
TOWARDS CONTEXT-AWARE COMMUNICATIONS: USER IDENTITY

MATCH IN RADIO AND VIDEO DOMAINS USING MACHINE LEARNING

Vinicius Mesquita de Pinho

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Mestre em

Engenharia Elétrica.

Orientador: Marcello L. R. de Campos

Rio de Janeiro

Fevereiro de 2021

TOWARDS CONTEXT-AWARE COMMUNICATIONS: USER IDENTITY

MATCH IN RADIO AND VIDEO DOMAINS USING MACHINE LEARNING

Vinicius Mesquita de Pinho

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO

PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU

DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: Marcello L. R. de Campos

Aprovada por: Prof. Marcello L. R. de Campos

Prof. Eduardo Antônio Barros da Silva

Prof. Charles Casimiro Cavalcante

Eng. Luis Guilherme Uzeda Garcia

RIO DE JANEIRO, RJ – BRASIL

FEVEREIRO DE 2021

Mesquita de Pinho, Vinicius

Towards Context-Aware Communications: User

Identity Match in Radio and Video Domains Using

Machine Learning/Vinicius Mesquita de Pinho. – Rio de

Janeiro: UFRJ/COPPE, 2021.

XXI, 81 p.: il.; 29, 7cm.

Orientador: Marcello L. R. de Campos

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2021.

Referências Bibliográficas: p. 45 – 48.

1. Wireless Communications. 2. Machine Learning.

3. Computer Vision. I. L. R. de Campos, Marcello.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. Título.

iii

Para Valdecy, Kátia e Amanda.

Sempre.

iv

Agradecimentos

Agradeço à minha família, meus pais, Kátia e Valdecy, e minha irmã, Amanda. Só

tenho a agradecer pelo suporte infinito e amor incondicional. Obrigado por sempre

estarem ao meu lado. Essa conquista é mais de vocês do que minha. Uma nota

especial à ajuda da Amanda em algumas das figuras deste trabalho, muito obrigado.

Ao meu orientador, Marcello, que é um dos responsáveis por estar concluindo

este trabalho. Obrigado por sempre acreditar em mim, por me conceder tantas

oportunidades. É difícil escrever um agradecimento à altura do que você já fez

por mim ao longo desses anos. Os caminhos que decidi seguir em minha vida têm

grande influência sua. Obrigado por todo o aprendizado e por ter a paciência de

me orientar por tanto tempo.

Ter amigos é essencial para terminar um mestrado. Mesmo com a distância

desses últimos tempos, tenho a obrigação de escrever os nomes de algumas pessoas

muito especiais. Agradeço muito à Rebeca, Domenica, Ingrid, Pedro, Renata,

Yuri, Felipe, Wesley, Rafael, Gabriel, Gabi, Padilla, Igor, Cinelli, Matheus, Ro-

berto, Carol, Lucas, Jéssica, Bia, Vettore, Ainoã, Thalyson, baby Dom e Anna Lara.

Agradeço ao Laboratório de Sinais, Multimídia e Telecomunicações, o SMT,

por ter sido uma segunda casa durante todos os meus anos por lá. Agradeço aos

professores e toda a equipe. Em especial, agradeço a Dona Edinalva, por sempre

nos fazer rir com sua energia e seu bom humor.

Agradeço à todas as pessoas do Nokia Bell Labs, por terem me recebido tão

bem em minha passagem durante este mestrado.

Agradeço a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES) pela bolsa de mestrado concedida.

Muito obrigado ao Programa de Engenharia Elétrica da COPPE, aos colegas

discentes e aos docentes que contribuíram para minha formação.

v

Agradeço aos professores Eduardo e Charles, e ao Luis, que compõem a banca

examinadora, por aceitarem o convite para avaliar este trabalho e pelas contribuições

essenciais para melhoria do mesmo.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

TOWARDS CONTEXT-AWARE COMMUNICATIONS: USER IDENTITY

MATCH IN RADIO AND VIDEO DOMAINS USING MACHINE LEARNING

Vinicius Mesquita de Pinho

Fevereiro/2021

Orientador: Marcello L. R. de Campos

Programa: Engenharia Elétrica

Os sistemas de comunicação de quinta geração (5G) estão sendo desenvolvidos

e aprimorados para serem peças-chave na promoção de uma infraestrutura essen-

cial para as novas demandas de um mundo cada vez mais conectado. Ferramentas

de aprendizado profundo e visão computacional podem ser usadas para fornecer

informações ao sistema de comunicação, aumentando seu conhecimento à respeito

da dinâmica do ambiente e seus usuários. Informações extraídas por ferramentas

de visão computacional podem fornecer dados sobre posição de usuários, direções

de movimento e velocidades, que podem ser fornecidos à rede 5G. Porém, a rede

5G necessita de um mecanismo para casar informações advindas do sistema visual,

formado por câmeras e a tecnologia de visão computacional, e o sistema de rádio.

Atualmente, este sistema de casamento de informações não está presente na litera-

tura. Portanto, este trabalho propõe um framework que realiza o procedimento de

correspodência entre informações oriundas de um sistema visual e de rádio, usando

um classificador baseado em aprendizado de máquina. Essa etapa de casamento

de informações é essencial para incrementar o conhecimento espacial dos sistemas

de comunicação. Este trabalho detalha o framework proposto, tanto sua fase de

treinamento quanto a de experimentos práticos aplicados a uma configuração de

testes. Os experimentos de teste foram realizados com informações coletadas em

quatro ambientes com características diferentes. Este trabalho compara o uso de

dois classificadores no framework proposto, um baseado em redes neurais profundas

e o random forest. Os resultados dos experimentos mostram que o framework com

o classificador baseado em redes neurais é capaz de atingir bons resultados, com

acurácia de mais de 99% em todas as situações. As próximas gerações para além

do 5G lançarão mão de soluções que exploram o uso de informações de diferentes

vii

domínios, e a nossa solução é um componente essencial que permite tais usos, como

por exemplo em antecipação de handover assistido por câmeras e seleção de feixes

em MIMO massivo.

viii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

TOWARDS CONTEXT-AWARE COMMUNICATIONS: USER IDENTITY

MATCH IN RADIO AND VIDEO DOMAINS USING MACHINE LEARNING

Vinicius Mesquita de Pinho

February/2021

Advisor: Marcello L. R. de Campos

Department: Electrical Engineering

5G is designed to be an essential enabler and a leading infrastructure provider in

the communication technology industry by supporting the demand for the growing

data traffic and a variety of services with distinct requirements. Deep learning learn-

ing and computer vision tools can increase the network’s environmental awareness

with information from visual data. Information extracted via computer vision tools

such as user position, movement direction, and speed can be promptly available

for the network. However, the network must have a mechanism to match a user’s

identity in both visual and radio systems. This mechanism is absent in the present

literature. Therefore, we propose a framework to match the information from both

visual and radio domains. The user-identity match is an essential step to practical

applications of computer vision tools in communications. We detail the proposed

framework training and deployment phases for a presented setup. We carried out

practical experiments using data collected in different types of environments. The

work compares the use of Deep Neural Network and Random Forest classifiers and

shows that the former performed better across all experiments, achieving classifi-

cation accuracy greater than 99%. The next generations beyond 5G will explore

solutions that embrace the use of information from different domains, and our solu-

tion is a building block to enable such use, for example in video-assisted proactive

handover and beam selection on massive MIMO.

ix

Sumário

Lista de Figuras xiii

Lista de Tabelas xx

List of Abbreviations xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Contributions . 3

1.4 Published Works . 4

1.5 Work Structure . 5

2 Framework and Testbed Description 6

2.1 Experimental Setup Description . 6

2.2 Framework . 7

2.3 Data Collection . 8

2.4 Preprocessing . 10

2.5 Feature Extraction . 11

2.6 Random Forest Classifier . 12

2.7 Classifier Output and UE Association 13

2.8 Deep Neural Network Classifier . 14

2.9 Conclusions . 16

3 Experiments and Results 17

3.1 Experimental Setups . 17

3.2 Performance Metrics . 20

3.3 Results and Discussion . 21

3.4 Prototype Testbed Deployment . 28

3.5 Conclusions . 30

x

4 Beyond the Testbed 31

4.1 Scenario 1 . 31

4.2 Scenario 2 . 33

4.3 Scenario 3 . 34

4.4 Simulation Results . 36

4.4.1 Scenario 1 . 36

4.4.2 Scenario 2 . 38

4.4.3 Scenario 3 . 40

4.5 Conclusions . 40

5 Conclusions & Future Work 42

5.1 Conclusions . 42

5.2 Future Work . 43

Referências Bibliográficas 45

A Confusion Matrices from “Beyond the Testbed” Simulations 49

A.1 Scenario 1 . 49

A.1.1 S1 for Setup 1 . 49

A.1.2 S1 for Setup 2 . 50

A.1.3 S1 for Setup 3 . 51

A.1.4 S1 for Setup 4 . 52

A.1.5 S2 for Setup 1 . 53

A.1.6 S2 for Setup 2 . 54

A.1.7 S2 for Setup 3 . 55

A.1.8 S2 for Setup 4 . 56

A.1.9 S1,2 for Setup 1 . 57

A.1.10 S1,2 for Setup 2 . 58

A.1.11 S1,2 for Setup 3 . 59

A.1.12 S1,2 for Setup 4 . 60

A.2 Scenario 2 . 61

A.2.1 CIR1 for Setup 1 . 61

A.2.2 CIR1 for Setup 2 . 62

A.2.3 CIR1 for Setup 3 . 63

A.2.4 CIR1 for Setup 4 . 64

A.2.5 CIR2 for Setup 1 . 65

A.2.6 CIR2 for Setup 2 . 66

A.2.7 CIR2 for Setup 3 . 67

A.2.8 CIR2 for Setup 4 . 68

A.2.9 CIR3 for Setup 1 . 69

xi

A.2.10 CIR3 for Setup 2 . 70

A.2.11 CIR3 for Setup 3 . 71

A.2.12 CIR3 for Setup 4 . 72

A.3 Scenario 3 . 73

A.3.1 CIR1 for Setup 1 . 73

A.3.2 CIR1 for Setup 2 . 74

A.3.3 CIR1 for Setup 3 . 75

A.3.4 CIR1 for Setup 4 . 76

A.3.5 CIR2 for Setup 1 . 77

A.3.6 CIR2 for Setup 2 . 78

A.3.7 CIR2 for Setup 3 . 79

A.3.8 CIR2 for Setup 4 . 80

xii

Lista de Figuras

1.1 Example of scenario where the solution proposed in this work can be

applied. 4

2.1 Setup for the testbed containing one camera, a laptop, and three

USRPs. 6

2.2 Illustration of framework steps linked with the experimental setup. . . 7

2.3 Examples of manually annotated images with bounding boxes around

USRPs, used for fine-tuning the model pre-trained on the COCO

dataset. 8

2.4 The bounding box is composed of a point [x1, y1] related to the origin

in the superior-left corner of the image and the object’s height and

width, in pixels. 9

2.5 The process of computing the channel impulse responses compri-

ses one device transmitting to the access point, processing by the

software-defined radio part and computer. The GNU Radio proces-

ses the stream of pilot-based frames and computes the CIRs; then,

the CIRs are stored. 9

2.6 The unified representation of data from vision and radio sources is

made by matching their unique timestamps, which the BBOXs and

CIRs receive when they are stored on the computer. 10

2.7 Example on how the labeling process is done. The device with the

“BBOX 2” is transmitting in this example as illustrated by the dashed

yellow line; therefore, the measurements collected will receive the

label X = 2. 11

2.8 Details of the framework used for training and validation phases. . . . 12

2.9 Input instance for the classifier, with the radio and video domain

features and annotated with a label used for training and validation.

One CIR and its related features (peak position and value), because

we consider the case where only one USRP is transmitting in the scene. 12

2.10 Details of the framework used for deployment. 13

xiii

2.11 Multilayer perceptron illustration. This multilayer perceptron inclu-

des ReLU as an activation function and softmax in the output layer

for classification. 14

2.12 The ReLU function. 15

3.1 Illustration of Setup 1 location. This figure is a not-to-scale sim-

plified depiction of the place, to illustrate to the reader where the

experiments were conducted. 18

3.2 Illustration of Setup 2 location. This figure is a not-to-scale sim-

plified depiction of the place, to illustrate to the reader where the

experiments were conducted. 19

3.3 Illustration of Setup 3 premises. This figure is a not-to-scale sim-

plified depiction of the place, to illustrate to the reader where the

experiments were conducted. 19

3.4 Setup for experiment 4 carried out in an outdoor area. 20

3.5 Example of two CIRs, CIR 1 and 2, where 22

3.6 Confusion Matrix for Setup 1 data trained with Random Forest Clas-

sifier. 22

3.7 Confusion Matrix for Setup 1 data trained with Neural Network Clas-

sifier. 23

3.8 Confusion Matrix for Setup 2 data trained with Random Forest Clas-

sifier. 24

3.9 Confusion Matrix for Setup 2 data trained with Neural Network Clas-

sifier. 24

3.10 Confusion Matrix for Setup 3 data trained with Random Forest Clas-

sifier. 25

3.11 Confusion Matrix for Setup 3 data trained with Neural Network Clas-

sifier. 26

3.12 Confusion Matrix for Setup 4 data trained with Random Forest Clas-

sifier. 26

3.13 Confusion Matrix for Setup 4 data trained with Neural Network Clas-

sifier. 27

3.14 First example of testing the proposed framework on Setup 2. On

the left-hand side of the image, there is a window with the CIR. On

the right-hand side, two devices are in the scene. A yellow BBOX

indicates which device is transmitting to the AP. In the superior-left

of the BBOX, the classification level of confidence is displayed; in this

case, 100%. 29

xiv

3.15 Second example of testing the proposed framework on Setup 3. On the

inferior right-hand side of the image, there is a window with the CIR.

On the left-hand side, two devices are in the scene. A purple BBOX

indicates which device is transmitting to the AP. In the superior-left

of the BBOX, the classification level of confidence is 100%. 29

4.1 First example of a more complex scenario. There are two cameras,

C1 and C2, two access points, AP1 and AP2, and four devices in this

scene. We indicate the transmitting-device connection to the access

point with the yellow-dashed line. The BBOXs related to each camera

are shown; we omit some BBOXs’ names for a more straightforward

illustration, but they can be easily inferred. 32

4.2 Example of input for the classifier when there are four different devices

in the scene and information from one camera. 32

4.3 Example of input for the classifier when there are four different devices

in the scene and information from two cameras. 33

4.4 The second example of more complex scenarios. There is one camera,

C1, one access point, AP1, and four devices in this scene. We indi-

cate the transmitting-device connection to the access point with the

yellow-dashed line; there are three of them. The BBOXs names are

also shown. 33

4.5 Example of input for three classifier instances when there are four

different devices in the scene and information from one camera. . . . 34

4.6 The third example of more complex scenarios. In this scene, there

are two cameras, C1 and C2, two access points, AP1 and AP2, and

four devices. We indicate the transmitting-device connection to the

access point with the yellow-dashed line; there are four of them. We

omit the BBOXs names for a clearer illustration and because their

definition is not necessary to this example. 35

4.7 Example of input for two classifier instances when there are four dif-

ferent devices in the scene and information from two cameras. 35

A.1 Confusion Matrix for S1 in Scenario 1 for Setup 1 trained with Ran-

dom Forest Classifier. 49

A.2 Confusion Matrix for S1 in Scenario 1 for Setup 1 trained with Neural

Network Classifier. 50

A.3 Confusion Matrix for S1 in Scenario 1 for Setup 2 trained with Ran-

dom Forest Classifier. 50

A.4 Confusion Matrix for S1 in Scenario 1 for Setup 2 trained with Neural

Network Classifier. 51

xv

A.5 Confusion Matrix for S1 in Scenario 1 for Setup 3 trained with Ran-

dom Forest Classifier. 51

A.6 Confusion Matrix for S1 in Scenario 1 for Setup 3 trained with Neural

Network Classifier. 52

A.7 Confusion Matrix for S1 in Scenario 1 for Setup 4 trained with Ran-

dom Forest Classifier. 52

A.8 Confusion Matrix for S1 in Scenario 1 for Setup 4 trained with Neural

Network Classifier. 53

A.9 Confusion Matrix for S2 in Scenario 1 for Setup 1 trained with Ran-

dom Forest Classifier. 53

A.10 Confusion Matrix for S2 in Scenario 1 for Setup 1 trained with Neural

Network Classifier. 54

A.11 Confusion Matrix for S2 in Scenario 1 for Setup 2 trained with Ran-

dom Forest Classifier. 54

A.12 Confusion Matrix for S2 in Scenario 1 for Setup 2 trained with Neural

Network Classifier. 55

A.13 Confusion Matrix for S2 in Scenario 1 for Setup 3 trained with Ran-

dom Forest Classifier. 55

A.14 Confusion Matrix for S2 in Scenario 1 for Setup 3 trained with Neural

Network Classifier. 56

A.15 Confusion Matrix for S2 in Scenario 1 for Setup 4 trained with Ran-

dom Forest Classifier. 56

A.16 Confusion Matrix for S2 in Scenario 1 for Setup 4 trained with Neural

Network Classifier. 57

A.17 Confusion Matrix for S1,2 in Scenario 1 for Setup 1 trained with Ran-

dom Forest Classifier. 57

A.18 Confusion Matrix for S1,2 in Scenario 1 for Setup 1 trained with Neural

Network Classifier. 58

A.19 Confusion Matrix for S1,2 in Scenario 1 for Setup 2 trained with Ran-

dom Forest Classifier. 58

A.20 Confusion Matrix for S1,2 in Scenario 1 for Setup 2 trained with Neural

Network Classifier. 59

A.21 Confusion Matrix for S1,2 in Scenario 1 for Setup 3 trained with Ran-

dom Forest Classifier. 59

A.22 Confusion Matrix for S1,2 in Scenario 1 for Setup 3 trained with Neural

Network Classifier. 60

A.23 Confusion Matrix for S1,2 in Scenario 1 for Setup 4 trained with Ran-

dom Forest Classifier. 60

xvi

A.24 Confusion Matrix for S1,2 in Scenario 1 for Setup 4 trained with Neural

Network Classifier. 61

A.25 Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with

Random Forest Classifier. 61

A.26 Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with

Neural Network Classifier. 62

A.27 Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with

Random Forest Classifier. 62

A.28 Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with

Neural Network Classifier. 63

A.29 Confusion Matrix for CIR1 in Scenario 1 for Setup 3 trained with

Random Forest Classifier. 63

A.30 Confusion Matrix for CIR1 in Scenario 2 for Setup 3 trained with

Neural Network Classifier. 64

A.31 Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with

Random Forest Classifier. 64

A.32 Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with

Neural Network Classifier. 65

A.33 Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with

Random Forest Classifier. 65

A.34 Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with

Neural Network Classifier. 66

A.35 Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with

Random Forest Classifier. 66

A.36 Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with

Neural Network Classifier. 67

A.37 Confusion Matrix for CIR2 in Scenario 1 for Setup 3 trained with

Random Forest Classifier. 67

A.38 Confusion Matrix for CIR2 in Scenario 2 for Setup 3 trained with

Neural Network Classifier. 68

A.39 Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with

Random Forest Classifier. 68

A.40 Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with

Neural Network Classifier. 69

A.41 Confusion Matrix for CIR3 in Scenario 2 for Setup 1 trained with

Random Forest Classifier. 69

A.42 Confusion Matrix for CIR3 in Scenario 2 for Setup 1 trained with

Neural Network Classifier. 70

xvii

A.43 Confusion Matrix for CIR3 in Scenario 2 for Setup 2 trained with

Random Forest Classifier. 70

A.44 Confusion Matrix for CIR3 in Scenario 2 for Setup 2 trained with

Neural Network Classifier. 71

A.45 Confusion Matrix for CIR3 in Scenario 1 for Setup 3 trained with

Random Forest Classifier. 71

A.46 Confusion Matrix for CIR3 in Scenario 2 for Setup 3 trained with

Neural Network Classifier. 72

A.47 Confusion Matrix for CIR3 in Scenario 2 for Setup 4 trained with

Random Forest Classifier. 72

A.48 Confusion Matrix for CIR3 in Scenario 2 for Setup 4 trained with

Neural Network Classifier. 73

A.49 Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with

Random Forest Classifier. 73

A.50 Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with

Neural Network Classifier. 74

A.51 Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with

Random Forest Classifier. 74

A.52 Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with

Neural Network Classifier. 75

A.53 Confusion Matrix for CIR1 in Scenario 1 for Setup 3 trained with

Random Forest Classifier. 75

A.54 Confusion Matrix for CIR1 in Scenario 2 for Setup 3 trained with

Neural Network Classifier. 76

A.55 Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with

Random Forest Classifier. 76

A.56 Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with

Neural Network Classifier. 77

A.57 Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with

Random Forest Classifier. 77

A.58 Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with

Neural Network Classifier. 78

A.59 Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with

Random Forest Classifier. 78

A.60 Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with

Neural Network Classifier. 79

A.61 Confusion Matrix for CIR2 in Scenario 1 for Setup 3 trained with

Random Forest Classifier. 79

xviii

A.62 Confusion Matrix for CIR2 in Scenario 2 for Setup 3 trained with

Neural Network Classifier. 80

A.63 Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with

Random Forest Classifier. 80

A.64 Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with

Neural Network Classifier. 81

xix

Lista de Tabelas

2.1 Summary of parameters used for training the Random Forest Classifiers. 13

2.2 Neural Network Architecture, with Specified Parameters for Each

Layer and Number of Trainable Parameters. 16

3.1 Number of Instances in the Training and Validation Datasets per

Experiment. 18

3.2 Performance Validation Results of the Experiments. 28

4.1 Performance Validation Results of the Simulations for S1 in Scenario 1. 37

4.2 Performance Validation Results of the Simulations for S2 in Scenario 1. 37

4.3 Performance Validation Results of the Simulations for S1,2 in Scenario

1. 38

4.4 Performance Validation Results of the Simulations for CIR1 in Sce-

nario 2. 39

4.5 Performance Validation Results of the Simulations for CIR2 in Sce-

nario 2. 39

4.6 Performance Validation Results of the Simulations for CIR3 in Sce-

nario 2. 39

4.7 Performance Validation Results of the Simulations for CIR1 from S1

in Scenario 3. 40

4.8 Performance Validation Results of the Simulations for CIR2 from S1

in Scenario 3. 40

xx

List of Abbreviations

AI artificial intelligence.

AP access point.

BBOX bounding box.

CIR channel impulse response.

CV computer vision.

DNN deep neural network.

GPU graphical processing unit.

MIMO multiple-input-multiple-output.

MLP multilayer perceptron.

OFDM orthogonal frequency-division multiplexing.

RAN radio access networks.

RFC random forest classifier.

UE user equipment.

USRP universal software radio peripheral.

xxi

Capítulo 1

Introduction

1.1 Motivation

5G systems and artificial intelligence (AI) have been highlighted as fields of innova-

tion, emblematic for the transition to a smarter society. Researchers envision 5G,

and beyond 5G, offering a plethora of services and capabilities, addressing a wide

range of use cases, including enhanced mobile broadband, ultra-reliable low-latency

communications, and massive machine-type traffic [1, 2].

Due to the advancements in AI techniques, especially deep learning, and the

availability of extensive data, there has been an overwhelming interest in using

AI for the improvement of wireless networks [3, 4]. Combining deep learning and

computer vision (CV) techniques have seen great success in diverse fields, such as

security [5] and healthcare [6], where they deliver state-of-the-art results in multiple

tasks. Applying computer vision with deep learning in wireless communications

has seen recent growing interest. Computer vision brings powerful tools to improve

current communications systems. Visual information enriches the environmental

awareness of networks and can enable context-aware communications to a level that

has not yet been explored [7]. These capabilities are envisioned to be used in the

next generations, beyond 5G.

Computer vision and deep learning have direct applications in the physical layer.

We can exemplify an application with the following case. When using multiple-

input-multiple-output (MIMO) beamforming communication systems, beams’ di-

rection and power can be scheduled using the knowledge of users’ locations and

blocking cases readily available from the visual information. The immediate availa-

bility of data reduces overhead in communication, minimizing power consumption,

and interference. Moreover, CV tools can give motion information about a user

at the edge of the coverage area. This data can be used to predict and estimate

whether or when a terminal goes out or comes into its serving area. The network

1

can then allocate channel resources for the handover process to improve the system

resources’ utilization efficiency.

1.2 Related Work

Machine learning techniques have been used to solve various problems in commu-

nications systems. In [8–12], some interesting use-cases of machine learning in the

field of wireless communication and networking are surveyed: MAC layer protocols

designed with reinforcement learning, deep neural networks for MIMO detection,

user equipment (UE) positioning with neural networks, and others. In [12], the

authors address the problem of designing signaling protocols for the MAC layer

using reinforcement learning. The results show a promising future for nonhuman-

made protocols; they are faster and cheaper to construct when compared to the ones

standardized by humans during several long meetings. Machine learning has been

applied to MIMO detection; examples are the works with deep neural networks in

[13] and [14]. UE positioning with neural networks as in [15] and [16] can achieve

mean positioning errors of less than 2 m, essential for user localization in communi-

cation networks. Furthermore, machine learning-based solutions for communications

can work with more than just radio signals to extend its capabilities. The use of

computer vision-based on deep neural networks brings another source of useful tools.

Recently, the scientific community started exploring the possibility of bringing

intelligence from CV systems to radio networks. In [17], the authors presented a

framework for generating datasets with visual and radio information to facilitate

research towards vision-aided wireless communication. The framework uses a game

engine and a wireless propagation tool to recreate outdoor urban scenarios. This

framework has been used for addressing beam-tracking and link-blockage problems.

The beam-tracking problem has been tackled in [7] and [18], using visual infor-

mation from a dataset generated with the framework from [17]. The authors from

[18] combined images and beam indices from the scene generated by the framework

from [17] to fine-tune a pre-trained deep learning model to predict future beam in-

dices. However, the oversimplified scenario with only one user hinders the analysis

if the method would scale to more complex scenarios.

The link-blockage problem was addressed in [18] and [19]. The former tackles

the problem from a reactive point of view, i.e., the system classifies the present link

status as blocked or not. The latter focuses on a proactive treatment of the pro-

blem, using recurrent neural networks to predict future blockage. Both works show

promising results, but with only a single-moving user in the presence of stationary

blockages.

The works in [17], [18], and [19] can be further extended with more realistic

2

scenarios. It is necessary to increase the number of possible users in the scenes and

allow non-stationary blockages. With a more dynamic scenario, the need to match

the transmitting user in both video feed and radio transmission emerges. This issue

is not addressed in [17], [18], or [19].

1.3 Contributions

In a practical scenario, visual data is acquired separately from radio information.

However, it is only possible to take advantage of the ready-to-use visual information

if the network can match the user identity from both visual and radio domains.

Otherwise, the network does not have the means to use the information extracted

from the visual data. The information from visual data can be useful for the network,

as in the following examples. For improving handover on the cell edge by providing

means of estimating a user’s trajectories and speed, or reducing the radio control

channel usage by contributing to user location instead of relying solely on radio

information. To the best of our knowledge, a mechanism to match visual and radio

data from the same user has not yet been described in the literature. The usual

approach to deal with this problem is to consider only one user at a time in the

scenario, or consider the information match that is already provided for the network.

Both do not happen in a realistic situation.

We close this gap by proposing a novel framework that enables the user informa-

tion match from a visual source with its radio counterpart. We model the problem as

a classification task using the user position in the video feed and its channel impulse

response (CIR). We use a machine learning technique to solve the task of classifying

the transmitting user. A solution such as ours is a necessary step to allow the de-

velopment of more complex scenarios involving visual information, leading towards

context-aware communications.

One example of application of the proposed solution is the initial access in mas-

sive MIMO, where many beams need to be swept out to find the most suitable

one. This example is depicted in the scenario presented Figure 1.1. The proposed

framework can be used to match the information from video and radio, then a me-

chanism to reduce the search space for the best beam can be applied. The cameras

in this scenario capture the users (in this case, vehicles), and the users’ positions

jointly with the radio information are fed to a trained classifier. The output from

the classifier can point to a preselected set beams that are suited for the user in that

situation.

The proposed framework is flexible; it is possible to incorporate as many users

as necessary without critically increasing the computational complexity since the

features used in the classification task are one-dimensional. Furthermore, we used

3

Figura 1.1: Example of scenario where the solution proposed in this work can be
applied.

an experimental setup to showcase the proposed framework. We carried out experi-

ments using real data collected in four environments with different characteristics,

from indoor spaces to an outdoor area. The high classification accuracy metrics in

the experiments demonstrated the potential applicability of the proposed framework.

The industrial private networks can take great advantage of using the proposed

framework. The industries’ private networks require a customized design due to

the strict requirements of ultra-reliable and low latency users and machine-type

communications. There are numerous opportunities to explore in this environment,

as flexibility increases. The operator owns both the radio access networks (RAN)

and the UE, they would have also the permission from every person in the space;

therefore, privacy becomes less of an issue. We have access to additional information

to the RAN, data otherwise not available, for example, the video feed of the covered

area. Hence, the network can extract useful information about the users, readily

available on visual data, reducing the communication system’s latency.

1.4 Published Works

The following publications and patent were results of this work:

• Part of this work was first published in the 2020 IFIP Networking Conference in

the abstract paper “User identification by matching radio ‘vision’ and computer

vision through means of machine learning” [20].

• This work was published in the article entitled “Vision-Aided Radio: User

Identity Match in Radio and Video Domains Using Machine Learning” in the

IEEE Access special section on Beyond 5G Communications [21].

4

• The patent “METHOD FOR IDENTIFYING AND TRACKING THE UE

DEVICE THROUGH MACHINE LEARNING AND COMPUTER VISION”

was filled by Nokia under the application number 20205785 on the Finnish

Patent and Registration Office in August of 2020.

1.5 Work Structure

The remainder of this work is organized as follows.

Chapter 2 describes the proposed framework and the testbed used throughout

the thesis. We start with the description of the testbed Section 2.1 as it allows a

more comprehensive and applied description of the framework. Section 2.2 describes

the framework and methods for matching a UE in a video feed to UE identity in

a radio transmission using machine learning and computer vision. The framework

is described with a direct application on the testbed. The experiments and results

obtained in the testbed are detailed in Chapter 3. We extend beyond the test-

bed in Chapter 4, discuss more complex scenarios where the proposed framework

can be used, and present simulations results from the scenarios presented. Finally,

conclusions are drawn in Chapter 5, and future work paths are considered.

5

Capítulo 2

Framework and Testbed Description

This chapter describes a testbed that allows us to illustrate the principle of the pro-

posed identity-matching procedure, its feasibility, and how the experiments can be

reproduced. We favor open software and communication entities (looking forward to

Open-RAN [22, 23]), yet the concept can be extended to 5G devices for commercial

use.

2.1 Experimental Setup Description

The setup for the testbed is illustrated in Figure 2.1. The setup components are a

graphical processing unit (GPU)-enabled laptop, a camera, an access point (AP),

and two identical, visually indistinguishable UEs.

UE

Camera

AP

UE

Laptop

Figura 2.1: Setup for the testbed containing one camera, a laptop, and three USRPs.

The AP and user devices are implemented using universal software radio periphe-

rals (USRPs) model Ettus B210. We implement a simplified uplink transmission

using GNU Radio [24] based on the IEEE 802.11a orthogonal frequency-division

multiplexing (OFDM) standard [25]. The active user USRP sends a pilot-based

frame to the AP. The frame uses a 52-subcarrier OFDM operating at 1 GHz. All

the subcarriers are used to transmit pilots. The frame is modulated with a binary

6

phase-shift keying modulation. The USRP playing the AP part is connected to the

laptop, where the received signal is processed with GNU Radio.

The video stream acquisition is made with a Logitech C922 Pro Stream HD

webcam connected to the laptop.

An equivalent 5G setup would have the following correspondence with our ex-

perimental setup. The AP is the 5G base station, gNB, and the two UEs are the

5G User Devices (e.g., robots in industrial networks). The camera can be collocated

with the gNB, or the RAN can be connected through a communication interface to

the camera. The processing done in the GPU computer can be executed at the gNB

site or other entity of the RAN (e.g., the RAN-Location Management Function).

2.2 Framework

We model the user-matching task as a classification problem and use a machine

learning approach to solve it. The steps of the framework are visually illustrated in

Figure 2.2 and summarized as follows.

Feature Extraction

Classifier

Classifier Output

UE Association

Preprocessing

Data Collection

UE

Camera

BBOXs

CIR

AP

UE
Machine Learning

Trained Model

Figura 2.2: Illustration of framework steps linked with the experimental setup.

• Data collection: acquisition of data from the video system and the radio sys-

tem;

• Preprocessing: merging data from both sources and purge of spurious samples;

• Feature extraction: extraction of relevant features from preprocessed data;

• Training the ML model. In the following we will detail the option using Ran-

dom Forest and Neural network classifiers:

– Classifier: classification of input features;

7

– Classifier Output: labeling outcomes with corresponding levels of confi-

dence;

• UE Association: association of classifier output with corresponding user infor-

mation.

2.3 Data Collection

The first essential step for collecting video data is the recognition of radio devices

in the video feed. Recognizing an object in a video feed is a well-known computer-

vision task. We apply an existing ready-to-use framework to detect radio devices,

in our case, USRPs, in the video feed. We use and adapt an object-detection tool

available in the Detectron2 framework [26]. The Detectron2 is trained to recognize

the devices by fine-tuning a mask region-based convolutional neural network pre-

trained on the COCO dataset [27]. Figure 2.3 shows three examples of manually

annotated images containing USRPs with surrounding bounding boxes (BBOXs) to

fine-tune the model. The reader is referred to [26] for a complete description of the

Detectron2 framework and means for fine-tuning to custom data. The tool’s output

is an array with the BBOXs, which indicates the radio devices’ positions in the video

feed. In addition, Detectron2 provides levels of confidence of the detection of the

objects.

Figura 2.3: Examples of manually annotated images with bounding boxes around
USRPs, used for fine-tuning the model pre-trained on the COCO dataset.

The data we collect from the video feed are the arrays with the BBOXs, as

illustrated in Figure 2.4, indicating the position of the devices in the scene, along

with their levels of confidence of the detection.

The space analyzed by the camera is limited to the area where Detectron2 out-

puts have levels of confidence of 99% or higher, and the devices can move freely

8

within the area. We filter the outputs with lower levels of confidence. The high ac-

curacy is imposed to avoid spurious measurements in the testbed. We make sure that

our dataset only contains visual information of the desired objects (i.e., USRPs),

avoiding errors made by the vision system, e.g., classifying a box as an USRP.

[x1, y1, width, height]

[0, 0]

[x1, y1]

width

height Bounding Box:

x

y

Figura 2.4: The bounding box is composed of a point [x1, y1] related to the origin
in the superior-left corner of the image and the object’s height and width, in pixels.

The data collected from the radio system are the CIRs. The CIR-collecting

process is illustrated in Figure 2.5. The CIR is computed in GNU Radio with pilot-

based frames from the link between the transmitting device and the AP. The set of

CIRs computed during transmission is stored.

Stream of pilot-based frames

CIR

Figura 2.5: The process of computing the channel impulse responses comprises one
device transmitting to the access point, processing by the software-defined radio
part and computer. The GNU Radio processes the stream of pilot-based frames and
computes the CIRs; then, the CIRs are stored.

9

2.4 Preprocessing

During data collection, the information from the vision and radio systems are ac-

quired concurrently. Each source of data saves the collected measurements with a

unique timestamp. We create a unified representation using both vision and radio

sources by matching their timestamps. Figure 2.6 illustrates the unification process.

The frequency of data acquisition from both domains is different; the radio system

is much faster, which results in more CIRs being saved than BBOXs. We match

the data from both domains with identical timestamps, which can be viewed as a

sampling process to pick a CIR representing an ensemble of CIRs.

CIR

BBOX
[x, y, width, height]

timestamp

timestamp

t1

t1

[t1, CIR, BBOX]

Figura 2.6: The unified representation of data from vision and radio sources is made
by matching their unique timestamps, which the BBOXs and CIRs receive when
they are stored on the computer.

With the measurements unified, the collected measurements are preprocessed.

The CIR records with a maximum magnitude below a threshold δ are discarded.

We carry out the removal procedure because a small number of CIRs are wrongly

estimated by the GNU Radio due to synchronization issues in transmitted frames.

After this data-cleaning step, the remaining signals are fed to the feature extractor.

The BBOXs names are coded into numeric labels for the training phase. The

vision system outputs a vector with a BBOX for each of the two devices present

in the scene. When there are two devices in the scene, one gets a BBOX named

“BBOX 1” and the other the “BBOX 2”. Given that there are only two devices

in our testbed, the following situations will be treated: when device “BBOX 1” is

transmitting and the one named “BBOX 2” is not, the training label generated is

X = 1. The training label X = 2 is generated when the device named “BBOX 2” is

transmitting, and “BBOX 1” is not. One example of the situation labeled as X = 2

is illustrated in Figure 2.7. When no device is transmitting, the label generated is

X = 0, also called “NO TX”. Hence our system is going to be trained to classify

three different situations, designed with the label X ∈ X = {0, 1, 2}.

10

[x2, y2, width2, height2]
BBOX 2

[x1, y1, width1, height1]
BBOX 1

Label

X = 2

Figura 2.7: Example on how the labeling process is done. The device with the
“BBOX 2” is transmitting in this example as illustrated by the dashed yellow line;
therefore, the measurements collected will receive the label X = 2.

In this work, we do not consider the case of two users transmitting simultaneously

due to equipment limitations. However, the extension to more complex cases are

discussed in Chapter 4. Furthermore, for the practical experiments we carried out,

the devices were moved throughout the setup area, and the system periodically

reassessed the labels of the devices.

2.5 Feature Extraction

We identified the following features of the CIR, defined in (2.1), as being relevant

for our problem: the CIR magnitude, phase, and the value and sample index of the

CIR magnitude peak in the radio frame.

h(n) =
N−1∑

k=0

ake
jθkδ(n− τk), (2.1)

where k is integer, N is the number of multipath components, ak, τk, and θk are the

random amplitude, propagation delay, and phase of the kth multipath component,

respectively. δ is the Dirac delta function.

From the vision system, we are using the array with the BBOXs. Figure 2.8

shows the feature extraction steps in the framework used for training the model.

11

CIR

BBOX 1

BBOX 2

MAGNITUDE

PHASE

PEAK

VALUE

PEAK

POSITION

Classifier

Feature Extraction

Classifier Output

Preprocessing

Data Collection

Radio System

Vision System

and

Label

Computation of

Performance Metrics

For model

validation

Figura 2.8: Details of the framework used for training and validation phases.

2.6 Random Forest Classifier

Figure 2.9 shows the input for the classifier. The labels are used for supervised

model training. Afterward, the trained model can be used in the deployment phase,

as illustrated by the framework in Figure 2.10, with only the features to classify new

data. In this work, we train the models with random forest classifiers (RFCs) and

deep neural networks (DNNs). The proposed framework is agnostic to the classifier

used. We used RFCs and DNNs because both techniques are robust and give good

classification results.

CIR CIR-related BBOX 1 BBOX 2

Features Label

X

Figura 2.9: Input instance for the classifier, with the radio and video domain features
and annotated with a label used for training and validation. One CIR and its related
features (peak position and value), because we consider the case where only one
USRP is transmitting in the scene.

The RFC is an ensemble learning algorithm for classification that uses decision

trees [28], [29]. The RFC constructs a large number of decision trees at training

time and outputs the class that is the mode of the output from the individual trees.

We train the model by combining an exhaustive grid search over RFC parame-

ter values. The search space is confined to 20–50 for the number of trees with a

maximum depth between 30 and 80. The training uses a 10-fold cross-validation

procedure. The training dataset is split into 10 smaller sets. The model is trained

12

using 9 of the folds and validated on the remaining part of the data. To evaluate

the performance of the trained model, in each iteration we compute two different

metrics: the logarithmic loss and the F1-score. We choose the best model given the

performance metrics. A summary of the parameters used for training the RFCs are

displayed in Table 2.1.

Tabela 2.1: Summary of parameters used for training the Random Forest Classifiers.

Parameter Value
Number of trees 20–50
Max tree depth 30–80
Cross-validation 10-fold
Metrics during training logarithmic loss and F1-score

The best-trained model for a given dataset is used for testing, where we compute

the confusion matrix, precision, recall, F1-score, and classification accuracy.

CIR

BBOX 1

BBOX 2

MAGNITUDE

PHASE

PEAK

VALUE

PEAK

POSITION

Classifier

User Equipment

Association

Feature Extraction

Trained

Classifier Output

Preprocessing

Data Collection

Radio System

Vision System

and

Actual output in implementation

Figura 2.10: Details of the framework used for deployment.

2.7 Classifier Output and UE Association

The classifier outputs are the predicted label number indicating which user is trans-

mitting in the scene and the level of confidence of the output. During the training

and validation procedures, the classifier output is used to compute the performance

metrics, as illustrated in Figure 2.8, using dotted lines.

For deployment, the framework we use is shown in Figure 2.10. The classifier

output is used to make the association with the device. When two possible users are

in the scene, if the predicted label is X = 1, the device associated with the “BBOX

1” is the one transmitting in the scene, analogously for when the label is X = 2.

When the predicted labels are X = 0, no user is transmitting to the AP in the

13

scene. In the scenario with only one user, the possible outcomes are: the predicted

label is X = 1 when the user is transmitting, or X = 0 when no one is transmitting.

With this step done, we have matched the information from both radio and video

systems. In summary, the vision system detects two devices and can tell which one

is transmitting, successfully matching visual and radio information.

2.8 Deep Neural Network Classifier

The neural network that we use is a feedforward neural network or multilayer percep-

tron (MLP). An MLP is composed of one input layer (pass-through), one or more

hidden layers (with an activation function), and one final layer called the output

layer. This structure is illustrated in Figure 2.11. Every layer except the output

layer includes a bias neuron and is fully connected to the next layer. When a neural

network has two or more hidden layers, it is called a DNN.

An MLP is often used for classification, as in this case of this work. When the

output classes are exclusive (e.g., classes 0 through 9 for digit image classification),

the output layer is modified by replacing the individual activation functions with

a shared softmax function, as depicted in Figure 2.11. The output of each neuron

corresponds to the estimated probability of the corresponding class.

∑ ∑ ∑

∑ ∑ ∑ ∑1

1

output Layer

Hidden Layer

Input Layer

I1 I2

O3O2O1

Softmax

Softmax

(e.g., ReLU)

Bias Neuron

Figura 2.11: Multilayer perceptron illustration. This multilayer perceptron includes
ReLU as an activation function and softmax in the output layer for classification.

The architecture we use in this work is detailed in Table 2.2. The DNN consists

of an input layer, followed by three hidden layers and an output layer. We use three

14

hidden layers, each with ReLu as an activation function, followed by a dropout

layer with a rate of 0.5 to hinder overfitting. The output layer uses softmax as an

activation function.

The ReLU function can be defined as

ReLU(z) = max(0, z).

The function ReLU(z) is continuous but not differentiable at z = 0, where the

slope changes abruptly, making the Gradient Descent bounce around [30]. However,

in practice, it works very well and has the advantage of being fast to compute. The

ReLU(z) function is depicted in Figure 2.12.

ReLU(z)

z

1

10

Figura 2.12: The ReLU function.

As aforementioned, we use a dropout after the first two hidden layers. The

dropout is a regularization technique for DNNs; it was proposed by [31] and further

detailed in [32]. The dropout algorithm is as follows. At every training step, every

neuron has a probability p of being (temporarily) dropped out. The act of “dropping

out” the neuron means the neural network will ignore it during this training step,

but it may be active during the next step [33]. The parameter p is called dropout

rate; the values used in this work are detailed in Table 2.2.

During training, the labels are encoded using one-hot encoding to transform

categorical data into a non-ordinal numerical representation. This encoding is done

to prevent the neural network of assuming that two nearby values are more similar

than two distant values. To fix this issue, we create one binary attribute per category

in the one-hot encoding. For further details on the typical implementation of neural

networks, the reader is referred to [33] and [34].

15

Tabela 2.2: Neural Network Architecture, with Specified Parameters for Each Layer
and Number of Trainable Parameters.

Layer Layer Type Parameters # Parameters
Layer 1 Dense + ReLu Units: 256 15616
Layer 2 Dropout Dropout Rate: 0.5 0
Layer 3 Dense + ReLu Units: 128 32896
Layer 3 Dropout Dropout Rate: 0.5 0
Layer 4 Dense + ReLu Units: 64 8256
Layer 5 Dense + Softmax Units: 3 195

2.9 Conclusions

In this chapter, we presented the proposed framework. A setup for a testbed was

described, which allowed us to illustrate the identity-matching procedure. Each

step of the framework was detailed, from data collection to training and deployment

procedures. Finally, two options for classification methods were presented, Random

Forest and Neural Networks. However, the proposed framework is agnostic to the

classifier used.

16

Capítulo 3

Experiments and Results

In this chapter, we present practical experiments and discuss their results. We

introduce the setups in which the experiments were carried out, the metrics used

to evaluate the training and validation performances, the validation results, and a

discussion about the results. We conclude the chapter with examples of deployments

using the proposed framework.

We carried out experiments to evaluate the performance of the proposed fra-

mework in matching the correct users to their identities. Four experimental confi-

gurations with different dynamics were used. Hence each set of measurements has

distinct characteristics. The different characteristics allowed us to test the capacity

of our method to operate in different environments.

3.1 Experimental Setups

Setup 1, illustrated in Figure 3.1, was located in an indoor environment—an 18 m2

furnished room and only one person inside, to avoid fluctuations in the CIR me-

asurements. For the measurement campaign, the equipment was put in place, as

described in Chapter 2, Section 2.1. We defined an area of 2 m2 in front of the

camera, where the user devices could move freely. The object-detection tool could

survey the whole space and detect the devices with high accuracy to avoid spurious

measurements. We collected data for training and validation separately. The video

and radio information was stored in the laptop’s hard drive. For the measurements

in this setup, there were 233,960 instances collected. They were divided into 176,874

for training and 57,086 for validation. The number of instances acquired during the

measurement campaign is detailed in Table 3.1.

17

Figura 3.1: Illustration of Setup 1 location. This figure is a not-to-scale simpli-
fied depiction of the place, to illustrate to the reader where the experiments were
conducted.

Tabela 3.1: Number of Instances in the Training and Validation Datasets per Ex-
periment.

Number of Instances
Setup Training Validation Total

Setup 1 176,874 57,086 233,960
Setup 2 242,975 154,098 397,073
Setup 3 380,527 105,187 485,714
Setup 4 38,145 16,013 54,158

Setup 2 was arranged in the corridor of office space, as depicted in Figure 3.2.

The environment has a different geometry than the other setup places. There are

more reflections of the transmitted signal, which affects the CIR measurements.

The setup place also tests the vision system’s ability to recognize the USRPs in a

different environment. The measurement campaign followed the same procedures as

in Setup 1. In this case, a total of 397,073 instances were collected.

18

Figura 3.2: Illustration of Setup 2 location. This figure is a not-to-scale simpli-
fied depiction of the place, to illustrate to the reader where the experiments were
conducted.

Setup 3 was placed inside a laboratory with electronic equipment, illustrated

in Figure 3.3. We followed the same steps for the measurement campaigns as the

previous setups. The level of noise in the measurements was higher than in the

previous experimental configurations. For this reason, the measurement campaign

collected more data in this setup. Table 3.1 shows we acquired two times more

instances in Setup 3 when compared to Setup 1.

Figura 3.3: Illustration of Setup 3 premises. This figure is a not-to-scale simpli-
fied depiction of the place, to illustrate to the reader where the experiments were
conducted.

19

Data collected for Setup 4 test our solution in an outdoor scenario. Setup 4, as

shown in Figure 3.4, was situated outside the building. The outdoors measurements

affected the CIRs estimations, bringing different characteristics to the datasets ac-

quired in this place. We followed the same steps for the measurement campaign as

in the previous setups. For Setup 4, a total of 54,158 instances were collected. They

were divided into 38,145 for training and 16,013 for validation.

Figura 3.4: Setup for experiment 4 carried out in an outdoor area.

For each setup measurements, we preprocessed the training and validation data

and extracted the engineered features, as detailed in Chapter 2. We carried out

experiments using RFCs and DNN classifiers. The DNN classifiers were trained

during 10 epochs. The learning rate used was 0.001. The architecture is presented

in Table 2.2. The layers were initialized using the Glorot uniform initializer and no

bias. Training for all the experiments was carried out in a Dell G3 3590 Laptop,

with an Intel i7-9750H, 8 GB of RAM, and an NVIDIA GTX 1660 Ti Max-Q 6 GB.

The training time is an average of running the same procedure 10 times.

3.2 Performance Metrics

We evaluated the trained models’ performance in the classification task on the va-

lidation dataset. We plotted the confusion matrix. For easier comprehension, the

labels defined in Chapter 2, Section 2.4, are called “NO TX”, “BBOX 1” and “BBOX

2” for X = 0, X = 1 and X = 2, respectively. Furthermore, we compute the

accuracy, average precision, recall, and F1-score [35]. Accuracy is the percentage

20

of the predicted outputs that exactly matched the corresponding set of true labels.

Moreover, precision is computed as tp/(tp + fp), where tp is the number of true

positives and fp the number of false positives. The precision discloses the ability of

the classifier not to label as positive a sample that is negative. Recall tells us the abi-

lity of the classifier to find all the positive samples. The recall score is computed as

tp/(tp+fn), where fn is the number of false negatives. Furthermore, F1-score is the

harmonic mean of precision and recall. It can be computed as tp/(tp+0.5[fp+fn]).

The highest possible value of the F1-score is 1, indicating perfect precision and re-

call, and the lowest possible value is 0 if either the precision or the recall is zero.

In this work, the F1-score is obtained using the weighted-averaging approach, i.e.,

we considered the class frequency for each individual label when computing the F1-

score, because we have an unbalanced training dataset with fewer instances with

labels X = 0.

3.3 Results and Discussion

The first experiment was the one with Setup 1 using a random forest classifier.

Training time took 12.21 minutes. The validation results are the following. The

accuracy was 94.09%, precision 0.96, recall 0.96, and F1-score 0.96. The confusion

matrix is displayed in Figure 3.6. From the confusion matrix, we can see that 11.7%

of the instances from “BBOX 1” were mistakenly classified as “BOX 2”. The classifier

assigns a wrong label to the validation dataset instance. This misclassification hap-

pens because the model cannot differentiate the two users due to the devices’ close

positions in the video feed, which results in similar CIRs. This type of problem can

be exemplified in Figure 3.5, where we have CIR 1 and CIR 2 taken directly from

two measurement instances that the classifier for Setup 1 wrongly classified. As the

input for the classifier are only the BBOX and CIR, we have these occurrences which

are hard for the algorithm to distinguish when very CIRs are associated with close

BBOX. This type of problem occurs throughout the results in this work, leading to

lower accuracy. A solution can can achieved using other sensors that would permit

differentiate between two users in this situation.

21

Figura 3.5: Example of two CIRs, CIR 1 and 2, where .

Moreover, all the dataset instances with no device transmitting, labeled as “NO

TX”, were correctly classified. When no user is transmitting, the dataset instances

have null values in their fields, making it easy for the classifier to label them correctly.

The Setup 1 with neural network classifier took 03.50 minutes to train. Figure 3.7

displays the confusion matrix. The metrics computed show 99.91% accuracy, the

precision of 0.99, recall of 0.99, and F1-score of 0.99. Therefore DNN was not as

prone to classification errors as RFC.

Figura 3.6: Confusion Matrix for Setup 1 data trained with Random Forest Classi-
fier.

22

Figura 3.7: Confusion Matrix for Setup 1 data trained with Neural Network Classi-
fier.

The experiment with Setup 2 using the RFC took 14.30 minutes to train. The

results were: accuracy 99.77%, precision 0.99, recall 0.99, and F1-score 0.99. An

equivalent analysis can be seen in the confusion matrix in Figure 3.8. The confusion

matrix shows that approximately 0.04% (29 cases) of the instances from “BBOX 1”

were misclassified as “BBOX 2”. For the instances labeled was “BBOX 2”, only 0.48%

of the measurements instances, the system incorrectly classified them as “BBOX 1”.

For Setup 2 with the neural network classifier, the training time was 04.86 mi-

nutes. The performance metrics were: accuracy 99.98%, precision 0.99, recall 0.99,

and F1-score 0.99. Figure 3.9 shows the confusion matrix. In this case, only 19

instances were incorrectly classified, which is negligible, result similar to one of the

forest.

23

Figura 3.8: Confusion Matrix for Setup 2 data trained with Random Forest Classi-
fier.

Figura 3.9: Confusion Matrix for Setup 2 data trained with Neural Network Classi-
fier.

For the experiment on Setup 3, using the RFC training time was 16.89 minutes.

The training duration was longer than to the other experiments because the training

dataset was the largest, as shown in Table 3.1. For the validation dataset, the

metrics are the following: accuracy 78.35%, precision 0.84, recall 0.84, and F1-score

0.84. The accuracy score is lower than the previous ones. However, the confusion

matrix in Figure 3.10 shows that the system continues to perform well, depending

on the application requirements. It gets 100% correct outputs when no device is

transmitting in the scene. The instances with “BOX 2” were correctly classified

24

with an accuracy of 82%.

In the experiment in Setup 3 using a neural network, the training was 06.15

minutes long. The confusion matrix for validation is displayed in Figure 3.11. The

neural network classifier was able to handle the measurements in this setup better

than the random forest due to the network’s architecture capacity of generalization.

The accuracy of this experiment was 99.76%. Precision, recall, and F1-score were

all 0.98. The high score values show the robustness of the neural network with the

architecture presented in Table 2.2.

Figura 3.10: Confusion Matrix for Setup 3 data trained with Random Forest Clas-
sifier.

25

Figura 3.11: Confusion Matrix for Setup 3 data trained with Neural Network Clas-
sifier.

Moreover, an experiment using Setup 4 was carried out using RFC. The training

time of 06.10 minutes. The measurement campaign for Setup 4 was shorter, leading

to smaller training and validation datasets. However, the system achieved excellent

results, as the metrics show. The accuracy was 99.66%. Precision was 0.99, the

same results for recall and F1-score. The confusion matrix is shown in Figure 3.12.

The experiment with Setup 4 measurements using a neural network classifier had

a training time of 02.01 minutes. The confusion matrix is in Figure 3.13. Accuracy

99.99%, precision, recall, and F1-score were 0.99.

Figura 3.12: Confusion Matrix for Setup 4 data trained with Random Forest Clas-
sifier.

26

Figura 3.13: Confusion Matrix for Setup 4 data trained with Neural Network Clas-
sifier.

The training time for the experiments using neural network classifiers was, on

average, three times lower than the ones with random forest classifiers. The longer

training duration occurs because the random forest included an exhaustive grid

search for parameters and cross-validation during training. The neural network

classifiers were training during ten epochs, and no hyper-parameter search was used.

Hence the shorter training time for the classifiers using neural networks.

The performance metrics show that experiments with the random forest clas-

sifiers had F1-scores equal to or higher than 0.84. The precision and recall also

achieve similar values. These results still give us an accurate and robust classifier; it

correctly classifies the instances, even in situations that are difficult to distinguish

the transmitting device. For example, when both devices are in positions where the

CIRs are similar due to the transmission characteristics, as exemplified in Figure 3.5.

The lower F1-score of 0.84 is from the experiment using Setup 3 and RFC. The

reason for lower performance metrics, when compared to the other experiments,

can be found in the search space used for hyperparameter tuning. The numbers

of trees and tree depth presented in Chapter 2, Section 2.6, did not contain the

hyper-parameter values needed for this experiment to succeed. A better solution

can be found with a greater number of trees in the ensemble. With 227 trees and

a tree depth of 65, the F1-scores is 0.97. However, a larger number of trees in the

ensemble increases the time necessary for the model to make a classification in the

deployment phase. In this work, we maintained the same search space in all the

experiments to make the comparisons fair.

In a practical case, the search space for the RFC can be changed until the best

27

solution is found. The training duration is in the order of minutes. Hence it is

feasible to train multiple times for the same set of measurements. After the training

phase, during the deployment phase, the model gives an output in a negligible

amount of time. In this sense, the cost of retraining the dataset is not high, even

for the random forest classifiers.

The experiments with the neural network classifiers achieved F1-score of 0.99 in

every setup. Only a minor part of the dataset instances were incorrectly classified.

With a small architecture of the neural networks, as displayed in Table 2.2, the

models can train fast and still excel in the classification task, as shown by the

performance metrics gathered in Table 3.2.

Tabela 3.2: Performance Validation Results of the Experiments.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 94.09 0.96 0.96 0.96 12.21
Setup 1 - NN 99.91 0.99 0.99 0.99 03.50
Setup 2 - RFC 99.77 0.99 0.99 0.99 14.30
Setup 2 - NN 99.98 0.99 0.99 0.99 04.86
Setup 3 - RFC 78.35 0.84 0.84 0.84 16.89
Setup 3 - NN 99.76 0.98 0.98 0.98 06.15
Setup 4 - RFC 99.66 0.99 0.99 0.99 06.10
Setup 4 - NN 99.99 0.99 0.99 0.99 02.01

Overall, the high accuracy and F1-score in the experiments show the capability

of the proposed framework to perform well across different environments. Using

the testbed described in Chapter 2, Section 2.1, we tested the proposed framework

using datasets with different sizes, collected in different types of places. The results

confirm that our solution is capable of correctly match the user identity in a video

feed with its corresponding radio signal.

3.4 Prototype Testbed Deployment

In order to test the proposed framework, we deployed our trained classifiers on

the previously described setups. Figure 3.14 and Figure 3.15 show examples of

the prototype deployment on Setups 2 and 3, respectively. The images display

the proposed framework for deployment from Figure 2.10 in action. The vision

system captures the BBOXs, and the radio system computes the CIR (shown in the

examples), both inputs for the trained classifiers. The “User Equipment Association”

from Figure 2.10 becomes visual in the form of a BBOX around the transmitting

device.

28

Figura 3.14: First example of testing the proposed framework on Setup 2. On the
left-hand side of the image, there is a window with the CIR. On the right-hand side,
two devices are in the scene. A yellow BBOX indicates which device is transmitting
to the AP. In the superior-left of the BBOX, the classification level of confidence is
displayed; in this case, 100%.

Figura 3.15: Second example of testing the proposed framework on Setup 3. On
the inferior right-hand side of the image, there is a window with the CIR. On the
left-hand side, two devices are in the scene. A purple BBOX indicates which device
is transmitting to the AP. In the superior-left of the BBOX, the classification level
of confidence is 100%.

The prototype deployments were successful. Our solution was capable of correc-

tly identifying the device transmitting to the AP; hence, the prototype deployments

were consistent with the validation results. The system was capable of running each

part of the framework without any problems. The result was a real-time flow, where

29

the system was capable of tracking the devices across the covered area.

3.5 Conclusions

In this chapter, we presented practical experiments and discussed their results. The

validation results showed very high classification accuracy values for each of the

different setups. Section 3.4 showed two examples of prototype deployments using

the trained models. The prototype deployments were consistent with the validation

results, showing that our solution was capable of correctly matching the visual and

radio data.

30

Capítulo 4

Beyond the Testbed

In this chapter, we discuss more complex scenarios using our proposed framework.

The experimental testbed described in Chapter 2, Section 2.1, can then be further

extended. It is possible to use our proposed framework to include more devices in

the scene. Although not strictly necessary, it is possible to use more cameras to

capture different angles of the environment. The framework is flexible to adapt and

work in more realistic scenarios. This chapter presents three scenarios that cover

most of the possible practical situations. We present simulation results for each

scenario using extended versions of the datasets from Chapter 3.

4.1 Scenario 1

One possible example is the following. We have two different cameras, C1 and C2,

to detect four possible transmitting-devices simultaneously. We assume two of the

devices are transmitting at the same time, one connected to AP1 and the other one

to AP2. This scenario is illustrated in Figure 4.1.

In order to use the proposed framework in this scenario, we divide it into two

separate systems. One system, S1, is composed of the camera C1 and access point

AP1. The other system, S2, is composed of the camera C2 and AP2. Both S1 and S2

individually resemble the testbed presented in Chapter 2, Section 2.1. The difference

lies in the classifier input. The S1 and S2 can have the input for their classifiers as

the one depicted in Figure 4.2. S1 and S2 classifiers would be trained to output X,

where X ∈ X = {0, 1, 2, 3, 4}. In this case, each system operates independently, i.e.,

S1 and S2 can be trained and deployed as independent systems.

31

C1

C2

BBOX 1 - C1

BBOX 4 - C2

AP1

AP2

Figura 4.1: First example of a more complex scenario. There are two cameras, C1

and C2, two access points, AP1 and AP2, and four devices in this scene. We indicate
the transmitting-device connection to the access point with the yellow-dashed line.
The BBOXs related to each camera are shown; we omit some BBOXs’ names for a
more straightforward illustration, but they can be easily inferred.

CIR CIR-related BBOX 1

Features Label

XBBOX 3 BBOX 4BBOX 2

Figura 4.2: Example of input for the classifier when there are four different devices
in the scene and information from one camera.

There is also the possibility of S1 and S2 sharing information between them. For

example, they can exchange visual data. In this case, the input for their classifiers

would be as illustrated in Figure 4.3. The number of features increases because S1

and S2 are sharing the BBOXs they captured. However, each BBOX is an array with

four floating-point numbers, which does not significantly increase classifier’s compu-

tational complexity. Furthermore, the case of S1 and S2 sharing CIR is analogous

to sharing BBOXs.

32

CIR CIR-related BBOX 1 - C1

Features Label

X. . . BBOX 4 - C2BBOX 1 - C2

Figura 4.3: Example of input for the classifier when there are four different devices
in the scene and information from two cameras.

Furthermore, two situations can occur in any scenario. First, if the classifier is

trained with a maximum of four devices, but during one period, only three or fewer

devices are present in the scene. All vacant BBOXs are filled with a null-valued

BBOX. Second situation: the classifier is the same as in the first case, but five (or

more) devices are present in the scene. As the classifier is not trained for this case,

the result is not reliable. The transmitting device might not have its BBOX in the

classifier input. In this case, the system has to train the classifier again to adjust to

the scene’s maximum number of simultaneous devices.

4.2 Scenario 2

Another example of a more complex scenario using the proposed framework is illus-

trated in Figure 4.4. In this scenario, we have a camera, C1, an access point, AP1,

and four devices. We assume that three devices are transmitting to AP1.

C1

BBOX 1

BBOX 4

AP1

BBOX 3

BBOX 2

CIR2

CIR1

CIR3

Figura 4.4: The second example of more complex scenarios. There is one camera, C1,
one access point, AP1, and four devices in this scene. We indicate the transmitting-
device connection to the access point with the yellow-dashed line; there are three of
them. The BBOXs names are also shown.

33

To use the proposed framework in this scenario, we can train our system using the

same input to the classifier, as presented in Figure 4.2. The training is carried out

with one device transmitting throughout the area covered by camera C1 to capture

the different BBOXs and CIRs.

For the deployment, we have to use three instances of trained classifiers simulta-

neously. The CIRs for each transmitting device goes to a different classifier instance,

as illustrated in Figure 4.5.

CIR1 CIR1-related BBOX 1

Features

BBOX 3 BBOX 4BBOX 2

CIR2 CIR2-related BBOX 1 BBOX 3 BBOX 4BBOX 2

CIR3 CIR3-related BBOX 1 BBOX 3 BBOX 4BBOX 2

Figura 4.5: Example of input for three classifier instances when there are four dif-
ferent devices in the scene and information from one camera.

For the scene illustrated in Figure 4.4, the results expected from the classifiers

are the following. From top to bottom: the device with CIR1 is the one with the

BBOX 2; hence expected result is X = 2. The classifier with CIR2 yields X = 3

and the one with the CIR3, X = 1.

The need to use three classifier instances is not a problem. The notebook res-

ponsible for computing the results for this work (see Chapter 3, Section 3.1) can run

one instance of the classifier in a negligible amount of time. This speed implicates in

a real-time experience. The system is capable of tracking the devices as they move

throughout the scene. In this sense, running three classifier instances in a dedicated

machine would not be a problem in terms of computational complexity.

4.3 Scenario 3

In this final case proposed a scenario that mixes Scenario 1 from Section 4.1 and

Scenario 2 from Section 4.2. In the scenario depicted in Figure 4.6, we have two

cameras, C1 and C2, two access points, AP1 and AP2, and four devices. We are

assuming that two devices are connected to each access point in this scenario.

34

C1

C2

AP1

AP2

Figura 4.6: The third example of more complex scenarios. In this scene, there are two
cameras, C1 and C2, two access points, AP1 and AP2, and four devices. We indicate
the transmitting-device connection to the access point with the yellow-dashed line;
there are four of them. We omit the BBOXs names for a clearer illustration and
because their definition is not necessary to this example.

Using the same division as in Scenario 1 from Section 4.1, we have a system

S1, composed by the camera C1 and access point AP1 and S2, composed by C2 and

AP2. Let us assume that we are using the model where we share BBOXs information

between S1 and S2. In this case, we can train our systems using the same classifier

input as the one depicted in Figure 4.3.

For the deployment, we have to use the same strategy devised in Section 4.2.

Both systems, S1 and S2, have two connected users; hence, we have to use two

classifier instances to match their visual and radio information. The input for each

classifier instance is illustrated in Figure 4.7.

CIR1 CIR1-related BBOX 1 - C1

Features

. . . BBOX 4 - C2BBOX 1 - C2

CIR2 CIR2-related BBOX 1 - C1
. . . BBOX 4 - C2BBOX 1 - C2

Figura 4.7: Example of input for two classifier instances when there are four different
devices in the scene and information from two cameras.

35

4.4 Simulation Results

In order to simulate the scenarios presented in this chapter, the datasets from the

practical experiments presented in Chapter 3 are extended. In this section, we

detail the procedures for modifying the datasets for each scenario, to ensure that the

extended versions represent the setups. For each scenario, we present the simulation

results using the extended version of the datasets. Confusion matrices for all the

simulations in this chapter are presented in the Appendix A, we omit them here for

conciseness.

4.4.1 Scenario 1

To emulate the situation described in Figure 4.1, we can simulate the systems S1 and

S2 separately when they do not share visual information between them. For simula-

ting S1 and S2 we used the classifier input as illustrated in Figure 4.2. To simulate

the situation where they share visual information, a system S1,2 was considered with

the classifier input exemplified in Figure 4.3.

S1 and S2 individually

To simulate the scenario from Figure 4.1, we needed to extend datasets presented

in Chapter 3. For this scenario, we carried out the following procedure.

1. Select one measurement instance of the original dataset.

2. From a different measurement instance from the same dataset, randomly select

two BBOXs.

3. Check if the selected BBOXs do not overlap with the already existing BBOXs.

If they overlap, repeat ‘2.’. Proceed, otherwise.

4. Save the modified entry into the extended dataset. Go to ‘1.’ and repeat all

the steps until you have selected all the instances from the original dataset.

We assumed that S1 with the camera C1 had the same initial coordinate [0, 0]

from Figure 2.4 matching the original dataset. For S2, we moved the initial coor-

dinate to [200, 200], hence C2 was be positioned below and to right in relation to

C1, similarly as in Scenario 1. Finally, we created extended versions of our original

datasets to simulate Scenario 1 and trained and validate this new data. We followed

exactly the same steps for training and validation as described in Chapters 2 and 3.

Table 4.1 and 4.2 show the results considering only S1 and S2, respectively.

36

Tabela 4.1: Performance Validation Results of the Simulations for S1 in Scenario 1.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 93.93 0.94 0.94 0.94 12.27
Setup 1 - NN 99.90 0.99 0.99 0.99 03.53
Setup 2 - RFC 99.76 0.99 0.99 0.99 14.38
Setup 2 - NN 99.96 0.99 0.99 0.99 04.70
Setup 3 - RFC 78.19 0.79 0.78 0.78 16.87
Setup 3 - NN 99.73 0.99 0.99 0.99 06.16
Setup 4 - RFC 99.05 0.99 0.99 0.99 06.23
Setup 4 - NN 99.80 0.99 0.99 0.99 02.12

Tabela 4.2: Performance Validation Results of the Simulations for S2 in Scenario 1.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 93.91 0.94 0.94 0.94 12.27
Setup 1 - NN 99.89 0.99 0.99 0.99 03.54
Setup 2 - RFC 99.77 0.99 0.99 0.99 14.36
Setup 2 - NN 99.95 0.99 0.99 0.99 04.82
Setup 3 - RFC 78.49 0.79 0.79 0.79 15.91
Setup 3 - NN 99.74 0.99 0.99 0.99 06.09
Setup 4 - RFC 99.05 0.99 0.99 0.99 06.23
Setup 4 - NN 99.91 0.99 0.99 0.99 02.42

The results are very similar to the practical simulations presented in Table 3.2.

It is important to note that even adding two more possible users, the training time

did not increase, due to the type of features used.

37

S1 and S2 sharing BBOXs

We also considered the case where a unique classifier is used, from Figure 4.3, and

we called the resulting system S1,2. Table 4.3 shows the results from the simulations.

Tabela 4.3: Performance Validation Results of the Simulations for S1,2 in Scenario
1.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 93.93 0.94 0.94 0.94 12.39
Setup 1 - NN 99.93 0.99 0.99 0.99 03.58
Setup 2 - RFC 99.81 0.99 0.99 0.99 14.45
Setup 2 - NN 99.95 0.99 0.99 0.99 04.75
Setup 3 - RFC 79.37 0.79 0.79 0.79 16.37
Setup 3 - NN 99.76 0.99 0.99 0.99 06.19
Setup 4 - RFC 99.24 0.99 0.99 0.99 06.46
Setup 4 - NN 99.88 0.99 0.99 0.99 02.38

The shared information here did not increase the performance of our classifiers.

The BBOXs added were only a modified version of the already existing data, this

did not help the system because there was new information. However, this idea of

exchanging data can be useful if the systems collected different information.

4.4.2 Scenario 2

To simulate the second scenario, presented in Figure 4.4, the process was similar to

the Scenario 1. The process was the following.

1. Select one measurement instance of the original dataset.

2. From two different measurement instances from the same dataset, randomly

select two CIRs and their respective BBOXs.

3. Check if the selected BBOXs do not overlap with the already existing BBOXs.

If they overlap, repeat ‘2.’. Proceed, otherwise.

4. Create and save the modified entry into the three different extended datasets.

Go to ‘1.’ and repeat all the steps until you have selected all the instance from

the original dataset.

We considered three different classifier instances for this simulation, one for each

CIR, so the results are presented for CIR1, CIR2, and CIR3, separately. One caveat

is that we did not consider the effects of acquiring three CIRs at the same time,

since we extended the already existing datasets.

38

Table 4.4, 4.5, and 4.6 show the results considering only CIR1, CIR2, and CIR3,

respectively.

Tabela 4.4: Performance Validation Results of the Simulations for CIR1 in Scenario
2.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 94.01 0.94 0.94 0.94 12.33
Setup 1 - NN 99.89 0.99 0.99 0.99 03.38
Setup 2 - RFC 99.72 0.99 0.99 0.99 13.89
Setup 2 - NN 99.95 0.99 0.99 0.99 03.99
Setup 3 - RFC 78.15 0.79 0.78 0.78 15.67
Setup 3 - NN 99.76 0.99 0.99 0.99 05.81
Setup 4 - RFC 99.59 0.99 0.99 0.99 05.33
Setup 4 - NN 99.78 0.99 0.99 0.99 02.01

Tabela 4.5: Performance Validation Results of the Simulations for CIR2 in Scenario
2.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 94.00 0.94 0.94 0.94 12.56
Setup 1 - NN 99.91 0.99 0.99 0.99 02.91
Setup 2 - RFC 99.75 0.99 0.99 0.99 12.70
Setup 2 - NN 99.96 0.99 0.99 0.99 04.24
Setup 3 - RFC 78.51 0.80 0.78 0.78 16.12
Setup 3 - NN 99.75 0.99 0.99 0.99 06.10
Setup 4 - RFC 99.70 0.99 0.99 0.99 06.46
Setup 4 - NN 99.85 0.99 0.99 0.99 02.03

Tabela 4.6: Performance Validation Results of the Simulations for CIR3 in Scenario
2.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 94.22 0.94 0.94 0.94 12.97
Setup 1 - NN 99.91 0.99 0.99 0.99 03.11
Setup 2 - RFC 99.75 0.99 0.99 0.99 14.02
Setup 2 - NN 99.96 0.99 0.99 0.99 04.26
Setup 3 - RFC 77.99 0.78 0.78 0.78 16.11
Setup 3 - NN 99.74 0.99 0.99 0.99 06.16
Setup 4 - RFC 99.62 0.99 0.99 0.99 06.30
Setup 4 - NN 99.83 0.99 0.99 0.99 02.03

39

4.4.3 Scenario 3

The simulations for the Scenario 3 were carried out as illustrated in Figure 4.7.

We carried out considering only CIR1 and CIR2, the transmitters connected to S1,

formed by AP1 and C1. However, we also used the BBOXs captured by C2.

Tables 4.7 and 4.8 show the results considering only CIR1, CIR2, and CIR3,

respectively.

Tabela 4.7: Performance Validation Results of the Simulations for CIR1 from S1 in
Scenario 3.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 94.05 0.94 0.94 0.94 12.71
Setup 1 - NN 99.91 0.99 0.99 0.99 03.88
Setup 2 - RFC 99.75 0.99 0.99 0.99 14.07
Setup 2 - NN 99.95 0.99 0.99 0.99 04.25
Setup 3 - RFC 78.48 0.79 0.78 0.78 16.19
Setup 3 - NN 99.72 0.99 0.99 0.99 06.14
Setup 4 - RFC 99.08 0.99 0.99 0.99 06.01
Setup 4 - NN 99.83 0.99 0.99 0.99 02.44

Tabela 4.8: Performance Validation Results of the Simulations for CIR2 from S1 in
Scenario 3.

Validation Results Training Time
Setup - Classifier Accuracy (%) Precision Recall F1-score Duration (min)
Setup 1 - RFC 93.82 0.94 0.94 0.94 12.26
Setup 1 - NN 99.89 0.99 0.99 0.99 03.51
Setup 2 - RFC 99.77 0.99 0.99 0.99 14.32
Setup 2 - NN 99.96 0.99 0.99 0.99 04.20
Setup 3 - RFC 78.38 0.80 0.78 0.78 16.48
Setup 3 - NN 99.74 0.99 0.99 0.99 06.14
Setup 4 - RFC 99.05 0.99 0.99 0.99 06.28
Setup 4 - NN 99.84 0.99 0.99 0.99 02.23

4.5 Conclusions

In this chapter, we presented more complex scenarios using our proposed framework.

Although the testbed presented in Chapter 2, Section 2.1, looks limited, we showed

that it is possible to easily extend it to more complex scenarios and use the proposed

framework. We presented three scenarios that covered most of the possible situations

and showed how to use our framework to tackle the identity-matching problem.

40

Using extended versions of the datasets presented in Chapter 3, we were able

to simulate the proposed scenarios. One caveat is that the simulations are limited

because our extended datasets do not consider the iteration between users. The

results for accuracy, precision, recall, and F1-score were very similar to the experi-

ments using the original datasets. However, we could conclude that it is possible to

use our framework in these more complex cases, even with more users. Because the

features are an array of numbers, even with more cameras and devices, the num-

ber of training/deployment data does not increase significantly. We have a scalable

framework suitable for more complex scenarios.

41

Capítulo 5

Conclusions & Future Work

5.1 Conclusions

In this dissertation, we described the procedures for integrating a computer vision

system with a radio access network through artificial intelligence. This work show-

cased the identification of the radio transmitter between devices existing in a video

feed.

In Chapter 2, we presented the proposed framework for user-identity matching.

The setup for a testbed was described, which allowed us to illustrate the identity-

matching procedure. Each step of the framework was detailed, from data collection

to training and deployment procedures. Our methodology used the bounding boxes

of the detected devices in the video feed and matched it with the channel impulse

response of the transmitter using a trained classifier.

To test our proposed method, in Chapter 3, we presented practical experiments.

We carried out experiments in four location setups with different spatial dynamics.

Each setup generated a distinct dataset to test the framework. For each setup,

we trained the model using both random forest and neural network classifiers. We

presented the validation results for the training of each experiment in terms of

accuracy, precision, recall, F1-score, and confusion matrix. Overall, the validation

results showed high score values across the experiments. We also presented two

cases of deployment of the testbed. The deployment’s success was consistent with

the validation results, which showed that our method was capable of accomplishing

the identity-matching objective in real-time.

We went beyond the testbed in Chapter 4. The testbed presented in Chapter 2

was limited, with only two users, but we showed in Chapter 4 that the proposed

framework is capable of dealing with complex scenarios. Three scenarios were pre-

sented, which covered most of the possible situations. Simulations were carried out

using extended versions of the datasets of Chapter 3 for each of the scenario. We

42

showed how to use our framework to tackle the identity-matching problem in each

case. We also discussed the increase of computational complexity in the scenarios.

We concluded that due to the features used in the classifier, more complex situations

could be handled by a dedicated computer.

In summary, we showed that by modeling the identity-matching problem as a

classification task and using machine learning techniques, we correctly identified the

true transmitter in the scene in several different scenarios presented. The proposed

framework was shown to be very robust and reliable yet flexible. We showed that it is

possible to extend the testbed used here for a proof-of-concept and experiment with

more realistic scenarios. We envision our work being applied to private networks

of near-future communication systems, beyond 5G, with the proper development of

machine learning-dedicated processing units in the network nodes.

In conclusion, the proposed identity-matching methodology presented in this

work is an essential first step in the direction of a more context-aware communication

system. Our methodology is a building block for integrating different domains. This

integration is going to be ubiquitous in the following generations. For this reason,

our solution can be used in other projects working with joint technologies.

5.2 Future Work

The proposed framework uses a classifier that only outputs one result at a time.

Although our solution seems to work only in simple cases, we showed that it is

possible to use it in more complex scenarios. However, it is possible to investigate

solutions with multiple outputs at a time. For example, to use deep convolutional

networks to output the bounding boxes from the scene’s transmitting devices. This

method is similar to already commonplace deep-learning-based computer vision ap-

plications. The difference is that the network would also incorporate information

from the channel impulse response from the devices to make the identity match.

With the identity-matching procedure done, it is possible to supply more infor-

mation about the scene to the network (e.g., device’s speed and direction, warning

about possible blockage). This possibility opens paths to explore applications of

our methodology. We believe it is possible to expand our communications systems’

knowledge by integrating useful data from different domains.

Chapter 4 discussed ideas of sharing information about detected users among

different nodes of the network. For future work, it is possible to explore these

different configurations. Study how different nodes would share information about

detected devices; the benefits and downsides of each configuration. Another case is

to explore whether it is advantageous to centralize the classification part or carry it

out in the network’s different nodes. There is also the need to establish protocols

43

on how the nodes will communicate with each other. Finally, it is necessary to

standardize the procedures. In summary, there is a necessity to test, deploy, and

further formalize the technologies necessary to achieve the scenarios presented in

Chapter 4.

We envision our work being used not only in indoor scenarios. We did ex-

periments with outdoor measurements, showing that there is room to advance in

this direction. There are particular problems with using visual information on out-

door spaces (e.g., privacy issues) that need to be addressed. However, there are

a plethora of applications possible, from vehicular communications, on vehicle-to-

vehicle to vehicle-to-everything. These communication systems can take advantage

of existing infrastructure present on modern cars, such as cameras and proximity

sensors, to incorporate more knowledge into the communication systems.

We hope that our work will be further explored and expanded to be extensively

employed in future generations beyond 5G. Based on the ideas of ever-faster, more

reliable connections, and broader bandwidth available, we will see more knowledge

about the environment gathered into the network. Future communications systems

will not rely solely on radio signals, but the aggregation of different domains is going

to be ubiquitous.

44

Referências Bibliográficas

[1] GUPTA, A., JHA, R. K. “A Survey of 5G Network: Architecture and Emerging

Technologies”, IEEE Access, v. 3, pp. 1206–1232, Jul 2015.

[2] AGIWAL, M., ROY, A., SAXENA, N. “Next Generation 5G Wireless Networks:

A Comprehensive Survey”, IEEE Communications Surveys Tutorials,

v. 18, n. 3, pp. 1617–1655, Feb 2016.

[3] COTE, D. “Using machine learning in communication networks [Invited]”,

IEEE/OSA Journal of Optical Communications and Networking, v. 10,

n. 10, pp. D100–D109, Oct 2018.

[4] SHARMA, S. K., WANG, X. “Toward Massive Machine Type Communicati-

ons in Ultra-Dense Cellular IoT Networks: Current Issues and Machine

Learning-Assisted Solutions”, IEEE Communications Surveys Tutorials,

v. 22, n. 1, pp. 426–471, May 2020.

[5] MATEI, A., GLAVAN, A., TALAVERA, E. “Deep Learning for Scene

Recognition from Visual Data: A Survey”. 2020. Disponível em:

<https://arxiv.org/abs/2007.01806>.

[6] LIU, Z., CHEN, L., ET AL., L. T. “Deep Learning Based Brain

Tumor Segmentation: A Survey”. 2020. Disponível em:

<https://arxiv.org/abs/2007.09479>.

[7] TIAN, Y., PAN, G., ALOUINI, M.-S. “Applying Deep-Learning-Based Compu-

ter Vision to Wireless Communications: Methodologies, Opportunities,

and Challenges”. 2020. Disponível em: <arxiv.org/abs/2006.05782>.

[8] O’SHEA, T., HOYDIS, J. “An Introduction to Deep Learning for the Physical

Layer”, IEEE Transactions on Cognitive Communications and Networ-

king, v. 3, n. 4, pp. 563–575, Dec 2017.

[9] SIMEONE, O. “A Very Brief Introduction to Machine Learning With Applicati-

ons to Communication Systems”, IEEE Transactions on Cognitive Com-

munications and Networking, v. 4, n. 4, pp. 648–664, Nov 2018.

45

[10] ZHANG, C., PATRAS, P., HADDADI, H. “Deep Learning in Mobile and Wi-

reless Networking: A Survey”, IEEE Communications Surveys Tutorials,

v. 21, n. 3, pp. 2224–2287, Mar 2019.

[11] ZHANG, C., UENG, Y., STUDER, C., et al. “Artificial Intelligence for 5G

and Beyond 5G: Implementations, Algorithms, and Optimizations”, IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, v. 10,

n. 2, pp. 149–163, Jun 2020.

[12] VALCARCE, A., HOYDIS, J. “Towards Joint Learning of Optimal

Signaling and Wireless Channel Access”. 2020. Disponível em:

<https://arxiv.org/abs/2007.09948>.

[13] GOUTAY, M., AIT AOUDIA, F., HOYDIS, J. “Deep HyperNetwork-Based

MIMO Detection”. In: IEEE 21st International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), pp. 1–5,

Atlanta, May 2020.

[14] KHANI, M., ALIZADEH, M., HOYDIS, J., et al. “Adaptive Neu-

ral Signal Detection for Massive MIMO”. 2019. Disponível em:

<https://arxiv.org/abs/1906.04610>.

[15] CAMPOS, R. S., LOVISOLO, L., DE CAMPOS, M. L. R. “Wi-Fi multi-

floor indoor positioning considering architectural aspects and controlled

computational complexity”, Expert Systems with Applications, v. 41, n. 14,

pp. 6211–6223, Oct 2014.

[16] BUTT, M. M., RAO, A., YOON, D. “RF Fingerprinting and Deep Learning

Assisted UE Positioning in 5G”. In: 2020 IEEE 91st Vehicular Technology

Conference (VTC2020-Spring), pp. 1–7, Antwerp, May 2020.

[17] ALRABEIAH, M., HREDZAK, A., LIU, Z., et al. “ViWi: A Deep Learning

Dataset Framework for Vision-Aided Wireless Communications”. In: 2020

IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–5,

Antwerp, May 2020.

[18] ALRABEIAH, M., HREDZAK, A., ALKHATEEB, A. “Millimeter Wave Base

Stations with Cameras: Vision-Aided Beam and Blockage Prediction”. In:

2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp.

1–5, Antwerp, May 2020.

[19] CHARAN, G., ALRABEIAH, M., ALKHATEEB, A. “Vision-Aided Dyna-

mic Blockage Prediction for 6G Wireless Communication Networks”. 2020.

Disponível em: <https://arxiv.org/abs/2006.09902>.

46

[20] DE PINHO, V. M., POPESCU, D. “User identification by matching radio

”vision” and computer vision through means of machine learning”. In:

2020 IFIP Networking Conference (Networking), pp. 671–672, Paris, June

2020.

[21] DE PINHO, V. M., DE CAMPOS, M., GARCIA, L., et al. “Vision-Aided

Radio: User Identity Match in Radio and Video Domains Using Machine

Learning”, IEEE Access, v. 8, pp. 1–11, Nov 2020.

[22] SINGH, S. K., SINGH, R., KUMBHANI, B. “The Evolution of Radio Ac-

cess Network Towards Open-RAN: Challenges and Opportunities”. In:

IEEE Wireless Communications and Networking Conference Workshops

(WCNCW), pp. 1–6, Seoul, Apr 2020.

[23] NIKNAM, S., ROY, A., DHILLON, H. S., et al. “Intelligent O-RAN

for Beyond 5G and 6G Wireless Networks”. 2020. Disponível em:

<https://arxiv.org/abs/2005.08374>.

[24] FOND., G. R. “GNU Radio”. 2020. Disponível em: <gnuradio.org>.

[25] HEISKALA, J., TERRY, J. OFDM Wireless LANs: A Theoretical and Prac-

tical Guide. 1 ed. USA, Sams, 2001.

[26] WU, Y., ET AL. “Detectron2”. 2019. Disponível em:

<github.com/facebookresearch/detectron2>.

[27] LIN, T.-Y., MAIRE, M., BELONGIE, S., et al. “Microsoft

COCO: Common Objects in Context”. 2015. Disponível em:

<https://arxiv.org/abs/1405.0312>.

[28] DENISKO, D., HOFFMAN, M. M. “Classification and interaction in random

forests”, Proceedings of the National Academy of Sciences, v. 115, n. 8,

pp. 1690–1692, Feb 2018.

[29] BREIMAN, L. “Random Forests”, Mach. Learn., v. 45, n. 1, pp. 5–32, Oct

2001.

[30] AGARAP, A. F. “Deep Learning using Rectified Linear Units (ReLU)”. 2019.

Disponível em: <https://arxiv.org/abs/1803.08375>.

[31] HINTON, G. E., SRIVASTAVA, N., KRIZHEVSKY, A., et al. “Improving

neural networks by preventing co-adaptation of feature detectors”. 2012.

Disponível em: <https://arxiv.org/abs/1207.0580>.

47

[32] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., et al. “Dropout: A Sim-

ple Way to Prevent Neural Networks from Overfitting”, Journal of Ma-

chine Learning Research, v. 15, n. 56, pp. 1929–1658, Jan 2014.

[33] AUELIEN, G. Hands-on machine learning with Sckit-learn, Keras and Ten-

sorflow: concepts, tools and techniques to build intelligent system. 1 ed.

Newton, OReilly, 2019.

[34] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. 1 ed.

Cambridge, MIT Press, 2016.

[35] THARWAT, A. “Classification assessment methods”, Applied Computing and

Informatics, Aug 2018.

48

Apêndice A

Confusion Matrices from “Beyond

the Testbed” Simulations

A.1 Scenario 1

A.1.1 S1 for Setup 1

Figura A.1: Confusion Matrix for S1 in Scenario 1 for Setup 1 trained with Random
Forest Classifier.

49

Figura A.2: Confusion Matrix for S1 in Scenario 1 for Setup 1 trained with Neural
Network Classifier.

A.1.2 S1 for Setup 2

Figura A.3: Confusion Matrix for S1 in Scenario 1 for Setup 2 trained with Random
Forest Classifier.

50

Figura A.4: Confusion Matrix for S1 in Scenario 1 for Setup 2 trained with Neural
Network Classifier.

A.1.3 S1 for Setup 3

Figura A.5: Confusion Matrix for S1 in Scenario 1 for Setup 3 trained with Random
Forest Classifier.

51

Figura A.6: Confusion Matrix for S1 in Scenario 1 for Setup 3 trained with Neural
Network Classifier.

A.1.4 S1 for Setup 4

Figura A.7: Confusion Matrix for S1 in Scenario 1 for Setup 4 trained with Random
Forest Classifier.

52

Figura A.8: Confusion Matrix for S1 in Scenario 1 for Setup 4 trained with Neural
Network Classifier.

A.1.5 S2 for Setup 1

Figura A.9: Confusion Matrix for S2 in Scenario 1 for Setup 1 trained with Random
Forest Classifier.

53

Figura A.10: Confusion Matrix for S2 in Scenario 1 for Setup 1 trained with Neural
Network Classifier.

A.1.6 S2 for Setup 2

Figura A.11: Confusion Matrix for S2 in Scenario 1 for Setup 2 trained with Random
Forest Classifier.

54

Figura A.12: Confusion Matrix for S2 in Scenario 1 for Setup 2 trained with Neural
Network Classifier.

A.1.7 S2 for Setup 3

Figura A.13: Confusion Matrix for S2 in Scenario 1 for Setup 3 trained with Random
Forest Classifier.

55

Figura A.14: Confusion Matrix for S2 in Scenario 1 for Setup 3 trained with Neural
Network Classifier.

A.1.8 S2 for Setup 4

Figura A.15: Confusion Matrix for S2 in Scenario 1 for Setup 4 trained with Random
Forest Classifier.

56

Figura A.16: Confusion Matrix for S2 in Scenario 1 for Setup 4 trained with Neural
Network Classifier.

A.1.9 S1,2 for Setup 1

Figura A.17: Confusion Matrix for S1,2 in Scenario 1 for Setup 1 trained with
Random Forest Classifier.

57

Figura A.18: Confusion Matrix for S1,2 in Scenario 1 for Setup 1 trained with Neural
Network Classifier.

A.1.10 S1,2 for Setup 2

Figura A.19: Confusion Matrix for S1,2 in Scenario 1 for Setup 2 trained with
Random Forest Classifier.

58

Figura A.20: Confusion Matrix for S1,2 in Scenario 1 for Setup 2 trained with Neural
Network Classifier.

A.1.11 S1,2 for Setup 3

Figura A.21: Confusion Matrix for S1,2 in Scenario 1 for Setup 3 trained with
Random Forest Classifier.

59

Figura A.22: Confusion Matrix for S1,2 in Scenario 1 for Setup 3 trained with Neural
Network Classifier.

A.1.12 S1,2 for Setup 4

Figura A.23: Confusion Matrix for S1,2 in Scenario 1 for Setup 4 trained with
Random Forest Classifier.

60

Figura A.24: Confusion Matrix for S1,2 in Scenario 1 for Setup 4 trained with Neural
Network Classifier.

A.2 Scenario 2

A.2.1 CIR1 for Setup 1

Figura A.25: Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with
Random Forest Classifier.

61

S1

Figura A.26: Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with
Neural Network Classifier.

A.2.2 CIR1 for Setup 2

Figura A.27: Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with
Random Forest Classifier.

62

Figura A.28: Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with
Neural Network Classifier.

A.2.3 CIR1 for Setup 3

Figura A.29: Confusion Matrix for CIR1 in Scenario 1 for Setup 3 trained with
Random Forest Classifier.

63

Figura A.30: Confusion Matrix for CIR1 in Scenario 2 for Setup 3 trained with
Neural Network Classifier.

A.2.4 CIR1 for Setup 4

Figura A.31: Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with
Random Forest Classifier.

64

Figura A.32: Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with
Neural Network Classifier.

A.2.5 CIR2 for Setup 1

Figura A.33: Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with
Random Forest Classifier.

65

S1

Figura A.34: Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with
Neural Network Classifier.

A.2.6 CIR2 for Setup 2

Figura A.35: Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with
Random Forest Classifier.

66

Figura A.36: Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with
Neural Network Classifier.

A.2.7 CIR2 for Setup 3

Figura A.37: Confusion Matrix for CIR2 in Scenario 1 for Setup 3 trained with
Random Forest Classifier.

67

Figura A.38: Confusion Matrix for CIR2 in Scenario 2 for Setup 3 trained with
Neural Network Classifier.

A.2.8 CIR2 for Setup 4

Figura A.39: Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with
Random Forest Classifier.

68

Figura A.40: Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with
Neural Network Classifier.

A.2.9 CIR3 for Setup 1

Figura A.41: Confusion Matrix for CIR3 in Scenario 2 for Setup 1 trained with
Random Forest Classifier.

69

S1

Figura A.42: Confusion Matrix for CIR3 in Scenario 2 for Setup 1 trained with
Neural Network Classifier.

A.2.10 CIR3 for Setup 2

Figura A.43: Confusion Matrix for CIR3 in Scenario 2 for Setup 2 trained with
Random Forest Classifier.

70

Figura A.44: Confusion Matrix for CIR3 in Scenario 2 for Setup 2 trained with
Neural Network Classifier.

A.2.11 CIR3 for Setup 3

Figura A.45: Confusion Matrix for CIR3 in Scenario 1 for Setup 3 trained with
Random Forest Classifier.

71

Figura A.46: Confusion Matrix for CIR3 in Scenario 2 for Setup 3 trained with
Neural Network Classifier.

A.2.12 CIR3 for Setup 4

Figura A.47: Confusion Matrix for CIR3 in Scenario 2 for Setup 4 trained with
Random Forest Classifier.

72

Figura A.48: Confusion Matrix for CIR3 in Scenario 2 for Setup 4 trained with
Neural Network Classifier.

A.3 Scenario 3

A.3.1 CIR1 for Setup 1

Figura A.49: Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with
Random Forest Classifier.

73

S1

Figura A.50: Confusion Matrix for CIR1 in Scenario 2 for Setup 1 trained with
Neural Network Classifier.

A.3.2 CIR1 for Setup 2

Figura A.51: Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with
Random Forest Classifier.

74

Figura A.52: Confusion Matrix for CIR1 in Scenario 2 for Setup 2 trained with
Neural Network Classifier.

A.3.3 CIR1 for Setup 3

Figura A.53: Confusion Matrix for CIR1 in Scenario 1 for Setup 3 trained with
Random Forest Classifier.

75

Figura A.54: Confusion Matrix for CIR1 in Scenario 2 for Setup 3 trained with
Neural Network Classifier.

A.3.4 CIR1 for Setup 4

Figura A.55: Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with
Random Forest Classifier.

76

Figura A.56: Confusion Matrix for CIR1 in Scenario 2 for Setup 4 trained with
Neural Network Classifier.

A.3.5 CIR2 for Setup 1

Figura A.57: Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with
Random Forest Classifier.

77

S1

Figura A.58: Confusion Matrix for CIR2 in Scenario 2 for Setup 1 trained with
Neural Network Classifier.

A.3.6 CIR2 for Setup 2

Figura A.59: Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with
Random Forest Classifier.

78

Figura A.60: Confusion Matrix for CIR2 in Scenario 2 for Setup 2 trained with
Neural Network Classifier.

A.3.7 CIR2 for Setup 3

Figura A.61: Confusion Matrix for CIR2 in Scenario 1 for Setup 3 trained with
Random Forest Classifier.

79

Figura A.62: Confusion Matrix for CIR2 in Scenario 2 for Setup 3 trained with
Neural Network Classifier.

A.3.8 CIR2 for Setup 4

Figura A.63: Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with
Random Forest Classifier.

80

Figura A.64: Confusion Matrix for CIR2 in Scenario 2 for Setup 4 trained with
Neural Network Classifier.

81

