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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

EQUALIZAÇÃO NÃO LINEAR ADAPTATIVA COM SELEÇÃO DE DADOS
EM SISTEMAS VLC

Felipe Barboza da Silva

Março/2018

Orientador: Wallace Alves Martins

Programa: Engenharia Elétrica

Este trabalho propõe o uso de equalizadores com seleção de dados para comu-
nicação por luz visível (VLC). Em tais sistemas, umas das principais fontes de
não-linearidade é o diodo emissor de luz. Técnicas não-lineares tais qual a série de
Volterra são empregadas para lidar com esse efeito. Contudo, a grande quantidade
de parâmetros subjacentes ao modelo aumenta consideravelmente a complexidade
computacional. Este trabalho propõe o uso de esquemas adaptativos com seleção
de dados em série de Volterra. Trabalhando apenas com os dados de entrada que
trazem inovação para o sistema, e assim evitando atualizações desnecessárias, é
possível reduzir drasticamente a carga computacional associada ao uso da série de
Volterra, de forma a proporcionar uma equalização não-linear.

Com o objetivo de reduzir ainda mais a carga computacional, este trabalho
também propõe a combinação de diferentes algoritmos com seleção de dados. Assim,
explorando a estrutura da série de Volterra, é possível empregar um filtro para cada
um de seus kernels. Cada um desses filtros atualiza mais elementos conforme a
ordem do kernel aumenta. Portanto, atribuindo limiares de erro maiores para esses
filtros, é possível diminuir suas taxas de atualização, assim reduzindo a complexidade
computacional total. É também proposto o uso de algoritmos semi-cegos e com
seleção de dados para diminuir o montante de dados usados para treinar os filtros
adaptativos, enquanto reduz a complexidade computacional.

Uma plataforma computacional para simulação de sistemas VLC também é uma
das propostas deste trabalho. Os componentes-chave deste sistema são apresentados,
cujos modelos são baseados na descrição de suas propriedades físicas feitas neste
trabalho.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

NONLINEAR ADAPTIVE EQUALIZATION WITH DATA SELECTION IN
VLC SYSTEMS

Felipe Barboza da Silva

March/2018

Advisor: Wallace Alves Martins

Department: Electrical Engineering

This work proposes the use of data-selective equalizers for visible light commu-
nication (VLC). In such systems, one of the main sources of nonlinearity is the
light-emitting diode. Nonlinear techniques such as Volterra series are employed
to cope with this effect. However, the large number of parameters underlying to
the model yielded by such series grows considerably the computational complexity.
This work proposes the use of data-selective adaptive schemes in Volterra series.
By working only with input data that brings novelty to the system, thus avoiding
unnecessary parameter updates, one can reduce drastically the high computational
burden associated with the use of Volterra series, therefore, providing an efficient
nonlinear equalizer.

In order to reduce even more the computational burden, this work also propo-
ses the combination of different data-selective algorithms. Thus, by exploring the
structure of the Volterra series, one can employ a filter for each of its kernels. Each
of these filters update more elements as the order of the kernel increases. Therefore,
by assigning larger error thresholds to these filters, it is possible to decrease their
update rates, thus reducing the overall computational complexity. Also, it is propo-
sed the use of data-selective semi-blind algorithms to decrease the amount of data
used to train the adaptive filters, while reducing the computational complexity.

A computational platform for simulation of VLC systems is also one of the pro-
posals of this work. The key components of this system are presented, whose models
are based on the description of their physical properties performed in this work.
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Chapter 1

Introduction

Visible light communication (VLC) is a technique that employs visible light to trans-
mit data. When compared to traditional radiofrequency (RF) communications, the
key components that enable VLC to work are a light-emitting diode (LED), respon-
sible for transforming electrical signals into light signals at the transmitter, and a
photodiode, responsible for converting this optical signal into a corresponding cur-
rent level at the receiver end. VLC can be employed in a large range of applications,
such as: short range communication systems, working as a complement to or even
a substitute for RF systems [4, 5]; intelligent transport systems, providing commu-
nications among vehicles [6, 7]; in the context of Internet-of-Things (IOT), where
toys are communicating to each other using LEDs [8]; and indoor localization sys-
tems [9, 10]. Considering these applications, VLC systems feature some advantages
if compared to its RF counterparts due to the following factors:

• Increase in the capacity: VLC provides an unregulated spectrum from 400 THz
to 800 THz, while RF-based communications occupy a band from 3 kHz to
300 GHz, which means VLC overall frequency band is 10,000 higher than
RF’s. This is one of the reasons why VLC is considered to be an alternative
solution that addresses the RF spectrum scarcity by relieving this crowded
frequency band. In addition, mobile data traffic is expected to increase 7
times from 2016–2021 [11]. Thereby, mobile operators will focus on public
Wi-Fi hotspots and other alternative techniques.

• Non interference: VLC signals do not interfere with RF waves [12]. Therefore,
this technology can be used as a complementary system, in addition to allowing
for its application in hospitals and airplanes.

• Security and reuse: Unlike RF waves, which penetrate walls, visible light can-
not pass through opaque objects. Thus, once data is converted into light, one
can hardly eavesdrop it. Moreover, the VLC transmission is highly directional,
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which means that transmitter and receiver should have a considerable align-
ment in most cases. While this is usually regarded as a drawback, one can
benefit from it since a lot of different systems can operate within the same
indoor environment with mild interference.

• Low cost of deployment: LEDs have been replacing other sources of light as
incandescent and fluorescent bulbs. Besides, it is expected that approximately
85% of all illumination in the United States will be provided by LEDs until
2035 [13]. VLC can benefit from this pre-existent infrastructure, and, with the
addition of few cheap front-end devices [14], can be deployed at low cost. In
addition, the key components of a VLC system are inexpensive if compared
to their RF counterparts.

• Energy efficiency: LEDs are considered as a green technology. Their luminous
efficacy can vary from 68 up to nearly 140 lumens/watt, while fluorescent
and incandescent lamps present at maximum 70 and 15 lumens/watt, respec-
tively [15]. Supposing that all sources of light are replaced by LEDs, this could
yield a reduction in the world energy consumption of 50% [16].

• Not hazardous to healthy: Unlike RF systems, there are no health regulations
to restrict the transmitted power.

1.1 VLC System Modulations

VLC systems transmit data through intensity modulation (IM), where the data to
be transmitted is modulated varying the luminous intensity of the emitted light [17].
Unlike RF waves, the light is an incoherent source, which hinder the use of hetero-
dyne receivers [17]. Hence, typical RF modulations such as frequency-shift keying
(FSK) cannot be employed. Instead, VLC systems are based on other modula-
tions, e.g., pulse amplitude modulation (PAM), on-off keying (OOK), pulse-position
modulation (PPM), color-shift keying (CSK), spatial modulation, among others.
In addition, the signal transmitted by the LED is strictly positive and real, which
means that a certain DC level must be added to the symbols before transmission.
Therefore, some modulations such as quadrature amplitude modulation (QAM),
and transmission schemes like orthogonal frequency-division multiplexing (OFDM),
should be adapted to work in a VLC system. For instance, a system may employ
one LED to transmit the real symbols, while the other transmits the imaginary ones.

Regarding OFDM schemes, there are works in the literature addressing some
adaptations to deal with the aforementioned issues. For example, the DC-biased
optical OFDM (DCO-OFDM) adds a DC value to the symbols to ensure their non-
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negativeness, besides making use of symmetry properties of the inverse discrete
Fourier transform (IDFT) to map the complex symbols into real symbols [18–20].
Instead of adding the DC level, which may decrease the efficiency in terms of av-
erage optical power [18], the asymmetrically clipped optical OFDM (ACO-OFDM)
modulates only the odd subcarriers, which turns the signal after the IDFT opera-
tion antisymmetric. Hence, the same information is contained in both positive and
negative elements of the signal [18, 21, 22]. Nonetheless, by transmitting useful data
only in the odd subcarriers, the spectral efficiency of the system is reduced [20]. In
order to enhance the average optical power and spectral efficiency, the authors in [23]
proposed the ADO-OFDM, which employs ACO-OFDM on the odd subcarriers and
DCO-OFDM on the even subcarriers.

After describing the motivation for using VLC systems, as well as the most
popular modulations and transmission schemes, the historical development of such
technology will be presented.

1.2 Historical Development

The most popular device to transmit data using visual signals is the optical tele-
graph. It was invented in 1792 by Claude Chappe and became very popular from
late eighteenth century until early nineteenth century in Europe [24]. The optical
telegraph is composed by 2 long arms, which are connected by an horizontal bar, as
illustrated in Figure 1.1. These arms could display seven positions each, while the
horizontal bar could perform four different inclination angles, totaling 7×7×4 = 196

distinct possible symbols.
In 1880, the distinguished inventor Alexander Graham Bell created the first de-

vice to transmit voice by means of light, named photophone, whose working principle
is described as follows: the transmitter modulates a light beam by using mirrors,
which under the action of voice, becomes more convex or concave, scattering or con-
densing the light beam, as shown in Figure 1.2. Figure 1.3 illustrates the receiving
process, which is based on the conversion of the incident beam of light into variations
of air pressure by a selenium cell positioned at the focus of a mirror [25].

More recently, VLC technology flourished in the late 1990s in Japan, when LED
traffic lights were employed to broadcast audio messages to drivers [6]. In the early
2000s, as white LEDs began to be employed for indoor illumination, research pio-
neers from Keio University, named Yuichi Tanaka and Toshihiko Komine, started to
make use of them also to transmit data by using a technology, which was a hot topic
that time, named power line communication (PLC) [26, 27]. This technique uses the
electric network for both transmission of data and electric energy. The illustration
of this process in shown in Figure 1.4, in which data are properly converted by the
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Figure 1.1: Illustration of the optical telegraph. Reprinted from [1].

Figure 1.2: Illustration of the photophone transmitter. Reprinted from [2].

PLC modem and transmitted by LEDs.
Since the 2000s, lots of works in VLC popped up. In 2003, the research group led

by Tanaka et al. presented a VLC system with a data rate up to 400 Mbps based on
OOK modulation [28]. In 2005, the authors in [29] first proposed the use of OFDM
over an indoor optical channel. In 2006, the first experimental results using OFDM
were produced [30]. In 2009, a data rate of 230 Mbps was reached using discrete
multitone (DMT), a single white LED luminary [31], and a PIN. The same team
demonstrated a data rate of 513 Mbps by using a more powerful LED luminary
and an avalanche diode [32]. In 2012, also using DMT and a single low-cost white
LED, a data rate of 1 Gbps was reported [33]. Later, also in 2012, a data rate of
3.4 Gbps was achieved by employing wavelength division multiplexing (WDM) and
a red-green-blue (RGB) LED [34]. In 2015, a data rate of 750 Mbps was achieved
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Figure 1.3: Illustration of the photophone receiver. Reprinted from [3].

using a RGB LED with analog equalization [35]. Also in 2015, a demonstration of
8 Gbps of data rate was reached by using a single luminary red-green-blue-yellow
(RGBY) and WDM [36]. A 25 Gbps data rate was reported in 2016, but using laser
diodes (LD), which are very expensive and emit a high focused energy beam [37]. In
fact, until the present day of the writing of this work, the literature reports works
achieving data rates in the order of Gbps employing LDs, which are costly and not
employed for illumination purposes being, therefore, beyond the scope of this work.

PLC
modem

Powerline

LED

Data

Figure 1.4: Illustration of PLC and VLC systems in an indoor environment.
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1.3 VLC Main Challenges

VLC has been proved to feature several advantages. Nevertheless, there are still
some challenges to overcome in this technology:

• Low light level: Considering an indoor environment which uses LED for both
illumination and communication purposes, it may be undesirable a system
which demands lights on all the time. Moreover, the shadowing effect, which
may be caused by an obstacle between LED and photodiode, can cause prob-
lems in the communication process. Therefore, VLC systems should be able
to maintain a minimum data rate when the light level is not perceptible to
humans. In fact, that are studies conducted in this area, which reached sat-
isfactory data rates considering a low level of ambient light [38], or employed
infra-red (IR) signals when the light level is low [39].

• Flickering and average optical power: the signals in VLC should not present
long sequences of “1s” or “0s”, since it may cause flicker effect perceptible for
humans, which is not desirable in illumination purposes. Therefore, in order to
avoid it, VLC systems should employ run length limited (RLL) sequences [40].
In addition, if one considers an indoor VLC deployment, the average opti-
cal power should maintain a constant or slow time-varying level of optical
power. The aforementioned constraints may hamper the optimization process
performed in precoding or beamforming schemes [41, 42].

• Nonlinear equalization: The current-voltage relation of LEDs is well modeled
by an exponential function. Hence, this device may present a considerable level
of nonlinearity, depending on the desired electrical power at output. Therefore,
suitable nonlinear equalizers must be employed in order to have a reasonable
bit error rate (BER) at the receiver [36, 43, 44]. Other techniques, such as pre-
and post-distortion can also mitigate the nonlinear effects of a VLC system [45–
47], but these techniques are designed based on the I-V curve of a given LED
at the transmitter, which can be a hard task if multiple LEDs are employed,
as in multiple-input multiple-output (MIMO) systems.

1.4 Contributions of this Work

Considering the challenges described in Section 1.3, this work will focus on proposing
nonlinear adaptive equalizers to mitigate the undesired nonlinear effects yielded by
VLC systems. To do that, it will be employed the well-known Volterra series, which
can also be used in a myriad of nonlinear systems, such as satellite and microwave
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channel amplifiers [48, 49], nonlinear controllers [50–53], nonlinear echo cancella-
tion [54, 55], just to mention a few. While kernel-based adaptive filtering has been
attracting much interest in recent years [56–58], it still lacks a satisfactorily uni-
versal quantization rule to address its inherent unlimited memory requirements. In
fact, most practical applications requiring online nonlinear solutions employ the cel-
ebrated Volterra series [59–61] due to its structural simplicity [62] and its capability
of modeling a variety of nonlinear systems [63]. However, the main drawback of this
approach is the computational burden given the large number of parameters to be
updated, as compared to its linear-in-input counterparts. This fact may cramp the
use of Volterra series in applications that require long adaptive filters or in the case
of stand-alone embedded systems, which demand low energy consumption. Recent
works reduce this computational complexity by employing a sparse scheme to the
Volterra filter [64], by reducing the number of operations per parameter [65], or by
using it in the frequency domain [66, 67], but none of them use a data-selective
approach.

One of the contributions of this work reduces the computational costs related
to nonlinear adaptive filters by proposing data-selective algorithms that employ
Volterra series. By connecting the set-membership adaptive filtering (SMAF) [68, 69]
framework to the Volterra series, it is possible to reduce drastically the computa-
tional cost during the training by selecting the input data that indeed brings inno-
vation to the system, avoiding unnecessary updates during the training process, and
keeping, or even enhancing, the original performance. The idea here is to employ,
at each iteration, a constraint set and check whether the magnitude of the error be-
tween the desired (reference) signal and the output of the adaptive filter is under a
given threshold, i.e., whether the parameter vector belongs to this constraint set. If
this is the case, the parameter vector is not updated. The proposed techniques can
be cast as Volterra-based versions of the set-membership proportionate normalized
least-mean-square algorithm (SM-PNLMS) [70, 71], and of the bounding ellipsoidal
adaptive constrained least-squares (BEACON) [72, 73].

Another contribution of this work aims to reduce even more the computational
complexity due to Volterra series by the use of combination of filters [74, 75]. By
inspecting its structure, one can analyze separately the kernels of such series, whose
elements are related to the order of the products. For instance, the second-order
kernel is assembled by the corresponding elements to the second-order products of
Volterra series. Thus, one can employ different data-selective-based adaptive filters
for each kernel and combine their parameter vectors to reduce the overall complexity
of Volterra series. In addition, it is possible to reduce the amount of data employed
during the training of these adaptive filters, which can use a considerable quantity
given the large number of parameters to be updated when using Volterra series,
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reducing the spectral efficiency. Therefore, the other proposal of this work is to use
semi-blind data-selective algorithms [76], which enhance the spectral efficiency by
replacing the reference signal with the decided version of the output of the adaptive
filter, while reducing the computational burden associated with Volterra series.

The last contribution, is the development of a computational platform for VLC,
which is employed on the assessment of the performance of the proposed data-
selective techniques. An open-source platform for developing practical VLC solu-
tions is detailed in [77]. However, to the best of our knowledge, no work focusing
on developing an open-source simulation environment for this application had been
presented.

1.5 Organization of the Text

Chapter 2 describes an overview of the operation mode of a VLC system, as well
as its key components and their physical aspects. Regarding LEDs, the working
principle of the pn junction is discussed, as well as their nonlinear current-voltage
relation and frequency response. In addition, the main types of LEDs used in
VLC white color-based systems are described with their optical characteristics. A
description of the indoor free-space optical (FSO) channel is performed, detailing its
frequency selectiveness and attenuation, also drawing a parallel with RF channels.
To finish, the modes of operation of typical photodiodes employed in VLC systems
are listed, including the current-voltage relation corresponding to each mode, and
their spectral responses.

In Chapter 3, the Volterra set-membership adaptive filtering (SMAF) is pro-
posed. Volterra filters are widely used to work with nonlinear systems. Nonetheless,
this technique may yield a high computational complexity, if compared to its lin-
ear counterpart. Therefore, a good approach to address this issue is to connect a
data-selective framework to Volterra series. Moreover, by using a generic nonlinear
system, the performance of Volterra SMAF is assessed in both system identification
and channel equalization scenarios, indicating that this technology indeed can be
used to cope with generic nonlinear systems, while reducing the computational bur-
den due to Volterra series. Therefore, this technique may be also employed in VLC
systems as an efficient and reliable equalizer.

Chapter 4 presents a new proposed algorithm, which explores the structure of the
Volterra series to reduce even more the computational complexity associated with it.
Besides, a semi-blind technique is employed in the Volterra SMAF, where the goal is
to decrease the amount of data used to train the adaptive filters, thereby, enhancing
the spectral efficiency. The performance of these techniques are, in general, similar
or better than the one of Chapter 3. Hence, these techniques are also a good bet to
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work as equalizers for VLC.
Chapter 5 describes a computational platform for VLC, whose main purpose is

to serve as tool for the performance assessment of the proposed adaptive techniques
presented in the previous chapters. In addition, based on their physical description,
as performed in Chapter 2, the models of the main devices of such system are
presented.

By employing the computational platform developed in Chapter 5, the perfor-
mance of the proposed techniques is evaluated in Chapter 6, which is assessed in
terms of mean square error (MSE) and bit error rate (BER). Moreover, discussions
regarding these results are performed.

Finally, in Chapter 7, the conclusions obtained from the results are drawn, as
well as discussions regarding all the proposed techniques, and future works that may
continue this project.

The notation used in this work is as follows: vectors are denoted by bold letters
while matrices are represented by capital bold letters. (·)T , (·)H , and (·)∗ denote
the transpose, Hermitian, and conjugate operations, respectively. N, R, and C
denote the natural, real, and complex sets. ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ stand for the
l1-norm, l2-norm, and infinite-norm. Considering b ∈ N, the sign function is defined
as signb[a] = a

‖a‖b
,∀ a ∈ C \ {0} and signb[0] = 0.

1.6 Publications

This section lists the published works as well as papers that are in preparation and
which resulted from this dissertation:

• da Silva, F. B., Martins, W. A.: A computational platform for visible light
communications. In: “XXXV Simpósio Brasileiro de Telecomunicações e Pro-
cessamento de Sinais (SBrT 2017)”, pp. 891–895. São Pedro, Brazil (2017).

• da Silva, F. B., Martins, W. A.: Data-Selective Volterra Adaptive Filters,
“Circuits, Systems, and Signal Processing”, Jan 2018.

• Journal paper in preparation containing the contributions of Chapter 4.

• Journal paper in preparation containing the contributions of Chapter 6, along
with the descriptions of Chapters 2 and 5.
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Chapter 2

VLC Main Components

The key components of any digital communication system are: (i) transmitter, which
processes the data so as to pass through the communication medium; (ii) the medium
(or channel, in the engineering context) itself, which usually imposes undesired ef-
fects on the signals after transmission; and (iii) the receiver, which converts the
received signals into data that are supposed to be good estimates of the transmitted
data. In a visible light communication (VLC) system, the aforementioned elements
are the light-emitting diode (LED), the optical channel, and the photosensor, com-
monly a photodiode (PD). In this chapter, an overview of a VLC system is presented.
After that, in order to understand with more details the working principles under-
lying VLC systems, this chapter describes the main characteristics of each of these
components.

2.1 VLC System Overview

In a nutshell, the operation mode of a VLC system is quite simple. The data to be
transmitted is mapped by the driving circuit into an electrical signal Vin(t), which
is converted to light using an LED. This light signal l(t) propagates through the air
(free space) until it reaches the receiver where it is transformed over again into the
electrical signal using a receiver sensor, and then, amplified via a transimpedance
amplifier (TIA), generating the voltage signal r(t). This process, illustrated in
Figure 2.1, resembles what occurs in radiofrequency (RF) communications, except
for the electrical conversion to light at the transmitter and the inverse process at the
receiver. Nevertheless, in the RF framework the amplitude of the received electrical
signal is usually a linear function1 of the electrical field, instead of nonlinear as
in the VLC case [17]. VLC schemes employ intensity modulation (IM), where the
data to be transmitted is modulated varying the luminous intensity of the emitted

1There are some exceptions due to nonlinearities induced by power amplifiers employed in the
transmission process.
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light [17]. At the receiver, the fluctuations in the light luminosity are converted into
a proportional current level by the photodiode. This process is the so-called direct
detection (DD) [17]. Generically speaking, this process of transmitting and receiving
data through a VLC system is described as follows: first, the electrical-to-optical
conversion is performed by the LED, here represented as an operator L{·}:

l(t) = L{Vin(t)}. (2.1)

After that, the optical channel, represented mathematically as H{·}, transforms
the signal intensity of l(t), resulting in the signal l̃(t):

l̃(t) = H{l(t)}. (2.2)

Then, the output of the transimpedance amplifier can be described as:

r(t) = β ×R{l̃(t)}, (2.3)

whereR{·} denotes the optical-to-electrical conversion performed by the photodiode,
and β ∈ R+ represents the amplification gain induced by the TIA.

l(t)

r(t)
TIA

Driving
circuit

Vin(t)Data

LED

Photodiode

l̃(t)

Figure 2.1: Overview of a VLC system.

2.2 Light-Emitting Diode

The LED is a device which emits light when it is properly polarized. In order to
better understand its physical properties, some basic concepts of semiconductors
shall be described. This device comprises a pn junction, which is compounded
by semiconductors of p and n types connected to the LED’s anode and cathode,
respectively. In practice, this junction is assembled by a single crystal with different
doping levels [78].

Considering an intrinsic semiconductor, the atoms in a crystal are bonded via
covalent bonds, assembled by the four valence electrons associated with each atom.
In low temperatures, only few electrons are available to conduct electricity, but
at common indoor temperatures ranging from 20◦ C to 25◦ C, some bonds break,
thereby freeing up electrons. As these electrons escape from their atoms, they leave
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gaps conceived as positive charges. Other free electrons are attracted by these
positive charges. This process, named recombination, of releasing electrons and
generating gaps (or holes) may repeat itself through the crystal, allowing for a
current flow. Nonetheless, this flow is usually very low due to the number of free
electrons in an intrinsic crystal. In order to address this issue, the crystal is doped
with chemical elements containing three or five valence electrons. Thus, when these
elements are bonded, an electron is released (n-type crystal), or a hole rises (p-type
crystal), but in a much greater rate. For further details, the references [78, 79]
should be consulted.

In fact, the LED is a semiconductor that emits photons when the recombination
process in its pn junction occurs, i.e, when current flows from the anode to the
cathode.2 Therefore, this device may be employed as transmitter in a VLC system,
and its main purpose is to convert electrical signals into optical signals.

Regarding to the current-voltage I-V curve of an LED, this relation is highly
nonlinear, depending on the amplitude of the input signal, which is why the LED
may cause severe distortion over the transmitted signal. Drawing a parallel with RF
systems, in most applications the nonlinearities of the system can be disregarded,
and the whole system can be considered as linear. Nonetheless, satellite and mi-
crowave systems may experience a considerable level of nonlinearities due to the
power amplifier at the transmitter’s output [48, 49]. Figure 2.2 illustrates a typical
I-V curve of an LED, also showing the regions in which the LED works: forward,
reverse, and breakdown regions. In the forward region, this is the region in which
the LED emits light, i.e, when current flows from the anode to its cathode. In the
reverse region, only the saturation current (or dark-current) flows in the opposite
direction of the forward case. The breakdown region is reached when a negative
voltage Vbr is applied in LED’s terminals, harming the pn junction, which can im-
pair the light emission, even though there are other types of diodes that are designed
to work in this region, such as Zener.

With respect to the propagation of the light emitted by an LED, it is much
more focused than in the radiofrequency case. Therefore, the interference among
VLC transmitters are rare or absent in this technique, which allows for the reuse of
the spectrum. Nonetheless, it requires a certain level of alignment between trans-
mitter and receiver, whose communication may be affected if obstacles are placed
in-between. In a RF scenario, omnidirectional antennas are usually employed, which
may yield a considerable level of interference with other signals, but makes it easy
the deployment of receiving antennas.

The response of LEDs for each wavelength of the transmitted signal should be
2The flow direction can appear from the cathode to the anode, depending on the convention

adopted.
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Figure 2.2: Typical LED I-V curve.

Deplection region

anode cathode

p
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Figure 2.3: Illustration of the depletion region of a pn junction.

carefully analyzed. In an indoor VLC system, where the white color is widely
employed, two types of LEDs are employed to implement white color-based commu-
nications: phosphor-converted LED (pc-LED) and the three-colored red-green-blue,
or RGB LED. Regarding the former, a blue LED is filled with a phosphor layer. Ba-
sically, the working principle is to leak some part of the blue light to the phosphor
so as to generate red and green colors, combining these colors with the blue one to
form white light [80]. Considering the RGB LED, it directly mixes the red, blue,
and green lights to assemble the white color. The shape of the spectral response of
the aforementioned LEDs are shown in Figure 2.4.

Another important characteristic of LEDs is their frequency response. Supposing
that Vin(t) is a high frequency signal, it induces a high frequency current flow over
the LED’s pn junction. Nonetheless, during the recombination process, some free
electrons disappear from the n junction, thus some of the positive charges will not
be recombined with these free electrons. Then, these positive charges will attract
the negative charges of the p junction, forming the depletion region, illustrated in
Figure 2.3. This region acts as a capacitor, which imposes a memory effect on the
system and may cease or strongly attenuate the current flow over the pn junction.
Thus, the LED cannot always light up and turn off in the same frequency of the
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(a) pc-LED. (b) RGB LED.

Figure 2.4: Sketches of the spectral response (in terms of wavelength) of LEDs
employed in white color-based communications.

input signal Vin(t). Moreover, the frequency response of LEDs may be affected by
the way they generate the colors. For instance, when pc-LEDs generate the white
color, part of the blue light is leaked to the phosphor layer. Due to its slow response,
a memory effect pops up, decreasing the frequency response of the LED. In order to
achieve wider bandwidths, blue filter is employed at the photodiode to filter out the
yellow component (570–590 nm), i.e., to attenuate the photons that passed through
the phosphor layer [81], leading to modulation bandwidth up to 30 MHz [32, 33].
However, it comes at the price of decreasing the signal-to-noise ratio (SNR), as the
major portion of the received signal is also filtered out [82]. On the other hand,
RGB LEDs can achieve modulation bandwidths wider than 40 MHz [7].

2.3 Free-Space Optical Channel

The free-space optical (FSO) channel is the medium through which the visible light
emitted by the LED propagates. In most practical indoor environments, the visible
light is much more attenuated by obstacles, such as walls and furniture, than RF
signals, implying that the FSO channel presents low levels of frequency selectivity,
resulting in a relatively flat frequency response [17]. In fact, some studies show
that the FSO channel resembles an infrared (IR) channel [17], and most works in
the literature consider IR channel models when dealing with VLC systems, given
their high similarities in terms of propagation properties and sources of noise. Thus,
considering a flat frequency response, the most relevant characteristic of the optical
channel is its DC gainH(0). Depending on the geometry of the environment in which
the VLC system is deployed, i.e., walls and obstacles between LED and photodiode,
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H(0) may represent a large attenuation over the LED’s emitted light. Besides,
in vehicle-to-vehicle communication, for instance, the turbulence may also impair
the communication in a VLC system. It is worth mentioning that, in the optical
communication area, every element which introduces some attenuation or distortion
between LED and photodiode is considered to be part of an effective channel; the
effects imposed by light concentrators or optical filters in photodiodes are a case
in point. Comparing with RF-based communication systems, which may present
high frequency selectivity and strong attenuation, the FSO channel may also pose a
considerable attenuation, but with low frequency selectivity due to the severe light
absorption of the obstacles and the relatively small indoor dimensions.

Regarding ambient noise sources, if one considers an indoor VLC deployment,
there are many sources of light that may interfere with the communication between
LED and photodiode. Sunlight, incandescent and fluorescent lamps, or even other
LEDs whose only purpose is illumination can work as interference sources [83]. Re-
garding other noises, one can mention the shot and thermal noise. Considering the
former, when photons are emitted by the LED, they do not strike the photodiode
surface continuously in time, instead, they arrive erratically, causing fluctuations
over the resulting current at the photodiode. As for the thermal noise, also named
Johnson-Nyquist or 1/f noise, it is related to the thermal agitation of the charge
carriers inside an electrical conductor, which produces a current flow over the photo-
diode and TIA and it is highly dependent on the ambient temperature. Most of the
aforementioned noise sources are also faced by an RF system. For instance, the sun
emits several electromagnetic signals that could interfere with RF signals. In addi-
tion, the shot noise also occurs in other devices which possess a pn junction, such
as transistors, and the thermal noise is inherent in diverse electronic components,
e.g., resistors and capacitors.

2.4 Photodiode

The photodiode (PD) is a device that performs the inverse function of the LED:
incident light is converted into current. As in the LED’s case, PD is compounded
by a pn junction connected between anode and cathode, but, unlike LEDs, it can
operate in two modes:

• Photoconductive mode: PD is reversely polarized by an external voltage
source, as illustrated in Figure 2.5(a). In this case, the capacitance of the
pn junction decreases due to a large depletion region, which is caused by the
reverse-bias [84]. Thus, the photodiode becomes more capable of working with
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broadband signals at a price of larger dark-current.3

• Photovoltaic mode: forward-bias takes place in this case, as illustrated in Fig-
ure 2.5(b). This mode is based on the photovoltaic effect, which is a physical
property of creation of a current flow in a material upon exposure to light.
Basically, supposing the PD’s terminals are connected, electrons absorb the
energy of incident photons, starting the recombination process, thereby gen-
erating a current flow. This is the working principle of solar cells.

Vin

(a) Photoconductive mode. (b) Photovoltaic mode.

Figure 2.5: Photodiodes’ modes of operation.

The current-voltage I-V relation of photodiodes is very similar to the LED’s.
Figure 2.6 illustrates this characteristic curve for both photoconductive and photo-
voltaic modes and considering different incident powers, denoted as P0, P1, and P2,
with P0 < P1 < P2. Note that as the incident power grows, the resulting current is
almost constant in the reverse mode, thus, the relation incident power vs. current is
practically linear. This, fact along with the capability of working in a high frequency
scenario are the main reasons why most VLC systems adopt this mode. It is worth
mentioning that in both modes the output current is in the order of micro amperes.
Hence, for most applications a transimpedance amplifier (TIA), which converts a
level of current into a level of voltage, is needed.

Regarding the types of photodiode, two of them are widely employed in VLC
systems: a diode composed of an intrinsic region between the pn junction (PIN)
and avalanche photodiodes (APD). Essentially, the main difference between them is
that the avalanche photodiode operates at high reverse-bias, resulting in an internal
electrical gain due to avalanche breakdown [17], eventually making it more suitable
for low levels of ambient light [85]. Nonetheless, this gain increases the variance of
shot noise by a factor greater than the signal gain, reducing the SNR [17]. Therefore,
the PIN photodiode is the most employed in VLC system, besides being cheaper
than APD.

Regarding the frequency response of photodiodes, in general, it has wider band-
width than the LED’s [86]. In fact, the overall frequency response at the receiver
is determined by both photodiode and transimpedance amplifier, even though the

3Dark-current is the small current that flows in the photodiode in the absence of light.
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Figure 2.6: Characteristic I-V curve in reverse-bias mode for different values of
incident power.

TIA’s has wider bandwidth than the LED’s. Due to these facts, the main source of
selectivity can be attributed to LEDs, at least considering low data rate communi-
cations.

Typical photodiodes used in VLC have spectral peaks around 800 nm, as shown
in Figure 2.7; thereby the sensitivity is higher to red light than green or blue [28]. In
fact, the authors in [87] show that the performance of a VLC system that employs
RGB LEDs is color-dependent, i.e., it shows different performance for each one of
the three colors, yielding the highest data rates for the red color. It is worth pointing
out that ambient light optical power induces shot noise at the photodiode. Besides,
when TIA is employed, thermal noise is produced. In fact, if one considers the
ambient noises discussed in Section 2.3, and in this subsection, the overall resulting
noise at the photodiode can be considered white and Gaussian [88].

In some applications, other components, such as optical filters and concentrators
may be coupled to the PD. The function of the optical filter is to attenuate optical
signals whose wavelength differs from the filter. For instance, if one is employing an
RGB LED, three photodiodes may be employed at the receiver, each one of them
selecting the red, green, and blue colors. The objective of the concentrator filter is
to filter in the space domain, increasing the necessity of an alignment between LED
and PD, but it reduces the effect of punctual noise sources, as other LEDs or lamps.

As described during this chapter, the key components of a VLC system may
yield a considerable level of nonlinearity, calling for a nonlinear equalizer. Besides,
as discussed in Section 2.2, the LED exhibits a memory effect due to the depletion
region of its pn junction, demanding for equalizers with memory. In order to address
these two requirements, this work proposes some nonlinear adaptive techniques in
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Figure 2.7: Typical shape of spectral response of photodiodes.

Chapters 3 and 4. In addition, the main components of a VLC system presented
in this chapter serve as background for modeling each element of a computational
platform for a VLC system, which will be presented in Chapter 5. Thus, the per-
formance of the proposed methods can be assessed properly within a VLC scenario
in Chapter 6.
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Chapter 3

Data-Selective Volterra Adaptive
Filters

This chapter proposes the use of the data-selective framework within the context of
Volterra adaptive filters. It starts by describing the concept of adaptive filtering and
the well-known data-selective adaptive algorithms, such as the proportionate version
of the normalized least-mean-squares (NLMS) and the recursive least-squares (RLS).
Adaptive filters adapt their parameter vector according to a given function of the
output error, and are suitable when working with time-variant systems. When these
systems are nonlinear, Volterra series is one of the most popular techniques to cope
with the nonlinearities. However, the main drawback of Volterra-based filters is
the computational burden given the large number of parameters to be updated, as
compared to its linear-in-input counterparts. In order to mitigate this effect, the
set-membership adaptive filtering framework (SMAF) is connected to the Volterra
series, reducing drastically the computational cost by selecting the input data that
indeed brings innovation to the system, avoiding unnecessary updates during the
training process, and keeping, or even enhancing, the original performance.

3.1 Adaptive Filtering

An adaptive filter is a system that can be parameterized by a parameter vector
w ∈ CL×1 of length L ∈ N, which can change depending on the value of a given
function of the output error e[k] , d[k]−y[k], with y[k] = wH [k]x[k], where d[k] ∈ C
represents the desired (or reference) signal, and x[k] ∈ CL×1 is a vector containing
the input signal at the kth iteration. The general configuration of an adaptive
filter is illustrated in Figure 3.1. Adaptive filters are usually employed when the
design specifications of the filter are unknown or time-varying; hence, it updates its
parameter vector employing a reference signal, which depends on the application. In
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a system identification scenario, the objective is to model a unknown system using
an adaptive filter, whose scheme is illustrated in Figure 3.2.

e[k]

d[k]

x[k] Adaptive

Filter

Adaptive

Algorithm

y[k]

Figure 3.1: General configuration of an adaptive filter.

x[k]
e[k]

d[k]

Unknown
System

Adaptive

Filter

Figure 3.2: System identification scheme.

Regarding the channel equalization application, the goal is to mitigate the dis-
tortions that the channel yields by employing an adaptive filter, where the input
signal, delayed by D ∈ N samples, plays the role as reference signal, as shown in
Figure 3.3. It is worth mentioning that other applications, such as signal prediction,
signal enhancement, and echo cancellation are also widely explored in the context
of adaptive filtering [68].

e[k]

d[k]

Adaptive

Filter

x[k]
Channel

z−D

Figure 3.3: Channel equalization scheme.
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3.2 Linear-in-input SMAF

The SMAF technique aims to provide a parameter vectorw such that the magnitude
of the output error is upper bounded by a predefined constant γ̄ ∈ R+, for all
available pairs (x, d). The set of all vectors w satisfying |e| ≤ γ̄ is called feasibility
set [68, 69], denoted as

Θ =
⋂
∀(x, d)

{w : |d−wHx| ≤ γ̄}. (3.1)

In real time applications, a pair (x[k], d[k]) is available at each discrete-time index
k ∈ N. Thus, computing Θ would require an infinitely large memory. Nevertheless,
the set Θ can be assembled in an iterative fashion using only the available data pairs
up to the kth iteration. Considering the constraint set

H[k] = {w : |d[k]−wHx[k]| ≤ γ̄} ⊂ CL, (3.2)

which includes all possible vectors w at the kth iteration whose corresponding error
magnitudes are bounded by γ̄, and a set

Ψ[k] =
k⋂
i=0

H[i], (3.3)

one may recursively estimate Θ, since lim
k→∞

Ψ[k] = Θ.

3.2.1 SM-PNLMS

Some of the most common adaptive algorithms are the least-mean-squares
(LMS) [68, 89] and its normalized version (NLMS) [68] thanks to their computa-
tional simplicity and robustness. These algorithms update their parameter vectors
using the direction indicated by the input vector. However, if the underlying system
can be approximated through a sparse model, it is more efficient to update using
a different direction that can be defined based on the magnitude of the coefficients
of the current parameter vector. The set-membership proportionate-NLMS (SM-
PNLMS) [70, 71] implements this proportional update strategy, besides employing
a data-selective scheme to reduce the computational complexity. This algorithm
updates according to the minimal perturbation principle, described as [71]

w[k + 1] = arg min .
w

‖w −w[k]‖2
G−1[k]

subject to : d[k]−wHx[k] = γ̄ sign{e[k]},
(3.4)
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where G[k] ∈ RL×L is a diagonal weighting matrix. Denoting κ ∈ [0, 1] as a sparse
information factor, one can express the update equation of the lth diagonal entry of
G[k] as [71]

Gll[k] =
1− κµ[k]

L
+
κµ[k]|wl[k]|
‖w[k]‖1

, (3.5)

where wl[k] denotes the lth entry of w[k] and

µ[k] =

1− γ̄
|e[k]| , if |e[k]| > γ̄,

0, otherwise.
(3.6)

After solving the optimization problem described in (3.4), it is possible to express
a feasible update for the SM-PNLMS as

w[k + 1] = w[k] + µ[k]
G[k]x[k]

xH [k]G[k]x[k]
e∗[k]. (3.7)

Then, the vector w[k] updates in the direction of the input vector, but propor-
tionately with the magnitude of each entry of x[k]. In addition, the energy of the
input signal is normalized by the factor xH [k]G[k]x[k]. The derivation of the pre-
vious update equation can be found at Appendix A.1, whereas the pseudo-code of
this technique is described in Appendix B.1. The generalization of this derivation
for the affine projection algorithm [68, 90] can be found in [71].

3.2.2 Modified BEACON

Another popular adaptive algorithm is the recursive least-squares (RLS) [68, 91],
which features fast convergence and good tracking performance when working in
time-varying environments, as compared to LMS-based algorithms. These good
properties are achieved at the expense of computational complexity. In order to
overcome this problem, the authors in [72] proposed a data-selective version of the
RLS, namely the bounding ellipsoidal adaptive constrained least-squares (BEACON)
algorithm, which belongs to the class of optimal bounding ellipsoid (OBE) algo-
rithms [92, 93]. This technique also estimates the feasibility set in (3.2) using an
iterative procedure, though via a different approach. Basically, the main idea is to
enclose the feasibility set at each iteration using an ellipsoid E [k] such that

E [k] ⊃ (E [k − 1] ∩H[k]) ⊃ Ψ[k], (3.8)

where E [k] is an ellipsoid centered at w[k], parameterized by a Hermitian matrix
S[k]. To perform such operation, this algorithm updates according to the following
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cost function:

w[k] = arg min .
w

(
k∑
i=1

λk−i[k]|d[i]−wHx[i]|2
)

subject to : |d[k]−wHx[k]|2 = γ̄2,

(3.9)

where λ[k] plays the role of forgetting factor and it is optimized within the optimiza-
tion process [94]. The a priori error is here defined as e[k] = d[k]−wH [k − 1]x[k].
Thus, the resulting update equations are described as

λ[k] =


1

xH [k]S−1[k−1]x[k]

(
|e[k]|
γ̄
− 1
)
, if |e[k]| > γ̄,

0, otherwise,
(3.10)

with the update equation for S[k] being expressed as

S[k] = S[k − 1] + λ[k]x[k]xH [k]. (3.11)

By making use of the matrix inversion lemma [95], one can rewrite (3.11) and express
the BEACON update equations as

S−1[k] = S−1[k − 1]− λ[k]S−1[k − 1]x[k]xH [k]S−1[k − 1]

1 + λ[k]xH [k]S−1[k − 1]x[k]
, (3.12)

w[k] = w[k − 1] + λ[k]S−1[k]x[k]e∗[k]. (3.13)

The derivation of these update equations can be found at Appendix A.2.
The term λ[k]x[k]xH [k] in (3.11) increases the norm of S[k − 1]. Hence, λ[k]

tends to a large number as xH [k]S−1[k − 1]x[k] tends to zero, leading to numerical
instabilities. In order to cope with this issue, the authors in [73] proposed modifi-
cations in the BEACON recursion. By multiplying both sides of (3.11) by λ−1[k],
results in

λ−1[k]S[k] = λ−1[k]S[k − 1] + x[k]xH [k].

(3.14)

Defining as S̃[k] = λ−1[k]S[k], (3.14) can be rewritten as

S̃[k] = S̃[k − 1] + x[k]xH [k]. (3.15)
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By using the matrix inversion lemma, one can rewrite (3.15) as

S̃−1[k] = λ[k]

(
S̃−1[k − 1]− S̃−1[k]x[k]xH [k]S̃−1[k − 1]

λ−1[k] + xH [k]S̃−1[k − 1]x[k]

)
, (3.16)

w[k] = w[k − 1] + S̃−1[k]x[k]e∗[k], (3.17)

where λ[k] is redefined as

λ[k] =

xH [k]S̃−1[k − 1]x[k] 1

( |e[k]|
γ̄
−1)

, if |e[k]| > γ̄,

0, otherwise.
(3.18)

Thus, the parameter vector w[k] updates in the directions defined by S̃−1[k]. More-
over, when the norm of S−1[k − 1] increases, λ[k] decreases, reducing the norm of
S−1[k]. The modifications imposed on the BEACON generate a feedback mecha-
nism, enhancing the numerical stability of the algorithm. This technique will be
named Modified BEACON (M-BEACON) in this text. In addition, the derivation
of the preceding update equations can be found at Appendix A.3. A pseudo-code
of the M-BEACON technique is described further in Appendix B.2.

3.3 Volterra-Based SMAF

Several practical systems perform nonlinear operations over the inputs to yield the
output (e.g., satellite amplifiers [96], nonlinear controllers [50–53], and visible light
communication systems [97, 98]). By truncating a series expansion of the output as
function of the input signals, one can represent the nonlinear system behavior as a
function of weighted combinations of products of the input samples [63, 68]. The
Volterra scheme performs exactly this task: it applies a nonlinear transformation
to the adaptive filter input in such a way that its output depends on combinations
of input products. In the adaptive Volterra filtering context, the input follows a
Volterra series truncated at the N th order [68], generating the expanded vector
xN [k], with N ∈ N. Considering a memory size of M ∈ N, the N th-order Volterra
input vector can be recursively assembled as

xN [k] = [xTN−1[k] xTN [k] ]T , (3.19)

for N ≥ 2, where the first-order Volterra series input vector x1[k] is described as
x1[k] = [x[k] x[k − 1] · · · x[k −M ] ]T , and each one of the

(
N+M
N

)
entries of xN [k]

is as follows:
x[k −m1]× x[k −m2]× · · · × x[k −mN ] ∈ C, (3.20)

24



for 0 ≤ m1 ≤ m2 ≤ · · · ≤ mN ≤ M . Note that xN [k] does not contain redundant
entries, so that the resulting length L of xN [k] can be expressed as [64]

L =
(M + 1 +N)!

(M + 1)!N !
− 1. (3.21)

Hence, the ratio RL ∈ R+ between the N th-order Volterra and linear-in-input filter
lengths is

RL =
(M + 1 +N)!− (M + 1)!N !

[(M + 2)!− (M + 1)!]N !
. (3.22)

Unlike linear-in-input filters, the length of Volterra filters increases nonlinearly
with the memory size or the order of the series expansion, which may induce a
high computational burden for large memory/order. For instance, for N = 2 and
M = 2, the second-order Volterra input vector length is three times larger than
the length of its linear-in-input counterparts. Therefore, the proposal of this work
relies on employing the data-selective framework in Volterra filters to mitigate the
aforementioned computational burden. Using (3.2), one can employ the N th-order
Volterra input vector to form the new Volterra constraint set, which is described by

HVolterra[k] = {w : |d[k]−wHxN [k]| ≤ γ̄} ⊂ CL. (3.23)

Since the adaptive filter updates only if w[k] /∈ HVolterra[k], the computational
complexity of Volterra adaptive filters can eventually be drastically reduced, as
corroborated by the results in Section 3.4.

The proposed Volterra SM-PNLMS (VSM-PNLMS) and Volterra
M-BEACON (VM-BEACON) filters are obtained by using xN [k] as input
vector in the update equations described in Subsections 3.2.1 and 3.2.2. At this
point, it is worth making a comparison between Volterra and kernel-based filtering
in order to put the contributions of this chapter into a proper perspective. In the
past decade or so, many kernel-based adaptive filters have been proposed. All of
these new nonlinear systems rely on using well-known adaptive algorithms originally
devised to work with linear-in-input systems. The key novelty of kernel-based
filtering is the nonlinear mapping of the input vector into an infinite dimensional
reproducing kernel Hilbert space (RKHS) [56]. Similarly, Volterra-based filtering
also performs a nonlinear mapping of the inputs, but into a finite dimensional
space. In both cases, the expressions of the update equations follow exactly the
expressions originally conceived in the linear-in-input context. However, those
expressions cannot be directly used in kernel-based filtering due to the infinite
dimension of the space where the parameter signal-vector lies, calling for alternative
ways of computing the output signal. Fortunately, this task is greatly simplified
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thanks to the reproducing property inherent to RKHS. Nonetheless, one must, in
principle, store all incoming data inputs or otherwise implement a quantization
rule to artificially limit the storage requirements, which can hinder the use of
kernel-based filtering in online applications. On the other hand, Volterra-based
filtering does not have these drawbacks, for it works in finite dimensional spaces, as
linear-in-input filters do.

Regarding the application of Volterra-based SMAF for system identifi-
cation, the input vector xN [k] is employed so as to produce an output
y[k] = wH [k]xN [k]. Then, the output error is defined as in the linear-in-input case,
but here using the output produced by the Volterra filter.

As for channel equalization, the Volterra filter is employed in the same way
as the system identification case, representing a Volterra feedforward equalization.
Another approach is to employ the Volterra decision-feedback equalization (DFE),
illustrated by Figure 3.4, where the Volterra series may be employed in the inputs
of both feedforward and feedback filters (as shown in the figure), or separately in
each filter input. The adaptive Volterra decision-feedback equalizer works as follows:
during its training period, the pth-order Volterra input vector xFFp [k] is assembled
by using the nonlinear operator Vp(·), whose input is x[k], as shown in Figure 3.4.
Then, xFFp [k] is filtered by the feedforward filter with parameter vector wFF[k]. By
using Vq(·) over the pilot sequence, delayed by D samples, one is able to build the
qth-order Volterra input vector of the feedback filter with parameter vector wFB[k].
Therefore, the output of the DFE can be expressed as

y[k] = wH
FF[k]xFFp [k] + wH

FB[k]xFBq [k]. (3.24)

Thus, defining xDFE[k] = [xTFFp
[k] xTFBq

[k] ]T and wDFE[k] = [wT
FF[k] wT

FB[k] ]T ,
(3.24) can be described in a more compact fashion as

y[k] = wH
DFE[k]xDFE[k]. (3.25)

It is worth mentioning that, after the training period, the selector in Figure 3.4
switches to the detected symbol y̌[k], which is used to assemble the feedback filter
input vector xFBq [k].

Regarding the applications mentioned above, when using Volterra series, the
adaptive filter parameters are accessible, which might be useful to better under-
stand/study the underlying system. For instance, it is possible to analyze the pa-
rameters’ sensitivity with respect to the inputs, or readily verify the model sparsity.
In kernel-based filtering, on the other hand, only the adaptive filter output is ob-
servable and the parameter vector cannot be analyzed directly.
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Figure 3.4: Adaptive Volterra decision-feedback equalizer.

3.4 Performance Evaluation

This section compares the performance of the proposed Volterra SMAF frame-
work using the algorithms described in Subsection 3.2.1 (SM-PNLMS), and Sub-
section 3.2.2 (M-BEACON) with the Volterra PNLMS algorithm proposed in [99],1

and with the Volterra RLS. Although the focus of this work is to present equalization
techniques for VLC systems, the methods described in this chapter are suitable for
a wide range of nonlinear systems. Therefore, the point of this section is to show-
case the performance of the proposed techniques in other setups. The performance
evaluation of the proposed filters within the specific VLC context will be conducted
in Chapter 6.

Regarding the notation of the techniques presented in this chapter, Volterra
PNLMS, Volterra SM-PNLMS, Volterra RLS, and Volterra Modified BEACON al-
gorithms are respectively denoted by V-PNLMS, VSM-PNLMS, V-RLS, and VM-
BEACON. Prior simulations indicated that V-PNLMS outperformed Volterra LMS
and NLMS algorithms in the tested scenarios, since proportionate techniques are
more suitable to work with sparse systems, as those employed in this work and
many other Volterra models. It is worth highlighting that VM-BEACON and RLS
algorithms present the best performance results, however, their computational com-
plexity per update is quadratic with respect to the filter length L, while in VSM-
PNLMS and V-PNLMS cases, it is linear. Therefore, the proposed techniques of
this work will be analyzed considering two benchmarks: VM-BEACON vs. V-RLS
and VSM-PNLMS vs. V-PNLMS. It is worth mentioning that the techniques pro-
posed in this chapter aim to work with most of nonlinear systems, including a VLC
system.

1Here the weighting matrix G[k] is the same as the one employed in the set-membership case,
whose update equation is described in (3.5).
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3.4.1 Simulation Methodology and Figures of Merit

The simulation methodology consists in using the two distinct adaptive techniques
in the applications described in Section 3, viz.:

• Nonlinear system identification: The mean square error (MSE) is assessed
during the training process of the adaptive filters, as well as the convergence
speed, average update rates, and misalignment, as defined in [100].

• Nonlinear channel equalization: After the training period, the adaptive filters
play the role as equalizers, so that their respective bit-error rates (BERs) can
be assessed. Two equalization techniques are exploited in this work:

– Feedforward equalization: Employs the Volterra series in the input vector
of the feedforward filter.

– Decision-feedback equalization: Applies the Volterra series in the input
vector of the filters considering three different scenarios, namely: (i) feed-
forward and feedback filters; (ii) only in feedforward filter; and (iii) only
in feedback filter. The motivation here is to analyze how the Volterra
filter impacts the performance in each equalizer branch.

3.4.2 Simulation Setup

The simulations used 1000 independent runs, a signal-to-noise ratio (SNR) of 30 dB,
and 4-PAM symbols as input signals in both system identification and channel equal-
ization scenarios. In the case of set-membership algorithms, the error threshold was
set to 0.07 for system identification and 0.28 for channel equalization, for those val-
ues represent a good trade-off between steady-state MSE and average update rates.
For both simulations, a step-size of µ = 0.8 was used in V-PNLMS algorithm and
a forgetting factor λ = 0.95 was employed in V-RLS. Regarding proportionate al-
gorithms, κ was set to 0.5. In order to access properly the tracking performance,
two nonlinear Volterra channels [96] were used in both simulation scenarios. These
channels were obtained through experimental data generated by magneto-inductive
heads which exhibits severe nonlinear effects. Mathematically, the channels are
described as

Channel 1:

y[k] = 0.5x[k] + 3x[k − 1] + 5x[k − 2] + 0.3x[k]x[k − 1] + 1.2x[k − 1]x[k − 2].

Channel 2:

y[k] = 2x[k] + 0.2x2[k]− 0.7x2[k − 1] + 0.3x[k]x[k − 1].
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In the system identification case, the adaptive filters were trained during 2000
iterations, in which the first 1000 iterations used Channel 1, whereas the remaining
iterations employed Channel 2. In addition, M = N = 2, which means that the
unknown systems could, in principle, be perfectly modeled. For the channel equal-
ization case, 10000 iterations were used, but here changing the channel at the 5000th

iteration. Regarding these channels, the delay in samples D imposed on the training
sequence wasM+2 andM−1 samples, respectively, whereM is the memory size of
the feedforward filter.2 For BER simulations, 10000 symbols were transmitted and
1000 Monte Carlo runs were performed. The order was N = 2, while the memory
size will be further described.

3.4.3 Results for System Identification

Figure 3.5 shows the MSE and misalignment for V-PNLMS, VSM-PNLMS, V-RLS,
and VM-BEACON techniques. The convergence speed was also evaluated using
the following procedure: considering only the learning curve of Channel 1, it was
assumed the respective algorithm converged at the first iteration where the MSE
falls within the interval centered at the steady-state MSE (time-average MSE from
the 500th up to the 1000th iteration) and of size two times the standard deviation
of the steady-state MSE. Therefore, V-PNLMS, VSM-PNLMS, V-RLS, and VM-
BEACON converged after 145, 282, 137, and 180 iterations, respectively. Regarding
the average update rates, VSM-PNLMS and VM-BEACON updated in 12.88% and
7.50%, respectively.
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Figure 3.5: MSE (a) and misalignment (b) for nonlinear system identification.

2The delay values were chosen based on prior simulations.
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Conclusions of System Identification Simulations

The results presented in Figure 3.5 show that the proposed filters yield better results
than their standard counterparts. With respect to misalignment, VSM-PNLMS and
VM-BEACON display the lowest levels, outperforming V-PNLMS, yet updating
in less than 13% of the iterations in the worst case, showing that the proposed
techniques yield better results with much less computational effort.

3.4.4 Results for Channel Equalization

Regarding feedforward equalization, Figure 3.6 shows the MSE curves considering
the feedforward filter memory MFF ∈ {3, 4}, while Figure 3.7 presents the BER
results. As in the system identification case, VM-BEACON and V-RLS reach the
lowest steady-state MSEs for both MFF values, considering Channel 1. In addition,
the steady-state MSE of VSM-PNLMS is slightly above VM-BEACON’s and V-
RLS’s, but lower than V-PNLMS’s. It is worth mentioning that for MFF lower than
3 the adaptive filters were not capable of equalizing Channel 1 and presented MSE
levels above 10 dB. Table 3.1 illustrates the results for convergence speed, i.e., how
many iterations the respective algorithm needed to reach steady state, and results for
average update rates of the algorithms. The procedure of evaluating the convergence
speed is the same as in Subsection 3.4.3, but now considering the steady-state MSE
from the 4000th up to the 5000th iteration. Regarding the average update rates of
the algorithms, Table 3.1 shows the percentage of iterations in which an update in
the filter coefficients was necessary, i.e., when w[k] /∈ HVolterra[k].
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Figure 3.6: MSE for different memory sizes in the feedforward equalization case.

The following results explore the impact of the memory size of feedforward and
feedback filters in the DFE case. Considering the VSM-PNLMS algorithm, Fig-
ure 3.8 exhibits the average MSEs from the 4000th up to the 5000th iteration em-
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Table 3.1: Iterations until steady state / Average update rates for feedforward equal-
ization.

V-PNLMS VSM-PNLMS V-RLS VM-BEACON
MFF = 3 422 / 100% 648 / 47.59% 53 / 100% 89 / 46.48%
MFF = 4 1006 / 100% 2140 / 40.18% 58 /100% 171 / 30.58%
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Figure 3.7: BER for different memory sizes in the feedforward equalization case.

ploying the Volterra series in both filters (DFE FF & FB in Figure 3.8a), only in
the feedforward filter (DFE FF in Figure 3.8b), and only in the feedback filter (DFE
FB in Figure 3.8c). Similarly, Figure 3.9 shows the results for the VM-BEACON
algorithm. As can be noted from Figs. 3.8 and 3.9, the MSE is more sensitive to
the feedforward than the feedback memory size. For instance, in Figure 3.8b, if
one considers MFF = 4, the steady-state MSE using MFB = 0 is very close to the
one using the MFB = 4. It is important to point out that the DFE FF reaches
very similar values of steady-state MSE to the DFE FF & FB case, yet using a
linear-in-input feedback filter. In the case of DFE FB, the steady-state MSE level
is higher than in the other DFE cases. The smallest memory sizes that achieve the
lowest steady-state MSE levels are MFF = 4 and MFB = 0. These parameter values
are used in the forthcoming simulations to assess the MSE and BER performances
employing the DFE FF structure.

Once again, VM-BEACON and V-RLS achieve the best performance, followed
by VSM-PNLMS, as illustrated by Figure 3.10. The average update rates are 27.78%
and 39.74%, for VM-BEACON and VSM-PLNLS, respectively. Besides, V-PNLMS,
VSM-PNLMS, V-RLS, and VM-BEACON reached the steady state after 2010, 2089,
55, and 177 iterations, respectively.
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Figure 3.8: Steady-state MSE for different memory sizes for VSM-PNLMS.
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Figure 3.9: Steady-state MSE for different memory sizes for VM-BEACON.

Conclusions of Equalization Simulations

Regarding the feedforward equalization MSE results, the proposed techniques
present lower or very similar steady-state MSE as compared to the competing tech-
niques. VM-BEACON and V-RLS achieved the fastest convergence followed by
VSM-PNLMS, but the proposed techniques update in only a fraction of the iter-
ations. It is worth mentioning that VM-BEACON’s average update rate is lower
than VSM-PNLMS’s, but one should note that the computational complexity of
the latter is also lower. With respect to BER results, as indicated by the previous
MSE plots, the proposed filters present very similar or even better results than the
benchmark filters, while also reducing the computational burden.

DFE equalization results show that the MSE is more sensitive to feedforward
than feedback memory size. Moreover, using Volterra series only in the feedforward
filter yields similar results to the case of using Volterra series in both DFE filters,
allowing for computational savings. In addition, using a feedback filter length of 1
yields similar results to the case of employing greater lengths, which indicates that
shorter filters should be employed, while larger lengths should be employed in the
feedforward filters. Moreover, using Volterra series only in the feedback filter leads
to the worst results. By choosing the DFE FF technique and fixing feedforward and
feedback memory sizes, VM-BEACON and V-RLS achieve the best performance
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Figure 3.10: MSE (a) and BER (b) for MFF = 4 and MFB = 0 in the DFE case.

with respect to MSE and BER, followed by VSM-PNLMS; one should note that the
proposed filters present comparable results even though they update in only a small
fraction of the iterations.

The results of Section 4.4 indicate that the computational burden of Volterra
series can be reduced using the set-membership approach. Nonetheless, these tech-
nique disregards the fact that it may be useful to use a threshold γ̄ for the linear
components of w[k], i.e., for the ones which correspond to the first-order kernel of
Volterra series, and employ a different threshold for the nonlinear components of
w[k], which are related to higher orders kernels of the Volterra series. In addition,
in the channel equalization case, it is desirable that the data used to train the adap-
tive filters are as minimum as possible, so as to save bandwidth and increase the
data throughput of the system. The aforementioned topics will be presented and
discussed in Chapter 4.
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Chapter 4

Semi-Blind Data-Selective and
C -Threshold Volterra Adaptive
Filtering

The computational burden associated with the use of Volterra series can be quite
reduced if the data-selective approach proposed in Chapter 3 is employed. Nev-
ertheless, there is still room for improvements, specially considering two practical
requirements in communication system: spectral efficiency and low computational
complexity (power-limited mobile devices impose constraints on computational bur-
den). Therefore, this chapter focuses on tailoring the contributions of Chapter 3 to
meet these demands.

One of the main drawbacks of Volterra series is the computational burden given
the large number of parameters to be updated. In addition, during the training
of adaptive filters that employ such series, the speed of convergence is often slow,
requiring a considerable amount of training data, thereby, reducing the spectral
efficiency. In order to address this issue, one can employ semi-blind data-selective
techniques, which replace the reference signal with a decided version of the output
of the adaptive filter. Through this chapter, these methods are used along with the
techniques presented in Chapter 3.

This chapter also proposes a technique that takes advantage of the structure of
the Volterra series to reduce even more its computational burden. The idea is to em-
ploy a combination of adaptive filters along with partial update algorithms in order
to split the update process according to the kernels of the Volterra series. Higher or-
der kernels present more elements than lower kernels. Therefore, if one assigns larger
error thresholds to the higher order kernels, the update rates of the corresponding
adaptive filters decrease, reducing the overall computational complexity.
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4.1 Semi-Blind Volterra-based SMAF

During the training of the adaptive filters, a reference signal is sent by the transmit-
ter to the receiver until these filters reach their convergence. Nonetheless, depending
on the length of these filters, the speed of convergence may not be so fast, which
would require a large amount of data containing reference signal, decreasing the
spectral efficiency. In the case of Volterra adaptive filtering, as already mentioned,
the long length of the parameter vector is one of the drawbacks of this method.
Therefore, a good approach to enhance the spectral efficiency when using Volterra
series is to connect the semi-blind framework to the data-selective Volterra adaptive
filtering scheme proposed in Chapter 3.

4.1.1 VSBSM-PNLMS

The semi-blind SM-PNLMS (SBSM-PNLMS) for quadrature amplitude modulation
(QAM) was first derived in [76], aiming at achieving a compromise among com-
plexity, speed of convergence, and spectral efficiency. Classic blind equalizers, such
as the family of constant modulus algorithms (CMA), may converge to local mini-
mum and present slow convergence [68]. Besides, as the SBSM-PNLMS technique
employs a data-selective scheme, this method presents lower computational com-
plexity if compared to popular algorithms, e.g., NLMS. The authors in [76] show
that SBSM-PNLMS algorithm is a generalization of the SM-PNLMS. Connecting
the ideas in [76] with the ideas of Chapter 3, we propose the Volterra SBSM-PNLMS
(VSBSM-PNLMS) filter, whose coefficients are updated according to a modified ver-
sion of (3.4), as follows

w[k + 1] = arg min .
w

‖w −w[k]‖2
G−1[k]

subject to : ‖d[k]−wHxN [k]− γ̄ sign∞{e[k]}‖∞ = 0,
(4.1)

where sign∞{e[k]} is defined as

sign∞{e[k]} =


e[k]
‖e[k]‖∞ , if e[k] 6= 0,

0, otherwise,
(4.2)

where ‖ · ‖∞ stands for the infinite-norm. It is worth mentioning that when working
with complex values, they are here interpreted as points in R2. Thus, the formulation
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considers that, if z = zreal + jzimag ∈ C, then

‖z‖∞ = ‖zreal + jzimag‖∞
= ‖(zreal, zimag)‖∞,

= max{|zreal|, |zimag|}. (4.3)

In the unsupervised period, the only adjustment to be made is to replace d[k] with
b[k] = dec{y[k]}, where dec{·} stands for a symbol decision operator. The update
equations related to (4.1) are derived in Appendix A.4.

The authors in [76] proposed the following update rules: during the supervised
period, an update is necessary if the equalized symbol y[k] = wH [k]xN [k] is out of
the hard-decision region of the employed constellation, e.g., quadrature and pulse
amplitude modulations, and if, in the unsupervised period, y[k] is out of the afore-
mentioned hard-decision region. One should note, that in the latter case, the refer-
ence signal is b[k] = dec{y[k]}. Regarding the hard-decision region, strictly speaking,
it represents a neighborhood of a valid symbol for the reference signal. Considering
the supervised and unsupervised periods, an update is required if

‖d[k]− y[k]‖∞ > γ̄ (Supervised period), (4.4)

‖b[k]− y[k]‖∞ > γ̄ (Unsupervised period). (4.5)

Thus, defining eb[k] = b[k]− y[k], one can modify (3.6) as follows:

µ[k] =


1− γ̄

‖e[k]‖∞ , if ‖e[k]‖∞ > γ̄,

1− γ̄
‖eb[k]‖∞ , if ‖eb[k]‖∞ > γ̄,

0, otherwise.

(4.6)

Hence,

w[k + 1] =

w[k] + µ[k] G[k]xN [k]

xHN [k]G[k]xN [k]
e∗[k] (Supervised period),

w[k] + µ[k] G[k]xN [k]

xHN [k]G[k]xN [k]
e∗b[k] (Unsupervised period).

(4.7)

It is worth mentioning that the generalization for the affine projection algorithm
can be found in [76]. For better understanding, the pseudo-code of this technique is
described in Appendix B.3.

4.1.2 VSB Modified BEACON

The M-BEACON algorithm can also be adjusted to work in a semi-blind fashion.
As in the VSBSM-PNLMS’s case, the infinite-norm takes place on the constraint of
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the cost function of this technique, which is described by modifying (3.9) as

w[k] = arg min .
w

(
k∑
i=1

λk−i[k]|d[i]−wHx[i]|2
)

subject to : ‖d[k]−wHx[k]|2 − γ̄2‖∞ = 0.

(4.8)

Then, one can express the update equations for this technique as

λ[k] =


xHN [k]S̃−1[k]xN [k] 1

( ‖e[k]‖∞
γ̄

−1)
, if ‖e[k]‖∞ > γ̄,

xHN [k]S̃−1[k]xN [k] 1(
‖eb[k]‖∞

γ̄
−1

) , if ‖eb[k]‖∞ > γ̄,

0, otherwise,

(4.9)

yielding the update equations during supervised and unsupervised periods as

w[k] =

w[k − 1] + S̃−1[k]xN [k]e∗[k], (Supervised period),

w[k − 1] + S̃−1[k]xN [k]e∗b[k]. (Unsupervised period).
(4.10)

The resulting filter will be named Volterra semi-blind M-BEACON (VSBM-
BEACON). One should note that the a priori error during the supervised period
is defined here as e[k] = wH [k − 1]x[k]. Hence, in the unsupervised period, as
the reference signal d[k] is replaced by b[k], the error eb[k] is defined as eb[k] =

b[k]−wH [k−1]x[k]. In Appendix B.4, the pseudo-code of this technique is detailed.

4.1.3 From Supervised to Blind Training

A question that may rise is how to define the iteration in which the decided output of
the adaptive filter will play the role as reference signal. In case of an early switch, i.e.,
the unsupervised period starts when the adaptive filter is far from its convergence,
it may interrupt the learning of the filter and lead to a high steady-state MSE level.
On the other hand, if a late switch occurs, a large quantity of reference signal would
be unnecessarily employed. In order to find a good compromise between steady-state
MSE level and amount of reference signal, it is proposed a rule based on the sample
median of eSB = [ |e[k − 1]| |e[k − 2]| · · · |e[k − LSB − 1]| ]T , LSB ∈ N. Therefore,
the unsupervised period starts at the first iteration that satisfies

M [eSB] < γ̄SB, (4.11)

where M [·] represents the sample median operator and γ̄SB ∈ R+. Regarding the
threshold γ̄SB, it is possible to set it according to the constellation employed in
the system. Considering a standard 4-PAM constellation, the width of the decision
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region is two. Therefore, the aforementioned threshold can be set to a fraction of
this width, i.e., γ̄SB = 2η, where η ∈ [0, 1] is a threshold that controls the width of
the sub-region area within the decision region, as illustrated by Figure 4.1. Thus, if
M [eSB] falls within the regions defined by η, the unsupervised period takes place.

�3 �� � 3

�

Figure 4.1: 4-PAM decision regions and the subregion defined by η.

4.2 C -Threshold Volterra-based SMAF

The results of Chapter 3 indicated that the computational complexity of Volterra
series can be remarkably reduced. Nonetheless, these results can be further improved
by analyzing the intrinsic structure of the Volterra series. Indeed, it is possible to
employ a data-selective adaptive filter to update separately the elements of each
kernel of the Volterra series,1, resulting in C ∈ N adaptive filters with parameter
vectors wc[k] ∈ RL, c ∈ {1, · · · , C}, and memory size M , where the cth filter only
updates

(
M+c
c

)
elements, via a partial-update approach [68, 101]. Each of these filters

update more elements as the order of the kernels increases. Then, by assigning larger
error thresholds to these filters, one can reduce their update rates, thus reducing
the overall computational complexity. In the end, the parameter vector w[k + 1] is
assembled by combining all wc[k + 1].

Regarding the partial-update scheme, such method is employed when the com-
putational complexity needs to be managed. In applications where a high number of
parameters to be updated is involved, such as Volterra filters and echo cancellation,
given the computational complexity constraint, a good approach would be to update
only part of the parameters at each iteration. The partial-update scheme may be
presented considering two branches: (i) fixed partial update, for which a predefined
number of parameters is updated at every iteration; (ii) variable partial update, for
which the number of parameters can vary. These schemes are performed by using
a diagonal matrix U[k] ∈ NL×L, whose diagonal elements are “1” or “0”. Thus,

1The elements of the kernels are related to the order of the product of the terms of the Volterra
series. For example, the second-order kernel is assembled by elements corresponding to the second-
order products of the Volterra series, while the third-order kernel is formed by the third-order
products, and so on.
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the lth element of wc[k] is updated at the kth iteration if Ull[k] = 1. By using this
technique in the SM-PNLMS algorithm, it results in the SM-partial-update-PNLMS
(SM-PUPNLMS), which updates according to the following cost function:

w[k + 1] = arg min .
w

‖w −w[k]‖2
G−1[k]

subject to : d[k]−wHx[k]− γ̄ sign{e[k]} = 0

Ũ[k](w −w[k]) = 0L,

(4.12)

where Ũ[k] = I−U[k] represents the complementary matrix of U[k], used to ensure
that Ũ[k]w = Ũ[k]w[k], and 0L represents a vector of zeros with dimension L. After
solving the optimization problem described in (4.12), one can express the update
equations for this technique as

w[k + 1] = w[k] + µ[k]
U[k]G[k]x[k]

xH [k]U[k]G[k]x[k]
e∗[k], (4.13)

whose update equations for µ[k] and G[k] are identical to the SM-PNLMS case, de-
scribed in (3.5) and (3.6), respectively. In addition, w[k] is updated in the direction
of the selected entries of G[k]x[k], whose selection is performed by U[k].

With respect to the combination of adaptive filters, their main purpose is to
associate the most noticeable characteristics of each filter to reach a desirable ef-
fect [74, 75]. For instance, one can combine the parameter vectors of two LMS
filters with different step-sizes to reach a lower MSE steady state, even with a fast
convergence speed, which could be very hard to achieve using only one LMS filter.
Considering C filters, one can define the output and error of the cth filter as

yc[k] = wH
c [k]xN [k], (4.14)

ec[k] = d[k]− yc[k]. (4.15)

Therefore, the overall output y[k], the output error e[k], and the parameter vector
w[k + 1] are given by

y[k] = σ1[k]y1[k] + σ2[k]y2[k] + · · ·+ σC [k]yC [k], (4.16)

e[k] = σ1[k]e1[k] + σ2[k]e2[k] + · · ·+ σC [k]eC [k], (4.17)

w[k + 1] = σ1[k]w1[k + 1] + σ2[k]w2[k + 1] + · · ·+ σC [k]wC [k + 1], (4.18)

where σc ∈ R represents the combination parameter. The updating process occurs
as follows: first, the parameter vectors wc[k],∀c ∈ {1, · · · , C}, update according to
a given adaptive algorithm, e.g., LMS or PNLMS. Then, these parameter vectors are
combined by a combination layer, which ponders the parameter vectors according
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to a given rule, thus assembling the parameter vector w[k + 1]. Regarding the
combination schemes, two techniques are the most popular, viz.: convex and affine
combinations [74]. Considering the former, σc[k] must also satisfy

∑C
c=1 σc[k] = 1.

In the latter case, σc[k] is constrained to be any real number.
In addition to the combination of the parameter vectors of the C adaptive filters,

it is possible to perform a weight transfer scheme among all vectors wc[k], or even
a periodical feedback of w[k + 1] to the other parameter vectors, i.e., after building
w[k + 1], this vector overwrites wc[k + 1],∀c ∈ {1, · · · , C}, at iterations k = k0K

for some k0 ∈ N and for a given K ∈ N. Since this combination scheme better
fits with our proposal, this technique will be used in this work; further details can
be found in [102, 103]. Therefore, Figure 4.2 illustrates the generalized topology of
the combination of C filters with the feedback process, where the combination layer
performs the operation described in (4.16). Then, considering that the cth filter
updates according to the SM-PNLMS algorithm, one can describe the lth diagonal
entry of Gc[k] as

Gc,ll[k] =
1− κcµc[k]

L
+
κcµc[k]|wc,l[k]|
‖wc[k]‖1

, (4.19)

where wc,l[k] denotes the lth entry of wc[k] and

µc[k] =

1− γ̄c
|ec[k]| , if |ec[k]| > γ̄,

0, otherwise.
(4.20)

Therefore, the update equation of the wc[k] is described as

wc[k + 1] = wc[k] + µc[k]
Gc[k]xN [k]

xHN [k]Gc[k]xN [k]
e∗c [k]. (4.21)

Nonetheless, if one considers a scheme which continuously feedbacks w[k + 1],
i.e., for K = 1, the output of the C filters are the same at every iteration, as well
the output errors. Hence, no update equation for σc[k] is required; besides, the
evaluation of the errors ec[k] are not necessary. Then, by connecting the partial-
update scheme to the idea of combinations of filters, one can assign a filter for
each kernel of the Volterra series, and update its elements separately from the other
kernels. Therefore, by assigning the largest error thresholds for those filters which
update the kernels of higher orders, it averts unnecessary updates on filters which
update the lower order kernels. Indeed, higher order kernels lead to more elements.
Therefore, it is more efficient, from the computational burden point of view, to avoid
their updates. Thus, the filters assigned to update higher kernels are treated more
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Figure 4.2: Generic topology of the combination of C adaptive filters.

leniently. It is possible to define the following matrices

U1 = diag
(
[1TM+1 0

T
L−M−1 ]

)
,

U2 = diag
(
[0TM+1 1

T
L2

0TL−L2−M−1 ]
)
,

...

UC−1 = diag
(

[0TL−LN−1−LN 1TLN−1
0TLN ]

)
,

UC = diag
(
[0TL−LN 1TLN ]

)
, (4.22)

where L denotes the total length of the parameter vector, as described in (3.21),
and LN =

(
N+M
N

)
. Then, wc[k] is updated as

wc[k + 1] = wc[k] + µc[k]
UcGc[k]xN [k]

xHN [k]UcGc[k]xN [k]
e∗[k]. (4.23)

By using (4.18), one can assemble the vector w[k + 1]. Since the focus of this
work is to propose nonlinear equalizers for VLC systems, rarely an order of the
Volterra series higher than two is needed. Therefore, we restrict the use of the C-
threshold technique to the second-order Volterra series. Hence, this technique will be
named Volterra double-threshold SM-PNLMS (VDTSM-PNLMS). Nevertheless, the
proposed method is suitable for other types of nonlinear systems, which may demand
higher orders. For the sake of simplicity, the C-threshold technique is presented in
a decision-feedback equalization scenario where the second-order Volterra series is
employed in both feedforward and feedback filters. In this case, the elements ofw1[k]
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and w2[k] correspond to the first- and second-order kernels of the Volterra series,
respectively. These vectors are here denoted as wDFE1 [k] and wDFE2 [k], respectively.
In the same manner, the matrices U1 and U2 are denoted as UDFE1 [k] and UDFE2 [k],
and described as

UDFE1 = diag
(

[1TMFF+1 0
T
LFF−MFF−1

1TMFB+1 0
T
LFB−MFB−1 ]T

)
, (4.24)

UDFE2 = diag
(

[0TMFF+1 1
T
LFF−MFF−1

0TMFB+1 1
T
LFB−MFB−1 ]T

)
, (4.25)

where LFF = (MFF+1+2)!
(MFF+1)!2!

−1 represents the length of the feedforward parameter vector
with memory-size of MFF. Analogously, LFB denotes the length of the feedback
parameter vector, with MFB being the memory-size of the feedback counterpart.
Since the equations for UDFE1 and UDFE2 are presented, by using xDFE[k] as input
vector (see Section 3.3 for the definition of xDFE[k]), one can update wc[k] as follows:

wc[k + 1] = wc[k] + µc[k]
UDFEcGc[k]xN [k]

xHN [k]UDFEcGc[k]xN [k]
e∗[k]. (4.26)

Therefore, by assuming a convex combination scheme, one can rewrite (4.18) for
the case of two filters as

w[k + 1] = σw1[k + 1] + (1− σ)w2[k + 1], (4.27)

where σ ∈ {0, 1} is the convex combination parameter.

4.2.1 Computational Efficiency of Volterra Double-Threshold

Algorithm

For the sake of simplicity, consider again a second-order Volterra filter. Unlike the
Volterra SM-PNLMS technique proposed in Chapter 3, we need now two parame-
ters to characterize the update rates related to the double-threshold method, since
the parameter vectors w1[k] and w2[k] may update separately. Therefore, it lacks
a figure of merit capable of comparing the computational complexity of these tech-
niques. Then, in this subsection, a figure of merit which considers the number of
updated elements that each technique provides is described, as well as the condition
that must be satisfied in order to state which technique is more efficient.

Considering γ̄1 < γ̄2, if e[k] > γ̄2, both w1[k] and w2[k] are updated. Hence,
M + 1 elements are updated in w1[k], and

(
M+2

2

)
elements are updated in w2[k],

totaling L elements.2 In the case of γ̄1 < e[k] < γ̄2, i.e., when only w1[k] updates,
2Despite the sum of number of elements of w1[k] and w2[k] is 2L, due to the partial-update

technique, only L elements are actually updated in this case.
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just L1 = M + 1 elements are updated. Therefore, considering double-threshold
algorithms, and defining as ν1 and ν2 the update rates of w1[k] and w2[k], respec-
tively, one can express the average number of updated elements (NUE) per run of
training of the adaptive filter as

NUEDT =
(ν1L1 + ν2L)Nit

100
, (4.28)

where Nit represents the number of iterations. In the case of the VSM-PNLMS
technique, the average NUE can be written as

NUE =
ν × L× Nit

100
, (4.29)

where ν stands for the update rate of standard Volterra-based algorithms. Then,
the proposed double-threshold algorithm is more efficient than VSM-PNLMS if
NUEDT < NUE, i.e.,

(ν1L1 + ν2L)Nit

100
<
ν × L× Nit

100

ν1(M + 1) + ν2

[
(M + 1)2 + 3(M + 1)

2

]
< ν

[
(M + 1)2 + 3(M + 1)

2

]
, (4.30)

(4.31)

leading to

M >
2ν1

ν − ν2

− 4, for ν > ν2. (4.32)

Considering ν ≤ ν2, NUEDT is always larger than NUE for any value of ν1. Hence,
VDTSM-PNLMS is less efficient in this case.

In the DFE case, due to the memory of the feedback filter, the length L1 increases
to L1 = MFF + 1 + MFB + 1, where MFF and MFB stand for the feedforward and
feedback memories, respectively. In addition, L depends on which filters the Volterra
series is employed. Hence, the three possible values for L are

1. Volterra series in feedforward and feedback filters: L = (MFF+1)2+3(MFF+1)
2

+
(MFB+1)2+3(MFB+1)

2
,

2. Volterra series only in feedforward filter: L = (MFF+1)2+3(MFF+1)
2

+MFB + 1,

3. Volterra series only in feedback filter: L = (MFB+1)2+3(MFB+1)
2

+MFF + 1.

Therefore, the proposed Volterra double-threshold algorithm is more efficient
if (4.30) is satisfied.
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4.3 Semi-blind C-Threshold Volterra-based SMAF

It is also possible to join the C-threshold technique described in Section 4.2 with
the one presented in Section 4.1 to achieve further reduction of computational com-
plexity and higher spectral efficiency. Therefore, one can write the update equations
of Volterra semi-blind double-threshold SM-PNLMS (VSBDTSM-PNLMS) method
by modifying (4.23) and (4.7) as

wc[k + 1] =

wc[k] + µc[k] UcGc[k]xN [k]

xHN [k]UcGc[k]xN [k])
e∗c [k] (Supervised period),

wc[k] + µc[k] UcGc[k]xN [k]

xHN [k]UcGc[k]xN [k]
e∗cb [k] (Unsupervised period),

(4.33)

where

µc[k] =


1− γ̄

‖ec[k]‖∞ , if ‖ec[k]‖∞ > γ̄c,

1− γ̄
‖ecb [k]‖∞ , if ‖ecb [k]‖∞ > γ̄c,

0, otherwise,

(4.34)

with ecb [k] representing the output error of the cth filter during the unsupervised
period. Then, w[k + 1] is assessed by using (4.27). After that, this vector is fed
back to wc[k + 1], c ∈ {1, · · · , C}. Note that these steps are identical to the ones
presented in Section 4.2, with the difference that now one must consider the use of
the infinite-norm over ec[k] or ecb [k] in order to form µc[k] and wc[k+1]. In order to
clarify the implementation of this technique, Appendix B.6 describes it in the form
of pseudo-code.

4.4 Performance Evaluation

This section assesses the performance of the proposed techniques described in Sec-
tion 4.2 and Section 4.1. Considering for all algorithms presented here the use of
the second-order Volterra series, the VDTSM-PNLMS algorithm will be compared
with the VSM-PNLMS technique in both system identification and equalization
scenarios. After that, the results considering the techniques described in Subsec-
tion 4.1.1 (VSBSM-PNLMS), Subsection 4.1.1 (VSBM-BEACON), and Section 4.3
(VDTSBSM-PNLMS) will be presented. As in Chapter 3, the techniques proposed
in this chapter are suitable for a wide range of nonlinear systems. Therefore, the
results described here show the performance of the techniques in a generic fashion.
Chapter 6 contains results for a VLC scenario.
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4.4.1 Simulation Methodology and Figures of Merit

The simulation methodology of this chapter is similar to the one presented in Subsec-
tion 3.4.1. Regarding the figures of merit, the main differences are the ones included
to analyze the results of the techniques proposed in this chapter, viz.:

• Double-threshold algorithms: MSE and BER are assessed using different val-
ues of error threshold γ̄2. Moreover, as the filters w1[k] and w2[k] may update
separately, their update rates are also appraised independently. Hence, the
update rates of w1[k] and w2[k] are denoted as ν1 and ν2, respectively. In
addition, the NUE of each filter is displayed, in order to correctly analyze the
computational complexity.

• Semi-blind algorithms: MSE and BER are evaluated for distinct values of η.
Besides, the average iteration in which the unsupervised period starts is also
assessed (named Blind iteration), as well as the update rate during supervised
and unsupervised periods, represented by νSP and νBP, and the overall update
rate. Regarding the Blind iteration, it represents the average iteration in which
the unsupervised period started, considering all independent runs, which also
indicates the number of symbols employed to train the adaptive filters, in
average; one should note, however, that the average iteration is evaluated
disregarding the runs in which the unsupervised period could not be reached,
i.e., when the Blind iteration was not defined.

• Semi-blind double-threshold algorithm: MSE and BER are evaluated for dis-
tinct values of threshold η and γ̄2. As in the other semi-blind techniques, the
Blind iteration is also assessed, as well as the update rates for both w1[k] and
w2[k] during supervised and unsupervised periods, represented by νSP1 , νBP1 ,
νSP2 , and νBP2 .

Table 4.1 summarizes the parameters of the techniques used in the simulations,
as well as figures of merit assessed from the results.

4.4.2 Simulation Setup

The simulation setup employed here is quite similar to the one presented in Subsec-
tion 3.4.2. Considering the semi-blind techniques, the nonlinear system employed
was Channel 1 (see 3.4.2), since all the results described in Chapter 3 are based on
it. In addition, the only purpose of Channel 2 is to access the tracking performance
of Volterra-based filters, which was thoroughly performed in the preceding chapter.
Regarding proportionate algorithms, κ1 and κ2 were set to 0.5. Considering double-
threshold algorithms, the error threshold γ̄1 was set to 0.07 for system identification
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Table 4.1: Description of parameters and figures of merit.

Description
γ̄1 Error threshold for w1[k]
γ̄2 Error threshold for w2[k]
η Threshold used to indicate when unsupervised period starts

Blind iteration Mean iteration in which the unsupervised period started
νSP1 Update rate of w1[k] during supervised period
νSP2 Update rate of w2[k] during supervised period
νBP1 Update rate of w1[k] during unsupervised period
νBP2 Update rate of w2[k] during unsupervised period

and 0.28 for channel equalization, whereas γ̄2 was set from γ̄2 = γ̄1 to γ̄2 = 4γ̄1 using
an interval of 0.5. This variation of γ̄2 was performed in order to better understand
the relation between update rate as a function of the value of γ̄2, as well as the
resulting steady-state MSE and BER. Besides, the combination parameter σ was
chosen as 0.5.

Regarding semi-blind and semi-blind double-threshold algorithms, the feedfor-
ward memory MFF was increased to 8 in order to analyze properly the semi-blind
characteristics of the techniques. Prior simulations indicated that when a memory-
size in the feedforward filter of 4 was employed (as in the results of Chapter 3 and in
the results of double-threshold-based algorithms of this chapter), the MSE curve of
semi-blind algorithms presented a forgetting effect, i.e., after reaching a low steady-
state MSE level, this MSE level monotonically increased. It is worth highlighting
that the delay imposed during the training of the adaptive filters were the same
employed in Subsection 3.4.2.

4.4.3 Results for System Identification

Figure 4.3 shows the MSE and misalignment for VDTSM-PNLMS algorithm. The
figure of merit chosen to define when the adaptive filter had converged is the same
employed in Subsection 3.4.3, viz.: considering only Channel 1, the algorithm con-
verges at the first iteration where the MSE falls within the interval centered at the
steady-state MSE, defined as the time average MSE from the 500th up to the 1000th

iteration, and of size two times the standard deviation of these steady-state MSE.
Then, the convergence iteration for various values of γ̄2 is described in Table 4.2.
Regarding the update rates and NUE results, they are shown also in Table 4.2 and
Figure 4.4, respectively.
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Figure 4.3: MSE (a) and misalignment (b) for VDTSM-PNLMS algorithm.

Table 4.2: Iterations until convergence and update rates for VDTSM-PNLMS algo-
rithm using different thresholds γ̄2.

Convergence iteration ν1 ν2

γ̄2 = γ̄1 356 0% 14.02%
γ̄2 = 1.5γ̄1 419 11.81% 10.85%
γ̄2 = 2γ̄1 380 24.55% 9.79%
γ̄2 = 2.5γ̄1 367 35.18% 9.00%
γ̄2 = 3γ̄1 346 42.57% 8.47 %
γ̄2 = 3.5γ̄1 361 48.33% 7.98 %
γ̄2 = 4γ̄1 365 52.52% 7.61 %

Conclusions of System Identification Simulations

The results presented in Figure 4.3 show that the steady-state MSE and misalign-
ment levels increase as γ̄2 grows. As expected, the update rate ν2 decreases when
γ2 increases, but also leads to an increasing in the update rate ν1. In addition,
by analyzing Figure 4.4, where the red horizontal line indicates NUES, one is able
say that VDTSM-PNLMS was less efficient than VSM-PNLMS. This is due to the
fact that for all values of γ̄2 employed, none of them satisfied (4.32). Nonetheless,
the result for γ̄1 = γ̄2 present similar steady-state MSE and misalignment if com-
pared to VSM-PNLMS’s, reducing the computational burden of Volterra series. The
forthcoming results assess the performance of the proposed Volterra techniques in
an equalization scenario.

4.4.4 Equalization Results for VDTSM-PNLMS Algorithm

Regarding feedforward equalization. Figure 4.5 and 4.6 show the MSE and BER
results for MFF ∈ {3, 4}, and employing different values of γ̄2. Considering only
Channel 1, the convergence speed was evaluated using the same procedure of Subsec-
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Figure 4.4: NUE for VDTSM-PNLMS algorithm using different values of γ̄2. The
red line indicates the number of updated elements in the VSM-PNLMS case.

tion 3.4.4, whose results are illustrated by Table 4.3 for different thresholds γ̄2. Re-
garding the update rates ν1 and ν2, the results using VDTSM-PNLMS algorithm are
also displayed in Table 4.3, and NUE results are displayed in Figure 4.7, where the
blue and red horizontal lines represent the VSM-PNLMS’s NUE for MFF ∈ {3, 4},
respectively.
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(a) MFF = 3. (b) MFF = 4.

Figure 4.5: MSE for different memory sizes in the feedforward equalization case for
VDTSM-PNLMS algorithm.

Considering a decision-feedback equalization scenario, where Volterra series is
employed only in the feedforward filter, Figure 4.8 shows the MSE and BER results
for VDTSM-PNLMS algorithm using MFF = 4 and MFB = 0, as in the VSM-
PNLMS case. Table 4.4 exhibits the convergence iteration and update rates, whereas
Figure 4.9 shows the total updated elements in a single run of the VDTSM-PNLMS
technique.
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Figure 4.6: BER for different memory sizes in the feedforward equalization case for
VDTSM-PNLMS algorithm.

Table 4.3: Iterations until convergence and update rates for MFF = 3/MFF = 4.

Convergence iteration ν1 ν2

γ̄2 = γ̄1 145 / 432 0 / 0% 43.95 / 28.55%
γ̄2 = 1.5γ̄1 267 / 846 18.57 / 16.47% 24.01 / 13.92%
γ̄2 = 2γ̄1 391 / 1490 30.83 / 28.17% 12.55 / 8.04%
γ̄2 = 2.5γ̄1 731 / 1419 38.79 / 37.06% 6.70 / 5.04%
γ̄2 = 3γ̄1 1043 / 1256 44.36 / 42.87% 3.83 / 3.24%
γ̄2 = 3.5γ̄1 868 / 1029 48.55 / 46.56% 2.35 / 2.15%
γ̄2 = 4γ̄1 913 / 1253 51.32 / 49.08% 1.53 / 1.49%
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Figure 4.7: NUE for VDTSM-PNLMS algorithm in the feedforward equalization
case using different values of γ̄2. The blue and red lines represent the NUE in
VSM-PNLMS case for MFF = 3 and MFF = 3, respectively.
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Figure 4.8: MSE (a) and BER (b) for MFF = 4 and MFB = 0 using different
thresholds γ̄2 in the DFE case for VDTSM-PNLMS.

Table 4.4: Iterations until convergence and update rates for MFF = 4 and MFB = 0.

Convergence iteration ν1 ν2

γ̄2 = γ̄1 378 0% 27.96%
γ̄2 = 1.5γ̄1 974 16.49% 13.47%
γ̄2 = 2γ̄1 1355 28.27% 7.69%
γ̄2 = 2.5γ̄1 1531 37.10% 4.78%
γ̄2 = 3γ̄1 1217 42.62% 3.03%
γ̄2 = 3.5γ̄1 1296 46.34% 2.03%
γ̄2 = 4γ̄1 1178 48.72% 1.41%
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Figure 4.9: NUE for VDTSM-PNLMS algorithm in the DFE equalization case using
different values of γ̄2. The red line represents the NUE in the VSM-PNLMS case.

Conclusions of VDTSM-PNLMS Channel Equalization Simulations

Regarding feedforward equalization results, Figures 4.6(a) and 4.6(b) indicate that
for all values of γ̄2 employed, the resulting BERs are satisfactory for an SNR of
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30 dB, specially using γ̄2 = {2, 2.5} × γ̄1, which lead to the lowest BERs in both
Figures 4.6(a) and 4.6(b). Indeed, by using γ̄2 = 2γ̄1, a BER of 1.36 × 10−4 was
achieved for SNR = 30 dB and MFF = 4, which is better than the result of VSM-
PNLMS, and with a number of updated elements of 37.54% of VSM-PNLMS’s,
which is an enormous reduction in the computational complexity, yet enhancing
the results in terms of BER. In addition, the speed of convergence of the double-
threshold technique is almost 40% faster than VSM-PNLMS (1355 of convergence
iteration against 2140, which indicates that this method outperforms the results of
VSM-PNLMS considering the four figures of merit assessed in this chapter: MSE,
BER, speed of convergence and average number of updated elements.

DFE equalization results show, once again, that all values of γ̄2 yield satisfactory
BER results, with γ̄2 = {2, 2.5} × γ̄1 leading to the lowest BER, as depicted in Fig-
ure 4.8(b). One should note that, this result once again outperforms VSM-PNLMS,
besides being quite similar to VM-BEACON’s, despite its quadratic complexity per
update. Once more, considering γ̄2 = 2γ̄1, the NUE of VDTSM-PNLMS was only
a fraction of VSM-PNLMS’s, reducing drastically the computational burden associ-
ated with Volterra series, while improving the results in terms of BER.

4.4.5 Results for VSBSM-PNLMS and VSBM-BEACON Al-

gorithms

The MSE and BER results of feedforward equalization using these techniques are
illustrated by Figures 4.10(a) and (b), in which the performance of the algorithms
VSBSM-PNLMS and VSBM-BEACON are compared. Regarding the update rates
and Blind iteration, the results are shown in Table 4.5. Now considering a DFE
equalization scheme, Figure 4.10(a) displays MSE results, while Figure 4.10(b) shows
BER results. Table 4.6 depicts the Blind iteration results and update rates for both
VSBSM-PNLMS and VSBM-BEACON techniques.

Table 4.5: Average number of iterations until unsupervised period and update rates
for VSBSM-PNLMS / VSBM-BEACON in the feedforward case.

η = 0.1 η = 0.2 η = 0.3
Blind iteration 3367 / 459 1172 / 313 754 / 273

νSP 63.59 / 63.56% 79.66 / 78.01% 84.33 / 82.69%
νBP 40.19 / 30.60% 68.80 / 37.43% 71.17 / 49.98%

Overall update rate 51.32 / 32.48% 70.53 / 38.89% 72.47 / 50.97%
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Figure 4.10: MSE (a) and BER (b) for MFF = 8 using different thresholds γ̄2 in the
feedforward case for VSBSM-PNLMS and VSBM-BEACON.
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Figure 4.11: MSE (a) and BER (b) for MFF = 8 using different thresholds γ̄2 in the
DFE case for VSBSM-PNLMS and VSBM-BEACON.

Table 4.6: Average number of iterations until unsupervised period and update rates
for VSBSM-PNLMS / VSBM-BEACON in the DFE case.

η = 0.1 η = 0.2 η = 0.3
Blind iteration 3339 / 447 1159 / 310 760 / 272

νSP 63.47 / 63.74% 79.76 / 77.94% 84.27 / 82.58%
νBP 43.46 / 26.54% 68.67 / 33.16% 70.88 / 44.41%

Overall update rate 56.74 / 29.43% 71.13 / 35.39% 72.77 / 46.02%

Conclusions of VSBSM-PNLMS and VSBM-BEACON Simulations

Considering the feedforward approach, it is possible to assert that the results of
VSBM-BEACON reaches the lowest steady-state MSE level and BER, outperform-
ing VSBSM-PNLMS’s results. As mentioned before, one should take into consider-
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ation that the complexity of VSBM-BEACON is quadratic in L, while it is linear in
the VSBSM-PNLMS case. Considering η = 0.1, VSBSM-PNLMS employed , in av-
erage, 3339 symbols during training, while VSBM-BEACON used only 447 symbols,
saving nearly 95% of the amount of training data, which represent huge bandwidth
savings. For η ∈ {0.2, 0.3}, both algorithms do not present good BER results, possi-
bly due to early switch from supervised period to unsupervised period. Nonetheless,
considering the results for the Volterra semi-blind M-BEACON for η = 0.1 and
SNR = 30 dB, it was reached a level of BER quite similar to VM-BEACON case,
which is, for sure, encouraging results, because a reduction of more than 80% of the
amount of training data was achieved, with a technical draw regarding the update
rates (29.43% vs. 30.58%).

By analyzing DFE results, the same conclusions of the feedforward case can be
applied to this one, which indicates that in both equalization branches there were
improvements when using the data-selective semi-blind approach. Nonetheless, it is
worth pointing out that for η = 0.1 and using VSBM-BEACON, the BER for an
SNR = 30 dB is slightly lower than in feedforward case.

4.4.6 Results for VSBDTSM-PNLMS Algorithms

The following results explore the impact of the thresholds γ̄2 and η on both feed-
forward and DFE equalization cases when using the Volterra semi-blind double-
threshold SM-PNLMS algorithm. Figure 4.12 shows the average MSE from the
6000th up to the 7000th iteration for diverse values of η and γ̄2, and using feedfor-
ward 4.12(a) and DFE 4.12(b) equalizations. As indicated by these results, η = 0.1

leads to lower average MSE levels, hence, the following results consider this value.
Figures 4.13 and 4.15 show the MSE and BER results for the same previous

values of γ̄2, and for feedforward and DFE equalization schemes, whereas Tables 4.7
and 4.8 describe the Blind iteration and update rates for the aforementioned equal-
ization branches. These tables also show the update rates during the supervised
and unsupervised periods for both filters wn[k], i ∈ {1, 2}, and denoted as νSPn and
νBPn , correspondingly. Regarding the NUE of both equalization scenarios, they are
displayed in Figures 4.14 and 4.16.

4.4.7 Conclusions of VSBDTSM-PNLMS Simulation

Regarding feedforward equalization, the values of threshold γ̄2 which yield the lowest
BER are γ̄2 = {1.5, 2} × γ̄1. Comparing Figures 4.13(b) and 4.10(b) the semi-
blind double-threshold technique yields similar BER results, even comparing to the
VSBSM-BEACON’s. Regarding the performance of VSBSM-PNLMS, the results
here are not even comparable, due to the huge reduction in the BER levels. With
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Figure 4.12: Steady-state MSE for different values of γ̄2 and η = 0.1 in the feedfor-
ward (a) and DFE (b) cases for VSBDTSM-PNLMS.
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Figure 4.13: MSE (a) and BER (b) for MFF = 8, η = 0.1, and using different
thresholds γ̄2 in the feedforward case for VSBDTSM-PNLMS.

Table 4.7: Average number of iterations until unsupervised period and update rates
using η = 0.1 for VSBDTSM-PNLMS in the feedforward case.

Blind
iteration νSP1 νBP1 νSP2 νBP2 ν1 ν2

γ2 = γ1 685 0% 0% 53.44% 28.41% 0% 30.65%
γ2 = 1.5γ1 861 17.22% 17.24% 35.59% 15.13% 17.24% 17.48%
γ2 = 2γ1 1166 30.14% 29.67% 22.27% 9.24% 29.74% 11.31%
γ2 = 2.5γ1 1590 38.99% 38.82% 13.45% 6.46% 38.86% 8.00%
γ2 = 3γ1 1910 44.73% 45.40% 8.50% 4.10% 45.22% 5.27%
γ2 = 3.5γ1 2245 48.90% 51.00% 5.16% 0.79% 50.34% 2.17%
γ2 = 4γ1 2861 51.37% 53.23% 3.26% 0.36% 52.49% 1.53%

respect to the average number of symbols used for training, the VSBDTSM-PNLMS
algorithm employed, for γ̄2 = 2γ̄1, just 1166 symbols, in average, decreasing in
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Figure 4.14: NUE for VSBDTSM-PNLMS algorithm in the feedforward equalization
case using different values of γ̄2. The red line indicates the NUE in the VSBSM-
PNLMS case.
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Figure 4.15: MSE (a) and BER (b) for MFF = 8, η = 0.1, and using different
thresholds γ̄2 in the DFE case for VSBDTSM-PNLMS.

approximately 85% the training data, indicating that the connection of the theory of
combination of filters with data-selective semi-blind schemes yield promising results.

For all values of γ̄2, VSBDTSM-PNLMS’s NUE is lower than in VSBSM-PNLMS
case, as described in Figure 4.14. Moreover, for those two values of γ̄2, the resulting
NUE represents only 39.66% and 31.70% of VSBSM-PNLMS’, and yet leading to
similar BER results. Considering the semi-blind features, VSBDTSM-PNLMS tech-
nique presents faster convergence if compared to VSBSM-PNLMS, besides using
much less training symbols. Generally speaking, this algorithm yielded solid MSE
and BER results, still reducing the computational complexity due to Volterra series
and enhancing the spectral efficiency.
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Table 4.8: Average number of iterations until unsupervised period and update rates
using η = 0.1 for VSBDTSM-PNLMS in the DFE case.

Blind
iteration νSP1 νBP1 νSP2 νBP2 ν1 ν2

γ2 = γ1 5998 0% 0% 67.00% 50.35% 0% 64.46%
γ2 = 1.5γ1 6145 13.19% 18.97% 56.84% 36.84 % 13.95% 54.22%
γ2 = 2γ1 6311 22.92% 32.31% 49.85% 27.97% 23.93% 47.49%
γ2 = 2.5γ1 5888 29.16% 40.50% 47.15% 24.02% 31.07% 43.26%
γ2 = 3γ1 – – – – – 45.22% 40.31%
γ2 = 3.5γ1 – – – – – 50.34% 38.01%
γ2 = 4γ1 – – – – – 52.49% 36.10%
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Figure 4.16: NUE for VSBDTSM-PNLMS algorithm in the DFE equalization case
using different values of γ̄2. The red line indicates the NUE in the VSBSM-PNLMS
case.

Unfortunately, in the DFE case, the VSBDTSM-PNLMS method did not pre-
sented as good results as in the feedforward fashion, except for γ̄2 = γ̄1, which yields
a BER similar to the lowest BER of feedforward case, but which a higher NUE,
as indicated by Figure 4.16. In addition, as in VSBSM-PNLMS case, the adaptive
filter converges slowly, but here with a steady-state MSE slightly higher. It is worth
mentioning that for γ̄2 > 2.5γ̄1, the algorithm did not reach the unsupervised period,
as indicated by dashes in Table 4.8, whose cause is the high steady-state MSE level.
This should be further explored in other scenarios, where factors such as feedforward
and feedback memories, or different nonlinear systems employed.
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4.4.8 Final Remarks

The proposed Volterra C-threshold and Volterra semi-blind algorithms represent
good solutions to address the high computational complexity due to Volterra se-
ries. Furthermore, considering semi-blind techniques, they are also an interesting
approach to enhance the spectral efficiency. Therefore, all data-selective techniques
with Volterra series proposed in Chapter 3 and in this chapter will be employed in
the VLC context, so as to provide a reliable and efficient approach to equalize a
VLC transceiver, whose main components are modeled in the next chapter.
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Chapter 5

Modeling the Key Components of a
VLC System

This chapter describes a computational platform for visible light communication.
The motivation for developing this simulator relies on the lack of such platform
in the literature. Besides, such computational tool helps assess the equalization
performance of the proposed filters of Chapters 3 and 4 within a VLC framework.
Through this chapter, the key elements of the system described in Chapter 2 are
modeled and properly interconnected so as to simulate a VLC system. This platform,
for instance, can be used to analyze the bit error rate (BER) for an on-off keying
(OOK) under a given bit rate and signal-to-noise ratio (SNR), or to compare the
performance of two different modulation schemes, among other possible uses.

Let a baseband signal c[k] represent a pre-processed data signal mapped from
a given modulation scheme (OOK, PAM, PPM, etc). Before passing through the
LED, c[k] must be converted into either current or voltage, depending on the LED
driving circuit. This work considers a voltage-based driving circuit, so that the LED
input signal Vin[k] (Vin[k] represents the time-discrete version of Vin(t) introduced in
Section 2.1) is described as

Vin[k] = VDC + αc[k], (5.1)

where VDC ∈ R+ is a DC voltage bias added to ensure Vin[k] is nonnegative, and
α ∈ R+ is a voltage constant, which is chosen to keep the LED input signal inside
a predefined operational range. From (5.1), one can see that Vin[k] is a signal
comprised of a DC part, VDC, and an AC part, αc[k], where Vmax will denote the
maximum amplitude of Vin[k]. The so-called modulation index (MI) [43] quantifies
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how much the amplitude of the data signal Vin[k] varies around VDC, i.e.

MI =
∆V

VDC

=
Vmax − VDC

VDC

. (5.2)

If MI and VDC values are predefined parameters, then by using (5.1) and (5.2)
one can write an expression for α as

α =
MI·Vmax

(MI + 1) max{c[k]}
. (5.3)

Once the LED input signal model was presented, the computational process to
convert Vin[k] into a corresponding current level is modeled by the I-V LED curve, as
will be better explained in Section 5.1. The product of Vin[k] and its corresponding
current is then translated into a certain level of luminous intensity signal, I[k],
according to the LED luminous efficacy. After that, I[k] is convolved with a linear
time-invariant filter h[k], which emulates the light signal propagation through the air
(FSO channel), and then is converted into a corresponding current level r[k]. This
current is corrupted by a zero-mean white Gaussian noise g[k] [88], and preamplified
by the transimpedance amplifier (TIA). The resulting received signal is described
by

r[k] = β × (R {A · (I ∗ h)[k]}+ g[k]) , (5.4)

where ∗ represents a linear convolution operation, A ∈ R+ is the photodiode (PD)
detection area, R{·} denotes the PD responsivity [A/W], and β ∈ R+ stands for the
TIA gain. A simplified block diagram of a VLC system is shown in Figure 5.1. It is
worth highlighting that the driving circuit is treated in this work as an ideal mapper
of data into electrical signal, and does not impose any other undesired effect. Next
section describes some computational models for LED, free-space optical channel,
and receiver that will be incorporated in the computational platform.

LED h[k]
Vin[k] I[k]

PD
r[k]

g[k]

TIA
Driving

circuit

Data

Figure 5.1: Simplified VLC model.

5.1 LED Model

The LED is usually the component that generates the most severe distortion effects
on a VLC system. For instance, the LED may experience very limited bandwidth,
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depending on its type. Moreover, the nonlinear relation between the voltage applied
to the LED and the corresponding output current, as well as the nonlinear conversion
of instantaneous electrical power to instantaneous luminous intensity are issues that
will be modeled in this work. To do that, a low cost white pc-LED, whose datasheet
can be found in [104], is considered.

5.1.1 Frequency-Response Model

Devices like pc-LEDs feature low-pass frequency response due to slow response of
their phosphor layers, where the 3-dB bandwidth is usually around 2 MHz [81,
86, 105]. The frequency-response model adopted in this work is the one proposed
in [105], where the authors performed an experiment to measure the frequency
response F (ω) of a commercial white LED, approximated as:

F (ω) =

e−|ω|/ω1 , if |ω| < ωc

e−|ωc|/ω1e|ωc|/ω2e−|ω|/ω2 , otherwise,
(5.5)

where ω1 = 2π · 3.26, ω2 = 2π · 10.86, and ωc = 2π Mrad/s. In order to employ this
frequency response model in a digital environment, F (ω) should be truncated and
sampled at a rate ωs ∈ R+, generating the discrete-time model Fs(e

jω).
It is worth mentioning that, even though the LED used in [105] is different from

the one employed in this work, the frequency response modeled by (5.5) will be used
here; nonetheless, the proposed computational platform encapsulates this part so
that the user can easily change it.

5.1.2 I-V Curve Model

After defining the LED input signal and its frequency response models, it is necessary
to model the behavior of the LED current as a function of the input voltage. There
are some approximations for the current-voltage I-V curve of LEDs, such as ideal,
piecewise-linear, and exponential approximations [78]. This device can work in two
modes of operation, as shown in Figure 5.2, viz.:

• Forward biased: current flows from the anode to the cathode whose magnitude
is related to the positive voltage employed.

• Reverse biased: if a negative voltage is applied to the LED, no current flows
from the anode to its cathode, and the device works approximately as open
circuit.

In the ideal approximation, the LED has zero current when operating in reverse-
bias mode (or reversely polarized). On the other hand, when current flows from
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I

Vin

(a) Forward biased. (b) Reverse biased.

Figure 5.2: LED’s modes of operation.

anode to cathode, the LED is said to be directly polarized, and there is no drop in
voltage. The resulting I-V curve is illustrated in Figure 5.3, as well as the equivalent
model.

Vin

I

I [mA]

Vin [V]

(a) (b)

Figure 5.3: Equivalent model (a) and (b) I-V curve for ideal approximation.

The second approximation is the piecewise linear, whose equivalent model is an
ideal LED in series with an ideal voltage source VD and a resistance RD, as depicted
in Figure 5.4(a). Therefore, the LED is forward biased if Vin > VD, culminating in
the I-V curve of Figure 5.4(b), whose slope is given by 1

RD
.

Vin

I

RD

VD

I [mA]

Vin [V]

1
RD

VD

(a) (b)

Figure 5.4: (a) Equivalent model and (b) I-V curve for piecewise approximation.

The last model is the exponential approximation, where I(t) is an exponential
function of Vin(t), described mathematically as

I(t) = Is

(
e

Vin(t)

nLEDVT − 1

)
, (5.6)
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where Is denotes the saturation current, which is proportional to the cross-sectional
area of the LED and is usually in the order or micro amperes, nLED is the ideality
factor of the LED, which may vary from 2 up to 7 and is related to its fabrication
process, and VT represents the thermal voltage, which is expressed as

VT =
KBT

q
, (5.7)

where KB = 1.38 × 10−23 joule/kelvin is the Boltzmann’s constant, T ∈ R+ is the
absolute temperature in kelvin, and q = 1.6×10−19 coulomb stands for the electron’s
charge magnitude. Thus, the I-V curve for this approximation is illustrated in
Figure 5.5.

I [mA]

Vin [V]

Figure 5.5: I-V curve for exponential approximation.

Among the previous three approximations for the I-V curve, the most realistic is
the exponential model (compare it with Figure 2.2), once the other two models are
better suited for digital or high amplitude signals. Therefore, one can modify (5.6)
to work with positive voltages, and describe its discrete-time version as

I[k] =

Is(e
Vin[k]/nLEDVT − 1), if Vin[k] ≥ 0

0, otherwise.
(5.8)

Note that the LED current grows exponentially with voltage; however, there is a
region where current varies approximately linearly with voltage, thus suggesting that
the operational point (VDC) should be set within this region. Then, the resulting
instantaneous electrical power is

Pelectrical[k] = Vin[k] · I[k], (5.9)

which now must be converted into optical power. As will be shown, this conversion
may be nonlinear, depending on the level of the instantaneous electrical power.
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5.1.3 Electrical-to-Optical Conversion Model

In [106] the authors proposed a model for the electrical-to-optical conversion of an
LED, which is described as

I[k] =
Pelectrical[k]× ρ(

1 +
(
Pelectrical[k]×ρ
Imax[k]

)2k
)1/2k

, (5.10)

where k ∈ R+ is a knee factor that adjusts the smoothness of the luminous intensity
saturation, and Imax ∈ R+ is the maximum luminous intensity emitted by the LED.
In fact, when operating in the linear region of the I-V curve, the luminous intensity
of an LED is proportional to its output electrical power, i.e., I[k] = Pelectrical[k]× ρ,
ρ ∈ R+. Nevertheless, there is a certain level of electrical power where the luminous
intensity saturates, i.e., part of the electrical power is dissipated as heat. Figure 5.6
illustrates the aforementioned effect for different values of k modeled by (5.10).
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Figure 5.6: Nonlinear behavior of luminous intensity for different k’s.

Note that the nonlinear effect imposed by the electrical-to-optical conversion
is directly connected to MI in (5.2). Indeed, when MI increases, the maximum
allowed value for the LED input signal also increases, leading to a higher degree
of nonlinearity imposed by the I-V curve, and possibly, causing saturation in the
LED’s electrical-to-optical conversion.

Figure 5.7 outlines the complete model of the LED, assumed as a Wiener model,
in which c[k] represents a symbol of a given constellation, and O{·} denotes a non-
linear function that considers LED’s I-V relation as well as its electrical-to-optical
conversion. When a nonlinear function is preceded by a linear filter, the resulting
model is named Wiener model. On the other hand, when a filter is located after
the nonlinear function, the resulting model is called Hammerstein model [107, 108].
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These schemes are often used to model nonlinear systems, with applications in adap-
tive filtering [109], VLC systems [110], and nonlinear control systems [111, 112].
Regarding the chosen model, the first one will be used for it fits better LED’s char-
acteristics, since its frequency response depends on the modulation index level [43].

Fs(e
jω) O{·}

s[k] I[k]c[k]

Figure 5.7: Complete LED model.

5.1.4 Optical Characteristics

With respect to the optical characteristics of LEDs, they can be regarded as a
Lambertian transmitter, whose light propagation is well modeled by a Lambertian
radiation pattern [83], illustrated in Figure 5.8 for distinct half-power angles, in
which S represents a surface and n̂S denotes its normal vector. The normalized
radiant intensity of the LED,1 which measures the amount of power per solid angle,
is given by [17]:

Ro(φ) =

(
m+ 1

2π

)
cosm(φ), (5.11)

where m = − ln 2
ln cos(Φ1/2)

, with Φ1/2 ∈ R+ being the LED’s half-power angle. One
should notice that the emitted beam of light in this case is much more focused than
the RF’s (even though beamforming techniques may be used), once common LED’s
half-power angle are usually not greater than 30◦ [17]. It is worth pointing out that
the radiation pattern is incorporated to the assessment of the channel gain, which
will be further described.

After modeling the main effects imposed by an LED when it is working as a VLC
transmitter, the next step is to consider the optical channel model and incorporate
it to the computational platform developed in this work.

5.2 Free-Space Optical Channel Model

As discussed in Section 2.3, the FSO channel mostly depends on the channel DC
gain H0. Considering that the FSO channel features a line-of-sight (LOS), i.e., the
direct path between transmitter and receiver is not obstructed, and the LED as a
Lambertian transmitter, whose pattern is described in Figure 5.8, by using (5.11),

1Ro(φ) is normalized so that
∫ π
0
Ro(φ) sin(φ)dφ = 1.
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Figure 5.8: Shape of generalized Lambertian radiation pattern for different half-
power angles.

one can describe H(0) as

H(0) =


ARo(φ)cos(θ)T (θ)G(θ)

ζ2 , if | θ
FOV
| ≤ 1

0, otherwise,
(5.12)

where FOV ∈ R+ and A ∈ R+ denote the photodiode (PD) field of view and area,
respectively, T (θ) and G(θ) represent the optical filter and concentrator gains, and ζ
represents the distance between LED and PD. T (θ) may represent an average gain
over the wavelengths and/or different incidence angles. As for φ and θ, consider
Figure 5.9, in which the vectors rT, rR ∈ R3×1 respectively denote the LED and
PD positions, and n̂T, n̂R ∈ R3×1 represent the normal vectors to their surfaces.
Then, φ is the angle between n̂T and (rR − rT), while θ is the angle between n̂R and
(rR − rT).

ζ

φ

θ

LED

PD

n̂T

n̂R

rT

rR

0

Figure 5.9: Geometry of the LED and PD.
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Regarding non-line-of-sight optical (NLOS) channels, H(0) evaluation becomes
cumbersome because all derivation is very sensitive to the geometry of the set
transmitter-receiver, but more details can be found at [17]. With respect to IR
channel simulators, one of the most popular is [113], whereas the authors in [114]
propose a technique which considers the effects of the visible light absorption in-
herent to indoor finishing materials. Moreover, a suitable model for LOS channels
considering multipath can be described as [17, 115]

h(t) = H(0)
6a6

(t+ a)7
u(t), (5.13)

where a = 12
√

11/13Ds, with u(t) denoting the unit step function, and Ds repre-
senting the root mean square (RMS) delay spread of the channel, given by

Ds =

√√√√√√√√

∞∫
−∞

(t− ξ)2h2(t)dt

∞∫
−∞

h2(t)dt

, (5.14)

ξ =

∞∫
−∞

th2(t)dt

∞∫
−∞

h2(t)dt

. (5.15)

In practice, if one wants to generate a channel using (5.13), a delay spread Ds must
be chosen in advance. The purpose of (5.14) is to evaluate Ds when the channel
coefficients are known beforehand.

Considering a LOS channel, the value of the delay spread is often in the order
of nanoseconds. Hence, the intersymbol interference (ISI) effects imposed by this
channel occur more severely when the VLC system is working in a bit rate of few
Gbps, which is not the case here, since it is considered bit rates in the order of Mbps.
Therefore, the DC gain H(0) bears all the effects imposed by the optical channel.
Consequently,

h[k] ≈ 2π

ωs

H(0)δ[k], (5.16)

where δ[k] denotes a discrete unit impulse. Then, considering that both optical filter
and concentrator gain present unitary gain for all values of θ, i.e., T = G = 1, one
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can describe the DC channel gain model employed in this work as

H(0) =


ARo(φ)cos(θ)

ζ2 , if | θ
FOV
| ≤ 1

0, otherwise,
(5.17)

It is important to highlight that, as in the RF case, the optical channel is also
corrupted by an additive noise, which is modeled at the receiver as zero mean white
Gaussian noise [88].

5.3 Receiver Model

One of the main characteristics of a photodiode is its response, i.e., associated gain,
with respect to the wavelength of the incident light. This response, named respon-
sivity, often refers to the peak sensitivity, i.e., to the wavelength which yields the
maximum responsivity. Considering the photodiode in the photoconductive mode,
the responsivity can be described as

R(λ, t) =
Ip(λ, t)

Pr(λ, t)
, (5.18)

where Ip(λ, t) is the resulting current from the received power Pr(λ, t).
The I-V relation in the photodiode is similar to the one presented by (5.6) when

there is no incident light. Supposing that a certain level of light illuminates the PD,
generating a current Ip, (5.6) can be modified as follows

I(λ, t) = Is

(
e
Vin(t)

nVT − 1

)
− Ip(λ, t). (5.19)

Therefore, Ip(λ, t) only shifts vertically the I-V curve, which is shown in Figure 5.10
for the photoconductive mode considering distinct levels of incident power, repre-
sented by P0, P1, and P2, with P0 < P1 < P2. Once this work assumes the PD
working in the photoconductive mode, the total current of this device will be con-
sidered as Ip, which is given by (5.18).

The receiver model employed in this work is represented only by the gain R,
which was regarded as time-invariant and constant over the entire spectrum. This
was assumed for the sake of simplicity and does not affect the generality of this
work. Besides, the bandwidth of the PD was considered wider than the LED’s.
Regarding the model for the TIA positioned at the PD’s output, it was considered
that it works also as a gain, and its bandwidth was assumed to be larger than the
LED’s. Therefore, the dominant frequency selectivity of the VLC system modeled
in this work is induced by the LED, whose low-pass frequency response model was
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Figure 5.10: I-V curve in reverse-bias mode for different values of incident power.

presented in Subsection 5.1.1. With respect to TIA’s gain, it was set to match
the variances of the received and transmitted signals, since their magnitudes are
remarkably different, which can hinder the equalization processing.

Once the models for each key component were introduced, they can be properly
interconnected to assemble a VLC transceiver. Nonetheless, this simulator should
work as an analysis tool for the impact of diverse factors, e.g, modulation index level,
LED frequency response, among others. To do that, the figure of merit employed
in this work to inspect these factors is the bit error rate (BER) at the receiver,
which reflects directly how the transceiver harms the data sent by the transmit-
ter. Moreover, a good and reliable communication system is based on an adequate
equalization scheme. As pointed out in Chapter 2, a VLC system experiences a con-
siderable level of nonlinearity on the transmitted data. Hence, suitable equalizers
must be employed so as to mitigate these effects. Therefore, in the next chapter,
the proposed equalization techniques described in Chapters 3 and 4 will be applied
in the task of equalizing the signals provided by the VLC simulator, which is the
main focus of this work. Therefore, one will be able to assess the behavior of the
complete VLC system.
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Chapter 6

Results and Discussions

This chapter assesses the performance of the proposed data-selective techniques of
Chapters 3 and 4 considering the equalization of the VLC transceiver, whose main
elements were first introduced in Chapter 2, and digitally modeled in Chapter 5.
Throughout this chapter, the methodology and figures of merit regarding the simu-
lations are presented, as well as their setup, describing the parameters of the VLC
simulator and MSE and BER simulations. At the end of this chapter, an outline
concerning the results is presented.

6.1 Performance Evaluation

This section evaluates the performance of the proposed data-selective techniques
described in Chapters 3 and 4. are described in Table 6.1. First, the performance
of the supervised filters, i.e., the filters which are continually trained using a pilot
sequence, is assessed. After that, the results of semi-blind algorithms are described.
It is worth mentioning that the results must be properly analyzed according to the
following perspective: there is a trade-off between computational effort, amount of
pilot sequence, and performance, which depends on the application. For instance, if
an adaptive filter is deployed in an embedded system, the computational complexity
may be the main concern, while in a system where the bandwidth is scarce, it is
interesting to allocate less data to train an adaptive filter.

6.1.1 Simulation Methodology and Figures of Merit

The simulation methodology follows the ones presented in Subsection 3.4.1 and 4.4.1.
In this chapter, the proposed methods are also evaluated under different values of
modulation indexes (MIs). As indicated in Chapter 5, the modulation index controls
the signal excursion over the I-V curve of the LED, which means that a higher MI
yields a higher nonlinearity level on the VLC transceiver. Thus, by varying MI allows
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Table 6.1: Description of the proposed algorithms and sections in which they were
presented.

Description
VSM-PNLMS Volterra set-membership PNLMS, 3.2.1
VM-BEACON Volterra modified BEACON, 3.2.2
VSBSM-PNLMS Volterra semi-blind set-membership PNLMS, 4.1.1
VSBM-BEACON Volterra semi-blind modified BEACON, 4.1.2
VDTSM-PNLMS Volterra double-threshold set-membership PNLMS, 4.2
VSBDTSM-PNLMS Volterra semi-blind double-threshold set-membership PNLMS, 4.3

for the evaluation of the proposed techniques under distinct nonlinear scenarios.
With respect to the figures of merit, they are identical to the ones described in
Subsection 4.4.1.

6.1.2 Simulation Setup

The simulation setup of this chapter is organized as follows:

• VLC simulator’s setup: The DC bias voltage VDC in order to ensure the trans-
mitted signals are nonnegative was 3.25 V. This value was also chosen so as
to place the operational point around the middle of the linear part of the
LED’s I-V curve. It was adopted a low cost pc-LED with half-power angle of
Φ1/2 = 15◦ whose datasheet can be found at [104]. The distance between LED
and photodiode was 10 cm, which were treated as perfectly aligned, leading
to φ = θ = 0◦. Regarding the photodiode parameters, the responsivity, area,
and FOV were set as R = 0.5, A = 1 cm, and FOV = 25◦, respectively. The
knee-factor that controls the nonlinearity level in the electrical-to-optical con-
version (see (5.10)) was k = 2, which induces a high degree of nonlinearity in
this process.

• Equalization setup: during the training of the adaptive filters, it was used
1000 independent runs, a signal-to-noise ratio (SNR) of 30 dB, and 4-PAM
symbols as input signals with a bandwidth of 2 MHz. Regarding proportionate
algorithms, κ was set to 0.5, with κ1 = κ2 = κ. Considering the techniques
presented in Chapter 3, the error threshold γ̄ was set to 0.28, while for the
algorithms described in Chapter 4, the error thresholds were chosen as γ̄1 = γ̄

and with γ̄2 varying from γ̄2 = γ̄1 to γ̄2 = 4γ̄1 using an interval of 0.5. In
addition, the combination parameter σ was chosen as 0.5. With respect to
semi-blind algorithms, the threshold employed to indicate the unsupervised
period start was set as η ∈ {0.1, 0.2, 0.3}. The second-order Volterra series
was used in the input of the adaptive filters, whereas their memory-sizes were
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set to M = 8, MFF = 8 and MFB = 0, in the cases of feedforward and DFE
equalization, respectively. Considering the DFE, as indicated by the results
of Chapter 3, the Volterra series was applied only to the feedforward filter.
In addition, the delay in samples imposed during the training of the adaptive
filters was M + 2 or (MFF in the DFE case). For BER simulations, 10000
symbols were transmitted in each of the 1000 Monte Carlo loops.

6.1.3 Results of VSM-PNLMS and VM-BEACON Algo-

rithms

Considering different values of MI, Figures 6.1(a) and 6.1(b) show the MSE and
BER results, respectively, in the feedforward equalization scheme. Table 6.2 dis-
plays the convergence speed, which was evaluated using a procedure similar to the
one presented in Subsection 3.4.3, but here using the time average MSE from the
4000th up to the 5000th iteration, and shows the update rates of the adaptive filters
for both VSM-PNLMS and VM-BEACON techniques. Analogously, Figures 6.2(a)
and 6.2(b), and Table 6.3 describe the results for a DFE equalization scenario.
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Figure 6.1: MSE (a) and BER (b) in the feedforward case for VSM-PNLMS and
VM-BEACON.

Table 6.2: Iterations until steady state / Average update rates using feedforward
equalization for VSM-PNLMS and VM-BEACON.

VSM-PNLMS VM-BEACON
MI = 0.05 717 / 12.44% 717 / 14.15%
MI = 0.075 450 / 28.44% 219 / 33.78%
MI = 0.1 332 / 44.00% 178 / 50.62%
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Figure 6.2: MSE (a) and BER (b) for MFF = 8 in the DFE case for VSM-PNLMS
and VM-BEACON.

Table 6.3: Iterations until steady state / Average update rates using DFE equaliza-
tion for VSM-PNLMS and VM-BEACON.

VSM-PNLMS VM-BEACON
MI = 0.05 771 / 13.15% 1448 / 12.32%
MI = 0.075 512 / 28.74% 438 / 29.04%
MI = 0.1 376 / 43.98% 244 / 47.69%

6.1.4 Conclusions of VSM-PNLMS and VM-BEACON Sim-

ulations

Considering both feedforward and DFE equalization schemes, as the modulation
index increases, higher is the steady-state MSE, which is corroborated by Fig-
ures 6.1(a) and 6.2(a). In the same manner, the resulting BER for any SNR level
grows as MI rises, as illustrated by Figures 6.1(b) and 6.2(b). Comparing the per-
formance of each technique, the steady-state MSE level of VSM-PNLMS is slightly
lower than VM-BEACON’s for the three MI levels employed, except for MI = 0.05
in the DFE case. Moreover, the BER levels for these techniques are very similar.
For MI = 0.1, which leads to a great level of nonlinearity in the VLC transceiver,
both techniques provided a BER of approximately 10−4. Regarding the convergence
speed, both methods present similar results, except for the DFE case for MI = 0.05.
With respect to the update rates, VSM-PNLMS’s are lower than VM-BEACON’s,
even with the latter presenting a computational complexity per update quadratic
in relation to the filter length. As indicated in Table 6.2, VSM-PNLMS updated
in 44.00% of the iterations, while VM-BEACON updated in 50.62% for MI = 0.1.
Therefore, the proposed techniques reduced drastically the computational burden
of Volterra series, besides presenting great equalization results considering the VLC
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simulator developed in this work.

6.1.5 Results of VDTSM-PNLMS Algorithm

This subsection presents the equalization results for the Volterra double-threshold
SM-PNLMS technique. Figures 6.3(a–c) illustrate the MSE results using different
values of γ̄2 and modulation indexes in the feedforward equalization branch, while
Figure 6.4(a–c) describe the corresponding BERs. Table 6.4 displays the convergence
speed and updates rates ν1 and ν2 for each error threshold γ̄2 and MI, while Figure 6.8
illustrates the corresponding NUE. In the DFE case, the results are described in
Figures 6.6, 6.7, 6.8 (MSE, BER, NUE, respectively), and Table 6.5.
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(a) MI = 0.05. (b) MI = 0.075. (c) MI = 0.1.

Figure 6.3: MSE for different values of γ̄2 and MI in feedforward case for VDTSM-
PNLMS.

Table 6.4: Iterations until steady state / Average update rates ν1 / Average update
rates ν2 using feedforward equalization for VDTSM-PNLMS.

MI = 0.05 MI = 0.075 MI = 0.1
γ̄2 = γ̄1 1060 / 0 / 13.82 % 459 / 0 / 29.84 % 322 / 0 / 45.55%
γ̄2 = 1.5γ̄1 1912 / 22.69 / 6.42 % 1460 / 21.76 / 14.41% 587 / 20.46 / 26.69%
γ̄2 = 2γ̄1 1663 / 43.64 / 3.82% 1945 / 48.26 / 7.85 % 1315 /41.12 / 15.64%
γ̄2 = 2.5γ̄1 1590 / 54.10 / 2.50 % 2026 / 63.67 / 4.93 % 1708 / 59.40 / 9.21%
γ̄2 = 3γ̄1 1397 / 59.78 / 1.58 % 1930 / 70.42 / 3.39% 2116 / 68.94 / 6.17%
γ̄2 = 3.5γ̄1 705 / 62.70 / 0.93 % 1344 / 73.62 / 2.32% 2115 / 74.20 / 4.41%
γ̄2 = 4γ̄1 260 / 64.25 / 0.54 % 1410 / 75.48 / 1.53% 1897 / 77.45 / 3.15%

6.1.6 Conclusions of VDTSM-PNLMS Simulations

Considering the two equalization techniques, the error threshold that leads the lowest
MSE level for the three employed MIs was γ̄2 = γ̄1. As shown in Figures 6.4 and 6.7,
a perfect equalization was achieved for all used values of γ̄2 and for SNR = 30 dB.
Considering MI = 0.1, γ̄2 = {2.5, 3} × γ̄1, were the values of error threshold which
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Figure 6.4: BER for different values of γ̄2 and MI in feedforward case for VDTSM-
PNLMS.
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Figure 6.5: NUE for different values of γ̄2 and MI in feedforward case for VDTSM-
PNLMS. The red line indicates the NUE in the VSM-PNLMS case.
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Figure 6.6: MSE for different values of γ̄2 and MI in DFE case for VDTSM-PNLMS.

led to the lowest BER levels in both equalization scenarios, viz.: 5.1 × 10−5 and
1.1× 10−5, in the feedforward case, and 9.3× 10−5 and 9.8× 10−5 in the DFE case.
Regarding the convergence speed and update rates for these error thresholds, one
can infer from Figures 6.5 and 6.8 that the computational complexity is lower than in
the VSM-PNLMS case. In fact, for γ̄2 = 3γ̄1, the NUE considering both equalization
schemes represent only 40.14% and 42.57% of the NUE of VSM-PNLMS, even with
a lower BER level, reducing even more the computational burden due to Volterra
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Figure 6.7: BER for different values of γ̄2 and MI in DFE case for VDTSM-PNLMS.

Table 6.5: Iterations until steady state / Average update rates ν1 / Average update
rates ν2 using DFE equalization for VDTSM-PNLMS.

MI = 0.05 MI = 0.075 MI = 0.1
γ̄2 = γ̄1 1060 / 0 / 14.13 % 459 / 0 / 29.28 % 322 / 0 / 45.60%
γ̄2 = 1.5γ̄1 1912 / 22.18 / 6.83 % 1460 / 21.21 / 13.99% 587 / 20.30 / 26.49%
γ̄2 = 2γ̄1 1663 / 41.53 / 4.09% 1945 / 43.15 / 8.27 % 1315 /37.42 / 15.54%
γ̄2 = 2.5γ̄1 1590 / 51.42 / 2.65 % 2026 / 57.86 / 5.45 % 1708 / 51.49 / 10.12%
γ̄2 = 3γ̄1 1397 / 57.01 / 1.71 % 1930 / 65.16 / 3.74% 2116 / 61.60 / 7.19%
γ̄2 = 3.5γ̄1 705 / 60.72 / 1.10 % 1344 / 69.21 / 2.65% 2115 / 68.28 / 5.25%
γ̄2 = 4γ̄1 260 / 62.96 / 0.64 % 1410 / 71.67 / 1.79% 1897 / 72.66 / 3.82%
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Figure 6.8: NUE for different values of γ̄2 and MI in DFE case for VDTSM-PNLMS.
The red line indicates the NUE in the VSM-PNLMS case.

series. Moreover, except for γ̄2 = γ̄1, the resulting computational complexity is lower
for the remaining error threshold, with a performance in terms of BER similar to
VSM-PNLMS algorithm.

75



6.1.7 Results of VSBSM-PNLMS and VSBM-BEACON Al-

gorithms

The performance of the semi-blind techniques VSBSM-PNLMS and VSBM-
BEACON is assessed in this subsection. Considering feedforward equalization, the
MSE results are displayed in Figure 6.9 for the three modulation indexes employed
in the simulations. Regarding the performance in terms of BER, Figure 6.10 illus-
trates it for each value of MI. With respect to the Blind iteration, i.e., the mean
iteration in which the unsupervised period starts during training, and the update
rates during both supervised and unsupervised periods, such results are shown in
Table 6.6. All of these aforementioned results are displayed for the DFE case in
Figures 6.11, 6.12 (MSE and BER), and Table 6.7.
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Figure 6.9: MSE for different values of MI in feedforward case for VSBSM-PNLMS
and VSBM-BEACON.

Table 6.6: Average number of iterations until unsupervised period and update rates
for VSBSM-PNLMS / VSBM-BEACON in the feedforward case.

Blind
iteration νSP νBP

Overall update
rate

MI = 0.05
η = 0.1 337 / 323 50.87 / 53.76% 10.25 / 12.07% 12.50 / 14.27%
η = 0.2 185 / 207 67.18 / 70.71% 11.87 / 13.28% 13.24 / 14.95%
η = 0.3 165 / 178 69.60 / 75.94% 12.34 / 19.76% 13.52 / 21.07%

MI = 0.075
η = 0.1 429 / 419 53.48 / 53.47% 27.83 / 40.45% 29.73 / 41.39%
η = 0.2 217 / 219 70.27 / 72.00% 29.34 / 42.40% 30.61 / 43.33%
η = 0.3 170 / 184 74.95 / 77.64% 34.09 / 48.04% 34.98 / 48.76%

MI = 0.1
η = 0.1 886 / 1827 52.16 / 54.91% 51.88 / 64.74% 51.93 / 61.23%
η = 0.2 256 / 241 71.98 / 73.23% 54.37 / 69.95% 55.06 / 70.07%
η = 0.3 185 / 195 78.25 / 78.65% 58.18 / 70.43% 58.67 / 70.65%
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Figure 6.10: BER for different values of MI in feedforward case for VSBSM-PNLMS
and VSBM-BEACON.
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Figure 6.11: MSE for different values of MI in DFE case for VSBSM-PNLMS and
VSBM-BEACON.

Table 6.7: Average number of iterations until unsupervised period and update rates
for VSBSM-PNLMS / VSBM-BEACON in the DFE case.

Blind
iteration νSP νBP

Overall update
rate

MI = 0.05
η = 0.1 353 / 327 50.91 / 53.81% 10.84 / 10.03% 13.16 / 12.33%
η = 0.2 187 / 209 67.41 / 70.72% 12.29 / 11.50% 13.64 / 13.21%
η = 0.3 166 / 180 70.05 / 76.24% 12.94 / 17.59% 14.11 / 18.95%

MI = 0.075
η = 0.1 455 / 420 53.38 / 53.72% 27.94 / 28.19% 29.93 / 30.01%
η = 0.2 223 / 222 70.75 / 72.14% 29.78 / 31.29% 31.09 / 32.58%
η = 0.3 171 / 187 75.74 / 77.53% 34.98 / 39.44% 35.86 / 40.38%

MI = 0.1
η = 0.1 941 / 1397 52.47 / 52.45% 51.81 / 65.65% 51.93 / 62.13%
η = 0.2 268 / 245 72.44 / 73.35% 54.77 / 69.05% 55.49 / 69.20%
η = 0.3 188 / 197 78.66 / 78.82% 58.83 / 69.98% 59.32 / 70.22%

6.1.8 Conclusions of VSBSM-PNLMS and VSBM-BEACON

Simulations

Despite similar results with respect to MSE, feedforward and DFE equalization
schemes presented distinct BER results for MI = 0.05 and MI = 0.075. Regarding
feedforward equalization, for instance, for an SNR = 30 dB and MI = 0.05, the BER
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Figure 6.12: BER for different values of MI in DFE case for VSBSM-PNLMS and
VSBM-BEACON.

for both algorithms was zero, except for VSBM-BEACON when using η = 0.3, while
in the DFE case it was in the order of 10−4. As shown in Figures 6.10(c) and 6.12(c),
none of the techniques presented satisfactory results for η = 0.3, whose main reason
for this was that the output of the adaptive filters playing the role as reference signal
was not able to keep with the learning process due to the high level of nonlinearity
of the VLC transceiver. Nonetheless, for MI = 0.075, the effect of reaching a low
steady-state MSE level, and this level monotonically increases, only occurred in
the feedforward case for the VSBM-BEACON, which is illustrated in Figure 6.9(b),
but not in the DFE fashion, as shown in Figure 6.11(b). Considering feedforward
equalization, and over again for MI = 0.075, VSBSM-PNLMS yielded comparable
BER levels, if compared to VSM-PNLMS’, but using only a fraction of reference
signal, more specifically, 429 symbols in average, as described in Table 6.6, which
represents a huge saving of data and yet reducing the computational complexity due
to Volterra series.

6.1.9 Results of VSBDTSM-PNLMS Algorithm

The following results explore the impact of the thresholds η and γ̄2 in both feed-
forward and DFE equalization cases when using the Volterra semi-blind double-
threshold SM-PNLMS algorithm for the three values of modulation index. Fig-
ures 6.13(a–c) and 6.14(a–c) show the average MSE from the 4000th up to the 5000th

iteration for diverse values of η and γ̄2, and using feedforward and DFE equaliza-
tions schemes, respectively. As indicated by these results, η = 0.1 leads to lower
average MSE levels, hence, the forthcoming results consider this value. Based on the
previous results and the results for this technique one can verify that, by increasing
η, the resulting increase in MSE and BER is not proportional to the reduction of
symbols employed during the training of the adaptive filters.

Considering the feedforward equalizer, the MSE and BER results are displayed in
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Figure 6.13: Steady-state MSE for different values of γ̄2 and η = 0.1 in the feedfor-
ward case for VSBDTSM-PNLMS.
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Figure 6.14: Steady-state MSE for different values of γ̄2 and η = 0.1 in the DFE
case for VSBDTSM-PNLMS.

Figures 6.15 and 6.16, while the total updated elements is illustrated in Figure 6.17.
Regarding the Blind iteration and update rates of the filters w1[k] and w2[k], Ta-
ble 6.8 exhibits these results. Unlike in the results described in Subsection 6.1.7,
Table 6.8 does not show the update rates during the supervised and unsupervised
periods, since their purpose is to indicate if the update rate during unsupervised
period is much higher than in the supervised period, i.e., if the learning process
continues in its natural pace.

Analogously, the MSE and BER results of VSBDTSM-PNLMS for the DFE case
are shown in Figures 6.18 and 6.19, whereas Table 6.9 and Figure 6.20 describe the
Blind iteration and updates rates, and NUE, respectively.

6.1.10 Conclusions of VSBDTSM-PNLMS Simulations

In general, feedforward equalization present better results in terms of BER than
using DFE. For instance, if one considers MI = 0.05, in the feedforward case for all
values of γ̄2 and SNR = 30 dB, no bit errors occurred, as described in Figure 6.15(a).
Besides, for MI = 0.1, which yields a severe level of nonlinearity, a BER of 9× 10−6
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Figure 6.15: MSE for different thresholds γ̄2 and MIs in the feedforward case for
VSBDTSM-PNLMS.

Table 6.8: Average number of iterations until unsupervised period / Average update
rates ν1 / Average update rates ν2 using η = 0.1 for VSBDTSM-PNLMS in the
feedforward case.

MI = 0.05 MI = 0.075 MI = 0.1
γ2 = γ1 378 / 0 / 13.84% 496 / 0 / 31.96% 1087 / 0 / 54.92%
γ2 = 1.5γ1 1187 / 22.69 / 6.42% 1244 / 21.80 / 14.73% 1776 / 19.54 / 31.64%
γ2 = 2γ1 2122 / 43.63 / 3.82% 3283 / 48.29 / 7.88% 3736 / 41.13 / 15.81%
γ2 = 2.5γ1 2552 / 54.11 / 2.51% 1953 / 63.82 / 4.94% – / 59.36 / 9.26%
γ2 = 3γ1 2206 / 59.78 / 1.58% 3178 / 70.39 / 3.38% – / 68.86 / 6.11%
γ2 = 3.5γ1 3209 / 62.71 / 0.93% – / 73.68 / 2.32% – / 74.12 / 4.40%
γ2 = 4γ1 – / 64.25 / 0.54% – / 75.65 / 1.53% – / 77.33 / 3.15%
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Figure 6.16: BER for different thresholds γ̄2 and MIs in the feedforward case for
VSBDTSM-PNLMS.

was achieved for SNR = 30 dB by using γ̄2 = 3γ̄1 (see Figure 6.15(c). Nonetheless,
the unsupervised period could not be reached due to the high steady-state MSE level,
as described in Table 6.8. Among the values of γ̄2 that could work in a semi-blind
scheme, for γ̄2 = 2γ̄1 yielded a BER of 7.5× 10−5, representing a huge improvement
if compared to VSBSM-PNLMS results. Once again using MI = 0.1 and γ̄2 = 2γ̄1,
one can observe in Figure 6.17(c) that the VSBDTSM-PNLMS technique is much
more efficient, in the computational complexity sense, than VSBSM-PNLMS, since
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Figure 6.17: NUE for different thresholds γ̄2 and MIs in the feedforward case for
VSBDTSM-PNLMS. The red line indicates the NUE in the VSBSM-PNLMS case.
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Figure 6.18: MSE for different thresholds γ̄2 and MIs in the DFE case for
VSBDTSM-PNLMS.
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Figure 6.19: BER for different thresholds γ̄2 and MIs in the DFE case for
VSBDTSM-PNLMS.

its NUE represents only 43.64% of the latter technique, although using an amount
of training data three times greater.
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Table 6.9: Average number of iterations until unsupervised period / Average update
rates ν1 / Average update rates ν2 using η = 0.1 for VSBDTSM-PNLMS in the DFE
case.

MI = 0.05 MI = 0.075 MI = 0.1
γ2 = γ1 407 / 0 / 14.14% 544 / 0 / 29.97% 1228 / 0 / 52.09%
γ2 = 1.5γ1 1143 / 22.18 / 6.83% 1181 / 21.27 / 14.07% 1895 / 19.71 / 29.76%
γ2 = 2γ1 2251 / 41.53 / 4.09% 3568 / 43.40 / 8.22% 3544 / 37.20 / 15.85%
γ2 = 2.5γ1 2444 / 51.43 / 2.65% 3157 / 57.74/ 5.44% 4158 / 51.63 / 10.13%
γ2 = 3γ1 3074 / 57.03 / 1.73% 1919 / 65.18 / 3.75% – / 61.57 / 7.18%
γ2 = 3.5γ1 2284 / 60.74 / 1.10% – / 69.41 / 2.60% – / 68.41 / 5.25%
γ2 = 4γ1 3035 / 62.96 / 0.64% – / 71.84 / 1.80% – / 72.81 / 3.81%
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Figure 6.20: NUE for different thresholds γ̄2 and MI in the DFE case for VSBDTSM-
PNLMS. The red line indicates the NUE in the VSBSM-PNLMS case

6.1.11 Final Remarks

As indicated by the results of this chapter, it is possible to conclude that the proposed
Volterra-based techniques are able to equalize the developed VLC transceiver consid-
ering distinct levels of nonlinearity. Due to the encouraging results presented here,
these methods proved to be an interesting approach to reduce the computational
burden yielded by Volterra series. Considering MI = 0.1, the lowest BER among
all tested techniques was 7.5 × 10−5 obtained by VSBDTSM-PNLMS, with lower
computational complexity, if compared with VSM-PNLMS and VSBSM-PNLMS.
However, the Blind iteration in this case was three times larger than the VSBSM-
PNLMS’. As already mentioned, it is hard to state the best algorithm in global
terms. For example, a technique may provide the lowest BER at the cost of using
more data as reference signal, or higher computational complexity. Nevertheless, all
techniques presented in this work represent good approaches to work as equalizers
in a VLC system.
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Chapter 7

Conclusions and Future Works

7.1 Concluding Remarks

This work proposed data-selective techniques to be employed in a large range of
nonlinear systems, whose main application is in visible light communication. One
of the most popular technique to cope with the nonlinearities inherent to VLC
systems is the Volterra series. Nonetheless, due to the large number of parameters
to be updated in an adaptive filtering context, its use yields a high computational
complexity. Therefore, by using the set-membership framework, this work proposed
the use of Volterra filters with data-selective techniques, which select only data that
brings innovation to the system, avoiding unnecessary updates, thereby, drastically
reducing the computational burden due to Volterra series. In addition, by exploring
the structure of such series, this work also proposed a technique which employs
the combination of different data-selective-based adaptive filters in order to reduce
even more the computational complexity. Furthermore, due to the large number of
parameters associated with Volterra series, the amount of data used to train the
adaptive filters may also be large. Then, this dissertation proposed the use of data-
selective semi-blind techniques, which reduces both computational complexity and
amount of training data.

Due to the lack of a practical tool for the performance assessment of the proposed
data-selective techniques in the literature, it was also proposed a computational
platform for VLC, which allows the analysis of BER under different modulation
schemes or SNR levels.

Results showed that the proposed techniques are able to provide low levels of
MSE and BER in both feedforward and DFE schemes, considering a generic non-
linear systems, as well as in a specific VLC system, while drastically reducing the
computational burden due to Volterra series. In addition, considering semi-blind
methods, a reasonable performance in terms of MSE and BER was achieved, even
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using a reduced amount of training data, yet reducing the computational complexity.
It is worth mentioning that the implementation of the proposed techniques of

this work can be found at [116].

7.2 Research Directions

As future works, the proposed techniques should be evaluated in a real scenario,
including an experimental VLC system, so as to analyze the fidelity of the models of
the proposed simulator. Furthermore, a deeper analysis regarding the convergence
aspects of the algorithms based on different filters should be performed. Moreover,
other approaches to reduce the computational complexity of Volterra series, e.g.,
sparse and tensor analyses, should also be investigated.

Considering the developed VLC simulator, other features, such as a model for
non-line-of-sight channels, multiple LEDs and photodiodes, and other types of such
devices should be incorporated to this platform, which would allow for the perfor-
mance evaluation of MIMO systems. In addition, schemes that consider a nearly
constant average optical power and the mitigation of flicker effects should be stud-
ied. Furthermore, techniques to address the transmission over low SNR should also
be considered as future work.
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Appendix A

Derivation of the Adaptive
Algorithms

A.1 SM-PNLMS

The cost function to be minimized in this technique is expressed as:

F =
1

2
‖w[k − 1]−w[k]‖2

G−1[k]

subject to : d[k]−wH [k + 1]x[k] = γ̄ sign{e[k]}.
(A.1)

Expanding (A.1), and making use of the Lagrange multiplier λ[k], results in the
following Lagrangian function

LF =
1

2
(w[k + 1]−w[k])HG−1[k](w[k + 1]−w[k])+

1

2
λ∗[k]

(
d∗[k]−wT [k + 1]x∗[k]− γ̄sign{e[k]}

)
+

1

2
λ[k]

(
d[k]−wH [k + 1]x[k]− γ̄sign{e[k]}

)
.

(A.2)

Deriving (A.2) with relation to w∗[k + 1] and equaling to zero results in

∂LF
∂w∗[k + 1]

= G−1[k]w[k + 1]−G−1[k]w[k]− λ[k]x[k] = 0, (A.3)

w[k + 1] = w[k] + λ[k]G[k]x[k]. (A.4)

By premultiplying (A.4) by xH [k], gives us

xH [k]w[k + 1] = xH [k]w[k] + λ[k]xH [k]G[k]x[k]. (A.5)

By using the constraint d∗[k] − xH [k]w[k + 1] = γ̄sign{e[k]}, (A.5) can be written
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as

d∗[k]− xH [k]w[k + 1] = d∗[k]− xH [k]w[k]− λ[k]xH [k]G[k]x[k]

γ̄sign{e[k]} = e∗[k]− λ[k]xH [k]G[k]x[k]

λ[k] =
e∗[k]− γ̄sign{e[k]}
xH [k]G[k]x[k]

. (A.6)

By substituting (A.6) in (A.4), gives us

w[k + 1] =

w[k] + G[k]x[k]
xH [k]G[k]x[k]

(e∗[k]− γ̄sign{e[k]}), if |e[k]| > γ̄,

0, otherwise.
(A.7)

Nonetheless, (A.7) can still be simplified further by using the fact that

γ̄sign{e[k]} =
γ̄e∗[k]

|e[k]|
. (A.8)

Hence,

e∗[k]− γ̄sign{e[k]} = e∗[k]

(
1− γ̄

|e[k]|

)
︸ ︷︷ ︸

µ[k]

. (A.9)

Therefore, (A.7) can be rewritten as

w[k + 1] = w[k] + µ[k]
G[k]x[k]

xH [k]G[k]x[k]
e∗[k], (A.10)

with

µ[k] =

1− γ̄
|e[k]| , if |e[k]| > γ̄,

0, otherwise.
(A.11)

A.2 BEACON

In this case, the cost function to be minimized is

F =
k∑
i=1

λk−i[k]|d[i]−wH [k]x[i]|2

subject to : |d[k]−wH [k]x[k]|2 = γ̄2.

(A.12)

86



Then, by applying Lagrange multipliers, it is possible to express the Lagrangian
function as

LF =
k∑
i=0

λk−i[k]
(
|d[i]−wH [k]x[k]|2

)
+ λ[k](|d[i]−wH [k]x[k]|2 − γ̄2). (A.13)

Note that λ[k] in (A.12) is a parameter that can be chosen by the filter designer;
in (A.13) it is set as the Lagrange multiplier associated with the Lagrangian function
LF . Deriving (A.13) with relation to w∗[k] and equaling to zero results in

∂LF
∂w∗[k]

=
k∑
i=0

λk−i[k]
(
x[i]xH [i]w[k]− d∗[i]x[i]

)
+

λ[k]
(
x[k]xH [k]w[k]− d∗[k]x[k]

)
= 0,

(A.14)

w[k] =

(
k∑
i=0

λk−i[k]x[i]xH [i] + λ[k]x[k]xH [k]

)−1

︸ ︷︷ ︸
S−1[k]

×

(
k∑
i=0

λk−i[k]d∗[i]x[i] + λ[k]d∗[k]x[k]

)
︸ ︷︷ ︸

z[k]

.

(A.15)

Therefore, (A.15) can be rewritten in a more compact fashion as

w[k] = S−1[k]z[k]. (A.16)

By analyzing the equation of S[k] and assuming λ[k] ≈ λ[k−1], one can describe
the update equation for S[k] as

S[k] =
k∑
i=0

λk−i[k]x[i]xH [i] + λ[k]x[k]xH [k],

=
k−1∑
i=0

λk−i[k]x[i]xH [i] + λ[k]x[k − 1]xH [k − 1] + λ[k]x[k]xH [k],

= S[k − 1] + λ[k]x[k]xH [k]. (A.17)
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Analogously, the update equation for z[k] can be expressed as

z[k] =
k∑
i=0

λk−i[k]d∗[i]x[i] + λ[k]d∗[k]x[k],

=
k−1∑
i=0

λk−i[k]d∗[i]x[i] + λ[k]d∗[k − 1]x[k − 1] + λ[k]d∗[k]x[k],

= z[k − 1] + λ[k]d∗[k]x[k]. (A.18)

Then, by making use of the matrix inversion lemma [95], the update equation of
S[k] is described as

S−1[k] = S−1[k − 1]− λ[k]S−1[k − 1]x[k]xH [k]S−1[k − 1]

1 + λ[k]xH [k]S−1[k − 1]x[k]
(A.19)

= S−1[k − 1]− λ[k]S−1[k − 1]x[k]kT [k], (A.20)

where

k[k] =
S−1[k − 1]x∗[k]

1 + λ[k]xH [k]S−1[k − 1]x[k]
. (A.21)

Therefore, by using (A.18) and (A.20) in (A.16), results in

w[k] = S−1[k] (z[k − 1] + λ[k]d∗[k]x[k]) ,

= S−1[k] (S[k − 1]w[k − 1] + λ[k]d∗[k]x[k]) ,

= S−1[k]S[k − 1]w[k − 1] + S−1[k]λ[k]d∗[k]x[k],

=
(
S−1[k − 1]− λ[k]S−1[k − 1]x[k]kT [k]

)
(S[k − 1]w[k − 1]) + S−1[k]λ[k]d∗[k]x[k],

= w[k − 1]− λ[k]S−1[k − 1]x[k]kT [k]S[k − 1]w[k − 1] + S−1[k]λ[k]d∗[k]x[k].

(A.22)

By using (A.21) in (A.22), results in

w[k] = w[k − 1]− λ[k]xH [k]w[k − 1]k∗[k] + λ[k]d∗[k]S−1[k]x[k]. (A.23)

Using the fact that k∗[k] = S−1[k]x[k], the previous equation is rewritten as

w[k] = w[k − 1] + λ[k]
(
−xHw[k − 1]k[k] + d∗[k]S−1[k]x[k]

)
,

= w[k − 1] + λ[k]
(
−xHw[k − 1] + d∗[k]

)
k∗[k],

= w[k − 1] + λ[k]e∗[k]k∗[k],

= w[k − 1] + λ[k]S−1[k]x[k]e∗[k], (A.24)

where the a priori error is defined here as e[k] = d[k] − wH [k − 1]x[k]. Now, it
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is only left the evaluation of λ[k]. To do that, let us premultiply (A.24) by xH [k],
which leads

xH [k]w[k] = xH [k]w[k − 1] + λ[k]xH [k]S−1[k]x[k]e∗[k]. (A.25)

Then, by subtracting d∗[k] of the previous equation, it can be rewritten as

d∗[k]− xH [k]w[k] = e∗[k]− λ[k]xH [k]S−1[k]x[k]e∗[k], (A.26)

which can be rewritten once again by using (A.19) as

d∗[k]− xH [k]w[k] = e∗[k]− λ[k]xH [k]×(
S−1[k − 1]− λ[k]S−1[k − 1]x[k]xH [k]S−1[k − 1]

1 + λ[k]xH [k]S−1[k − 1]x[k]

)
x[k]e∗[k],

. (A.27)

After some algebraic manipulation, (A.27) is simplified and rewritten as

d∗[k]− xH [k]w[k] = e∗[k]−
(

λ[k]xH [k]S−1[k − 1]

1 + λ[k]xH [k]S−1[k − 1]x[k]

)
x[k]e∗[k],

= e∗[k]

(
1− λ[k]xH [k]S−1[k − 1]x[k]

1 + λ[k]xH [k]S−1[k − 1]x[k]

)
,

= e∗[k]

(
1

1 + λ[k]xH [k]S−1[k − 1]x[k]

)
. (A.28)

Thus, by using the constraint of (A.12) and using the fact that S−1[k − 1] is a real
and positive-definite matrix, λ[k] is expressed mathematically as

γ̄ =

∣∣∣∣e∗[k]

(
1

1 + λ[k]xH [k]S−1[k − 1]x[k]

)∣∣∣∣ ,
= |e∗[k]|

(
1

1 + λ[k]xH [k]S−1[k − 1]x[k]

)
, (A.29)

λ[k] =
1

xH [k]S−1[k − 1]x[k]

(
|e∗[k]|
γ̄
− 1

)
,

=
1

xH [k]S−1[k − 1]x[k]

(
|e[k]|
γ̄
− 1

)
. (A.30)
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A.3 M-BEACON

The derivation of this algorithm is very similar to BEACON’s. In order to present
its derivation, let us first define the following variables:

S̃[k] = λ−1[k]S[k], (A.31)

z̃[k] = λ−1[k]z[k], (A.32)

l[k] =
λ[k − 1]

λ[k]
. (A.33)

Therefore, by multiplying both sides of (A.17) and (A.18) by λ−1[k], and using this
previous definitions, one can rewrite these equations as

S̃[k] = l[k]S̃[k − 1] + x[k]xH [k], (A.34)

z̃[k] = l[k]z̃[k − 1] + d∗[k]x[k]. (A.35)

Once again employing the matrix inversion lemma yields

S̃−1[k] = l−1[k]

(
S̃−1[k − 1]− S̃−1[k − 1]x[k]xH [k]S̃−1[k − 1]

l[k] + xH [k]S̃−1[k − 1]x[k]

)
, (A.36)

= l−1[k]
(
S̃−1[k − 1]− S̃−1[k − 1]x[k]kT [k]

)
, (A.37)

where k[k] is here redefined as

k[k] =
S̃−1[k − 1]x∗[k]

l[k] + xH [k]S̃−1[k − 1]x[k]
. (A.38)

Therefore, by using (A.35) and (A.37) in (A.16), results in

w[k] = S̃−1[k] (z̃[k − 1]l[k] + d∗[k]x[k]) ,

= S̃−1[k]
(
S̃[k − 1]w[k − 1]l[k] + d∗[k]x[k]

)
,

= S̃−1[k]S̃[k − 1]w[k − 1]l[k] + S̃−1[k]d∗[k]x[k],

= l−1[k]
(
S̃−1[k − 1]− S̃−1[k − 1]x[k]kT [k]

)(
S̃[k − 1]w[k − 1]l[k]

)
+

S̃−1[k]d∗[k]x[k],

= w[k − 1]− S̃−1[k − 1]x[k]kT [k]S̃[k − 1]w[k − 1] + S̃−1[k]d∗[k]x[k]. (A.39)

By using (A.38) in (A.39), results in

w[k] = w[k − 1]− xH [k]w[k − 1]k∗[k] + d∗[k]S̃−1[k]x[k]. (A.40)
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Over again using the fact that k∗[k] = S̃−1[k]x[k], the previous equation is
rewritten as

w[k] = w[k − 1] +
(
−xHw[k − 1]k[k] + d∗[k]S̃−1[k]x[k]

)
,

= w[k − 1] +
(
−xHw[k − 1] + d∗[k]

)
k∗[k],

= w[k − 1] + e∗[k]k∗[k],

= w[k − 1] + S̃−1[k]x[k]e∗[k], (A.41)

In order to assess l[k], one can substitute (A.30) in (A.33), yielding

l[k] =
λ[k − 1]xH [k]S−1[k − 1]x[k](

|e[k]|
γ̄
− 1
) . (A.42)

Once λ[k − 1]S−1[k − 1] = l−1[k − 1]S̃[k − 1], (A.42) can be rewritten as

l[k] =
xH [k]S̃−1[k − 1]x[k](

|e[k]|
γ̄
− 1
) . (A.43)

A.4 Volterra Semi-blind SM-PNLMS

During the supervised period, the cost function to be minimized in this case is
described as

F =
1

2
‖w[k − 1]−w[k]‖2

G−1[k]

subject to : ‖d[k]−wH [k + 1]xN [k]− γ̄sign∞{e[k]}‖∞ = 0.
(A.44)

Expanding (A.44) and making use of the Lagrange multiplier λ[k], results in the
following Lagrangian function

LF =
1

2
(w[k + 1]−w[k])HG−1[k](w[k + 1]−w[k])+

1

2
λ∗[k]‖d∗[k]−wT [k]x∗N [k]− γ̄sign∞{e[k]}‖∞+

1

2
λ[k]‖d[k]−wH [k]xN [k]− γ̄sign∞{e[k]}‖∞.

(A.45)

Defining as a[k] = d[k]−wH [k + 1]xN [k]− γ̄sign∞{e[k]}, one can derive (A.45)
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with relation to w∗[k + 1] as follows

∂LF
∂w∗[k + 1]

= G−1[k]w[k + 1]−G−1[k]w[k]− λ[k]
∂‖a[k]‖∞
∂a[k]

∂a[k]

∂w∗[k + 1]
,

= G−1[k]w[k + 1]−G−1[k]w[k]− λ[k]
∂‖a[k]‖∞
∂a[k]

xN [k], (A.46)

Defining as b[k] = λ[k]∂‖a[k]‖∞
∂a[k]

and by setting (A.46) to zero, leads to

w[k + 1] = w[k] + G[k]xN [k]b[k]. (A.47)

By premultiplying (A.47) by xHN [k], subtracting d∗[k] and γ̄sign∞{e[k]} from both
sides of this equation, results in

0 = d∗[k]− xHN [k]w[k]− γ̄sign∞{e[k]} − xHN [k]G[k]xN [k]b[k]

b[k] =
e∗[k]− γ̄sign∞{e[k]}

xHN [k]G[k]xN [k]
. (A.48)

Hence, by substituting (A.48) in (A.47) leads to

w[k + 1] =

w[k] + G[k]xN [k]

xHN [k]G[k]xN [k]
(e∗[k]− γ̄sign∞{e[k]}), if |e[k]| > γ̄,

0, otherwise.
(A.49)

Nonetheless, (A.49) can still be simplified further by using the fact that

γ̄sign∞{e[k]} =
γ̄e∗[k]

‖e[k]‖∞
. (A.50)

Hence,

e∗[k]− γ̄sign∞{e[k]} = e∗[k]

(
1− γ̄

‖e[k]‖∞

)
︸ ︷︷ ︸

µ[k]

. (A.51)

Therefore, (A.10) can be rewritten as

w[k + 1] = w[k] + µ[k]
G[k]xN [k]

xHN [k]G[k]xN [k]
e∗[k], (A.52)

with

µ[k] =

1− γ̄
‖e[k]‖∞ , if ‖e[k]‖∞ > γ̄,

0, otherwise.
(A.53)
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During the unsupervised period, the only modification to be made is to replace
the reference signal d[k] by the decided symbol b[k]. For this case, the error is defined
as

eb[k] = b[k]−wH [k]xN [k]. (A.54)

Thus, (A.44) is modified as follows:

F =
1

2
‖w[k − 1]−w[k]‖2

G−1[k]

subject to : ‖b[k]−wH [k + 1]xN [k]− γ̄sign∞{eb[k]}‖∞ = 0.
(A.55)

Following the same steps that yielded (A.10), it is possible to describe the update
equation in the unsupervised period as

w[k + 1] = w[k] + µb[k]
G[k]xN [k]

xHN [k]G[k]xN [k]
e∗b[k], (A.56)

with

µb[k] =

1− γ̄
‖eb[k]‖∞ , if ‖eb[k]‖∞ > γ̄,

0, otherwise.
(A.57)
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Appendix B

Pseudo-codes of the Adaptive
Algorithms

This appendix describes the adaptive algorithms in a form of pseudo-code.

B.1 SM-PNLMS

Algorithm 1: Pseudocode of SM-PNLMS.
Initialization:
choose γ̄ and κ
set δ � 1

w[0] = [ 0 · · · 0 ]T + δ

for k ≥ 0 do
e[k] = d[k]−wH [k]x[k]

µ[k] =

1− γ̄
|e[k]| , if |e[k]| > γ̄,

0, otherwise.

for l = 1 to L do
Gll[k] = 1−κµ[k]

L
+ κµ[k]|wl[k]|

‖w[k]‖1

end
w[k + 1] = w[k] + µ[k]G[k]x[k](xH [k]G[k]x[k])−1e∗[k]

end
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B.2 M-BEACON

Algorithm 2: Pseudocode of M-BEACON.
Initialization:
set δ � 1

w[0] = [ 0 · · · 0 ]T

S̃−1[0] = δI

for k ≥ 1 do
e[k] = d[k]−wH [k − 1]x[k]

λ[k] =

xH [k]S̃−1[k − 1]x[k] 1

( |e[k]|
γ̄
−1)

, if |e[k]| > γ̄,

0, otherwise,

S̃−1[k] = λ[k]
(
S̃−1[k − 1]− S̃−1[k]x[k]xH [k]S̃−1[k−1]

λ−1[k]+xH [k]S̃−1[k−1]x[k]

)
,

w[k] = w[k − 1] + S̃−1[k]x[k]e∗[k],
end

B.3 VSBSM-PNLMS

Algorithm 3: Pseudocode of VSBSM-PNLMS.
Initialization:
choose γ̄ and κ
set δ � 1

set Blind Iteration
w[0] = [ 0 · · · 0 ]T + δ

for k ≥ 0 do
build input vector xN [k] by using (3.19) and (3.20)
y[k] = wH [k]xN [k]

if k < Blind Iteration then
e[k] = d[k]− y[k]

else
b[k] = dec{y[k]}
e[k] = b[k]− y[k]

end

µ[k] =

1− γ̄
‖e[k]‖∞ , if ‖e[k]‖∞ > γ̄,

0, otherwise.

for l = 1 to L do
Gll[k] = 1−κµ[k]

L
+ κµ[k]|wl[k]|

‖w[k]‖1

end
w[k + 1] = w[k] + µ[k]G[k]xN [k](xHN [k]G[k]xN [k])−1e∗[k]

end
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Note that in the previous pseudo-code, eb[k] was changed to e[k] in order to avoid
code repetition.

B.4 VSBM-BEACON

Algorithm 4: Pseudocode of VSBM-BEACON.
Initialization:
set δ � 1

set Blind Iteration
w[0] = [ 0 · · · 0 ]T

S̃−1[0] = δI

for k ≥ 1 do
build input vector xN [k] by using (3.19) and (3.20)
y[k] = wH [k − 1]xN [k]

if k < Blind Iteration then
e[k] = d[k]− y[k]

else
b[k] = dec{y[k]}
e[k] = b[k]− y[k]

end

λ[k] =

xHN [k]S̃−1[k − 1]xN [k] 1

( ‖e[k]‖∞
γ̄

−1)
, if ‖e[k]‖∞ > γ̄,

0, otherwise,

S̃−1[k] = λ[k]
(
S̃−1[k − 1]− S̃−1[k]xN [k]xHN [k]S̃−1[k−1]

λ−1[k]+xHN [k]S̃−1[k−1]xN [k]

)
,

w[k] = w[k − 1] + S̃−1[k]xN [k]e∗[k],
end
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B.5 VDTSM-PNLMS

Algorithm 5: Pseudocode of VDTSM-PNLMS.
Initialization:
choose γ̄1, γ̄2, κ1, κ2, and σ
set C = 2

set δ � 1

w1[0] = [ 0 · · · 0 ]T + δ

w2[0] = [ 0 · · · 0 ]T + δ

w[0] = [ 0 · · · 0 ]T

for k ≥ 0 do
build input vector xN [k] by using (3.19) and (3.20)
e[k] = d[k]−wH [k]xN [k]

for c = 1 to C do

µc[k] =

1− γ̄c
|e[k]| , if |e[k]| > γ̄c,

0, otherwise.

for l = 1 to L do
Gc,ll[k] = 1−κcµc[k]

L
+

κcµc[k]|wc,l[k]|
‖wc[k]‖1

end
wc[k + 1] = wc[k] + µc[k]UcGc[k]xN [k](xHN [k]UcGc[k]xN [k])−1e∗[k]

end
w[k + 1] = σw1[k + 1] + (1− σ)w2[k + 1] #Perform combination of
parameter vectors
w1[k + 1]← w[k + 1] # Assign w[k + 1] to w1[k + 1]

w2[k + 1]← w[k + 1] # Assign w[k + 1] to w2[k + 1]

end
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B.6 VSBDTSM-PNLMS

Algorithm 6: Pseudocode of VSBDTSM-PNLMS.
Initialization:
choose γ̄1, γ̄2, κ1, κ2, and σ
set C = 2

set δ � 1

set Blind Iteration
w1[0] = [ 0 · · · 0 ]T + δ

w2[0] = [ 0 · · · 0 ]T + δ

w[0] = [ 0 · · · 0 ]T

for k ≥ 0 do
build input vector xN [k] by using (3.19) and (3.20)
y[k] = wH [k − 1]xN [k]

if k < Blind Iteration then
e[k] = d[k]− y[k]

else
b[k] = dec{y[k]}
e[k] = b[k]− y[k]

end
for c = 1 to C do

µc[k] =

1− γ̄c
‖e[k]‖∞ , if ‖e[k]‖∞ > γ̄c,

0, otherwise.

for l = 1 to L do
Gc,ll[k] = 1−κcµc[k]

L
+

κcµc[k]|wc,l[k]|
‖wc[k]‖1

end
wc[k + 1] = wc[k] + µc[k]UcGc[k]xN [k](xHN [k]UcGc[k]xN [k])−1e∗[k]

end
w[k + 1] = σw1[k + 1] + (1− σ)w2[k + 1] #Perform combination of
parameter vectors
w1[k + 1]← w[k + 1] # Assign w[k + 1] to w1[k + 1]

w2[k + 1]← w[k + 1] # Assign w[k + 1] to w2[k + 1]

end

Once again eb[k] was changed to e[k] in order to avoid code repetition.
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