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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para
a obtenção do grau de Doutor em Ciências (D.Sc.)

AVALIAÇÃO DA VIABILIDADE DOS MODELOS DE LINHAS DE TRANSMISSÃO
NOS DOMÍNIOS DO TEMPO E DA FREQUÊNCIA

Mirko Mashenko Yanque Tomasevich

Abril/2015

Orientador: Antonio Carlos Siqueira de Lima

Programa: Engenharia Elétrica

O presente trabalho avalia o uso do modelo de linha Idempotente implementado com
um esquema de ajuste alternativo para a modelagem no domínio do tempo por coordena-
das de fase de linhas de transmissão aéreas e cabos subterrâneos, usando o Método das
Características, evitando respostas instáveis no domínio do tempo quando a aproximação
racional da função de propagação contem razões grandes entre resíduos e polos.

Embora simulações estáveis foram obtidas para cabos subterrâneos, foi encontrado
que para linhas aéreas a precisão do ajuste das matrizes idempotentes diminui ao acrescer
o número de fases do sistema.

Para pesquisar se as causas dos problemas mencionados estão inerentemente relacio-
nadas à precisão do cálculo da função de propagação, avaliamos os parâmetros da linha
usando um solo geral com perdas numa ampla banda de frequência, i.e., considerando
tanto as correntes de condução como as correntes de deslocamento.

Respostas no domínio do tempo baseadas na Transformada Numérica de Laplace e no
Método das Características foram usadas para investigar a precisão dos modelos de linha
acima mencionados.

Encontramos que o uso de expressões fechadas aproximadas por Imagens para o cál-
culo dos parâmetros de linha por unidade de comprimento pode originar instabilidades
numéricas devido a violações na passividade quando uma grande faixa de frequência é
considerada e o solo é assumido com perdas, modelado seja com parâmetros constantes
ou dependentes da frequência. Uma formulação quasi-TEM foi usada para comparar estes
resultados. Nao foram encontradas violacoes na passividade nos casos de linha monofá-
sica e multifásica. Algumas técnicas de mitigação foram tambem propostas.

Finalmente, baseados nesta pesquisa, temas de investigação futuros são propostos.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements
for the degree of Doctor of Science (D.Sc.)

VIABILITY ASSESSMENT OF TRANSMISSION LINE MODELS IN TIME AND
FREQUENCY DOMAINS

Mirko Mashenko Yanque Tomasevich

April/2015

Advisor: Antonio Carlos Siqueira de Lima

Department: Electrical Engineering

This work evaluates the use of the Idempotent line model implemented using an alter-
native fitting scheme for the phase coordinate time domain modeling of overhead lines and
underground cables with the Method of Characteristics, avoiding unstable time-domain
responses when the rational approximation of the propagation function contains large
residue-pole ratios.

Although stable time-domain simulations were attained for underground cables, it
was found that for transmission lines that the fitting accuracy of the idempotent matrices
decreases as the total number of phases of the system increases.

To investigate whether the causes of the aforementioned issues are inherently related
to the calculation accuracy of the propagation function, we evaluated the line parameters
using a general lossy ground in a wide frequency range, i.e., considering both ground
conduction currents and displacement currents.

Time-domain responses based on the Numerical Laplace Transform and the Method
of Characteristics were used to assess the accuracy of the aforementioned lines models.

We found that the use of Images approximation closed-form expressions for per-unit-
length line parameters may lead to numerical instabilities due to passivity violations when
a wide frequency range is considered and the ground is assumed lossy, modeled either
with constant or frequency-dependent parameters. A quasi-TEM formulation was used to
compare these results. No passivity violations were found in both the single-phase and
multi-phase line cases. Some mitigation techniques were also proposed.

Finally, based on this investigation, further research themes are proposed.
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Chapter 1

Introduction

1.1 Important Considerations

Power Systems worldwide are becoming increasingly complex. The network expan-
sion together with environmental constraints demand more complex and asymmetrical
transmission system configurations. A new circuit may share the same tower of an exist-
ing one and the coupling effect cannot be neglected.

The first transient studies with more detailed transmission line models were com-
pletely solved in the frequency domain [1]. Later, simulation tools such as the Electro-
magnetic Transient Programs (EMTPs) allowed the transient analysis of multiple compo-
nents in an electrical network using a time-domain solution [2–4].

As non-linear elements and phenomena are frequently found in nowadays system
topologies, i.e., corona effect and surge arresters just to mention a few, the use of time-
domain analysis to model the electrical network is preferred. This is due to its capability
to accurately simulate fast and very fast transients phenomena using a recursive convolu-
tion scheme which allows the inclusion of certain frequency dependent elements through
the use of rational approximations.

Purposely, in relation to the simulation of transmission lines and underground cables,
an essentially free distribution program which is widely extended use in the electrical and
academic sectors throughout the world is the EMTP-ATP. This program includes three
frequency-dependent line models: the Semlyen model [5], the JMarti model [6] and the
Taku Noda model [7]. The JMarti model relies in the use of modal decomposition [8,
9] assuming a real frequency independent modal transformation matrix [5, 6, 10, 11].
This line model is the most widely used among the aforementioned three, due to its best
performance and simpler interface when compared to the former two models [12, 13].

However, in the case of non-symmetric line configurations, a model with a frequency
dependent transformation matrix is expected along with the interaction between different
time-delays. To overcome these limitations, the modeling of transmission lines without

1



resorting to modal decomposition, i.e., using phase coordinates, has been studied [7, 14–
21]. Two of these models were later implemented in EMTP-type programs: the Auto-
Regressive Moving Average (ARMA) model [7] based on a Z-domain rational fitting was
implemented in the EMTP-ATP while the Universal Line Model (ULM) [20] based on the
frequency domain rational fitting of parameters was implemented in the PSCAD/EMTDC
and the EMTP-RV.

Purposely, a method for the rational fitting of parameters in the frequency domain
known as “Vector Fitting”, based in a Sanathanan-Koerner iteration scheme, has recently
gained popularity in the scientific community. Due to its simplicity and solid perfor-
mance [22–28], its computational routines have been implemented in MATLAB and are
free-to-use [29].

Modal decomposition

Phase-coordinates

Jmarti (ATP)

ARMA (ATP)

ULM (EMTDC)

Polar Decomposition

Idempotent Line

Figure 1.1: General overview - Frequency Dependent Line Models.

For the analysis of electromagnetic transients in overhead transmission lines or un-
derground cables, the quasi-Transverse Electromagnetic (quasi-TEM) propagation is nor-
mally assumed. In power system studies the ground return expressions are developed as-
suming the ground as a good conductor, i.e., neglecting displacement currents associated
with the ground permittivity. This implies the evaluation of the ground return impedance
using either Carson’s or Pollaczek’s formulation [30–32] involving the solution of non-
trivial infinite integrals traditionally expressed by simplified expressions [33–36]. For the
ground return impedance, the inclusion of the ground permittivity εs is essentially straight
forward, as we only need to replace the ground conductivity σs by the complex value of
σs + jωεs.

One of the most successful approximations is based on the image approach [34, 37]
which consists of a further simplification leading to a closed-form formula based on log-
arithms. These image approximations are also used in the calculation of the ground shunt
admittance.

Therefore, for very high frequency phenomena, i.e., lightning, the inclusion of the
ground permittivity in the calculation of the per-unit-length line parameters is necessary
for the modeling of transmission circuits. The inclusion of the ground permittivity in

2



Fullwave

 S1, S2, T2 = Integral eq. f(ɣ)

 P = Bessel  f(ɣ)

quasi-TEM

 S1, S2, T2 = Infinite Integrals

 P = Logarithmic approx.

Images Method

 S1, S2, T2 = Log. approx.

 P = Log. approx.

Carson and Pollaczek

 S1 = Infinite Integrals

 S2 ≈ T2 ≈ 0

Figure 1.2: General overview - Frequency Dependent Line calculation approaches.

the series impedances and shunt admittance can be done through the calculation of the
line parameters using a Fullwave model, a quasi-TEM formulation or Image approxi-
mations [38]. The impact of its inclusion in the time-domain line behavior when high
frequency range excitations are considered has not been fully assessed and remains nowa-
days as an open research topic.

Another point of interest is the time-domain modeling of transmission lines for fast
and very fast transients. The evaluation of lightning performance [39–41], might require
to consider frequencies up to 10 MHz [20, 23, 42, 43] or 100 MHz [44, 45]. This large
bandwidth is also involved in the improvement of frequency domain fitting, identification
of time-delays, and to avoid frequencies with numerical instabilities. In these cases, it is
important to include the ground permittivity, since ground displacement currents are no
longer negligible due to the high frequencies involved, and the approximation of modeling
a lossy ground as a pure conductor can render inaccurate results.

Constant Parameters

σ, μ, ε = cte

Frequency dependent

σ, μ, ε = f(freq)

Portela

Visacro-Alipio

Smith-Longmire

σS + jωεS

Figure 1.3: Frequency Dependent soil models studied.
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1.2 Motivation

While rational fitting methods have facilitated the representation of electrical param-
eters in the frequency domain via partial fractions, their direct application in Electromag-
netic Transient modeling can still present certain difficulties.

As an example, the ULM has received several improvements concerning the fitting ac-
curacy of the propagation function [46], out of band passivity violations [43] and more re-
cently related to its numerical stability [45, 47], where large residue-pole ratios cause the
magnification of interpolation errors leading to unstable time-domain simulations [48].
Nonetheless, these improvements required to overcome certain shortcomings of the ULM,
such as the the obtention of unstable time-domain simulations when a one-segment inter-
polation scheme is used, i.e., a 2-point interpolation approach. To surmount this limita-
tion, an additional post-processing treatment of the transmission circuit parameters based
on the usage of a two-segment interpolation scheme must be employed, i.e., a 3-point
interpolation approach.

As pointed out in [45], a one-segment interpolation scheme is enough for modal de-
composition models, where the absence of interaction between distinct modes avoids the
magnification of interpolation errors, i.e., each mode has its own independent interpola-
tion scheme. Therefore, if a line can be modeled on phase coordinates without interac-
tion between distinct time-delays, some of the aforementioned instability issues might be
waived. In the technical literature there are two phase coordinate models that fall into this
category: the polar decomposition model [49] and the Idempotent line model [50, 51],
being the latter a model left aside in the past due to accuracy issues in the method used
for the rational fitting of the Idempotent Matrices. Although issues in the quality of the
fitting of the Idempotent matrices were originally reported in [52], no specific details were
given. These findings discouraged any further research on its viability as an alternative
line model to the ULM approach.

For time-domain simulations using the Idempotent line model, the procedure is
slightly different from the ULM approach. Since the propagation matrix is represented
as a sum of several independent matrices, it is more efficient to represent both history
current sources as a set of parallel current sources, i.e., each current source has its own
interpolation scheme associated with a single idempotent matrix, and there are no inter-
actions between different time-delays, which will allow for a more robust phase-domain
simulation using a one-segment interpolation scheme.

Additional research is also required in the field of line modeling using the fullwave
approach, the quasi-TEM formulation and image approximations for multiphase overhead
lines including the effect of the ground admittance per-unit length. Approximated expres-
sions have already been proposed to include its effect in the calculation of per-unit-length
line parameters [53–56]. Nonetheless, there has not been neither an assessment of their
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impact on the line behavior in the high frequency range, nor a synthesis of calculated line
parameters using rational functions.

Furthermore, although recent research indicates the need to consider the frequency
dependence in ground parameters [41, 57], its effect in multiphase overhead lines has only
been studied for a simplified Carson or Pollaczek model of the ground return impedance,
leaving as an open research topic field its impact in a Fullwave approach, which is the
least simplified way to obtain the line parameters.

1.3 Objectives

The fundamental objectives of this work are:

• To continue a research started during the master dissertation of the author by study-
ing the behavior of Transmission Line models with frequency dependent soil pa-
rameters and considering the effect of the displacement currents in time domain
simulations. It is important to point out that the impact of displacement currents is
usually disregarded.

• The assessment of the possibility to evaluate transmission circuits using the Idem-
potent Decomposition model [50, 51] with an improved fitting scheme to attain a
low fitting order as an alternative to the traditional ULM approach.

• An investigation of the viability of the Idempotent Decomposition model using the
Method of Characteristics to obtain time-domain results.

• The evaluation, in both frequency and time-domain, of the applicability, limitations,
numerical stability and precision of rational fitting models.

• The study of alternative models for the representation of overhead transmission
lines, especially in the high frequency domain and their limitations in the rational
fitting of parameters. First, the fullwave approach, which is the least simplified way
to obtain the line parameters by the iterative calculus of the propagation constant
of the circuit, second, the quasi-TEM formulation, which includes simplified infi-
nite integrals, and finally, the Image approximations, which employs closed-form
expressions to consider the infinite integrals, and to study in each of the aforemen-
tioned procedures.

• The assessment of the effect of frequency-dependent soil parameters in the mod-
eling of overhead transmission lines represented using the fullwave approach, the
quasi-TEM formulation and image approximations.
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1.4 Document organization

The present text is divided into 5 chapters. In the following paragraphs a brief de-
scription of each chapter is presented.

Chapter 1 includes the present introduction, which describes the principal considera-
tions taken in the present research work, motivation, objectives and a description of the
document organization.

Chapter 2 presents an application assessment of the Idempotent Decomposition in
phase coordinates as an alternative to the ULM approach for modeling overhead lines and
underground cables preserving the one-segment interpolation scheme used to calculate
the convolution integrals in the time domain.

Chapter 3 studies the numerical issues related to both the line modeling and the ratio-
nal fitting of the propagation function and characteristic admittance of a single phase line
over a lossy ground using a fullwave, quasi-TEM and Image approaches. Comparative
results of time-domain simulations for the quasi-TEM approach are presented.

Chapter 4 investigates the applicability and limitations of rational fitting applied to the
multiphase line parameters using a quasi-TEM formulation and Image approximations
with soil models using constant and frequency dependent parameters. The issues found
in the fitting of the Idempotent matrices are assessed using a quasi-TEM formulation to
recalculate the examples presented in the former chapters.

Finally, Chapter 5 treats the principal results of the present work and proposes some
topics for future research.
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Chapter 2

Transmission Line models by using
Idempotent Decomposition

In the present chapter, we assess the application of the Idempotent Decomposition
in phase-coordinates as an alternative to the ULM approach for modeling underground
cables and overhead transmission lines in phase-coordinates. The Vector Fitting method
(VF) [24]–[58] was used for the rational approximation of the Characteristic Admittance
and Idempotent matrices instead of the asymptotic magnitude fit originally used in the
Idempotent Line model [50, 51]. Time-domain responses obtained by the Method of
Characteristics (MoC) were compared with results calculated using a frequency-domain
algorithm based on the Numerical Laplace Transform (NLT) [59–61].

It was found that for the modeling of underground cables, the Idempotent Decompo-
sition is a suitable solution presenting both a good quality fit of the Idempotent matrices
and an accurate time-domain response. To the best of the authors’ knowledge, the mod-
eling of underground cables using Idempotent Decomposition as an alternative phase-
domain method has not been presented before in the technical literature. However, for
the modeling of overhead transmission lines, results indicate that there is a limitation to
the number of phases an Idempotent Line model can accurately represent. In this case,
as the number of phases increases, the accuracy of the rational fitting of the Idempotent
matrices involved decrease. Issues in the quality of the fitting of the Idempotent matrices
were originally reported in [52], although no specific details were given. A proposition
to group Idempotent Matrices with similar associated time-delays based on the grouping
routine used in the ULM approach to reduce the order of the rational functions which
compose the propagation matrix was tested. Some speed gain was attained due to a lesser
number of Idempotent matrices required for the simulations; however, no significant ac-
curacy improvement in the fitting of the Idempotent matrices was obtained in the test
cases considered here.

The chapter is organized as follows: An introduction to this chapter is presented in
Section 2.1. A brief review of time-domain modeling of transmission lines is presented
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in Section 2.2. The so-called ULM approach is reviewed in Section 2.3. The time-delay
extraction procedure is briefly explained in Section 2.4. The interpolation principles used
in time-domain simulations by the Method of Characteristics are explained in Section 2.5.
The principles of idempotent decomposition modeling are shown in Section 2.6. Some
test cases are evaluated in Section 2.7. Finally, the main conclusions are presented in
Section 2.8.

2.1 Introduction

Power Systems worldwide are becoming increasingly complex. The network expan-
sion together with environmental constraints have created more complex and asymmet-
rical configurations. A new circuit may share the same tower of an existing one and the
coupling between circuits cannot be neglected. Furthermore, as new interconnections
with longer transmission lines in HVDC and HVAC are established [62, 63], more pre-
cise simulation methods are required for the representation of multiphase transmission
systems.

In the aforementioned line configurations, due to computational burden limitations,
the simulation of transmission lines and underground cables in Electromagnetic Tran-
sients Programs (EMTP) originally relied on the use of modal decomposition [8, 9] and a
one-segment interpolation scheme to evaluate the modal time-delays as they are not gen-
erally multiples of the time-step. Nonetheless, for more asymmetric configurations, the
use of a frequency dependent transformation matrix is preferred, thus a phase-coordinates
model seems more suitable as the assumption of a real frequency independent modal
transformation matrix [5]–[11] losses validity.

To overcome the limitations associated with assuming a real and constant transforma-
tion matrix in the modeling of transmission lines, a large amount of research has been
carried out using phase-coordinates [14]–[21]. Two of these models were latterly imple-
mented in EMTP-type programs: the Universal Line Model (ULM) [20], included in both
the PSCAD/EMTDC and EMTP-RV, and the IARMA model [7] in ATP. Since its pro-
posal, the ULM has received several improvements related to fitting accuracy [46], out
of band passivity violations [64] and, more recently, to its numerical stability [45, 47], as
large residue-pole ratios caused magnifications of interpolation errors leading to unstable
time-domain simulations.

As pointed out in [45], a one-segment interpolation scheme, i.e., a 2-point interpo-
lation approach, is enough for modal decomposition models, where the absence of in-
teraction between distinct modes avoids the magnification of interpolation errors, as each
mode is interpolated independent separately. Therefore, if a line can be modeled on phase-
coordinates without interaction between distinct time-delays, certain instability issues of
the ULM reported in [45] might be avoided. In the technical literature there are two phase-
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coordinate models which satisfy these requirements: the Polar Decomposition model [49]
and the Idempotent Line model (id-Line) [50, 51]. While the Polar Decomposition test
cases considered underground cables and overhead lines, the id-Line was tested only in
overhead transmission lines.

2.2 Phase Coordinates Transmission Line Modeling

The distributed nature of transmission line impedances together with the skin effect in
conductors and earth return path cause voltage and current distortions and attenuations.
The behavior of voltages and currents in a transmission line is fully described by the
following equations

d V
dx

=−Z · I

d I
dx

=−Y ·V
(2.1)

where V is the phase to ground voltage vector, I is the current vector, Z is the series
impedance matrix and Y is the shunt admittance matrix, both in per-unit-length units. For
a n-conductor system the matrices are n×n while the vectors are n×1.

V0

I0

VL

IL

x = 0 x = ℓ

1

2

N

Figure 2.1: Multiconductor line.

For a transmission line with length ` as the one depicted in Fig. 2.2, the voltages V0,
VL and currents I0, IL at the terminals are related in the frequency-domain by (2.2), YC =

Z−1
√

Z ·Y is the characteristic admittance and H = exp
(
−`
√

Y ·Z
)

is the propagation
function matrix.

I0−YCV0 =−H(IL +YCVL)

IL−YCVL =−H(I0 +YCV0)
. (2.2)

Fig. 2.2 shows the equivalent circuit representation of the transmission system in the
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frequency domain.

V0

I0 +

_

+

YC

Ish

IH

VL

_

+

YC

IL+

0
Ish

L

0
IHL

Figure 2.2: Norton equivalent of a transmission system
Frequency-domain approach.

The time-domain counterpart of (2.2) is given by

i0 = yc ∗v0−h∗ (iL +yc ∗vL)

iL = yc ∗vL−h∗ (i0 +yc ∗v0)
(2.3)

as yc and h are the unit impulse responses of YC and H, v0, vL, i0 and iL are the time-
domain counterparts of frequency domain terminal voltages and injected currents and the
symbol ∗ indicates convolution. It is possible to rewrite i0 as

i0 = ish0− iH0 (2.4)

where

ish0 = yc ∗v0 = ish0,aux +G.v0

iH0 = h∗ (iL +yc ∗vL) = h∗ ifwL
(2.5)

and ish0,aux is an auxiliary shunt current source, ifwL a forward traveling current-wave
vector and G an equivalent conductance matrix. By exchanging the subindexes 0 and
L in (2.4) and (2.5), the corresponding set of equations for iL can be obtained. Fig. 2.3
shows the equivalent circuit model of the transmission system. A rather efficient recursive
formulation of the time-domain convolutions is possible if both YC and H are represented
using rational approximations [5].

For underground cables the procedure is basically the same, only the frequency-
domain behavior of the per-unit-length parameters will be different.

2.3 ULM modeling

For the rational approximation of the line parameters, a Vector Fitting (VF) implemen-
tation with a relaxation of the scaling function was used [25, 26]. See [65] for a detailed

10



v0
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G
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iH
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_

+

G
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0
ishL

0
iHL

ish0,aux ishL,auxG.v0 G.vL

Figure 2.3: Norton equivalent of a transmission system
Time-domain approach.

accuracy comparison of different vector fitting implementations.
A rational representation of YC has the form:

YC ≈
K

∑
n=1

Rn

s−an
+D (2.6)

where an are the poles obtained from fitting the trace of the characteristic admittance, Rn

is the matrix of residues and D is a constant matrix.
The rational fitting of the propagation matrix H is slightly different. First, the modal

propagation parameters are obtained by decomposing H in its eigenvalues and eigenvec-
tors, resulting in the product of a frequency dependent transformation matrix T, a diagonal
matrix of modes Hm and the inverse matrix of T given by

H = T ·Hm ·T−1 . (2.7)

Each mode hi can be represented by a minimum phase-shift function pi(s) and an
exponential function of the time-delay τi as:

hi ≈ pi(s) exp(−sτi) =

(
Ni

∑
m=1

ĉm,i

s+ pm,i

)
exp(−sτi) (2.8)

where Ni is the fitting order of the mode i, pm,i are the poles and ĉm,i are the residues of
the rational approximation. After identifying each τi [66, 67], the propagation matrix H
is fitted using the poles from the modes pm,i, thus

H≈HULM−ug =
N

∑
i=1

(
Ni

∑
m=1

Rm,i

s+ pm,i

)
exp(−sτi) (2.9)

where N is the number of modes, Rm,i is the matrix of residues associated with mode i,
and HULM−ug stands for the rational approximation considering all the modes. If modes
with nearly equal time-delays are grouped together we have the rational approximation of
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the propagation function proposed in the ULM [20]

H≈HULM =
K

∑
k=1

(
Nk

∑
m=1

Rm,k

s+ pm,k

)
exp(−sτk) (2.10)

where K is the number of grouped modes (K < N), τk is the collapsed time-delay, Rm,k

is the matrix of residues calculated for the corresponding poles pm,k of the grouped mode
and HULM stands for the rational approximation of H considering the grouped modes.

2.4 Time-delay Identification

From equation (2.8), we extract the time-delay of each mode hi and we calculate a
proper rational approximation.

hi exp(sτi)≈
Ni

∑
n=1

ĉi,n

s+ pi,n
(2.11)

The expression (2.11) is a minimum-phase function multiplied by an exponential time-
delay [10], then the poles and residues can be calculated using a rational fitting algorithm.
To extract the time-delays τi in a transmission circuit of length `, we can use the transit
time of each mode from their respectives velocities vi at the highest frequency of interest
Ω. Each modal velocity vi is given by

vi =
2π f(Ω)

ℑm
(√

Zi(Ω)Yi(Ω)

)
τi =

`

vi

(2.12)

Nonetheless, the calculated value of each time-delay is not necessarily the value which
will render the best fitting. The time-delay used must be the one which presents the least
RMS fitting error in the frequency band of interest.

It is possible to optimize the process limiting the minimum time-delay τmin and the
maximum time-delay τmax values to the theoretical speed of light time `/c and the modal
velocity `/vi respectively

`

c
≤ τi ≤

`

vi
(2.13)

where c is the velocity of light.
To clarify this process in more detail, we present here a brief application example.

Consider the time-delay identification of the transmission line presented in Fig. 2.4, with
a single-phase conductor of 10 km length.
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10 m

ρsoil = 100 Ω.m

Phase conductor:

Osprey

Figure 2.4: Single-Phase conductor over a lossy ground.

Figure 2.5 presents the search for the time-delay with the minimum RMS-Error for
different fitting orders of the term hexp(sτ), being τmin the time-delay of an ideal line,
and τmax the time-delay of the mode with the highest frequency of interest [67].

31. 31.5 32. 32.5 33. 33.5 34. 34.5 35.

10-5

10-4

0.001

0.01

0.1

1

Time delay Τ HΜsL

R
M

S
E

rr
or
Hp.

u.
L

N = 5 poles

N =10 poles

N = 15 poles

Τmin = {�c Τmax = {�v

Figure 2.5: Identification of time-delay for different fitting orders of hexp(sτ).

For this example, the minimum and maximum time-delays are respectively 33,33 µs

and 33,90 µs , while the time-delays which present the minimum RMS-errors for the
orders of N = 5, 10 and 15 poles are respectively 33,53 µs, 33,43 µs and≈ 33,33 µs, i.e.,
a time-delay slightly higher to the ideal time-delay of the line.
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2.5 Interpolation scheme

For a time-delay T, consider the frequency-domain rational approximation form of h

as follows

h(s) =
r

s−a
e−sT (2.14)

the integral solution of (2.14) is given by

y(t) = r · ea∆ty(t−∆t)+ r
∆t∫

0

eaτu(t− τ−T )dτ (2.15)

When the integral is performed over the one-segment line between u(t− τ−T ) and
u(t−T ), it gives for

x(t) = α x(t−∆t)+λ u(t−(k+ξ )∆t)+µ u(t−(k+1+ξ )∆t)

y(t) = r · x(n)
. (2.16)

Since the coefficient ξ is in general different for the different delay groups, the one-
segment approximation of u(t) cumulatively perturbs the rational model, hence the ULM
time-domain simulations become unstable with an increasing number of phases. Thus, a
two-segment interpolation scheme is needed in the ULM to guarantee stable simulations.

ta tb tc

t - (k+1)Δt
t -Tt - T - Δt

t - (k+2)Δt t - kΔt

one-segment
interpolation scheme

two-segment
interpolation scheme

Figure 2.6: Comparison of one-segment and two-segment interpolation schemes.

The mathematical formulation is given by

x∗(t) = α1 x(t−∆t)+λ1 u(tb)+µ1 u(ta)

x(t) = α2 x∗(t−∆t)+λ2 u(tc)+µ2 u(tb)

y(t) = r · x(t)

. (2.17)
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2.6 Idempotent Decomposition

For the Idempotent decomposition, the rational approximation of Yc is the same as in
the previous section. Next, we present two possible approaches for the rational approxi-
mation of H.

2.6.1 Conventional Approach (Id-Line)

Consider again the eigendecomposition of the propagation matrix H presented
in (2.7). Expanding T, Hm and T−1 we have

H =
[
T1 · · · TN

]
h1 · · · 0
... . . . ...
0 · · · hN




S1
...

SN

=
N

∑
i=1

Mi hi (2.18)

where N is the number of modes, Ti represents a column vector of T, Si is a row vector
of T−1 and Mi = Ti ·Si is an Idempotent matrix associated with mode i. If we write

Mi = Ti ·Si pi(s) (2.19)

where pi(s) is defined as in (2.8). Let Mi be a rational approximation of Mi, then H can
be approximate as

H≈Hid =
N

∑
i=1

Mi exp(−sτi) . (2.20)

Although a low order fit of hi is generally possible, a high order value is expected for
Mi, as both Ti and Si present frequency dependent behavior. The following procedure is
then adopted:

• We extract the time-delays in hi and obtain a minimum phase-shift function pi(s).

• Second, we proceed to calculate each matrix Mi.

• Finally, a fit of each one is done independently using VF to allow for pole relocation.

For time-domain simulations, the procedure is slightly different from the ULM ap-
proach. Since H is now a sum of several independent matrices, it is more efficient to
represent both history current sources iH0 and iHL as a set of parallel current sources, i.e.,
each current source has its own interpolation scheme associated with a single idempotent
matrix as depicted in Fig. 2.7, and there are no interactions between different time de-
lays, which will allow for a more robust phase-domain simulation using a one-segment
interpolation scheme.
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Figure 2.7: Norton equivalent of a transmission system
Time-domain Id. Line approach.

2.6.2 Idempotent Grouping (Id-Line-gr)

A possibility found in the ULM approach consists into grouping the modes with sim-
ilar time-delays to reduce the order of the rational functions which compose the propaga-
tion matrix. An analogue procedure such as follows is possible regarding the idempotent
decomposition:

1. First, we compute the differences ∆τ between the modal time-delays of the trans-
mission system.

2. Let Ω be the highest frequency considered in the fitting. Time-delays that satisfy
Ω∆τ < 2π ·10/360 are lumped together and approximated by a common time-delay
τ , where ∆τ = τi− τ j.

3. The common time-delay τ is chosen to be equal to the smallest of the individual
lumped time-delays.

4. The grouping is done by fitting each sum of idempotent matrices using their corre-
sponding τ .

This procedure may result in different idempotent matrix groups for a transmission
system. The propagation matrix is approximated as

H≈Hid−gr =
K

∑
k=1

Mi exp(−sτk) (2.21)

where K is the number of lumped modes and τk is the collapsed time-delay.

2.7 Test cases

For the assessment of the accuracy and numerical performance of the Idempotent
Decomposition modeling, we have considered a set of four test cases, namely:
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1. #1: an underground single-core (SC) cable system without armor, 1 km length.

2. #2: a 800 kV line with 2 ground wires with 3-phases, 50 km length.

3. #3: a 500 kV line in parallel to a 138 kV line with a total of 6-phases, 50 km length.

4. #4: a 230 kV line with 18-phases, 100 km length.

Test cases #1 and #4 present unstable time-domain responses using the ULM approach
with a one-segment interpolation scheme [45]. Despite the rather unusual geometry of test
#4, its analysis here is made to compare the Idempotent decomposition performance in a
previously reported unstable example and to verify if the Idempotent grouping presents
any actual computational gain or improved fitting accuracy. Fig. 4.27 depicts the geome-
tries and data for the test cases. All the overhead line test cases assumed ground wires to
be continuously grounded.

Core
(ρc, μc)

r4

r2

r1 = 19.50 mm

r2 = 37.75 mm

r3 = 37.97 mm

r4 = 42.50 mm

Insulation
(εc-s)

r3

0.3 m 0.3 m

1 m ρsoil = 100 Ω.m

ρc = 3.365·10-8 Ω.m

ρs = 1.718·10-8 Ω.m

εc-s = 2.85·ε0

εs-g = 2.51·ε0

μs = μc = 1·μ0

Jacket (εs-g)

r1

Sheath
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(a) Underground SC cable system geometry.
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(b) 800-kV line geometry with 3 φ .
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(c) 500-kV and 138-kV lines geometry with 6 φ total.
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(d) 230-kV line geometry with 18 φ .

Figure 2.8: System geometry of each case.

In all cases, the influence of the fitting implementation over the accuracy of the ra-
tional approximation of the Idempotent Matrices and the Characteristic Admittance was
negligible.
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2.7.1 Fitting of Mi and composition of H

Tests #1 and #4 considered a frequency fitting band between 0.1 Hz to 100 MHz and
between 0.1 Hz to 10 MHz as in [45]. The other two test cases considered a frequency
fitting band between 0.1 Hz and 10 MHz. Table 2.1 shows the number of poles used
for the rational approximation of hi, YC, Mi, HULM−ug (ULM without mode collaps-
ing), HULM (conventional ULM approach), Hid (conventional idempotent modeling) and
Hid−gr (idempotent grouping). For the rational approximation of Mi and hi, we must
first extract the time-delays associated with each mode i. The procedure for obtaining the
time-delays is described in Section 2.4.

Table 2.1: Poles from the rational approximation of the line parameters.

Test Number of fitting poles

Case hi YC Mi HULM HULM−gr Hid Hid−gr

# 1 16 12 20 96 80 120 100

# 2 6 12 20 36 — 60 —

# 3 6 12 20 72 60 120 100

# 4 14 12 20 216 60 360 100

Table 2.2 presents the time-delays associated to each mode even when mode collaps-
ing is considered.

Table 2.2: Calculated and Lumped time delays.

Test
Mode

Time delay (µs)
Case 1 2 3 4 5 6

# 1
Calculated 55.69 26.07 21.09 5.632 5.629 5.629
Lumped 55.69 26.07 21.09 5.629 — —

# 2
Calculated 175.84 166.78 167.02 — — —
Lumped 175.84 166.78 167.02 — — —

# 3
Calculated 333.61 333.63 337.33 333.55 333.60 359.96
Lumped 333.60 333.63 337.33 333.55 359.96 —

# 4

333.569 333.569 333.568 333.568 333.568 333.567
Calculated 333.567 333.567 333.565 333.504 333.564 333.504

333.563 333.564 333.560 333.906 336.796 400.539
Lumped 333.560 333.504 333.906 336.796 400.539 —

The Id-Line-gr allowed a sensible reduction in the dimension of the rational approxi-
mation of H. In #1, the coaxial modes were lumped reducing from 6 to 4 the number of
time-delays. In #3, the reduction was from 6 to 5 and in #4 the reduction was from 18 to 5
time-delays. There was no lumping possible for test case #2, as 3 time-delays remained.
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Table 2.3: Maximum fitting deviation of H - Idempotent modeling

Test
Case Id-Line Id-Line-gr

# 1 2.89 ·10−4 3.88 ·10−3

# 2 2.09 ·10−4 —
# 3 1.98 ·10−2 4.94 ·10−2

# 4 3.48 ·10−2 5.72 ·10−2

Despite the reduction found in 3 of the test cases, a higher number of poles was needed
when using the id-Line-gr (Hid−gr) compared with the number of poles using ULM even
without mode lumping. Furthermore, the idempotent grouping did not improve the overall
accuracy in the rational approximation of H.

Table 2.3 presents the absolute value of the maximum deviation found in the ratio-
nal approximation of H using conventional idempotent decomposition and considering
idempotent grouping. The results indicated a slight increase in this deviation whenever
idempotent grouping is considered. Furthermore, the idempotent grouping did not pre-
vent the low frequencies oscillations found in the rational modeling of H in some of the
test cases as it will be shown next. For this reason, in the following figures we present
only the results for the conventional idempotent modeling.

For the Rational Fitting of the Idempotent Matrices, Figures 2.9 to 2.19 present the
results for test cases #1 to #4, respectively. Table 2.4 presents the absolute value of the
maximum deviation found in the fitting of the Idempotent matrices.

Table 2.4: Absolute fitting error of the Idempotent Matrices.

Test
Case Absolute fitting error (p.u.)

# 1
47.20 ·10−6 1.64 ·10−6 141.60 ·10−6

2.40 ·10−3 3.25 ·10−6 3.04 ·10−3

# 2 21.10 ·10−6 64.32 ·10−6 4.73 ·10−7

# 3
0.12 0.12 0.60

0.077 0.020 0.61

# 4

6.68 ·10−3 0.025 0.036
0.058 0.067 0.191
0.046 0.020 0.164
0.068 0.111 0.270
0.062 0.061 0.121
0.128 0.146 0.053

Figures 2.20 and 2.21 present the rational fitting of H using idempotent modeling for
test cases #1 to #4.

For the test cases involving overhead lines (test cases #2 to #4), a shunt conductance
was needed to be included in the data to avoid small low frequencies oscillations in the
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rational approximation. In #2, a shunt conductance of 3 ·10−11 S/m was used. This value
is slightly higher than the one proposed in [68] for the EMTP-type modeling of overhead
lines.

The inclusion of a shunt conductance of 3 · 10−11 S/m did not prevent the small os-
cillations in the amplitude of the rational approximation of H for #3. It was found that
if a shunt conductance of 3 · 10−10 S/m or higher is considered, these oscillations in the
fitted function cease to exist. However, this high conductance value, which is one order
of magnitude higher than the one in #2, alters significantly the low frequency behavior of
Yc.

The rational approximation of test case #4 presents the lowest accuracy. In this case,
a shunt conductance equal to the one in #2 was considered. For this case, some of the
rational approximations of Mi presented poor accuracy. However, its impact on the fitting
of H is less pronounced although small oscillations in the rational approximation of H
persisted.
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Figure 2.9: Rational Fitting of M1, M2 and M3 for #1.
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Figure 2.10: Rational Fitting of M4, M5 and M6 for #1.
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Figure 2.11: Rational Fitting of M1, M2 and M3 for #2.
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Figure 2.12: Rational Fitting of M1, M2 and M3 for #3.
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Figure 2.13: Rational Fitting of M4, M5 and M6 for #3.
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Figure 2.14: Rational Fitting of M1, M2 and M3 for #4.
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Figure 2.15: Rational Fitting of M4, M5 and M6 for #4.
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Figure 2.16: Rational Fitting of M7, M8 and M9 for #4.
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Figure 2.17: Rational Fitting of M10, M11 and M12 for #4.
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Figure 2.18: Rational Fitting of M13, M14 and M15 for #4.
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Figure 2.19: Rational Fitting of M16, M17 and M18 for #4.
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Figure 2.20: Rational approximations for Hid - Test cases #1 and #2.
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Figure 2.21: Rational approximations for Hid - Test cases #3 and #4.
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2.7.2 Time-domain simulation

To allow for the inclusion of circuital elements using a matrix formulation, a user de-
fined routine was written for this purpose using the Modified Nodal Analysis in Wolfram
MATHEMATICA [69] in a similar fashion as in the MatEMTP program described in [70].
For the idempotent decomposition we require to model multiple current sources that are
implemented following the principles presented in Appendix A.

For the time-domain simulations in order to allow comparisons with the results in [45],
a ∆t = 0.5 µs was considered for test case #1, and a ∆t = 10 µs was considered for #4.
The other two test cases used a time-step of 1 µs. A total simulation time of 100 µs was
considered for #1. The other three test cases employed a total simulation time of 5000 µs.
Figures 2.22 and 2.23 show the energization schemes of all the test cases. For test case
#1, to simulate a cable connection with a simplified transmission line, 400 Ω resistors
were used to represent each line phase. Also, for test case #1 and #2, 5 Ω and 10 Ω

resistors were used to represent the resistance to earth of the grounding connected to the
cable shield. In all the test cases, a unit voltage source ramped from 0 V to 1 V in 5 µs

connected to one of the phases was considered.
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(a) #1.
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Figure 2.22: Circuits for the evaluation of the time responses for test cases #1 and #2.
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Figure 2.23: Circuits for the evaluation of the time responses for test cases #3 and #4.

For the NLT simulations 4096 frequency samples were used, see Appendix B for
details on the NLT implementation. As the time-step in NLT is not the same as the one
found in the idempotent modeling, interpolations between consecutive samples were also
used to allow a comparison with the results from the idempotent modeling.

Fig. 2.24 to Fig. 2.27 present the voltage responses on different receiving end con-
ductors using the NLT [71]–[61], the Id-Line and Id-Line-gr. These figures also show the
error of the idempotent modeling from the results obtained using the NLT.
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Figure 2.24: #1 - Time-domain simulations and error of the Idempotent Decomposition.
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(b) Error from NLT results in V1.

Figure 2.25: #2 - Time domain simulations and error of the Idempotent Decomposition.
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(a) Receiving end voltage simulation V1, V4, V5 and V6.
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(b) Error from NLT results in V4.

Figure 2.26: #3 - Time domain simulations and error of the Idempotent Decomposition.
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(a) Receiving end voltage simulation V4, V15 and V18.
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Figure 2.27: #4 - Time-domain simulations and error of the Idempotent Decomposition.
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Regardless of the test case, stable simulations were found using conventional and
grouped idempotent decomposition when compared with the results obtained using NLT.
With the exception of #4, accurate responses were obtained. The higher errors occurred
near the steep fronts of the response. Small time-domain oscillations were found in both
grouped and ungrouped idempotent modeling, the exception being the results of #4 where
an increasing error with time was found.

It is worth mentioning that in spite of the inherently low accuracy involved in some
of the Idempotent matrices for test case #4, a stable time-domain response was obtained
using Idempotent modeling while the conventional ULM approach rendered unstable re-
sults as reported in [45]. This is due to the lower residue-pole ratio found in the rational
modeling of H using Idempotent decomposition as shown in Table 2.5. This table shows
the results for the residue-pole ratio considering the Id-Line (HMi), Id-Line-gr (HMi−gr),
ULM without lumping modes (HULM−ug) and conventional ULM (HULM). The idem-
potent modeling presented a considerably smaller residue-pole ratio when compared with
the ULM. This result indicate the robustness of the idempotent decomposition when using
a one-segment interpolation scheme.

Table 2.5: Residue-pole ratios of the propagation matrix H.

Test Residue-pole ratio (p.u.)
Case HULM−ug HULM Hid Hid−gr

# 1 2.52 ·106 69.00 8.09 8.09
# 2 0.53 — 0.40 —
# 3 38.58 1.20 2.49 9.56
# 4 8.00 ·103 199.00 5.19 5.19

The total simulation times are shown in Table 2.6. The simulations were carried out
in MATHEMATICA using a 2.4 GHz, Core i7-4700MQ computer with 12 GB of RAM.

Table 2.6: Total simulation time for Id-Line and ULM modeling.

Test
Case

Simulation time (s)
One-segment

interpolation scheme
Two-segment

interpolation scheme
ULM-ug ULM Id-Line Id-Line-gr ULM-ug ULM

# 1 3.64 1.38 4.60 3.12 6.09 2.23
# 2 10.37 — 33.71 — 35.59 —
# 3 40.75 34.57 157.64 138.33 111.48 102.99
# 4 728.70 152.08 2764.54 887.76 2908.08 656.51

Comparable simulation times were obtained for the Id-Line using a one-segment in-
terpolation scheme and the ULM with a two-segment interpolation scheme.
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2.8 Discussion

The application of the Idempotent decomposition for phase-domain modeling of
underground cables and overhead transmission lines with a one-segment interpolation
scheme was evaluated. Four test cases were considered: an underground single-core ca-
ble system without armor, a 800 kV three-phase overhead transmission line, two parallel
lines of 500 kV and 138 kV and finally, a 230 kV overhead transmission line with 18-
phases. Both the former and the latter cases were reported as highly unstable cases which
presented unstable time-domain simulations using the ULM approach with a one-segment
interpolation scheme [45]. Time-domain simulations were processed using the Numerical
Laplace Transform and the Method of Characteristics approaches. Stable time responses
are found in all the test cases even though only a one-segment interpolation scheme is used
as a relatively small residue-pole ratio is found regardless of the circuit configuration.

For the underground single-core cable system, a very accurate fit of the Idempotent
Matrices and an accurate time-domain response were obtained.

For the overhead transmission line cases studied, an unexpected behavior was found.
The accuracy is dependent on the number of phases involved. As the number of phases
increases, a decrease in the quality of the rational approximation of H presents. This
leads to small oscillations in the amplitude of the rational approximation of H in the low
frequency range, typically below 10 Hz. The inclusion of a diagonal shunt conductance
matrix in the per-unit-length transmission line admittance is necessary to improve the
accuracy of the fitting of the Idempotent matrices. However, as the number of phases
increases this mitigation procedure ceased to be effective. To avoid the aforementioned
oscillations, the value of the conductance would have to be considerably higher than the
typical values found in the literature. Further tests of other rational fitting procedures such
as matrix pencil or Levenberg-Marquadt to improve the rational approximation of H in
the low frequency range are also in order.

The viability of grouping Idempotent matrices with similar time-delays was also in-
vestigated. The speed gain attained was proportional to the number of grouped modes.
The idempotent grouping slightly decreased the accuracy of the rational approximations.
However, the test cases indicate that this grouping did not affect significantly the time-
domain results with the exception being the 18-phases test case where both idempotent
and idempotent grouping modelling did not provided accurate responses.

To assess the causes of the high fitting order of the Idempotent Matrices, a more
detailed analysis of the phase coordinate modeling of the propagation matrix and the
influence of the soil in these models is needed.

In the following chapters, the influence of the per-unit-length line parameters will be
studied by comparing the results obtained using models with less simplificative assump-
tions such as the Full-wave model, the quasi-TEM formulation and the Images method.
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Chapter 3

Numerical Issues in Single-Phase Line
Models

In the previous chapter, the Idempotent Decomposition was found to be a feasible
alternative for phase-coordinate modeling of underground cables. Nonetheless, its ap-
plication for overhead line models still merits future research work related to issues in
the quality of the fitting of the Idempotent matrices when a large number of modes is
considered.

We need to investigate whether the causes of the aforementioned application issues
of the Idempotent Decomposition in phase coordinate modeling of overhead transmission
lines are inherently related to the effect of physical inaccuracies in the formulation of the
line parameters.

Therefore, in the present chapter, we evaluate the per-unit-length parameters consider-
ing a lossy ground in a wide frequency range, i.e., using both ground conduction currents
and displacement currents. A simple configuration—a single-phase line—is modeled us-
ing a well established line model and two simplified models which originate from it: a
Fullwave approach, which is the least simplified way to obtain the line parameters by the
iterative calculus of the unknown propagation constant of the circuit, a quasi-TEM formu-
lation, which includes simplified infinite integrals, and finally, the Image approximations,
which uses closed-form expressions to consider the infinite integrals.

Although a complete full-wave model of an overhead line can circumvent the afore-
mentioned limitations, it demands the solution of an integral equation involving an un-
known propagation constant [72–74]. Pettersson [75] showed that both the fullwave
model proposed by Kikuchi [72] and the one proposed by Wait [73] lead to an identical
modal equation. No such comparison exists regarding the proposal made by Wedepohl
and Efthymiadis [74, 76]. We show here that these two approaches lead to an identical
propagation constant.

Results indicate that no passivity violations are found if either a full-wave model or
quasi-TEM formulation are used. Accuracy and passivity issues in the Image approxima-
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tions previously unreported in the technical literature were found. Technical difficulties
related to the implementation of a multi-phase fullwave model are also addressed.

Time-domain responses based on the Numerical Laplace Transform and the Method
of Characteristics were used to verify the accuracy and stability of the tested models. Tests
were carried on using an input voltage including a small perturbation to excite the passiv-
ity violations found in the modeling using the Image approximations. The large number
of complex-valued frequency samples hindered an efficient time-domain simulation of the
full-wave model. While suitable responses were obtained for the quasi-TEM formulation,
the image approximations model presented a loss of accuracy in its time-domain results
due to the aforementioned passivity violations.

If the line length is increased, it was found that the image approximation can lead to
a stable model in a frequency range up to 100 MHz as well. Therefore, besides the well-
known limitations of the image approximation related to the ratio between conductor’s
height and diameter, there is a minimal length limitation to its applicability as a function
of the frequency.

Furthermore, as an iterative solution based on a Newton-Raphson scheme is needed to
solve the modal equation in the fullwave model, we show that instead of using a slightly
perturbed air propagation constant as initial guess, it is possible to improve the numerical
performance of the overall process if a distinct initial guess is considered. Some aspects
related to a full-wave model based on the Method of Characteristics using rational fitting
are also presented.

The chapter is organized as follows: Section 3.1 presents a brief introduction to the
chapter. Section 3.2 briefly reviews the process of defining the modal equation and the
root-finding scheme needed to solve it. Section 3.3 presents the basic formulation related
to the definition of per-unit-length parameters considering a full-wave model, quasi-TEM
approximations and image approximations. Section 3.4 shows the formulation of the
nodal admittance matrix for a transmission line as well as the definition of its eigenvalues
for the passivity violation assessment. Section 3.5 presents the frequency domain fitting
results for a simple line considering a full wave model, a quasi-TEM formulation and Im-
age approximations. This section also shows the time domain response tests of a slightly
perturbed input voltage considering the Numerical Laplace Transform and the Method
of Characteristics for the line modeling. Section 3.6 addresses the cause of the passivity
violations by analyzing the accuracy of the simplified closed-form solution of the infinite
integrals related to the quasi-TEM formulation. The main conclusions of this chapter are
shown in Section 3.7.
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3.1 Introduction

The relation between terminal voltages and injected currents in a thin wire above a
lossy interface is one of the classical problems in electromagnetic field theory and it has
a wide range of applications. Traditionally, power system transients studies on trans-
mission lines or underground cables assume quasi-TEM (Transverse Electromagnetic)
propagation and the ground to be a good conductor, i.e., neglecting displacement currents
associated with the ground permittivity. This implies using either Carson’s or Pollaczek’s
formulation [30–32] involving the solution of infinite integrals for the evaluation of the
series impedance. To avoid dealing with the aforementioned infinite integrals, extensive
research on simplified expressions has been carried out such as the ones in [33–36] to
mention just a few. One of the most successful approximations is based on the image
approach. This approach, also known as the complex-plane method, has been used to
derive ground return impedances of overhead lines [34] and underground cables [37]. In
the image method, the quasi-TEM formulation is further simplified, allowing closed-form
formula based on logarithms.

More recent works related to approximations of line parameters [54, 75, 77] proposed
image approximations that can deal with the inclusion of ground displacement currents.
Unfortunately, as it is here shown, this approach might lead to small passivity violations
in the high frequency range, typically above a few MHz. This frequency range might
seem outside the usual bandwidth of interest for power system analysis. However, to
improve frequency domain fitting, identification of time-delays and to evaluate the light-
ning performance of transmission circuits in time-domain modeling [39–41], a bandwidth
with frequencies up to 10 MHz [20, 23, 42, 43] or 100 MHz [44, 45] might need to be
considered.

It is important to mention that an assessment of a full wave line model considering ei-
ther multi-phase conductors or frequency dependent ground parameters, as well as special
cases like inclined or non-homogeneous lines which need to be evaluated using different
calculation methods such as the discretization of the line [78], are outside of the scope of
the present work and are left for future research.

3.2 Identification of the Propagation Constant

Consider an infinitely long conductor with radius r at a constant height h above a lossy
ground as shown in Fig. 4.1. Both media are assumed to be air and ground, characterized
by a permittivity εi, conductivity σi and permeability µi, where i = 1 for air and i = 2 for
the ground, respectively. Time-dependence is assumed to be of the harmonic type, i.e.,
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e jωt , and the propagation constant γi of each medium is given by

γi =
√

jωµi (σi + jωεi) (3.1)

with the real part of the square root defined positive. The conductor current I propagates
exponentially in the z-axis and has the form

I = I0e−γ z (3.2)

where I0 is the maximum amplitude and γ is the unknown propagation constant of the cir-
cuit. The expression for the electromagnetic field in both media can be obtained through

hy

x

z

Medium 1

σ1  ε1 

μ1

σ2  ε2

μ2
Medium 2

2r

Figure 3.1: Single-phase conductor arrangement.

the use of the electric and magnetic Hertz vector, ΠEi and ΠMi respectively [79]. Both
ΠEi and ΠMi have only a z-component. The general expressions of the electric field Ei

and the magnetic field Hi are shown below.

Ei = ∇×∇×ΠEi− jωµi ∇×ΠMi

Hi = (σi + jωεi)∇×ΠEi +∇×∇×ΠMi

(3.3)

A solution to (3.3) can be found using a double spatial Fourier Transform. The bound-
ary condition at the conductor surface and at the interface between the two media are used
to solve the field equations. An outline of this solution was first presented by Wait [73]
and by D’Amore and Sarto in the appendix of [77] and it is summarized in Appendix C.

If the thin wire approximation [35, 77] is assumed, i.e., as long as γw� γ1, where γw is
the propagation constant of the wire, the evaluation of the electric field at x = 0, y = h−r,
see Fig. 3.1, leads to the modal equation given by M below. Assuming equal ground and
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air permeabilities, µ2 = µ1 = µ0, we have:

M =
2π

jωµ1
zint +

(
1− γ2

γ2
1

)
P+

(
S1−

γ2

γ2
1

S2

)
(3.4)

where zint is the conductor internal impedance, P = K0 (r η1)−K0 (d η1), being K0 the
modified Bessel function of the second kind of order zero, d =

√
4h2 + r2, η1 =

√
γ2

1 − γ2,
and S1 and S2 are the Sommerfeld integrals given by

S1 =

∞∫
−∞

e−2hu1

u1 +u2
e− jrλ dλ (3.5)

S2 =

∞∫
−∞

e−2hu1

n2u1 +u2
e− jrλ dλ (3.6)

where u1 =
√

λ 2 + γ2
1 − γ2, u2 =

√
λ 2 + γ2

2 − γ2, and n = γ2/γ1 is the refractive index of
ground.

As pointed out in [75, 77] the numerical solution of (3.4) is not straightforward. Typi-
cally, we might use a Newton-Raphson (NR) scheme starting from a slightly perturbed γ1

as a starting point for the root finding process. This procedure can be expressed as follows

γk+1 = γk−
M
M′

(3.7)

where γk+1 is the new value of the propagation constant obtained from the values of the
k-th iteration, M′ is the derivative of the modal equation with respect to γ given by

M′ =
∂S1

∂γ
+

∂P
∂γ
− γ2

γ2
1

(
∂S2

∂γ
+

∂P
∂γ

)
−2

γ

γ2
1
(S2 +P) (3.8)

where

∂S1

∂γ
=−γ

∞∫
−∞

(
1+2hu2

u2
1u2 +u1u2

)
e−2hu1− jλ rdλ (3.9)

∂S2

∂γ
=−γ

∞∫
−∞

(
2hu2

(
u2 +n2u1

)
+n2u2 +u1

u1u2 (n2u1 +u2)
2

)
e−2hu1− jλ r dλ (3.10)

∂P
∂γ

=
γ

η1
[d K1 (dη1)− rK1 (rη1)] (3.11)
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being K1 the modified Bessel function of the second kind of order one.
We found out that this process is rather slow in convergence and some numerical

problems might occur as η1 tends to zero in P. Furthermore, the infinite integrals have
a slow rate of convergence, even when specific integration algorithms such as Gauss-
Kronrod (GK) quadrature are used. Both M and M′ are evaluated using a GK quadrature
as implemented in Mathematica, see Appendix D for some details. After the evaluation
of M and M′ the determination of the next guess of the propagation constant is straight-
forward. This process continues until ∣∣∣∣γk+1

γk

∣∣∣∣≤ δ (3.12)

where δ is a real number, here we considered δ = 10−12.
To improve the numerical evaluation of (3.7), several possible starting points for the

NR algorithm were tested. We found that the use of an image approximation as a starting
point significantly improves the numerical performance.

To illustrate this procedure, consider a single conductor at constant height h = 10 m
above ground, radius r = 1 cm, conductivity σc = 64.96 ·106 S/m and length `= 500 m.
The ground parameters are σ2 = 5 mS/m, ε2 = 5ε1 with ε1 = ε0 and µ1 = µ2 = µ0, air
conductivity is null. This configuration is basically the same as in [77].

Fig. 3.2 shows the attenuation and phase constants of jγ for the full wave solution and
the approximations. This result was obtained by solving the integral equation in a similar
manner as done in [80]. In every case, the attenuation constant differs in 3 orders of
magnitude to the phase constant. As reported in the literature [81, 82], there are two roots
of the modal equation on the proper Riemann sheet, one is related to a fast wave (FW)
mode with increasing damping and the other is a transmission line mode (TL) where the
attenuation constant decreases in the high frequency range. Furthermore, as mentioned
in [77], TL and FW are very close in the low frequency range. As TL mode starts to
increase, its damping it is no longer a viable solution to the NR scheme, shifting from the
TL mode to the FW one. This causes a discontinuity in the attenuation constant around
4 MHz.

Regardless of the original formulation, all methods provided identical results for the
phase constant. If we compare the aforementioned figures with [77, Fig. 2a, Fig. 2b]
a very good agreement is found. The main difference lies in the maximum value in the
attenuation constant. For comparison, Fig. 3.2 also shows the values obtained using the
full-wave model proposed by Wedepohl and Efthymiadis in [74, 76]. Unlike the previous
model, this proposal is based on using magnetic and scalar vector potentials. We summa-
rize this approach in Appendix E. It is worth mentioning that this formulation allows to
evaluate the scenario of two media with different magnetic permeability, i.e., µ1 6= µ2.

For the starting point in the NR scheme of (3.7) we considered three possible initial
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Figure 3.2: Behavior of γ for distinct approaches.

guesses: A perturbed air propagation constant γ̂k = γ1(1− j0.001), a quasi-TEM approx-
imation and an image approach. For the latter two, rearranging (3.4) and neglecting zint it
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follows that

γk = γ1

√
P+S1

P+S2
γk = γ1

√√√√P+S1

P+S2
(3.13)

where P, S1, S2, S1 and S2 are given in (3.21) and (3.23).
Although a solution is reached using γ̂k, several convergence problems of the NR

scheme arise. An improved convergence was achieved using γk as it is closer to the actual
solution. However, it demands the evaluation of infinite integrals in the frequency loop
leading to a higher computational time. Finally, γk presents the best performance, with an
improved convergence and minimal computational burden.

3.3 Evaluation of the Line Parameters

After the identification of γ , to define the propagation characteristics we must solve
the well know wave equation

d2U
dz2 = Z(γ)Y (γ)U

d2I
dz2 = Y (γ)Z(γ) I (3.14)

where Z(γ) and Y (γ) are the per-unit-length impedance and admittance, respectively, U

is the wire voltage to ground and I is the line current.
The wire voltage to ground U can then be obtained by

U =−
h−r∫
0

Ey(0,ξ )dξ (3.15)

for a conductor at a constant height h and centered at (0,h). By using the magnetic vector
potential A and the electric scalar potentials ϕ it is possible to express U as

U = ϕ(0,h− r)−ϕ(0,0)+ jω
h−r∫
0

Ay(0,ξ )dξ (3.16)

where Ay is the y-component of A. Both A and ϕ can be obtained in terms of the electric
and magnetic Hertz vectors, ΠEi and ΠMi respectively, see (3.17) [79].

A = µ (σ + jωε)ΠE +µ ∇×ΠM ϕ =−∇·ΠE (3.17)

Thus after obtaining γ , we calculate both ΠE and ΠM to define the line voltage, see Ap-
pendix C for details.

The per-unit-length line parameters, i.e., the line impedance Z and admittance Y , are
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then given by

Z(γ) = zint +
jωµ1

2π

[
P+S1−

(
γ

γ1

)2

(T +S2)

]
Y (γ) = 2π (σ1 + jωε1) [P−T ]−1

(3.18)

where P, S1, S2 are the same as before and T is an infinite integral accounting for the
magnetic vector potential in the y-axis given by

T =

∞∫
−∞

u2

u1

(
e−hu1− e−2hu1

n2u1 +u2

)
e− jrλ dλ (3.19)

One disadvantage of using (3.18) for the evaluation of the line parameters is the need
to first solve the modal equation, i.e., find a γ that leads to M = 0 in (3.4), to calculate the
infinite integrals. A possible simplification known as the quasi-TEM or small argument
approximation consists in assuming γ = γ1 in P, S1, S2 and T . Then, both the impedance
and admittance per-unit-length become independent of the propagation constant. The
resulting expressions for Z and Y considering these approximations are

Z = zint +
jωµ1

2π

[
P+S1−

(
T +S2

)]
Y = 2π (σ1 + jωε1)

[
P−T

]−1
(3.20)

where P = ln(2h/r) and the infinite integrals are given below

S1 =

∞∫
−∞

e−2hλ

λ +u
e− jrλ dλ

S2 =

∞∫
−∞

e−2hλ

n2λ +u
e− jrλ dλ

T =

∞∫
−∞

u
λ

(
e−hλ − e−2hλ

n2λ +u

)
e− jrλ dλ

(3.21)

where u =
√

λ 2 + γ2
2 − γ2

1 .
Although the quasi-TEM approximation represents a simpler way to obtain the line

parameters, infinite integrals are still involved. Extensive research has been carried out to
approximate them, e.g., [81–84], or to avoid them, e.g., [33–36], just to mention a few.
One of the most successful approximations is based on the image approach which can
be considered as an extension of the case of a perfectly conducting ground plane. This
approach is also known as the complex-plane method and has been used to derive ground
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return impedances of overhead lines [34] and underground cables [37]. The resulting
expressions for Z and Y are

Z = zint +
jωµ1

2π

[
P+S1−

(
T +S2

)]
Y = 2π (σ1 + jωε1)

[
P−T

]−1 (3.22)

where the infinite integrals are given by closed-form expressions based on logarithmic
approximations given by

S1 = ln
(

1+
2

β
√

4h2 + r2

)
S2 =

2
n2 +1

ln
(

1+
n2 +1

β
√

4h2 + r2

)

T = 2ln2+
2n2

n2 +1
ln

1+ n2+1
β
√

4h2+r2

1+
2(n2+1)

β
√

4h2+r2


(3.23)

with β =
√

γ2
2 − γ2

1 . If the ground is assumed to be a good conductor, i.e., σ2� ωε2, the
following premises hold∣∣∣S1

∣∣∣� ∣∣∣S2 +T
∣∣∣ and

∣∣S1
∣∣� ∣∣S2 +T

∣∣ (3.24)

thus only the approximate expressions of S1 and P are needed in the evaluation of the
line parameters. The expression for T presented here is slightly different from the one
reported in [75], this is due to a mismatch found in this expression with its corresponding
infinite integral from the quasi-TEM formulation.

To clarify this finding in more detail, consider the single-phase line presented in Sec-
tion 3.2. Fig. 3.3 shows the comparison for the real and imaginary part of T and their
approximated counterparts, i.e., T presented in [75] and T using expression (3.23).

Besides of the large mismatch between T and T [24], and the increased magnitude
of the passivity violations calculated using T [24], due to inaccuracies inherent to the
logarithmic approximation, the opposite phase in both real and imaginary values seem to
indicate that it is possible there was a typo in such expression. Therefore, in the present
work, we recommend to use the expression (3.23) instead of the one presented in [75].

Although deviations between T and T [24] are rather small when compared to the
magnitudes of Z and Y , they create small deviations in both H and Yc, thus increasing
the existing passivity violations in the resulting nodal admittance matrix as presented in
Fig. 3.4, see Section 3.4 for details.
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Figure 3.3: Accuracy comparison of closed-form T .
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Figure 3.4: Passivity violations in Y using different closed-forms of T .
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3.4 Numerical Stability of a Single-phase Line Model

Typically, the numerical stability of a transmission line model is analyzed using only
the characteristic impedance Zc, i.e., a line model is assumed stable as long as Zc has a
positive real part. However, this consideration alone might be insufficient to guarantee a
passive line model, which can ensure stability throughout the whole frequency range.

A transmission line model can be represented in the frequency domain by its nodal
admittance matrix, i.e,

I = Y ·V (3.25)

with I being the vector of injected currents, V the vector of line terminal voltages and
where the nodal admittance matrix Y is given by

Y = G+ jB =

[
Ys Ym

Ym Ys

]
. (3.26)

The power absorbed (P) by this model for any complex vector V is given by

P = ℜe [V∗YV] = V∗GV (3.27)

where V∗ is the conjugate transpose of V. Thus to verify the stability of any line model, a
simple yet efficient procedure is to identify whether the real part of the eigenvalues of Y
in (3.28) is positive. This means we must establish if Y is positive definite, i.e.

eig
(
Y
)
= eig

((
Y+YH)/2

)
≥ 0 ∀( jω) (3.28)

where YH is the conjugate transpose of Y.
Thus, identification of passivity violations can be carried out in the frequency domain.

However, the maximum passivity violations could be difficult to identify as the global
minimum of eig

(
Y
)

may not be reached in the frequency sweep.
In a single-phase transmission line the elements of Y in (3.26) are given by

Ys = Yc
(
1+H2)(1−H2)−1

(3.29)

Ym =−2Yc H
(
1−H2)−1

(3.30)

where Yc = Z−1
c =

√
Y/Z is the characteristic admittance, Z and Y are the per-unit-length

line parameters, and H = exp(−`
√

ZY ) for a line length `.
For the single conductor case considered here, the eigenvalues (λ1, λ2) of the nodal

admittance matrix are easily obtained, see (3.31), where λ1 is related to the short-circuit
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current response and λ2 to the open circuit current response

λ1 = Yc
1+H
1−H

λ2 = Yc
1−H
1+H

(3.31)

Fig. 3.5 and Fig. 3.6 show the characteristic admittance and propagation matrix con-
sidering the full-wave model, the quasi-TEM approximation and the image approach. The
discontinuity found in γ also leads to a discontinuity in both Yc and H. Although all meth-
ods tend asymptotically to the same value, there is a large deviation in the absolute value
of H in the high frequency range. As in the behavior of Yc in the full-wave model, H

also exhibits a discontinuity above a few MHz. These discontinuities in the full-wave
approach will pose some challenges when we implement a time-domain model based on
the method of characteristics as it will be shown in Section 3.5.

Using the expressions for Yc and H in (3.31) and considering a frequency range from
1 MHz up to 100 MHz with 1500 logarithmic sampled frequency points we calculate
λ1 and λ2 for the three models, i.e., Full-wave, quasi-TEM and image approximations.
We have found that only the latter presents passivity violations. Table 3.1 summarizes
these results, where eig denotes eigenvalue, Ω stands for the frequency value at which the
largest passivity violation occurs, min is the minima of ℜe(λ1(Ω)) and ℜe(λ2(Ω)) or the
minima of ℜe(λ1), ℜe(λ2) in the frequency sweep if there are no passivity violations.

Passivity violations are considerably small and concentrated in the frequency range of
20 MHz≤f≤60 MHz for λ1 and just slightly larger for λ2, with the most severe located
around 33 MHz as shown in Fig. 3.7.

Table 3.1: Passivity violations and minima of λ1 and λ2.

Model eig Ω (MHz) min
(
10−6)

Full-wave
λ1 – 40.40
λ2 – 45.29

Quasi-TEM
λ1 – 44.19
λ2 – 7.36

Image
λ1 32.86 -29.07
λ2 33.76 -29.02

These results indicate that, besides the well-known limitations of the image approx-
imation, it also has a maximum frequency limit to hold. To investigate which aspect of
the approximation has a more profound effect on the passivity violations we carried out a
small sensitivity analysis. First, we increased the line height h, then its radius r and finally
we changed the line length `. Tables 3.2, 3.3 and 3.4 summarize these findings.

As expected, the increase in line height h increases the magnitude of the passivity
violations, as the assumption `� h gets weaker. For the cases in Table 3.2, the frequency
at which the most severe passivity violation occurs is inversely proportional to the value
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Figure 3.5: Behavior of Yc for the three distinct approaches.

of h. Considering the range of conductor radius r in Table 3.3, we can see that it has very
little effect in the passivity violations.

The most interesting finding is the influence of the line length ` in passivity violations
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Figure 3.6: Behavior of H for the three distinct approaches.

as shown in Table 3.4. For longer lines the passivity violations can be eliminated. This
result indicates that the main cause of the passivity violations occurs in H as shorter lines
will present higher oscillatory behavior. This behavior seems to stand to reason as shorter
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Figure 3.7: Passivity violations in λ1 and λ2.

lines are far from the infinite length in which the line parameters are defined.
The approximate expressions used here are based on a voltage-current relationship,

thus the integration path is required. Another approach to the definition of approximate
expressions, for instance based on a power-current formulation [85–87] might lead to
other results regarding passivity violations. This topic is left for future research.
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Table 3.2: Passivity violations as a function of h.

h (m) eig Ω (MHz) min (10−6)

20
λ1 10.12 -234.80
λ2 10.50 -232.20

50
λ1 4.17 -884.58
λ2 4.47 -901.49

100
λ1 2.38 -1814.98
λ2 2.68 -1905.73

Table 3.3: Passivity violations as a function of r.

r (cm) eig Ω (MHz) min (10−6)

5
λ1 33.84 -39.30
λ2 33.75 -39.20

10
λ1 35.85 -43.74
λ2 38.55 -43.02

Table 3.4: Passivity violations as a function of `.

` (m) eig Ω (MHz) min (10−6)

50
λ1 17.88 -1235.43
λ2 14.76 -1211.73

100
λ1 17.80 -594.16
λ2 16.29 -590.82

1000
λ1 – 58.74
λ2 – 58.65

3.5 Time and Frequency Domains Evaluation

At first it may seem that these rather small passivity violations in the high frequency
range might not significantly affect time-domain simulations. To investigate their im-
pact we consider the single-phase line presented in Section 3.2 excited by a slightly per-
turbed impulse voltage connected at the sending end of the single-phase line as depicted
in Fig. 3.8. The input voltage vin(t) is given by

vin(t) = exp(−10−6t)− exp(−10−7t)+up(t) (3.32)

where up(t) = 0.01cos(2π · 33 · 106t) is a small harmonic perturbation chosen to study
the effect of exciting the frequencies around these passivity violations.

To obtain the time-domain responses, we can use the Numerical Laplace Transform
(NLT) [88–90]. We considered a total simulation time of 40 µs. To ensure that the
high frequency range where the passivity violations occur is correctly simulated, 16384
frequency samples were used. The large number of complex-valued frequency samples
restricted an efficient simulation of the full-wave model. However, as both the full-wave
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Figure 3.8: Single-phase circuit for time-domain test.

and the quasi-TEM approximations did not present any passivity violations, we can use
the latter as a reference of suitable responses.

Fig. 3.9 depicts the output voltage vout (t) considering the quasi-TEM formulation
and the error of the image approximations solved using the NLT. There is an increasing
error in the response of the image method due to the excitation of some of the passivity
violations.
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Figure 3.9: Impulse voltage response using NLT.

Purposely, another possibility is to use the Method of Characteristics (MoC). For effi-
cient time domain simulation it is typical to represent both Yc and H by rational functions,
thus demanding a frequency domain fitting. This procedure allows for an efficient recur-
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sive formulation of the convolutions [5, 23]. Therefore, Yc is given by

Yc ∼=
N

∑
n=1

rn

s−an
(3.33)

where N is the fitting order, rn are the residues and an are the poles of the rational ap-
proximation. Both can be real or come in complex conjugate pairs. Fig. 3.10 shows the
absolute value of the fitting error for Yc considering the full-wave model, quasi-TEM for-
mulation and image approximations. While the latter two were accurately fitted using
only 6 poles, due to the discontinuity the full-wave Yc demanded a higher order fit, using
12 poles to achieve comparable accuracy.
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Figure 3.10: Fitting error of YC for the three distinct approaches.

To obtain a low order fitting of H first we need to extract its time-delay τ so a mini-
mum phase-shift function is obtained. Time-delay extraction was carried out as in [67].
Therefore, the approximation of H in the frequency domain is given by

H ∼=
N

∑
n=1

cn

s− pn
exp(−sτ) (3.34)

where cn are the residues and pn are the poles of the rational approximation. Both can be
real or come in complex conjugate pairs. Fig. 3.11 shows the absolute value of the fitting
error for H. Unlike the quasi-TEM formulation and image approximations, where a low
order fit was possible using only 6 poles, the discontinuity in the full-wave model of H

demanded a high order fit using 50 poles.
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Figure 3.11: Fitting error of H for the three distinct approaches.

The magnitude of the passivity violations in λ1 and λ2 for the nodal admittance matrix
calculated from the fit of Yc and H in the method of images was very similar to the ones
shown in Fig. 3.7 with negligible differences.

Fig. 3.12 depicts the output voltage vout (t) considering the quasi-TEM formulation
and the error of the image approximations using the MoC. There is a small but increasing
time domain error in the response of the image method as in the case using the NLT.
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Figure 3.12: Impulse voltage response using MoC.
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3.6 Causes of the Passivity violations

For a better understanding of the causes of the passivity violations, a numerical sta-
bility assessment for the single-phase line configuration presented in Section 3.2 is made
here.

As λ1 and λ2 are intrinsic functions of the single-phase line parameters, both depend
either of the infinite integrals terms S1, S2 and T , which are the single-phase counterparts
of S1, S2 and T depicted in (3.21) or of the closed-form image approximations S1, S2 and
T , which are the single-phase counterparts of S1, S2 and T presented in (3.23).

By inspection of the line parameters formulae, we can see that the shunt admittance is
a function of the infinite integral T . For a sensitivity assessment of the infinite integrals in
the series impedance, we must analyze the effect of S1, S2 and T in the frequency domain.

Fig. 3.13 shows the frequency spectrum for the variable part of Z and for the negative
of T . For frequencies over 20 MHz, T becomes dominant with respect to S1 and S2, as
both the latter tend to mutually cancel in Z. Clearly, both the series impedance and the
shunt admittance in the high frequency range become primarily functions of T , and the
error in the eigenvalues λ1 and λ2 tend to mainly depend on the error in the approximated
closed-form expression T .

The absolute value of the mismatch found between the quasi-TEM infinite integrals
and the closed-form image approximations is compared in Fig. 3.14.

Deviations in S1 and S2 from their infinite integral counterparts are negligible in the
high frequency range. However, deviations in T are larger and distributed throughout the
entire frequency bandwidth, dominating the total error in both impedance and admittance.

These deviations are rather small when compared to the dominant magnitude of P in
the line parameters Z and Y , as they do not cause Yc to have a negative real part. Nonethe-
less, they create small deviations in both H and Yc, thus producing passivity violations in
the resulting nodal admittance matrix.
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Figure 3.13: Sensitivity assessment of variables in Z and Y .
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Figure 3.14: Deviation of quasi-TEM vs Image approximations.
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3.7 Conclusions

In this chapter, we investigated the effect of including the displacement currents in the
calculation of the line parameters for a single-phase conductor line model when a lossy
ground is considered in a wide frequency range using a full-wave approach, a quasi-TEM
formulation and image approximations.

We found that even though the increasing processing speed of computers facilitates the
root finding scheme of the unknown propagation constant of the circuit, the implementa-
tion of a complete and efficient full-wave model for an single-phase line in frequency and
time domain remains an issue. The large number of complex-valued frequency samples
required for the transient simulation restricts the use of the Numerical Laplace Transform.
A fitting of the line parameters with a high order rational function and some problems with
the time-delay identification are originated by a discontinuity present in the solution roots
of the unknown propagation function, which turns inefficient the use of the Method of
Characteristics. Furthermore, for the full wave model, providing a suitable change in the
initial guess in the root finding scheme, it is possible to improve the computational burden
in the calculation of the unknown propagation constant. Also, a comparison of full-wave
models not previously reported in the technical literature has also been made and repre-
sents a minor contribution of this work. It is important to point out that during the iterative
calculation of the propagation constant, it is not yet possible to distinguish between the
two possible roots until a large deviation between them occur.

As both the full-wave model and the quasi-TEM formulation did not present any
passivity violations, we conclude that the stability problems with the Image approxi-
mations method are related to the simplificative hypotheses used to derive these formu-
lae. Also, we can use the quasi-TEM formulation as a more precise reference model to
avoid frequency domain passivity violations and to obtain stable and suitable time-domain
responses. Also, both the quasi-TEM and Image approximations approaches gave an
smooth fitting of the line parameters with low order rational functions. However, it was
found that besides the well-known limitation of the method of images related to conduc-
tor height/radius ratio there is also an upper frequency limit as passivity violations were
found. Although these are rather small, they cause a loss of accuracy in the time domain
responses and might affect the accuracy of the results. As longer lines did not present any
passivity violations, we found that the magnitude of these violations is related to the line
length as the image approximation can lead to a stable model in a frequency range up to
100 MHz if the line length is increased.

Finally, we found that the inclusion of the ground displacement currents in the line
model for a more sound representation of the soil model effectively affects the value of
the line parameters. As this is a possible cause of the issues reported in the rational
fitting of the Idempotent matrices presented in the previous chapter, further studies of the
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inclusion of the ground displacement currents in a multi-phase overhead line system are
conducted in the following chapters to evaluate how the aforementioned model limitations
might affect more realistic line configurations such as three-phase power lines.

As severe limitations were found in the implementation of a single-phase full-wave
line model, a multi-phase full-wave model is presently excluded as a viable option for
time-domain simulations. Therefore, in the next chapter, further analysis of the accuracy
in the calculation of line parameters will only involve the quasi-TEM formulation and
image approximations.
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Chapter 4

Numerical Issues in Multi-Phase Line
Models

In the previous chapter, the use of closed form logarithmic image approximations for
the evaluation of the per-unit-length line parameters of a single-phase transmission line
model presented a frequency limit in terms of stability under a soil with constant ground
parameters, as they may present passivity violations in the high frequency range when
ground displacement currents are included.

In this chapter, the improvement of this frequency limit by the use of a soil model
including a more physically consistent frequency dependence in the evaluation of the per-
unit-length parameters of a multi-phase line is investigated.

We found that this frequency limit persists in spite of using a more sound soil model.
Although time-domain simulations based on the Numerical Laplace Transform were sta-
ble, the use of the Method of Characteristics rendered unstable voltage responses in both
soils models with constant and frequency dependent parameters.

The rational fitting of the propagation function and characteristic admittance is stud-
ied, along with the impact of the inclusion of frequency dependent ground parameters in
the mitigation of the passivity violations of the Nodal admittance matrix in the frequency
domain.

Comparative results of time domain simulations are presented for both perturbed and
unperturbed voltage sources with constant and frequency dependent soil models.

The chapter is organized as follows: Section 4.1 presents a brief introduction to this
chapter. Section 4.2 presents the basic formulations related to the definition of per-unit-
length series impedance and shunt admittance matrices. Section 4.3 covers the mathemat-
ical formulation involving the modelling of frequency dependent soil models. Section 4.4
shows the numerical stability criteria used for the analysis of the nodal admittance matrix.
Section 4.5 presents three multiphase overhead line test cases, along with results on the
characteristic admittance, propagation function and passivity violations that arise in the
modeling. Time-domain evaluation of the line performance is presented in Section 4.6.
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An overview of possible mitigation techniques is treated in Section 4.7. An assessment
of the Idempotent Decomposition improvement by the use of a quasi-TEM formulation is
made in Section 4.8. Finally, a discussion of this chapter is presented in Section 4.9.

For the remainder of this chapter, whenever we mention impedance it is to be under-
stood as impedance per unit of length, the same holds for the admittance.

4.1 Introduction

Over the last 50 years, there has been a considerable evolution in modeling the fre-
quency dependence of overhead transmission lines and soil parameters of lossy grounds.

The frequency dependence in a wide frequency band of the ground and conductors can
nowadays be more easily dealt with using computer-based transient analysis techniques.
However, the calculation of the per-unit-length line parameters including both the ground
displacement currents and the lossy nature of the soil parameters are still commonly ne-
glected in power system analysis, originating inaccuracies in the time-domain simulation
of high frequency excitations as lightning strokes.

The expressions for the per-unit-length impedance and admittance matrices associ-
ated to a general lossy soil model were independently developed by Pettersson [75] and
by D’Amore [54], and are based in the works of Kikuchi [72] and Wait [73] respectively.
Both works include a quasi-transverse electromagnetic formulation (quasi-TEM), which
requires the time consuming numerical solution of highly oscillatory infinite integrals,
and a set of closed-form logarithmic image approximations which involve a lesser com-
putational burden.

Although some of these expressions have been proposed almost two decades ago,
there has not been an assessment of neither the impact nor the stability of these approxi-
mate expressions in time-domain modeling.

Furthermore, although the study of frequency dependent soil models can be traced
back to eight decades ago, with research on the soil behavior in frequencies from 100 Hz
up to 200 MHz and beyond, little research has been done on its use for the evaluation of
fast transients [38, 57].

4.2 Formulation of the Line Parameters

For typical power system analysis, the soil is assumed to be a good conductor and the
expressions of the line parameters are well known, as they can be obtained considering
the scalar electric potential identical to the line voltage.

To define the associated expressions under a general lossy ground, i.e., considering
displacement currents for the wideband evaluation of impedance and admittance matri-
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ces, a model which accounts for the variation of the propagation constant of the circuit
in the high frequency range is required. As seen in the last chapter, the time-domain
solution of a full-wave multiphase line model using either the Numerical Laplace Trans-
form (NLT) or the Method of Characteristics (MoC) remains an issue which is beyond the
scope of the present research. Therefore, we will use the quasi-TEM formulation and im-
age approximations derived for a general voltage formulation as presented in [75]. Both
simplified approaches sufficiently account for the variations of the propagation constant
in the high frequency range.

Consider a system of n infinitely long conductors with radius r at a constant height hn

above a lossy ground as shown in Fig. 4.1. Both air and ground are characterized by a
permittivity εi, conductivity σi and permeability µi, where i = 1 for air and i = 2 for the
ground, respectively. The propagation constant γi of each medium is given by

γi =
√

jωµi (σi + jωεi) (4.1)

with the real part of the square root defined positive.

h i

h j
y

x

z

x ij

d ij

Medium 1

σ1  ε1 

μ1

σ2  ε2

μ2

Medium 2

ith conductor

jth conductor

r i

Figure 4.1: Multiphase conductor arrangement.

Each conductor has voltage Un, electric scalar potential ϕn(x,y) and the magnetic
vector potential is A(x,y). In this scenario, the scalar potential difference to ground is
given by

Vn = ϕn(0,hn− r)−ϕn(0,0) (4.2)

Using the wire voltage to ground to define the line parameters, the voltage Un is given by

Un =Vn + jω
hn−r∫
0

Ay(0,ξ )dξ (4.3)
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where Ay is the y-component of A.

4.2.1 Quasi-TEM Formulation

Considering a thin wire approximation [35, 77], we can derive from (4.3) the line
parameters in function of the unknown propagation constant of the circuit γ , which needs
to be calculated using iterative methods. An approximate solution requires to use a quasi-
TEM approximation γ = γ1. Assuming equal ground and air permeabilities, µ2 = µ1 = µ0,
the per-unit length impedance and admittance matrices are then

Z = Zint +
jωµ0

2π
[P+S1− (S2 +T)]

Y = 2π ( jωε0) [P−T ]−1
(4.4)

where Zint is the diagonal matrix with the internal impedance of each conductor. The
matrix elements of P are given by

Pii = ln
2hi

ri
Pi j = ln

Di j

di j
(4.5)

with Di j =
√
`2

i j + x2
i j, di j =

√
(hi−h j)2 + x2

i j, `i j = hi +h j and xi j is the horizontal dis-
tance between conductors i and j. The elements of S1, S2 and T are given by

S1i j = 2
∞∫

0

e−λ`i j

λ +u
cos(xi jλ )dλ

S2i j = 2
∞∫

0

e−λ`i j

n2λ +u
cos(xi jλ )dλ

Ti j = 2
∞∫

0

u
λ

(
e−λ`i j/2− e−λ`i j

n2λ +u

)
cos(xi jλ )dλ

(4.6)

where u =
√

λ 2 + γ2
2 − γ2

1 and n = γ2/γ1 is the refractive index of ground. If the ground is
assumed to be a good conductor, i.e., σ2�ωε2, it holds that the displacement currents can
be neglected by assuming S2 and T tend to zero in (4.4). The resulting ground impedance
is the same proposed by Carson in [31] where only S1 is considered.

4.2.2 Image Approximation

In this approach, the quasi-TEM formulation can be simplified to allow a closed-form
solution of the infinite integrals. The detailed procedure is shown in [75, Sec 3.2] and
here we present a brief review. In all the infinite integrals the following approximation is
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established (
aλ +

√
λ 2 +η2

)−1
≈ 1

λ

1
1+a

[
1− exp

(
−λ

1+a
η

)]
(4.7)

where η =
√

γ2
2 − γ2

1 . Using this approximation with a = 1 for S1 and a = n2 for S2 it is
possible to write

Z = Zint +
jωµ0

2π

[
P+S1−

(
S2 +T

)]
Y = 2π ( jωε0)

[
P−T

]−1
.

(4.8)

The closed-form solutions of the infinite integrals in (4.8) are the logarithmic image ap-
proximations, which are given by

S1i j = ln

1+
2

η

√
`2

i j + x2
i j


S2i j =

2
n2 +1

ln

1+
n2 +1

η

√
`2

i j + x2
i j



T i j = 2ln2+
2n2

n2 +1
ln


1+ n2+1

η

√
`2

i j+x2
i j

1+2 n2+1
η

√
`2

i j+x2
i j


(4.9)

The expression for T presented here is slightly different from the one reported in [75], see
Section 3.3 for details.

4.3 Inclusion of frequency dependent soil models

In this analysis, we consider three frequency dependent soil models chosen for their
different obtention methods and validity ranges. Table 4.1 briefly presents their charac-
teristics.

First, we evaluate the Portela soil model [91] expressed by

σ2(ω)± jωε2(ω) = σ100 Hz +∆i

[
cot
(

π

2
α

)
± j
](

ω

2π ·106

)α

(4.10)

where σ100 Hz is the soil conductivity measured at 100 Hz, α = 0.706 and ∆i =

11.71 mS/m.
Next, we consider the Visacro-Alipio soil model [41], where the expressions for σ2
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Table 4.1: Frequency dependent soil model characteristics.

Frequency dependent Frequency range Model
soil models model validity obtention

Portela [91] 40 Hz - 2 MHz
Laboratory

measurements

Visacro-Alipio [41] 100 Hz - 4 MHz
Field

measurements

Smith-Longmire [92] 100 Hz - 200 MHz
Scott and

Wilkenfeld’s data

and ε2 are given by

σ2(ω) = σ100 Hz

[
1+

1.2 ·10−6

σ0.73
100 Hz

(
ω

2π
−100

)0.65
]

f ≥ 100Hz

ε2(ω) = ε0

[
7.6 ·103

(
ω

2π

)−0.4
+1.3

]
f ≥ 10kHz

(4.11)

The value given by (4.11) at 10 kHz can be used to represent ε2 at frequencies below
10 kHz.

Finally, for the Smith-Longmire soil model [92] we have

σ2 (ω) = σDC +2πε0
13
∑

i=1
aiFi

(
ω

Fi

)2

4π2+
(

ω

Fi

)2

ε2 (ω) = ε0×

[
5+

13
∑

i=1

ai

1+
(

ω

2πFi

)2

] (4.12)

with σDC as the DC soil conductivity, Fi = (125σDC)
0.8312×10i−1 and the coefficients ai

are given in Table 4.2.

Table 4.2: Coefficients ai for the Smith-Longmire soil model.

i ai i ai i ai

1 3.40 ·106 6 1.33 ·102 11 9.80 ·10−1

2 2.74 ·105 7 2.72 ·101 12 3.92 ·10−1

3 2.58 ·104 8 1.25 ·101 13 1.73 ·10−1

4 3.38 ·103 9 4.80 ·100

5 5.26 ·102 10 2.17 ·100

For a comprehensive work regarding frequency dependent soil models in grounding
systems, the reader can refer to [57].
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4.4 Numerical stability of a multiphase line model

Typically, the numerical stability of a multiphase transmission line model is verified
using only the characteristic impedance Zc, i.e., a line model is assumed stable as long
as Zc has a positive real part. However, this consideration alone might be insufficient to
guarantee a passive line model throughout the whole frequency range.

A transmission line model can be represented in the frequency domain by its nodal
admittance matrix given by

Yn =

[
A B
B A

]
(4.13)

To analyze the stability of the line model, a simple yet efficient procedure is to verify
whether the model absorbs power by corroborating that YH in (4.14) has the real part of
all its eigenvalues positive. This means we must establish if Yn is positive definite, i.e.

eig(YH) = eig
[(

Yn +YH
n
)
/2
]
≥ 0 ∀( jω) (4.14)

where YH
n is the conjugate transpose of Yn.

In a multiphase transmission line, the elements of Yn in (4.13) are given by

A =Yc
(
In +H2)(In−H2)−1

B =−2Yc H
(
In +H2)−1 (4.15)

where In is the n×n identity matrix, Yc = Z−1
√

ZY is the characteristic admittance and
H= exp(−`

√
ZY) the propagation function for a line length `. Due to the lower computa-

tional burden associated with the image approximations of the infinite integrals involved,
it is custom to reformulate these expressions using the per-unit-length line parameters Z
and Y given in (4.8).

For a comparison of the magnitude of the passivity violations calculated using the
rational fitting of Yc and H with the original data calculated from the use of the closed-
form image approximations, rational approximations of both Yc and H are needed. Here,
we use the pole relocation method known as Vector Fitting for the frequency-domain
rational approximation [24, 26, 58]. Therefore, Yc is given by

Yc ∼=
N

∑
n=1

Rn

s−an
(4.16)

where Rn are the matrices of residues and an are the poles of the rational approximation.
Both can be real or come in complex conjugate pairs. To obtain a low order rational fitting
of H, each modal time-delay τi must first be extracted so a minimum phase-shift function
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is obtained for each mode as shown in Section 2.4. Each mode hi is approximated in the
frequency domain by

hi ∼=
Ni

∑
n=1

ci,n

s− pi,n
exp(−sτi) (4.17)

where ci,n are the residues and pi,n are the poles. Both can be real or come in complex
conjugate pairs. Modes with similar time-delays are lumped together. The rational ap-
proximation of H is given by a linear combination of poles, residues and time delays
as

H = exp
(
−`
√

YZ
)
∼=

G

∑
i=1

(
Ni

∑
n=1

Ci,n

s− pi,n

)
exp(−sτi) (4.18)

where Ci,n are the matrices of residues, whose elements can be real or come in complex
conjugate pairs and G is the number of lumped modes.

4.5 Test Cases

For the evaluation of the impact of the image approximations on the numerical stabil-
ity of the line model, we consider 3 test case circuits of three-phase lines with two ground
wires as shown in Fig. 4.2: a vertical 138 kV line, a horizontal 230 kV line and a compact
500 kV line.
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(a) 138 kV vertical circuit
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(b) 230 kV horizontal circuit
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(c) 500 kV compact circuit

Figure 4.2: Test cases configurations.

The per-unit-length line parameters were calculated considering 1500 log-spaced sam-
ples in the frequency loop from 0.01 Hz to 100 MHz. To avoid artificial eigenvalues
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switchover, a switch-back procedure as described in [93] was implemented. A 2.4 GHz
Core i7-4700MQ computer with 12 GB of RAM was used for the calculations.

First, we evaluate the eigenvalues λ of the nodal admittance matrix using the per-
unit-length line parameters defined in (4.4) for the quasi-TEM formulation. Numerical
integration problems evaluating the infinite integrals were prevented using the Gauss-
Kronrod quadrature scheme as in [38, 94].

To evaluate the eigenvalues λ of the nodal admittance matrix using the closed-form
logarithmic image approximations, we use the expressions given for the line parameters
in (4.8). Table 4.3 presents the processing times employed by both the quasi-TEM for-
mulation and the image approximations for line lengths of 300 m and 1000 m.

Table 4.3: Computational processing times of quasi-TEM and image approximations.

Line Length Test Circuit (kV)
Model (m) 138 230 500

Images
300 15.31 15.42 29.89

1000 15.39 15.44 30.19

quasi-TEM
300 451.32 645.87 3608.23

1000 459.65 665.47 4940.22

As expected, the calculation of the highly oscillatory infinite integrals took signifi-
cantly greater processing times than the simplified image approximations. No significant
variations in the processing times were obtained by using soils either with constant or
frequency dependent ground parameters. As in the single-phase case presented in Chap-
ter 3, no passivity violations were found for both soil models with constant and frequency
dependent parameters, independently of the line length considered.

The findings regarding the passivity violations for the test case configurations using
constant and frequency dependent soil models with different parameters are summarized
next.

4.5.1 Constant ground parameters soil models

Table 4.4 shows the passivity violations for the three test case configurations evaluated
using a constant ground parameters soil model with a line length of `= 300 m, chosen for
being a typical value for extra high voltage circuits, where εr is the relative permittivity
of the soil, σs is the ground conductivity, Ω stands for the frequency value at which the
largest passivity violation arises, and min stands for the minima of ℜe(λ (Ω)).

For all the scenarios tested, even though a positive definite Yc is calculated throughout
the whole frequency band considered, which is an intrinsic numerical stability require-
ment of the line model, passivity violations arise when image approximations are used
along with constant parameter soil models. Furthermore, these results indicate that higher
values of σs increase the magnitude of the passivity violations, with typical values of Ω

76



Table 4.4: Frequency of largest passivity violations
and minima of λ for `= 300 m.

Line circuit 138 kV 230 kV 500 kV
εr σs Ω min Ω min Ω min

(p.u.) (S/m) (MHz) (10−6) (MHz) (10−6) (MHz) (10−6)

5

10−4 12.40 -347.34 30.88 -358.68 45.90 -246.97
10−3 11.90 -403.16 30.88 -374.31 45.90 -251.52
0.01 10.41 -1234.92 17.36 -850.03 30.88 -337.50
0.05 18.95 -2420.25 26.40 -2112.65 29.90 -927.38

10

10−4 14.91 -505.26 31.89 -560.98 59.41 -366.775
10−3 13.91 -539.12 31.89 -575.04 59.41 -369.64
0.01 11.41 -1083.89 22.87 -807.68 47.40 -418.33
0.05 18.95 -2252.88 27.90 -1928.08 33.40 -855.20

100

10−4 32.94 -1062.24 59.41 -1518.76 92.89 -1057.50
10−3 32.94 -1066.52 59.41 -1521.54 92.89 -1058.36
0.01 32.94 1110.27 59.41 -1549.64 82.40 -1068.15
0.05 25.45 -1345.73 59.41 -1682.15 82.40 -1116.43

starting around 10 MHz. As for a fixed permittivity, the largest violations min arise for
the maximum conductivity σs considered.

As seen in Chapter 3, for a single-phase line under a soil with constant ground param-
eters, its length ` is a key parameter regarding the numerical stability when closed-form
image approximations are considered. To evaluate whether passivity violations in three-
phase lines also depend of the line length ` as occurs in the case of single-phase lines, we
calculate the eigenvalues of the 138 kV, 230 kV and 500 kV lines considering a value of
σs = 0.05 and εr = 5 for line lengths of ` = 300 m and ` = 1 km. The magnitude of the
resulting passivity violations are shown in Fig. 4.3 to Fig. 4.5.

In the three cases, it can be seen that there is a sensible reduction in the magnitude of
the passivity violations as the line length ` increases. For the 138 kV and the 230 kV lines,
as the line length ` increases, the frequency band where the passivity violations arise gets
narrower. The 500 kV lines presents a slightly different characteristic, as when the line
length ` increases, the frequency band of the “bell-shaped” distribution of the passivity
violations is displaced to the higher frequencies. For the compact 500 kV circuit the
line length significantly affects the frequency band where the largest passivity violations
occur.

For the geometrical configurations of the three lines considered here, the minimal
lengths where no passivity violations arise are 992 m for the 138 kV vertical circuit,
763 m for the 230 kV horizontal circuit and 1083 m for the 500 kV compact circuit.

Fig. 4.6 depicts the results of the absolute value of the rational approximations of both
Yc and H compared together with their respective original frequency domain data for the
138 kV circuit with a line length of ` = 300 m. A very good agreement is found as a
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maximum absolute deviation of 0.35 · 10−3 p.u. was obtained for H while for Yc it was
2.4 ·10−6 S.

It is necessary to investigate the value of the passivity violations using the rational
approximations. The fitted counterparts of Yc and H are used in (4.13) and then the
eigenvalues λ are determined using (4.14).

Fig. 4.7 shows respectively the absolute value of the fitting error for Yc and of each
mode hi considering the image approximations for a soil model with constant ground
parameters for the 138 kV circuit. For the rational approximation of the characteristic
admittance a minimum fit order of 12 poles is obtained. It is also worth mentioning that
from the fitting of Yc a positive definite matrix was also calculated for all the frequencies
involved. For each mode hi of the propagation function, a successful time delay extraction
was achieved and a low order fit was possible using only 6 poles per mode.

Fig. 4.8 depicts the behavior of the eigenvalues with the largest passivity violations
using both the calculated values of Yn and the rational approximations of Yc and H for the
138 kV circuit. As it can be seen, the magnitude of the passivity violations calculated us-
ing the original data of Yn and the rational approximations of H and Yc with closed-form
image approximations match with negligible differences, as the use of the rational approx-
imations did not affect significantly the behavior of the passivity violations. Nonetheless,
it is important to point out that errors associated with the rational approximations may
normally lead to larger passivity violations.
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Figure 4.3: Passivity violations of the 138 kV circuit - Constant ground parameters.
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Figure 4.4: Passivity violations of the 230 kV circuit - Constant ground parameters.
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Figure 4.5: Passivity violations of the 500 kV circuit - Constant ground parameters.
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Figure 4.6: Rational fitting of Yc and H - 138 kV circuit.
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Figure 4.7: Absolute fitting error of Yc and hi - 138 kV circuit.
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Figure 4.8: Passivity violations in Yn - 138 kV circuit.
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4.5.2 Frequency dependent ground parameters soil models

Table 4.5 summarises the findings regarding the eigenvalues λ for the test case con-
figurations evaluated with frequency dependent soil models using image approximations
for a line length of ` = 300 m, where σ = σDC = σ100 Hz is the low frequency soil con-
ductivity in S/m, Ω is the frequency value in MHz at which the largest passivity violation
arises and min is the minima of ℜe(λ (Ω)).

Table 4.5: Passivity violations and minima of λ

for a line length of `= 300 m.

Line
Circuit Portela

Smith
Longmire

Visacro
Alipio

kV
σ Ω min Ω min Ω min

(S/m) (MHz)
(
10−6) (MHz)

(
10−6) (MHz)

(
10−6)

138

10−4 28.43 -1472.49 12.91 -540.38 13.42 -730.75
10−3 28.43 -1479.34 13.42 -751.48 13.92 -977.53
0.01 28.43 -1547.97 15.43 -1350.89 15.94 -1693.38
0.05 26.95 -1895.49 20.95 -2246.24 20.95 -2702.24

230

10−4 51.91 -1815.48 28.39 -528.09 28.39 -688.38
10−3 51.91 -1820.76 28.39 -703.97 25.89 -907.50
0.01 50.42 -1875.21 27.40 -1193.84 26.90 -1557.89
0.05 50.42 -2130.50 35.41 -2094.14 35.41 -2583.11

500

10−4 76.91 -1107.01 48.89 -321.32 46.40 -375.68
10−3 76.91 -1108.98 46.40 -393.83 38.89 -457.93
0.01 76.91 -1128.81 42.91 -586.38 34.40 -728.29
0.05 76.91 -1219.83 43.91 -1014.07 42.91 -1221.19

As in the case with soil models using constant ground parameters, even though a
positive definite Yc is calculated throughout the frequency band considered, passivity
violations arise when image approximations are used along with frequency dependent
soil models. Higher values of σ also increase the magnitude of these passivity violations,
with typical values of Ω starting around 10 MHz. For the Portela soil model, variations in
the value of σ have little incidence in the resulting value of Ω. As for the Visacro-Alipio
and Smith-Longmire soil models, for a fixed σ similar values of Ω are calculated.

As in the case of soil models with constant parameters, we evaluate whether passivity
violations in three-phase lines depend of the line length ` when the frequency dependent
soil models of Portela (P), Smith-Longmire (SL) and Visacro-Alipio (VA) are used. We
calculate the eigenvalues λ of the 138 kV, 230 kV and 500 kV test case lines considering
a value of σ = 0.05 S/m for line lengths of ` = 300 m and ` = 1 km. Figs. 4.9 to 4.11
show the resulting passivity violations.
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Figure 4.9: Passivity violations of the 138 kV circuit - Frequency dependent soils.
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Figure 4.10: Passivity violations of the 230 kV circuit - Frequency dependent soils.
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Figure 4.11: Passivity violations of the 500 kV circuit - Frequency dependent soils.
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In all cases, as the line length ` increases, the magnitude of the passivity violations
decrease. For the 138 kV line, the frequency band where the passivity violations arise
is trimmed in the higher frequencies. For the 230 kV and 500 kV lines, the frequency
band of the “bell-shaped” distribution of the passivity violations is displaced to the higher
frequencies.

The magnitude of the passivity violations calculated using the rational fitting of Yc and
H with closed-form image approximations and frequency dependent soil models matches
those presented in Fig. 4.9 to Fig. 4.11 with negligible differences.

Table 4.6 shows the minimum line lengths ` in function of σ for which the test case
circuits present no passivity violations.

Table 4.6: Minimum line length ` for test cases (m).

Line σ
Portela

Visacro Smith
circuit (S/m) Alipio Longmire

138 kV

10−4 2169 1288 1152
10−3 2175 1405 1304
0.01 2214 1731 1644
0.05 2396 2337 2220

230 kV

10−4 1641 907 853
10−3 1643 960 935
0.01 1656 1100 1097
0.05 1716 1361 1364

500 kV

10−4 1788 1156 1157
10−3 1785 1185 1225
0.01 1785 1256 1321
0.05 1796 1358 1447

We can see that as the value of σ increases, the minimum line length is also increased.
For the Portela soil model, a limited incidence of σ in the minimum line length can be
observed. The Visacro-Alipio and Smith-Longmire soil models present as well a distinct
characteristic: as σ increases, the minimum length is significantly increased as compared
to the Portela soil model.

Fig. 4.12 and Fig. 4.13 depicts the results of the absolute value of the rational approx-
imations of both Yc and H compared together with their respective original frequency
domain data for the 138 kV circuit using frequency dependent soil models with a line
length of ` = 300 m. A very good agreement is found for the Portela, Smith-Longmire
and Visacro-Alipio frequency dependent soil models as a maximum absolute deviation of
1.99 ·10−3 p.u., 2.19 ·10−3 p.u. and 2.13 ·10−3 p.u. is obtained for H while for Yc it was
7.48 ·10−6 S, 6.72 ·10−6 S and 1.03 ·10−5 S.

As in the case of soils with constant ground parameters, the fitted counterparts of Yc

and H are used in (4.13) and then the eigenvalues λ are determined using (4.14).
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Fig. 4.14 and Fig. 4.15 show respectively the absolute value of the fitting error for
Yc and of each mode hi considering the image approximations for a soil model with
constant ground parameters for the 138 kV circuit. For the rational approximation of the
characteristic admittance a minimum fit order of 12 poles is obtained. As with the case of
soils with constant ground parameters, it is also worth mentioning that from the fitting of
Yc a positive definite matrix was also calculated for all the frequencies involved. For each
mode hi of the propagation function, a successful time delay extraction was achieved and
a low order fit was possible using only 6 poles per mode.

Fig. 4.16 and Fig. 4.17 depicts the behavior of the eigenvalues with the largest pas-
sivity violations using both the calculated values of Yn and the rational approximations
of Yc and H for the 138 kV circuit with frequency dependent soil models. As took place
in the case of soils with constant ground parameters, the magnitude of the passivity vio-
lations calculated using the original data of Yn and the rational approximations of H and
Yc with closed-form image approximations match with negligible differences, as the use
of the rational approximations did not affect significantly the behavior of the passivity
violations.
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(b) Smith-Longmire.
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(c) Visacro-Alipio.

Figure 4.12: Rational fitting of Yc - 138 kV circuit.
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(b) Smith-Longmire.
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(c) Visacro-Alipio.

Figure 4.13: Rational fitting of H - 138 kV circuit.
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(c) Visacro-Alipio.

Figure 4.14: Absolute fitting error of Yc - 138 kV circuit.
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(c) Visacro-Alipio.

Figure 4.15: Absolute fitting error of hi - 138 kV circuit.
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(c) Using the calculated values of Yn

Figure 4.16: Passivity violations in Yn from original data - 138 kV circuit.
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(c) Using the rational approximations of Yc and H

Figure 4.17: Passivity violations in Yn from fitted Yc and H - 138 kV circuit.
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4.6 Time and Frequency Domain Evaluation

To assess whether the rather small passivity violations affect time-domain simulations,
we consider the 138 kV circuit test case presented in Fig. 4.2(a) using a value of σ =

10−3 S/m and a span length of 300 m for soils with both constant and frequency dependent
parameters. A slightly perturbed impulse source voltage is connected at one phase of the
sending end while the other phases are directly grounded to earth, with all the receiving
ends open. The input voltage vin(t) is given by

vin(t) = exp(−10−6t)− exp(−10−7t)+up(t) (4.19)

where up(t) = 0.01cos(2π ·Ω · 106 · t) is a small perturbation around the respective fre-
quency Ω where the passivity violations occur presented in Table 4.5 and vout (t) is the
output voltage at the end of the line. The time-domain evaluation circuit is shown in
Fig. 4.18.

300 mt = 0 1

2

3
vin(t)

vout(t)

Figure 4.18: Multiphase circuit for time-domain test.

To obtain the time-domain simulation responses, we consider two approaches. The
first one is the Numerical Laplace Transform (NLT) [88–90], based on a frequency-
domain analysis. The second one is the Method of Characteristics (MoC) [5, 23], based
on a time-domain approach. An alternative modeling approach consists to use the ratio-
nal approximation of the nodal admittance matrix based on a Folded line equivalent [95].
However, in this case the passivity violations could be eliminated by passivity enforce-
ment as shown in [64]. It is important to use the MoC to assess the behavior of the
transmission line model against passivity violations that are not directly identified.

For the MoC simulation we adopt the formulation based on the so-called Universal
Line Model (ULM) [20] using a two-segment interpolation scheme to avoid instabilities
related to large residue-pole ratios in the rational approximation of H [45].

For the NLT simulation we consider a complex frequency s = c+ jω with a con-
stant c =− ln(0.001)/Tmax and a maximum observation time of Tmax = 40 µs. To ensure
that the high frequency range where the passivity violations occur is correctly simulated,
31774 frequency samples are used.
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Comparison between NLT and MoC results is carried out using sample interpolation
between consecutive frequencies.

Even though passivity violations are present in the high frequency range, the NLT
results show a stable voltage response. This stability robustness of the NLT algorithm is
related to the damping effect of using a complex axis s = c+ jω instead of the imaginary
axis s = jω in which the passivity violations are calculated. This is an important finding
as it illustrates that a frequency-domain based transient simulation is robust regarding
inaccuracies in the evaluation of line parameters. Furthermore, the results from the NLT
can be treated as a benchmark for the expected line behavior.

4.6.1 Constant ground parameters soil models

Fig. 4.19 shows the time-domain output voltage response vout(t) for the perturbed
input voltage vin(t) using the NLT and the MoC approaches in the 138 kV circuit.

Fig. 4.19(a) shows the results using image approximations. From 0 µs to 7 µs some
spikes are present in the voltage; after that, oscillations increase up to 10 µs, from which
point, the result from the MoC is completely unstable.

Fig. 4.19(b) shows the results when a quasi-TEM formulation is considered instead.
Both the NLT and MoC methods present very similar responses and are free of numerical
oscillations or instabilities when using a quasi-TEM formulation for the latter case.

4.6.2 Frequency dependent ground parameters soil models

Fig. 4.20 shows the output voltage vout (t) using the image approximations with the
NLT and the MoC approaches for the three frequency-dependent soil models in the
138 kV circuit.

As passivity violations in the high frequency range are excited, unstable simulations
are obtained for the Portela, Smith-Longmire and Visacro-Alipio soil models in all the
test cases evaluated using the MoC approach.

For the Portela and Smith-Longmire soil models, although stable time-domain simu-
lations are apparently attained, a small yet stable mismatch appears can be observed.

Finally, we found stable time-domain results using the quasi-TEM formulation with
both the MoC and NLT approaches that match those obtained using the image approx-
imations with the NLT approach. These findings enforce the idea that the cause of the
numerical instabilities reported here in the use of the image approximations is related to
the deviations of the closed-form terms in (4.9) from their infinite integral counterparts
in (4.6).
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(a) Using image approximation
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(b) Using quasi-TEM approximation

Figure 4.19: Time-domain results in 138 kV circuit - Constant ground parameters.
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(a) Portela.
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(b) Smith-Longmire.
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(c) Visacro-Alipio.

Figure 4.20: Time-domain results in 138 kV circuit - Frequency dependent soils.
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4.7 Mitigation Techniques

To avoid the unstable simulations obtained when the image approximations are used
along with the Method of Characteristics, besides the increase in the minimal line length,
a possibility is to mitigate these unexpected numerical instabilities using the quasi-TEM
formulation. This solution implies a greater computational burden as a time-consuming
and accurate numerical integration scheme is required to deal with highly oscillatory
infinite integrals. One way to avoid dealing with such integrals is to develop closed-
form approximations using integral transformation techniques [33] or asymptotic expan-
sions [36]. This approach is left for future research. Here we propose to use a slightly
modified expression of the per-unit-length parameters to avoid the passivity violations.
So, instead of using the actual line voltage to define the per-unit-length line parameters,
we use the electric scalar potential definition, then

Z = Zint +
jωµ0

2π
[P+S1]

Y = 2π ( jωε0) [P+S2 ]
−1

(4.20)

where P, S1 and S2 are the same as before, see [75] for details on how to determine the
per-unit-length line parameters as a function of different formulations.

Using the expressions in (4.20) does not significantly change the behaviour of both
the characteristic admittance and the propagation function in the lower frequency range.
However, for frequencies higher than 1 MHz there is a more noticeable change in the
characteristic admittance as shown in Fig. 4.21. This figure also shows the results of the
rational approximation of both Yc and H using Z and Y as defined in (4.20). The fitting
errors are 2.2 ·10−6 S for Yc and 0.35 ·10−3 p.u. for H.

Fig. 4.22 depicts the behavior of the real part of the eigenvalues λ calculated using the
original frequency-domain data or either both rational approximations of Yc and H. The
change in the high frequency behaviour did not change the accuracy of the results. How-
ever, it did affect the value of the passivity violations, as for this scenario their mitigation
has been accomplished. The model is now stable as the real part of all the eigenvalues is
now positive.

The time-domain response obtained using the MoC for the 138 kV line model using
the expressions in (4.20) is shown in Fig. 4.23. It can be seen that the results are closer to
the ones obtained using NLT and to the one from the previous section using MoC with a
quasi-TEM formulation. A closer comparison of the results indicates a small deviation in
the results using (4.20) from the ones obtained using (4.8) compared with a quasi-TEM
formulation.

Another possibility is to modify the expressions for the closed form approximated
expressions to avoid the passivity violations considering η = γ2 in the definition of the
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(b) Fitting of H

Figure 4.21: Rational fitting of Yc and H for 138 kV circuit - scalar potential definition
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(b) Using the rational approximations of Yc and H

Figure 4.22: Passivity violations for 138 kV circuit - scalar potential definition

image approximations of S1, S2 and T in (4.9).
The fitting results for both Yc and H are depicted in Fig. 4.24.
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Figure 4.23: Time-domain results in 138 kV circuit - scalar potential definition

As it can be seen, the behavior of both functions in the frequency-domain is rather
similar to the one shown in Fig. 4.21. The main differences are in the fitting results.
Using the modified expressions, i.e. with η = γ2 the overall error was smaller than using
only the electric scalar potential to define the per unit length parameters. The fitting errors
are 1.9 ·10−6 S for Yc and 0.2 ·10−3 p.u. for H.

It was also found that the stability of the eigenvalues λ is further increased when the
original frequency-domain data or either both rational approximations of Yc and H are
used for their calculation, as presented in Fig. 4.25.

The corresponding time-domain response obtained using this latter mitigation proce-
dure is shown in Fig. 4.26. For this case, stable results were are also attained.
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(b) Fitting of H

Figure 4.24: Fitting of Yc and H for 138 kV circuit - scalar potential definition (η = γ2)
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(b) Using the rational approximations of Yc and H

Figure 4.25: Passivity violations for 138 kV circuit - scalar potential definition (η = γ2)

106



MoC HPL
NLT

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

1.5

Time @ΜsD

V
o

lt
ag

e
@V
D

Figure 4.26: Time responses for 138 kV circuit - scalar potential definition (η = γ2)
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4.8 Assessment of Idempotent Decomposition improve-
ment by the use of a quasi-TEM formulation

We have shown that the use of the so-called image approximations in multi-phase
transmission line models for the evaluation of the per-unit-length line parameters might
cause numerical instabilities in the high frequency range when ground displacement cur-
rent are included in soils with both constant and frequency dependent ground parameters.

To investigate whether the reported issues in the rational fitting of the Idempotent ma-
trices are related to the low accuracy in the evaluation of the per-unit-length line parame-
ters, we calculate these line parameters using a quasi-TEM formulation for the overhead
transmission line test cases previously presented in the former chapters:

1. #1: A 500 kV line with 2 ground wires and 3-phases.

2. #2: A 800 kV line with 2 ground wires and 3-phases.

3. #3: A 500 kV line in parallel with a 138 kV line with a total of 6-phases.

4. #4: A 230 kV line with 18-phases.

To calculate the Idempotent matrices from the per-unit-length transmission system pa-
rameters using the quasi-TEM formulation, a user defined routine was written in MATH-
EMATICA.
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4.8.1 System Geometry and data

The four test case system geometries are presented in Fig. 4.27.
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Figure 4.27: System geometry of each case.

In all cases, soils with constant ground parameters were considered with a soil relative
permittivity of ε2 = 5ε0.

To decrease the dimension of the line parameters matrices, all the ground wires in the
overhead transmission lines test cases were represented implicitly using a matrix reduc-
tion process.
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4.8.2 Fitting of Mi

Fig. 4.28 shows the results for the fitting of the elements of the Idempotent matrices
Mi for #1.

Accurate

Fitted

1 1000 106
0.0

0.1

0.2

0.3

0.4

0.5

Frequency @HzD

A
m

p
lit

u
d

e
@p.

u
.D

Accurate

Fitted

1 1000 106
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Frequency @HzD

A
m

p
lit

u
d

e
@p.

u
.D

Accurate

Fitted

1 1000 106
0.0

0.1

0.2

0.3

0.4

0.5

Frequency @HzD

A
m

p
lit

u
d

e
@p.

u
.D

Figure 4.28: Rational Fitting of M1, M2 and M3 for #1.
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Fig. 4.29 shows the results for the fitting of the elements of the Idempotent matrices
Mi for #2.
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Figure 4.29: Rational Fitting of M1, M2 and M3 for #2.

111



Fig. 4.30 to Fig. 4.31 shows the results for the fitting of the elements of the Idempotent
matrices Mi for #3.
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Figure 4.30: Rational Fitting of M1, M2 and M3 for #3.
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Figure 4.31: Rational Fitting of M4, M5 and M6 for #3.
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Fig. 4.32 to Fig. 4.37 shows the results for the fitting of the elements of the Idempotent
matrices Mi for #4.
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Figure 4.32: Rational Fitting of M1, M2 and M3 for #4.
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Figure 4.33: Rational Fitting of M4, M5 and M6 for #4.
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Figure 4.34: Rational Fitting of M7, M8 and M9 for #4.
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Figure 4.35: Rational Fitting of M10, M11 and M12 for #4.
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Figure 4.36: Rational Fitting of M13, M14 and M15 for #4.

118



Accurate

Fitted

0.01 1 100 104 106 108
0.00

0.05

0.10

0.15

0.20

Frequency @HzD

A
m

p
lit

u
d

e
@p.

u
.D

Accurate

Fitted

0.01 1 100 104 106 108
0.00

0.05

0.10

0.15

0.20

0.25

Frequency @HzD

A
m

p
lit

u
d

e
@p.

u
.D

Accurate

Fitted

0.01 1 100 104 106 108
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Frequency @HzD

A
m

p
lit

u
d

e
@p.

u
.D

Figure 4.37: Rational Fitting of M16, M17 and M18 for #4.

119



In #1 and #2, despite using a quasi-TEM approach to calculate the Idempotent ma-
trices, the inclusion of a diagonal matrix shunt conductance G with value 3 · 10−11 S/m
to the per-unit-length transmission line admittance was still necessary to avoid low fre-
quency oscillations in the fitting of the Idempotent matrices Mi. Furthermore, for #3 and
#4, the use of a quasi-TEM formulation rendered no improvement in the fitting of the
Idempotent matrices was noted, as an inaccurate fitting is still attained.

No significant accuracy improvement in the fitting of the Idempotent matrices was
obtained in the test cases considered.
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4.9 Discussion

In this chapter, we investigated some numerical issues related to the multiphase trans-
mission line model when image approximations are used to include ground displacement
currents considering soils with both constant and frequency dependent ground parameters.

For three test case examples of 138 kV, 230 kV and 500 kV multiphase overhead
lines, it was found that the use of the image approximations originates small passivity
violations in the high frequency range of the Nodal Admittance Matrix, starting typically
around 10 MHz for both soils with constant and frequency dependent parameters. These
instabilities are mainly related to the error in the image approximation of the infinite inte-
gral term present in both the per-unit-length series impedance and the shunt admittance.
Furthermore, as reported in Chapter 3 for a single-phase line with constant ground pa-
rameters, an upper frequency limit of the images approximations was also found, as the
magnitude of passivity violations is related to the line length. A smooth low order fit was
found for the modes of the propagation function and for the characteristic admittance,
with the latter being positive definite throughout the frequency range considered.

Time-domain responses obtained using the Method of Characteristics with a slightly
perturbed impulse voltage to excite the passivity violations found using Image approxi-
mations were inaccurate. Nonetheless, a stable behavior was obtained using the Numer-
ical Laplace Transform due to the damping effect of the complex frequencies used in its
processing algorithm.

Two mitigation procedures were considered where an image approximation is still
possible. The expressions used can be seen as a further simplification from the actual
expressions of impedance and admittance matrices. The time-domain responses for both
scenarios indicate the viability of both procedures.

It is important to stress that if a quasi-TEM formulation is used or the ground permit-
tivity is neglected, the passivity violations reported here for soil models with both constant
and frequency dependent ground parameters do not occur. It is the inclusion of the ground
displacement currents in the line model using the image approximations that leads to the
aforementioned numerical instabilities reported here. Further research is still needed to
improve the quality of the image approximations.

Finally, an Idempotent line model based on a quasi-TEM formulation of the per-unit-
length line parameters is tested to verify if the cause of the poor quality fit of the Idempo-
tent Matrices reported in the examples of Chapter 2 is related to the low accuracy of the
image approximations. No significant accuracy improvement in the rational fitting of the
Idempotent Matrices is observed for any of the test-cases presented here, still requiring the
inclusion of a diagonal matrix shunt conductance to the per-unit-length transmission line
admittance to avoid low frequency oscillations in the fitting of the Idempotent matrices in
spite of using a more precise quasi-TEM formulation line model.
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Chapter 5

Conclusions

5.1 Final Conclusions

In the preceding chapters we presented the research carried out during this doctorate
project. It concerns mainly with the applicability, limitations, numerical stability and
precision of rational modeling in transmission lines. The following conclusions were
obtained:

• The inaccuracies in the rational approximation of the Idempotent matrices when
idempotent modeling in overhead lines is used are not related to the precision of the
calculation of the per-unit-length line parameters. This was verified by evaluating
the idempotent modeling considering a quasi-TEM formulation of such parame-
ters. No improvement of the rational approximations involved in the Idempotent
modeling was observed.

• The Idempotent line model can be used as a feasible alternative to the ULM ap-
proach for phase coordinate modeling of Single-Core underground cables.

• Although stable time-domain simulations can be achieved using the idempotent
modeling for overhead transmission line models, the accuracy is reduced as the
fitting order of the rational approximations increase with the number of phases in-
volved. This issue merits future work to evaluate how to improve the rational fitting
procedure to obtain a better approximation of the Idempotent Matrices.

• The implementation of a multiphase full-wave line model for time-domain simula-
tion presented the following issues:

– The existence of a pronounced discontinuity in both the propagation function
and the characteristic admittance, which leads to difficulties in the frequency
domain fitting, causing high order rational functions and some problems with
the time-delay identification required for the Method of Characteristics.
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– The large number of complex-valued frequency samples required for an effi-
cient simulation using the Numerical Laplace Transform remains as an issue,
even though the increasing processing speed of computers facilitates the root
finding scheme of the unknown propagation constant of the circuit.

• Through a suitable change in the initial guess in the root finding scheme of the full
wave model, the computational burden in the calculation of the unknown propaga-
tion constant can be improved.

• Frequency domain modeling of multiphase overhead lines using the so-called image
approximations for the evaluation of the per-unit-length parameters when ground
displacement currents are considered presented passivity violations in the range of
10 MHz to 100 MHz. This was verified using a simpler configuration: a single-
phase transmission line.

• Time-domain modeling based on the rational fitting of the aforementioned fre-
quency domain models led to a numerically unstable behavior when a small har-
monic perturbation in the range of 10 MHz to 100 MHz was added to the input volt-
age. While both the characteristic admittance and the propagation function present
a smooth behavior, allowing a low order fitting, the nodal admittance matrix still
presented passivity violations in the high frequency range over 10 MHz, which led
to numerically unstable impulse response simulations.

• The modeling of the line using a quasi-TEM formulation instead of the conven-
tional closed-form expressions prevents the aforementioned numerical instabilities.
Although successful, it has the disadvantage of dealing with infinite integrals that
may pose some challenges in the numerical evaluation.

• For the three frequency dependent soil models evaluated, the inclusion of frequency
dependent soil parameters was unsuccessful to overcome the numerical instabilities
issue, even considering a soil model associated with physical coherent ground pa-
rameter data valid up to 200 MHz.

• Two mitigation procedures were considered where an image approximation is still
possible. The expressions used can be seen as a further simplification from the
actual expressions of impedance and admittance matrices. The time-domain re-
sponses for both scenarios indicates the viability of both procedures.

• It was found that longer lines are not subject to passivity violations. In fact, as the
line length increases, the mismatch between the values found in the infinite integrals
and in the image approximation formulas decreases.
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• The time-domain responses indicate that there is a minimal length for the realization
of transmission line models based on the image approximations. The inclusion of
frequency dependent soil parameters which represents an increase in the model
accuracy did not overcome this limitation.

The principal contributions of the present work are:

• The suitability of Idempotent line model as a feasible alternative to the ULM ap-
proach for phase coordinate modeling of underground cables has been determined.

• A novel time-domain implementation of the idempotent modeling using the Method
of Characteristics for Single-Core underground cables as an alternative to the Uni-
versal Line Model has been successfully achieved.

• A limitation to the number of phases an Idempotent Line model can accurately
represent in transmission lines has been found. Although issues with Idempotent
modeling have been previously reported in the technical literature, no specific de-
tails were given.

• An Idempotent grouping process analogue to the one used in the Universal Line
Model was implemented.

• Previously unreported accuracy issues in the image approximations for the calcula-
tion of per-unit-length line parameters have been found.

• Issues concerning the implementation of a multiphase full-wave line model using
both the Method of Characteristics and the Numerical Laplace Transform have been
clearly identified and described.

• A procedure to improve the computational burden in the calculation of the unknown
propagation constant in the full-wave model has been determined.

5.2 Future Research

The rational modeling of frequency dependent functions for the simulation of electro-
magnetic transients is still a theme with multiple research possibilities. To continue this
line of work we suggest the following:

• Research the causes of the accuracy loss in the fitting of the Idempotent Matrices
in overhead transmission line modeling when the number of phases involved is
increased by a revision of the mathematical formulation of the Idempotent Line
model.
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• As the suitability of the Idempotent model for Single-Core cables was determined,
further research on the accuracy of the Idempotent Line model for Trifoil and Pipe-
Type cables is in order, as well as their implementation in EMTP type programs.

• Evaluate the rational approximations associated with the idempotent modeling us-
ing other techniques such as matrix pencil, Levenberg-Marquadt or others.

• An assessment of a full wave line model considering either multi-phase conductors,
frequency dependent ground parameters and non-homogeneous lines, evaluated us-
ing different calculation methods such as the discretization of the line, as well as
time-domain simulation of such models using either the Numerical Laplace Trans-
form or the Method of Characteristics.

• Development of alternative closed-form expressions to calculate the per-unit-length
parameters that might present an improved numerical stability when compared with
the image approximation formulas.

• An assessment of the frequency range of validity of frequency-dependent soil mod-
els for very fast transients.
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Appendix A

State Space Formulation of Overhead
Lines and Underground Cable
Parameters

An efficient time-domain evaluation of transmission systems requires to represent
both Yc and H by rational functions in the frequency domain [5, 23], which allows to
implement a recursive formulation of the convolutions.

To illustrate the numerical evaluation involved, a first order pole-residue model will
be presented for both cases. This procedure can be readily extended to the more general
nth order multi-phase transmission system case.

For the Characteristic Admittance Yc, we assume a proper rational model with input
u, output y and constant term d. In the frequency domain we may write

y =
(

r
s−a

+d
)

u (A.1)

thus, a continuous time-domain representation of (A.1) can be written as

ẋ = ax+ r u

y = x+d u
. (A.2)

A discrete time-domain model of (A.2) can be obtained using either trapezoidal rule
integration or recursive convolutions. The resulting expressions are shown in (A.3).

x(n) = α x(n−1)+(αλ +µ) u(n−1)

y(n) = x(n)+(λ +d) u(n)
. (A.3)

137



If the trapezoidal integration rule is applied, the coefficients α , λ and µ are given by

α =
2+a∆t
2−a∆t

λ = µ =
r ∆t

2−a∆t
(A.4)

and in the case recursive convolutions are used, we have

α = exp(a∆t) λ =− r
a

(
1+

1−α

a∆t

)
µ =

r
a

(
α +

1−α

a∆t

)
. (A.5)

For the Propagation Matrix H, we assume a strictly proper first order pole-residue
rational model multiplied by an exponential function of a time-delay τ with input u and
output y. In the frequency domain we may write

y = exp(−sτk)

(
r

s−a

)
u (A.6)

thus, the continuous time-domain representation of (A.6) can be written as

ẋ = ax+ r u(t−τk)

y = x
. (A.7)

A discrete time-domain model of (A.7) can be obtained using either trapezoidal rule
integration or recursive convolutions. The resulting expressions are shown in (A.8).

x(n) = α x(n−1)+λ u(t−τ)+µ u(t−τ−∆t)

y(n) = x(n)
. (A.8)

The expressions for the coefficients depend whether trapezoidal integration or recur-
sive convolution is used. For the latter, α , λ and µ are given by (A.5) while for the former
(A.4) should be used.
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Appendix B

Numerical Laplace Transform

During the development of the present research work, it was necessary to validate the
time-domain results obtained using the fitting of the line parameters and either trapezoidal
integration or recursive convolutions.

Therefore, a different modeling approach such as to solve all the equations in the
frequency-domain, can be safely used to compare the results of the model tested. To
convert the answer to the time-domain, a transformation routine such as the Fast Fourier
Transform or the Numerical Laplace Transform is generally used, with the latter being
preferred for its improved numerical stability and easiness of implementation.

For a causal function f (t) and F (s) its image in the Laplace domain, the analytical
inverse of F (s) is given by:

F (s) = L{ f (t)}=
∞∫

0

e−st f (t)dt (B.1)

f (t) =
1

2π j

σ+ j∞∫
σ− j∞

F (s)estds (B.2)

Considering a finite integration range, we have:

F (c+ jω) =

T∫
0

[
f (t)e−ct]e− jωtdt (B.3)

f (t) = ℜe

ect

π

Ω∫
0

F (c+ jω)e jωtdω

 (B.4)

where ω is the angular frequency, c is the stability constant, σ ( jω) is a window function
to reduce truncation errors, T is the observation time and Ω is the maximum frequency.

The discretization of equations (B.3) and (B.4) that allows for the use of the Fast
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Fourier Transform (FFT) are as follows

Fm = ∆t
N−1

∑
n=0

fnD−1
n exp(− j2πmn/N) (B.5)

fn =
2∆ω

π
ℜe

{
Dn

N−1

∑
n=0

fmσmexp( j2πmn/N)

}
(B.6)

where

Fm = F [c+ j (2m+1)∆ω] (B.7)

fn = f (n∆t) (B.8)

Dn = exp(cn∆t + jπn/N) (B.9)

σm = σ [(2m+1)∆ω] (B.10)

∆t = T/N (B.11)

∆ω = 2π/T = 2π/(N∆t) (B.12)

Ω = 2π/∆t (B.13)

being N the number of frequency samples.
To reduce the effect of Gibbs oscillations, there are different options for the window

function, being the most common the Hanning and Blackman windows, which are respec-
tively given by

σ (ω) = 0.5−0.5cos(πω/Ω)

σ (ω) = 0.42−0.5cos(πω/Ω)+0.08cos(2πω/Ω)
(B.14)

For the factor c, the most used approaches are the ones given by Wilcox and Wedepohl,
which are respectively
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c = 2∆ω

c = ln
(
N2)/T

(B.15)

Alternatively, another value of c most frequently used is

c =−ln(0.001)/T (B.16)

141



Appendix C

Formulation of Modal Equation Using
Hertz Vectors

The Hertz vector of electric and magnetic type that can define the electromagnetic
field at a generic point (x,y,z) associated with a thin wire of infinite length parallel to a
lossy ground are given below. In air, the expressions are

ΠE1 = M0

∞∫
−∞

(
e−u1|y−h|+RE(λ )e−u1|y+h|

)
u1

e− jxλ dλ

ΠM1 = M0

∞∫
−∞

RH(λ )e−u1|y+h|

u1
e− jxλ dλ

(C.1)

For the ground we have

ΠE2 = M0

∞∫
−∞

TE(λ )e−u1 h+u2 y

u1
e− jxλ dλ

ΠM2 = M0

∞∫
−∞

TM(λ )e−u1 h+u2 y

u1
e− jxλ dλ

(C.2)
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where M0 = − jωµ1
4π k2

1
I0e− jγ z. To determine RE , RH , TE and TH we must enforce the conti-

nuity of tangential components in E and H at the air-ground interface. Thus,

RE(λ ) =−1+u1
2k2

1
k2

1− γ2

(
1

u1 +u2
− γ2

k2
2u1 + k2

1u2

)
RH(λ ) =−

2k2
1γλ

jωµ1(k2
1− γ2)

(
1

u1 +u2
−

k2
1

k2
2u1 + k2

1u2

)
TE(λ ) = u1

2k2
1

k2
2− γ2

(
1

u1 +u2
− γ2

k2
2u1 + k2

1u2

)
TH(λ ) =−

2γλ k2
1

jωµ1(k2
2− γ2)

(
1

u1 +u2
−

k2
1

k2
2u1 + k2

1u2

)
(C.3)

where γ , k1, k2, u1 and u2 are the same given in Section 3.2.
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Appendix D

Numerical Integration

Although trapezoidal rule integration is a powerful tool for solving large systems of
Ordinary Differential Equations, it is not well suited when highly oscillatory functions are
involved as the number of samples tend to be excessive. One way to overcome this limita-
tion is to use an adaptive integration scheme based on the so-called Gaussian quadrature.
Gauss observed that a polynomial having a degree of less than or equal to 2n− 1 could
be integrated exactly by finding n special abscissas, also called nodes. Integrals of non-
polynomial functions and polynomial functions of greater degree are approximated very
well. Kronrod [96] proposed a method to choose the nodes optimally from the Legendre-
Gauss quadrature. These points are known as Kronrod points [97].

The Gaussian quadrature consists to transform the function to be integrated, f (x), into
a new function, g(x), integrable from x =−1 to x = 1 while preserving the original area.
The integral is calculated by summing the product of the new function values g(ni) times
a weighting factor wi specific for each node.

b∫
a

f (x)dx =
1∫
−1

g(x)dx≈
n

∑
i=1

wig(ni) (D.1)

where

wi =
2
(
1− x2

i
)

(n+1)2 Pn+1(xi)2
(D.2)

and Pn(x) is a Legendre polynomial of order n. The nodes are the roots of the Pn(xi). The
roots of the Legendre polynomials are unique, thus no nodes are common to any pair of
Legendre polynomials except the midpoint x = 0. Some illustrative examples of Gaussian
quadrature are located at http://demonstrations.wolfram.com/GaussianQuadrature/.

Error determination in (D.1) is based on the difference between the integral estimates
obtained from two Gaussian quadrature rules of different orders [98–100]. Instead of a
simple difference between estimates a more complex error estimation can be used based
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on the Quadpack package (available at http://www.netlib.org/quadpack/). Thus error de-
termination has a high computational burden which is the main responsible for a slow
convergence in the numerical integration.

A Gauss-Kronrod scheme can also be used with the so-called Lobatto integration
rule, which uses the original integration interval adding new sampling “Kronrod points”
in between those given by the Lobatto rule. This gives a higher order rule that reuses the
Lobatto rule integrand evaluations.

A thorough survey of the history, existence and other theoretical properties, as well
as computational aspects of Gauss-Kronrod rules and their generalizations is given by
Gautschi [101]. Further description and details regarding Gauss-Lobatto rules are pre-
sented in [102]. Several numerical analysis programs have implemented these integration
schemes as highly efficient and optimized routines such as NIntegrate in MATHE-
MATICA and quadgk and quadl in MATLAB.
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Appendix E

Formulation of Modal Equation Using
Magnetic and Electric Vector Potentials

In this approach, the wave propagation is decomposed in Transverse Magnetic (TM)
and Transverse Electric (TE) modes, using the magnetic and the electric vector potentials,
respectively. An important detail: in [74], the definition of the magnetic vector potential
as H = ∇×A was adopted instead of the conventional approach. In this formulation, the
current has the form I = I0e−γ z. The Lorentz gauge is used to relate the electric scalar
potential in TM modes. Also, in the same reference, the electric vector potential F is
defined by E = ∇×F. Using these definitions for TM modes in the air and bellow ground
surface, the respective expressions are

∇
2A1 +

(
γ

2− k2
1
)

A1 = Iδ (x− xc)δ (y−h)

∇
2A2 +

(
γ

2− k2
2
)

A2 = 0
(E.1)

where (xc,h) are the conductor center coordinates and δ is the Dirac delta impulse func-
tion. For TE modes we have

∇
2F1 +

(
γ

2− k2
1
)

F1 = 0

∇
2F2 +

(
γ

2− k2
2
)

F2 = 0
(E.2)

Similarly to the case using Hertz vectors, by enforcing the continuity of components
Ex and Ez of the electric field and Hx and Hz of the magnetic field at the ground surface,
i.e., y = 0, it is possible to obtain an integral equation for the electromagnetic field in the
air and in the ground. The modal equation in this formulation can be written as

M =
(
γ

2− k2
1
)K0(ηr)−K0(2hη)+

∞∫
−∞

e−2hu1

g(λ )
dλ

 (E.3)
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where g(λ ) is given by

g(λ ) = u1 +u2 n2 γ2− k2
1

γ2− k2
2
+

+
λ 2γ2µ1

k2
1

(
k2

1− k2
2
)2

γ2− k2
2

1[
u2µ2(γ2− k2

1)+u1µ1(γ2− k2
2)
] (E.4)

Despite the differences in the expression shown in (E.4), the results presented here
indicate that a similar propagation constant is obtained regardless of the formulation.
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