closed. Moreover, according to Definition 4.6(b), En(K) ⊆ K ′e since Ln(Snet/G) =

K, and, according to Definition 4.6(c), K ′e ⊆ E(K) since L↓(Snet/G) = K. There-

fore, En(K) ⊆ K ′e = K ′e ⊆ E(K). Thus, it remains to be verified if K ′e is (i) con-

trollable with respect to L(Ge) and Σeuc and (ii) observable with respect to L(Ge)

and Pe,s. Let us first recover that Σeuc = (Σe \ Σc) and, according Theorem 4.1,

L(Ge) = E(L(G)).

(i) Suppose that K ′e is not controllable with respect to L(Ge) and Σeuc. Then,

there exist w ∈ K ′e and σ ∈ Σeuc such that wσ ∈ L(Ge) \ K ′e, which is a

contradiction since, according to Definition 4.6(a),

(w ∈ K ′e) ∧ (wσ ∈ L(Ge)) ∧ (σ ∈ Σeuc)⇒ (wσ ∈ K ′e).

(ii) Suppose that K ′e is not observable with respect to L(Ge) and Pe,s. Then,

there exist w,w′ ∈ K ′e and σ ∈ Σe such that wσ ∈ L(Ge) \ K ′e, w′σ ∈ K ′e

and Pe,s(w) = Pe,s(w
′), where the last equality implies that ψ−1(Pe,s(w)) =

ψ−1(Pe,s(w
′)). As a consequence, the control actions of Snet for the extended

strings w and w′ are the same, and, thus, w′σ ∈ K ′e implies that wσ ∈ K ′e,

which is a contradiction.

Therefore, we can conclude that K ′e ∈ KCO(K).
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We now present a necessary and sufficient condition for the existence of a net-

worked supervisor Snet that solves Problem 4.1.

Theorem 4.2 Consider a NDESWTS that satisfies Assumptions A1 to A4, and

whose plant is modeled by an automaton G. Let K be a prefix-closed language such

that K ⊂ L(G). Then, there exists a supervisor Snet : ψ−1(Pe,s(E(L(G)))) → 2Σ

such that Ln(Snet/G) = L↓(Snet/G) = K if, and only if, KCO(K) 6= ∅.

Proof:

(⇐) If KCO(K) 6= ∅, then we can use a Ke ∈ KCO(K) to design a networked su-

pervisor Snet as stated by Expression (4.8), and, consequently, the obtained Snet

achieves, in accordance with Lemma 4.4, Le(Snet/G) = Ke and Ln(Snet/G) =

L↓(Snet/G) = K.

(⇒) Suppose that there exists a networked supervisor Snet such that

Ln(Snet/G) = L↓(Snet/G) = K. According to Lemma 4.5, Le(Snet/G) ∈ KCO(K),

which implies that KCO(K) 6= ∅.
Notice that, since the class of prefix-closed observable and controllable superlan-

guages of En(K) is closed under intersection, the infimal prefix-closed controllable

(with respect to E(L(G)) and Σeuc) and observable (with respect to E(L(G)) and

Pe,s) superlanguage of En(K), denoted here by En(K)↓CO, always exists. Such a

language can be used to check the existence of networked supervisors, and, addi-

tionally, it can be applied to design a networked supervisor Snet, when there exists

one, such that Ln(Snet/G) = L↓(Snet/G) = K, as shown by the following result.

Proposition 4.3 Let K be a prefix-closed language such that K ⊂ L(G). Then,

En(K)↓CO ⊆ E(K) ⇔ En(K)↓CO ∈ KCO(K) ⇔ KCO(K) 6= ∅.

Proof: (a) ⇒ (b). Since En(K)↓CO is the infimal prefix-closed controllable and

observable superlanguage of En(K), we can conclude, by using the definition of the

class KCO(K), that En(K)↓CO ∈ KCO(K) if En(K)↓CO ⊆ E(K).

(b)⇒ (c). This implication relation holds true by definition.

(c)⇒ (a). Suppose that (i) KCO(K) 6= ∅ and (ii) En(K)↓CO 6⊂ E(K). Notice that,

according to the definition of class KCO(K), statement (i) implies that there exists
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a prefix-closed controllable and observable language K ′e such that En(K) ⊆ K ′e ⊆
E(K). On the other hand, since En(K)↓CO is the infimal prefix-closed controllable

and observable superlanguage of En(K), statement (ii) implies that every prefix-

closed controllable and observable superlanguage of En(K) is not a sublanguage of

E(K), which is a contradiction.

Example 4.8 Consider the NDESWTS presented in Example 4.1, whose commu-

nication network and plant are depicted again in Figures 4.12(a,b), respectively, and

suppose that Σ = {α, β, γ, µ, η}, Σo = {α, β, γ}, Σlo = {β} and Σc = {α, γ, µ, η}.
Automaton Ge that generates E(L(G)) is depicted again in Figure 4.12(c). Consider

also the same language K assumed in Example 4.7, which is generated by automaton

H depicted in Figure 4.12(d). Automata Hn and He, whose generated languages are

En(K) and E(K) are depicted again in Figures 4.12(e,f), respectively.

We want to design a networked supervisor Snet that satisfies the admissible lan-

guage K, i.e. Ln(Snet/G) = L↓(Snet/G) = K. In other words, Snet/G must be able

to execute all string in K = {αµγ, ηαβγ} under nominal operating conditions, but

Snet must prevent the occurrence of the forbidden string s′ = ηγ even when delays or

loss of observations occur. Therefore, since η ∈ Σuo, the networked supervisor must

initially disable event γ, and enable it only after observing some event occurrence.

Automaton Hco that generates En(K)↓CO is depicted in Figure 4.13. By com-

paring Figures 4.12(f) and 4.13, we can see that En(K)↓CO ⊆ E(K), which implies,

according to Proposition 4.3, that KCO(K) 6= ∅.
Since KCO(K) 6= ∅, according to Theorem 4.2, there exists a networked su-

pervisor Snet. Moreover, according to Proposition 4.3, En(K)↓CO ∈ KCO(K).

Thus, in order to compute Snet, we can first compute a P-supervisor Se assum-

ing plant Ge, Ke = En(K)↓CO, Σeuc = {αs, β, βs, βl, γs} and Σs
o = {αs, βs, γs}.

The P-supervisor Se obtained, whose realization is depicted in Figure 4.14, is de-

fined as: Se(ε) = Σe \ {µ, γ, γs}, Se(αs) = Σe \ {α, αs, η}, Se(βs) = {αs},
Se(αsβs) = {γ, γs}, and Se(βsαs) = Se(αsγs) = Se(αsβsγs) = ∅. Then, the

networked supervisor Snet computed from Se as stated by Expression (4.8) is de-

fined as follows: Snet(ε) = {α, β, η}, Snet(α) = {β, γ, µ}, Snet(αβ) = {γ} and

Snet(β) = Snet(βα) = Snet(αγ) = Snet(αβγ) = ∅.
According to Lemma 4.3, Le(Snet/G) = En(K)↓CO. Thus, with the help of Fig-
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Figure 4.12: Network (a) and plant G (b) of the NDESWTS, automata Ge (c), H
(d), Hn (e) and He (f) considered in Example 4.8.

ure 4.13, we can check the following facts regarding the performance of the networked

supervisor Snet computed by using extended language Ke = En(K)↓CO:
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Figure 4.13: Automaton that generates En(K)↓CO computed in Example 4.8.
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Figure 4.14: Realization of P-supervisor Se used to define networked supervisor
Snet in Example 4.8.

• Networked supervisor Snet prevents the execution of the forbidden string s′ =

ηγ since E(s′) ∩ Le(Snet/G) = ∅, where E(s′) = {ηγ, ηγγs};

• The strings in K can be generated by Snet/G under nominal operating

conditions since En(K) = {ααsµγ, ααsµγγs, ηααsββsγ, ηααsββsγγs} ⊆
Le(Snet/G).

The comments presented above agree with Lemma 4.4, which determines that

Ln(Snet/G) = L↓(Snet/G) = K. The following comments concern the language per-

missiveness of the networked supervisor Snet computed by using extended language

Ke = En(K)↓CO, in the presence of delays and/or loss of observations:

• The compensated system is able to generate string s1 = ηαβγ ∈ K in the

cases: (i) when the occurrence of event α is observed before the observation

of β, and (ii) when the observation of β is lost. On the other hand, since

ηαββsαsγ 6∈ Le(Snet/G), the compensated system is not able to execute string
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s1 in the case when the occurrence of event α is observed after the observation

of β;

• In some cases, the networked supervisor Snet computed using extended language

Ke = En(K)↓CO, may unnecessarily postpone the permission for some events

to take place. For example, during the execution of string s2 = αµγ ∈ K,

networked supervisor Snet postpones the permission for event µ to take place

until it observes the occurrence of α since αµ 6∈ Le(Snet/G).

Based on this comments, we can conclude that, the networked supervisor Snet com-

puted by using extended language Ke = En(K)↓CO achieves the control specification

Ln(Snet/G) = L↓(Snet/G) = K, but nevertheless the achieved language permissive-

ness in the presence of non-negligible delays and loss of observations can be increased

by allowing the occurrences of extended strings that were unnecessarily prevented,

such as, ηαββsαsγ and αµ.

Improving Language Permissiveness by Using Relative Observability

In accordance with Lemma 4.4 and Proposition 4.3, we can compute a networked

supervisor, when there exists one, by setting Ke = En(K)↓CO and synthesizing

Snet as determined by Expression (4.8). By following this procedure, the designed

networked supervisor will be such that Le(Snet/G) = En(K)↓CO. Nonetheless, the

permissiveness of the extended language Le(Snet/G) may be improved by search-

ing for extended languages belonging to KCO(K) that are more permissive than

En(K)↓CO, as illustrated by the Venn diagram depicted in Figure 4.15. However,

E(K)
L(Ge)

En(K)

Is it in KCO(K)?

En(K)↓CO

Figure 4.15: The Venn diagram that illustrates the search for extended languages
belonging to KCO(K) that are more permissive than En(K)↓CO.
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since the observability is not preserved under set unions, the class of extended lan-

guages KCO(K) does not have a supremal in general.

In order to circumvent this drawback, we will apply the relative observability

property [15, 84] with a view to searching for controllable and relatively observable

extended languages in KCO(K) that are more permissive than En(K)↓CO. To this

end, let E(K)↑CRO denote the controllable and observable sublanguage of E(K)

computed by using Algorithm 3.3, presented in Section 3.4, with inputs Ge and

He (by assuming fully marked automata, i.e., Lm(Ge) = L(Ge) = E(L(G)) and

Lm(He) = L(He) = E(K)). The following proposition determines the case when

extended language E(K)↑CRO can be used to design a networked supervisor Snet for

Problem 4.1.

Proposition 4.4 Let K be a prefix-closed language such that K ⊂ L(G). Then,

there exists a networked supervisor Snet such that Le(Snet/G) = E(K)↑CRO and

Ln(Snet/G) = L↓(Snet/G) = K if, and only if, E(K)↑CRO ⊇ En(K).

Proof: According to Lemmas 4.4 and 4.5, there exists Snet such that Le(Snet/G) =

E(K)↑CRO and Ln(Snet/G) = L↓(Snet/G) = K if, and only if, E(K)↑CRO ∈ KCO(K).

By definition, E(K)↑CRO ⊆ E(K) and, according to Proposition 3.1, E(K)↑CRO

is controllable with respect to E(L(G)) and Σeuc and observable with respect to

E(L(G)) and Pe,s. Moreover, it can be checked that E(K) and E(K)↑CRO are prefix-

closed since K is prefix-closed. Therefore, we can conclude, from the definition of

class KCO(K), that E(K)↑CRO ∈ KCO(K) if, and only if, E(K)↑CRO ⊇ En(K),

which concludes the proof.

Example 4.9 Consider the same networked supervisory control problem ad-

dressed in Example 4.8, where the communication network and the plant of the

NDESWTS are depicted in Figures 4.12(a,b), respectively, and we suppose that

Σ = {α, β, γ, µ, η}, Σo = {α, β, γ}, Σlo = {β} and Σc = {α, γ, µ, η}. Consider,

also, the same admissible language K generated by automaton H depicted in Fig-

ure 4.12(d).

Automaton HCRO that generates E(K)↑CRO is depicted in Figure 4.16. By com-

paring this automaton with that depicted in Figure 4.12(e), which generates language

En(K), we can see that E(K)↑CRO ⊇ En(K). As a consequence, E(K)↑CRO ∈
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Figure 4.16: Automaton that generates E(K)↑CRO computed in Example 4.9.

KCO(K), and, in accordance with Proposition 4.4, there exists a networked supervi-

sor Snet that solves Problem 4.1 and such that Le(Snet/G) = E(K)↑CRO.

Since E(K)↑CRO ∈ KCO(K), in accordance with Lemma 4.3, we can use

Ke = E(K)↑CRO to design a P-supervisor Se by assuming plant Ge, Σeuc =

{αs, β, βs, βl, γs} and Σs
o = {αs, βs, γs}. The realization of the obtained P-supervisor

is depicted in Figure 4.17, and it is defined as: Se(ε) = Σe \ {γ, γs}, Se(αs) =

Σe\{α, αs, η}, Se(βs) = {αs, γ, γs}, Se(αsβs) = Se(βsαs) = {γ, γs}, Se(βsγs) = {αs}
and Se(βsαsγs) = Se(βsγsαs) = Se(αsγs) = Se(αsβsγs) = ∅.

The networked supervisor, obtained from Se in accordance with Expression (4.8),
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γ

γs

γ
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Figure 4.17: Realization of P-supervisor Se used to define networked supervisor
Snet in Example 4.9.

106



is defined as follows: Snet(ε) = Σ \ {γ}, Snet(α) = {β, γ, µ}, Snet(αβ) = Snet(βα) =

{γ}, Snet(β) = {γ} and Snet(βα) = Snet(αγ) = Snet(αβγ) = Snet(βγα) =

Snet(βαγ) = ∅.
Since E(K)↑CRO ∈ KCO(K), in accordance with Lemma 4.4, Ln(Snet/G) =

L↓(Snet/G) = K. In addition, by comparing Figures 4.13 and 4.16, we can see

that, for the case of this example, En(K)↓CO ⊂ E(K)↑CRO, and the following cases

illustrate some situations where the language permissiveness has been improved by

designing Snet setting extended language Ke as E(K)↑CRO instead of En(K)↓CO:

• Under the action of the networked supervisor designed from Ke = E(K)↑CRO,

the compensated system is able to generate string s1 = ηαβγ ∈ K regardless

of the order of the observations of α and β, as opposed with the networked

supervisor computed from Ke = En(K)↓CO that prevent the occurrence of γ in

the case when α is observed after the observation of β;

• During the execution of string s2 = αµγ ∈ K, the networked supervisor de-

signed from Le(Snet/G) = E(K)↑CRO allows the occurrence of event µ be-

fore the observation of α, whereas the networked supervisor designed from

Le(Snet/G) = En(K)↓CO only allows the occurrence of µ after the observa-

tion of α.

Remark 4.2 Notice that, in the extended model Ge, the set of controllable events

stays being Σc whereas the set of observable events becomes Σs
o, and, thus, Σc∩Σs

o =

∅, i.e., all controllable events of Ge are unobservable. Then, in accordance with

Remark 2.1, it can be checked that, for all K ⊂ L(G) with K 6= L(G), there is no

normal language belonging to KCO(K). As a consequence, the property of normality,

in contrast to the property of relative observability, cannot be used to increase the

achieved language permissiveness in the networked supervisory control problem.

Realization of Networked Supervisors

In Examples 4.8 and 4.9, we present the obtained networked supervisor by listing

the control action Snet(so), for each so ∈ ψ−1(Pe,s(Ke)), where Ke = Le(Snet/G). In

order to make possible the definition of a networked supervisor in a more convenient

manner, we propose the following realization.
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Definition 4.7 (realization of networked supervisors) A realization of a net-

worked supervisor Snet is a pair Rnet = (R,Ω), where the first element is an

automaton R = (Xnet,Σo, fnet,Γnet, x0net) and the second element is a function

Ω : Xnet → 2Σ, which are defined in order to ensure that,

Snet(so) = Ω(fnet(x0net , so)), ∀so ∈ ψ−1(Pe,s(Le(Snet/G))).

For a given networked supervisor Snet, a realization Rnet = (R,Ω) that agrees

with Definition 4.7 can be obtained from a realization Re = (Xe,Σe, fe,Γe, x0e) of

a P-supervisor Se such that L(Se/Ge) = Le(Snet/G), which can be computed using

Algorithm 2.2 presented in Subsection 2.5.2. To do so, Rnet = (R,Ω) is defined from

Re as follows:

R = (Xnet,Σo, fnet,Γnet, x0net), (4.10)

where:

Xnet = Xe, (4.11)

fnet(x, σ) = fe(x, ψ(σ)), ∀(x, σ) ∈ Xnet × Σo, (4.12)

Γnet(x) = ψ−1(Γe(x) ∩ Σs
o), ∀x ∈ Xnet, (4.13)

x0net = x0e , (4.14)

and, additionally,

Ω(x) = Γe(x) ∩ Σ, ∀x ∈ Xnet. (4.15)

This procedure for obtaining a realization of Snet directly emerges from Lemma 4.3.

The following example illustrates the construction of a networked supervisor real-

ization.

Example 4.10 Consider the same networked supervisory control problem ad-

dressed in Example 4.9, where the communication network and the plant of the

NDESWTS are depicted in Figures 4.12(a,b), respectively, and we suppose that

Σ = {α, β, γ, µ, η}, Σo = {α, β, γ}, Σlo = {β} and Σc = {α, γ, µ, η}.
In Example 4.9, we computed a networked supervisor Snet such that Le(Snet/G) =

E(K)↑CRO and Ln(Snet/G) = L↓(Snet/G) = K, where K is the language generated

by automaton H depicted in Figure 4.12(d). This networked supervisor was obtained
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by applying Expression (4.8) with P-supervisor Se such that L(Se/Ge) = E(K)↑CRO

and whose realization, Re, is depicted again in Figure 4.18(a). Then, in oder to

obtain a realization Rnet = (R,Ω) from Re for networked supervisor Snet, we con-

struct automaton R as stated by Equations (4.10) to (4.14), which is depicted in

Figure 4.18(b); the values of Ω for each state of R are defined in accordance with

Equation (4.15) and are presented in Figure 4.18(b) inside of its corresponding state

of R.
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Figure 4.18: Realizations of P-supervisor Se (a) and networked supervisor Snet (b)
computed using extended language E(K)↑CRO.

4.3.3 Procedure for Designing Networked Supervisors

In this subsection, we propose a systematic way to design networked supervisors for

Problem 4.1 based on the results presented in Subsection 4.3.2.

The networked supervisor design should be carried out by following the flow

chart shown in Figure 4.19. According to Figure 4.19, the design procedure starts

by checking if E(K)↑CRO ∈ KCO(K). In order to do so, we compute an automaton

that generates extended language E(K)↑CRO by using Algorithm 3.3 proposed in
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Ln(Snet/G) = Pe(E(L(G)) ∩ E(K)↑CRO) ⊂ K

Le(Snet/G) = E(K)↑CRO

Ln(Snet/G) = L↓(Snet/G) = K

Is KCO(K) nonempty?

No

No

Yes

Yes

Lup(Snet/G) = Pe(E(K)↑CRO) ⊆ K

Is E(K)↑CRO in KCO(K)?

Le(Snet/G) = En(K)↓CO

Ln(Snet/G) = L↓(Snet/G) = K

Le(Snet/G) = E(K)↑CRO

Figure 4.19: Flow chart for the design of networked supervisors.

Section 3.4. If E(K)↑CRO ∈ KCO(K), then we compute a P-supervisor Se for ex-

tended plant Ge assuming Σeuc as the set of uncontrollable events, Σs
o as the set of

observable events and E(K)↑CRO as the admissible language, and, in the sequence,

we compute Snet as stated by Expression (4.8). According to Proposition 4.4, the

compensated system achieves the following behavior:

Le(Snet/G) = E(K)↑CRO and Ln(Snet/G) = L↓(Snet/G) = K.

It is worth noting that, as presented in Subsection 2.5.3, when E(K) is observable

with respect to E(L(G)) and Pe,s, it is also E(K)-observable. As a consequence of

this fact, if E(K) is controllable with respect to E(L(G)) and Σeuc and observable

with respect to E(L(G)) and Pe,s, then E(K)↑CRO = E(K). Therefore, in this case,

the designed networked supervisor achieves the maximal language permissiveness,

i.e., Le(Snet/G) = E(K).

When E(K)↑CRO 6∈ KCO(K), the design procedure continues, in accordance with

Figure 4.19, by checking if KCO(K) 6= ∅. This can be done, according to Proposi-

tion 4.3, by computing En(K)↓CO, the infimal prefix-closed controllable (with respect

to L(Ge) and Σeuc) and observable (with respect to L(Ge) and Pe,s) superlanguage of

En(K), and checking if En(K)↓CO ⊆ E(K). If the answer is yes, then a P-supervisor

Se for Ge can be computed assuming Σeuc and Σs
o as the sets of uncontrollable and
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observable events, respectively, and En(K)↓CO as the admissible language. In the

sequence, the networked supervisor Snet is computed as stated by Expression (4.8).

According to Lemma 4.4, the resulting compensated system achieves the following

behavior:

Le(Snet/G) = En(K)↓CO and Ln(Snet/G) = L↓(Snet/G) = K.

Finally, if KCO(K) is empty, then, according to Theorem 4.2, there does not

exist a networked supervisor Snet such that Ln(Snet/G) = L↓(Snet/G) = K, i.e., the

admissible language K cannot be achieved. In order to circumvent this problem,

the supervisor Snet will be computed as in the case when E(K)↑CRO ∈ KCO(K),

making, according to Lemma 4.3, the compensated system to achieve the following

behavior:

Le(Snet/G) = E(K)↑CRO

Ln(Snet/G) = Pe(En(L(G)) ∩ E(K)↑CRO) ⊂ K

L↓(Snet/G) = Pe(E(K)↑CRO) ⊆ K.

4.4 Concluding Remarks

In this chapter, we have introduced an architecture of supervisory control of Dis-

crete Event System, in which, a network that may have several channels performs

the communication between the plant and the supervisor, and a timing structure

provides time information about the behaviors of the plant and the communication

network. We proposed a methodology to construct an equivalent untimed model

for a NDESWTS that represents all possible implications of delays and losses of

observations, and, based on this model, we have formulated a supervisory control

problem of NDESWTS, where the networked supervisor ensures that, when there

is neither non-negligible delays nor loss of observations, the compensated system

achieves a given admissible language, and, when delays and loss of observations are

present, it ensures that the compensated system behavior stays inside the admissible

language. We have presented a necessary and sufficient condition for the existence of

networked supervisors, and also a systematic way to design networked supervisors,
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where the relative observability property is used to increase the achieved language

permissiveness.
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Chapter 5

Conclusions and Future Works

The main goal of this work was to study the supervisory control problem of net-

worked discrete event systems with timing structure (NDESWTS) in the presence

of delays and loss of observations. In this regard, the main contributions of this

work are described below:

1. The introduction of an architecture of supervisory control of Discrete Event

System, in which, a network that may have several channels performs the

communication between the plant and the supervisor, together with a timing

structure composed of the minimal activation time of the plant transitions and

the upper bounds on the delays of the communication channels.

2. A methodology to construct an equivalent untimed model for NDESWTS. This

methodology provides a complete characterization of all possible implications

of delays and losses of observations by means of extended languages, and

algorithms for the computation of untimed deterministic finite-state automata

that generate the extended languages associated with the plant and the control

specification. It is worth remarking that the model for NDESWTS proposed

here is general enough to allow its application in other NDESWTS problems,

for instance, it has also been used to study the codiagnosability of NDESWTS

subject to event communication delays and loss of observations in [66, 67].

3. The formulation of a supervisory control problem of NDESWTS where the

networked supervisor ensures that, when there is neither non-negligible de-

lays nor loss of observations, the compensated system achieves the admissible
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language, and, when delays and/or loss of observations are present, it ensures

that the compensated system behavior stays inside the admissible language. In

order to tackle this problem, we presented a necessary and sufficient condition

for the existence of networked supervisors, and, additionally, a systematic way

to design networked supervisors. To this end, we used relative observability

property with a view to increasing the achieved language permissiveness.

A preliminary version of the results obtained here was published in [88, 89].

Another research topic addressed in this work was the concept of relative ob-

servability. In this context, the main contributions are:

1. An algorithm for the verification of relative observability that has polynomial

computational complexity.

2. An algorithm for the computation of the supremal relatively observable sub-

language of a regular language, whose computational complexity is, in general,

exponential, but decreases to polynomial when the automaton that marks the

specification language is state partition.

3. An algorithm for the computation of a controllable and observable sublanguage

of a given regular language, which applies the concept of relative observability

and iteratively shrinks the ambient language in order to increase the achieved

language permissiveness.

The results on relative observability have been published in [82–84].

Possible future research directions are listed below:

1. Supervisory control of NDESWTS subject to delays and loss of control actions.

In this topic, the purpose is to remove Assumption A4, imposed in Chapter 4,

and to consider communication delays and packet losses in observation and

control channels.

2. Extension to other problems in supervisory control of NDESWTS, so as to

address blocking properties of networked supervisory control or to extend the

approach proposed here to modular and decentralized control architectures.
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3. The study of other NDESWTS problems by using the modeling proposed in

this work, for example, state estimation, prognosis, detectability and opacity

of NDESWTS.

4. Networked discrete event systems with different timing structures. In this

topic, the idea is to consider a timing structure, where, instead of assuming

minimal activation times of the plant transitions and maximal communication

delays, we could assume a priori knowledge of the time intervals in which the

plant transitions can occur and the lower and upper bounds on the transmis-

sion delays, without relying on automata with guards.
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