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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UM MODELO DA DINÂMICA DE POPULAÇÕES DO DILEMA DOS BENS
PÚBLICOS EM UMA ESPÉCIE DE FORMIGAS

Santiago Vladimir Gómez Rosero

Abril/2015

Orientadores: Amit Bhaya
Frederico Caetano Jandre de Assis Tavares

Programa: Engenharia Elétrica

Neste trabalho, propõe-se o modelo da dinâmica do dilema dos bens públicos numa
colônia de formigas da espécie Pristomyrmex punctatus, baseado nos resultados dos ex-
perimentos de Dobata e Tsuji. A colônia de formigas é constituída por formigas operárias
e trapaceiras, além o modelo proposto, baseado em equações diferenciais ordinárias no
estilo predador-presa, representa as interações de três variáveis: a população das formigas
operárias, a população das formigas trapaceiras e os bens públicos no ninho. O modelo
foi programado no iThink modeling & simulation software e simulado para analisar o
comportamento do modelo. Os resultados das simulações são similares aos resultados
apresentados por Dobata e Tsuji. Também o modelo proposto permite as análises do
sistema em longo tempo com variações nas proporções de populações iniciais das tra-
paceiras e das operárias. Além disso é possível determinar a coexistência no ponto de
estabilização das populações permitindo a sobrevivência da colônia no tempo sob certas
condições.
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PROPOSAL AND ANALYSIS OF A POPULATION DYNAMICS MODEL OF THE
PUBLIC GOODS DILEMMA IN AN ANT COLONY

Santiago Vladimir Gómez Rosero

April/2015

Advisors: Amit Bhaya
Frederico Caetano Jandre de Assis Tavares

Department: Electrical Engineering

This disertation proposes a model of the dynamics of the public goods dilemma in an
ant colony of the species Pristomyrmex punctatus, based on recent experimental results
of Dobata and Tsuji. The ant colony is made up of workers and cheaters, and the
proposed model, based on predator-prey style ordinary differential equations, represents
the interactions between three variables: the worker ant population, the cheater ant
population and the public good in the nest. The model ODEs were coded in the iThink
modeling & simulation software and simulated to analyse the behavior of the system.
The simulation results are qualitatively very similar to the experimental results obtained
by Dobata and Tsuji. The proposed model also allows the investigation of the long term
behavior of the five short term case studies proposed by Dobata and Tsuji. In addition,
it is possible to vary the quantity and proportion of the population of both cheaters and
worker ants and observe the results in the simulation, with respect to the coexistence of
the two populations and the long term survival of the ant colony.
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Chapter 1

Introduction

There has been long-standing interest in the widespread situation in which costs, from
an action by a member of a group, are private, but the benefits are borne by all members
of the group. In a biological context, this situation is described by saying that public
goods are created by group members at some individual cost, in the expectation that
cooperation will develop around them. Indeed, biologists have noticed that cooperation
is frequently present in nature (see [1] and refs. therein).

However, the biologist Hardin, in a much cited paper [2], predicted that cheaters, who
benefit from public goods without paying for them, will lead to the collapse of cooperation,
and this is now referred to in game theory as “the tragedy of the commons” or “the public
goods dilemma”. There is also experimental evidence, for interactions between viruses
and cells, showing that the public goods dilemma can occur and be linked to genetic
background. At the level of higher and more complex organisms, there has been little
reported work. Dobata and Tsuji [3] provided experimental evidence for the existence of
the public goods dilemma in the asexual ant species Pristomyrmex punctatus (henceforth
P. punctatus), occurring between workers (cooperators) and cheaters (free riders). In this
species, all workers carry out cooperative as well as asexual reproduction tasks, whereas
cheaters (genetically different) reproduce themselves at a rate higher than the workers,
without involving themselves in any cooperative tasks. In laboratory experiments, Dobata
and Tsuji [3] showed that cheaters were more successful in surviving and reproducing,
causing the collapse of cooperation, thus demonstrating the emergence of the public goods
dilemma in a non-microbial society. Elucidation of conditions under which cooperation
flourishes or collapses is an important and current topic in evolutionary biology.

Prior to the Dobata-Tsuji experiments, the public goods dilemma has been tested ex-
perimentally at human level [4], for vertebrate animals [5], and for many microorganisms
[6], [7]. It should also be pointed out that Hardin’s dire predictions, have been contested
by game theorists studying outcomes of noncooperative games in situations where a good
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is shared by all players (see Diekert’s review [8]), although there is a consensus that all
the controversy and discussion centred around the tragedy of the commons has clarified
the mechanisms of collective action problems and even suggested ways to overcome them.
In this work, we limit ourselves to modeling and studying aspects of the phenomenon that
has been shown to exist in the P. punctatus species.

Dynamics of the Public Goods Dilemma

The public goods dilemma game can be described in more detail as follows. Assume
that the population of an environment can be subdivided into cooperators and cheaters,
sometimes also called defectors. The public goods are produced at some cost to each
individual cooperator, but once they are produced are available for the whole population
in the game, i.e., for the cooperators and the cheaters. The cheater population consumes
the public goods without paying its cost or participating in its production. Given this
advantage, in time the cheater population attains higher average fitness than the coopera-
tors [9]. Eventually this advantage becomes tragedy, since the cheaters with better fitness
begin to overrun the cooperator population and finally, without a sufficient quantity of
public goods for the support of the society, both populations become extinct.

Quoting Nowak [1]: “ Evolution is based on a fierce competition between individu-
als and should therefore reward only selfish behavior. Yet we observe cooperation on
many levels of biological organization. Genes cooperate in genomes. Cells cooperate in
multicellular organisms. There are many examples of cooperation among animals.” In
short, while competition is the base for evolution of a species, cooperation could be the
key for the evolution of societies. Remarkably, when the whole population is composed
only of cooperators, the fitness is even higher than when the cheaters are mixed with the
cooperators and, in the case that the whole population is made up of cooperators, it is
able to persists in time. For populations composed only of cheaters, fitness diminishes
greatly and they become extinct more quickly[1].

In order to model the dynamics of the interaction between the worker and cheater ants
that are involved in the public goods game, ordinary differential or difference equations
are the tool of choice. In this work, the Lotka-Volterra predator-prey equations, as
modified by [10], are used as the starting point to develop the proposed model. The
actual development of the model also used the systems dynamics approach, pioneered in
[11], as well as associated software tools.
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Brief description of a Pristomyrmex punctatus ant species

Ants are still objects of much contemporary research since they are one of the social
insects more successful in nature, given their adaptation to different environments and
their societal structure [12]. One characteristic of great research in this kind of insect is the
high level of altruism, where only one caste (queen) engages in reproductive tasks, while
the other castes (normally the rest of the colony) engages in the hard work of maintaining
the colony and supporting the reproductive caste and their brood (see Gordon [13]). One
species of ant that does not require a caste of queens for reproduction, is P. punctatus, for
which the workers reproduce through the younger intranidal workers and later become
extranidal workers, (see Nishide [14]).

Dobata and Tsuji [3] provide experimental evidence for the public goods dilemma in
P. punctatus. In this species, all workers cooperate on tasks that benefit the whole colony
and are also capable of asexual reproduction. However, the colony can be invaded by mu-
tant genetic cheaters that can subvert the division of labor by reproducing themselves,
without cooperating on tasks that benefit all. Dobata and Tsuji mention that there are
temporal castes among workers and that cheaters engage in “few tasks except for repro-
duction”. For simplicity in this work, we will assume that cheaters do not engage in any
tasks other than reproduction and that the temporal caste structure can be represented
by a constant proportion of workers (the younger ones) assigned to inside-nest tasks (re-
production and brood care), and the remainder (older workers) assigned to outside-nest
tasks (foraging).

Objectives of this dissertation

• Development of a mathematical model of the dynamics of P. punctatus ants.

• Verification that the proposed model is capable of emulating the public goods
dilemma.

• Fitting of the proposed model to the experimental data of Dobata and Tsuji.

• Examination of conditions and model parameter values that permit coexistence of
cheaters and cooperators.

Structure of this dissertation

Chapter 2 describes the development of a model, which is closely based on a two-predator,
one-prey model proposed by Elhanati et al. earlier, in a different context. The reported
behavior of P. punctatus ants is used to propose the modification of the Elhanati model.
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Chapter 3 deals with simulation as well as fitting the proposed model to Dobata’s
real experimental data. Chapter 4 studies stability aspects of the proposed model both
in presence and absence of cheaters ants. Finally, Chapter 5 seeks which parameters
could be modified in order to gain coexistence between the populations. Chapter 6 is
reserved for the conclusions of the dissertation.
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Chapter 2

The Prystomyrmex Punctatus
Public Goods Dilemma (P 3G)
Model

The model of an asexual ant society proposed in this dissertation is a modification of
the model proposed in [10, 15] for two populations and one common resource or public
good. One of the species called worker ants is the producer of the resource and the other
called cheater ants an opportunist. The proposed modifications have the objective of
reproducing the characteristics reported in the experiments performed by Dobata and
Tsuji [3]. It is also known from the studies of Gordon [16] and Greene [17] that worker
ants provide a recruitment force to produce public goods whenever they are scare, and
this fundamental characteristic of ants is also a feature of the proposed model. We
will standardize our terminology, referring to cooperators and free-riders in a general
discussion and respectively to workers and cheaters, when referring to ants.

2.1 Conceptualization of the proposed model

In general terms, the proposed model is composed of three variables, and is based on
Lotka-Volterra models for competition of two predators consuming one prey so that, the
general model consists of three coupled-nonlinear differential equations.

˙̄x(t) = F (z̄(t)) x̄(t)
˙̄y(t) = G (z̄(t)) ȳ(t)
˙̄z(t) = H (x̄(t), ȳ(t), z̄(t))

(2.1)

where x̄(t), ȳ(t) and z̄(t) are respectively, the worker ant population, the cheater ant
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population and the public goods, at time t. From now on we will suppose that t ≥ 0, and
t will be suppressed for brevity. Observe that, in this document the terms workers and
cheaters are used to denote, respectively, the producer and non-producer populations
in accordance with the cited literature. However other terms such as producers and
consumers are also used in other contexts.

The functions F (z̄) and G(z̄) represent the growth rates for each population, influ-
enced, amongst other factors by production and consumption of public goods in the
environment. The function H(x̄, ȳ, z̄) represents the growth rate of the public goods, also
affected by the production and consumption of the public goods, as well as population
densities.

The Public Goods, abbreviated to PGs from now on, represent all the goods necessary
for maintenance and growth of the ant population, aggregating three main activities:
nest maintenance, brood care and the search for food. It is important to remark that
the experimental nests constructed in the laboratory by Dobata and Tsuji, were provided
with a constant supply of food each day, so that, in the specific case of their experiments,
the food gathering activity is not part of the public goods.

Elhanati and Schuster [10] propose a model for two micro-organisms, called pheno-
types: one produces the resources or public goods and the other does not, just as observed
by Dobata and Tsuji. The simplified model equations for resource extraction by two phe-
notypes proposed in [10] is shown below,

˙̃u =
(
µ̃u(s̃)− D̃u

)
ũ− b̃1ũ+ b̃2ṽ

˙̃v =
(
µ̃v(s̃)− D̃v

)
ṽ + b̃1ũ− b̃2ṽ

˙̃s = c̃
ũ

ũ+ z̃
− 1
Ỹu
µ̃u(s̃)ũ−

1
Ỹv
µ̃v(s̃)ṽ

(2.2)

where ũ, ṽ are the concentrations of the producer and non-producer phenotype popula-
tions respectively, s̃ is the limiting resource concentration, µ̃i(s̃) are the specific growth
rates, D̃i the death rates, b̃i the transition rates between the phenotypes, c̃ and z̃ con-
stants of the reproduction function and Ỹi the yield for each phenotype (see [10] for
further details).

In the model studied in this dissertation, since worker ants cannot change their species
from worker to cheater and vice versa, the terms b̃1 and b̃2 are suppressed. In addition,
the saturation function in the PGs production, the term 1

ũ+ z̃
, is replaced by a term

representing the working force function ϕ(·), which takes into account the recruitment of
ants, mentioned by Gordon [16], that occurs when PGs fall below a certain level. Thus
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rewriting the model (2.2) in new notation after these modifications yields:

˙̄x = (Bx(z̄)−Dx) x̄
˙̄y = (By(z̄)−Dy) ȳ

˙̄z = Cz(ϕ(·))x̄− 1
Yx
Bx(z̄)x̄− 1

Yy
By(z̄)ȳ

(2.3)

Each term in the above equation will be chosen in order to model the reported behavior
of the P. punctatus ants and is explained in detail in section 2.2.3.

In order to simplify the model and the notation further, the terms Bi(z̄) are defined
as:

Bx(z̄) = b1c2z̄

By(z̄) = b2c3z̄
(2.4)

where the products ciz̄ represent the consumption of the PGs in the equation for z̄. The
terms bi are the rates of conversion of the PGs consumed by members of the respective
species. The yield terms Yi, are substituted by the terms bi of each species, in the
terminology of [10].

2.2 Model construction

Some specific phenomena observed in the experiments performed with the P. punctatus
[3], are essential for the characterization of the proposed model. Three principal phenom-
ena are described: the reproduction rate of the workers ants is strongly reduced in the
presence of cheater ants; the working force variation (i.e., the recruitment of the workers)
is driven by the level of PGs; and finally the cheaters display a strong dependency on the
PGs.

2.2.1 Brief description of the Dobata-Tsuji experiments

Dubata and Tsuji [3] developed their experiments with a initial set up of 25 artificial nests
of P. punctatus in the laboratory. Each colony was composed initially of 100 individuals,
varying the proportion of the cheater ants to be 0%, 25%, 50%, 75% and 100%. They
divided the experiment into five main cases, each one made up of five colonies. Case 0:
100 worker ants; Case 1: 75 worker ants, 25 cheater ants and so on until the Case 4 with
100 cheater ants, and zero worker ants.

All the colonies started with zero offspring and the experiments lasted 64 days, after
which the colonies were frozen and the species of the broods determined.

During the experiment, the colonies were fed with a daily supply of food and the
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quantity of ants in outside-nest activities before the feeding time was registered. Addi-
tionally the state of cleanliness of the nests was measured periodically, and all the dead
ants found were removed and registered. Following this procedure, the results obtained
are presented in figure 2.1 and figure 2.2, reproduced from [3], were obtained.

Figure 2.1: Reproduction of figures 1A and 1B from [3]. Showing fitness components of
cheaters (red) and workers (blue). (A) survival rate; (B) number of broods per capita

.

Figure 2.2: Reproduction of figure 2B from [3]: Showing proportional allocation to
outside-nest activity. Each dot corresponds to an experimental colony, cheater ants (red)
and worker ants (blue).

Graph A in Fig. 2.1, shows the proportion of survivors of both ant species after 64
days, subdivided into the five cases. Graph B in Fig. 2.1 shows the brood production
per capita (the reproduction state) for both ant species after 64 days of rearing. Figure
2.2, shows the proportion of outside-nest adults registered in the experiment, each point
representing the mean for each experimental colony in each case.
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2.2.2 Modelling the experimental characteristics reported by
Dobata-Tsuji

Reproduction of workers

Graph B in Fig. 2.1 shows the reproduction rate for both ant species. In the curve
corresponding to the worker ant reproduction, it is noticeable that two behaviors occur.
In the absence of cheater ants (Case 0), workers exhibit a normal reproduction rate,
meaning that the young workers engender their own offspring (lay eggs and breed the
larvae), while the older workers take care of the hard work, such as the outside nest tasks
and nest maintenance.

In contrast, in the presence of cheater ants in the nest, the workers abandon their
reproductive tasks (almost zero eggs laid in Cases 1,2,3), and engage only in brood care
activities, nest maintenance and reinforcement of the activities outside the nest.

To model this characteristic, a switching function driven by the presence of cheater
ants is proposed. Assume that b1 is a constant worker growth rate in absence of cheater
ants. In the presence of the cheaters in the nest, the workers reduce their reproduction
rate, thus the expected behavior is:

bx(ȳ) =

b11 + b12, if ȳ = 0

b11, if ȳ > 0
(2.5)

Using the smooth switching function (see section 2.2.3), the required behavior is modeled
by the function:

b1(ȳ) = b11 + b12

1 + ᾱ2ȳ

The final expression for b1(ȳ) is written as:

b1(ȳ) = b11 + b12f(ȳ)

introducing the notation,

f(ȳ) = 1
1 + ᾱ2ȳ

(2.6)

where f(ȳ) is called the reproduction inhibition function. It is clear that this choice leads
to the behaviour expected for b1 in (2.5), with a smooth switching function f(ȳ) shown
in figure 2.3.
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Figure 2.3: Figure A (left), behavior for the reproduction inhibition function f(ȳ): near
ȳ = 0 → f(ȳ) = 1, for ȳ � 0 → f(ȳ) ≈ 0. Figure B (right), expected behavior of b1(ȳ).

The working force

The behavior of the working force can be seen in figure 2.2. Dobata and Tsuji take the
outside activities as a measure of the amount of work required in the nest. As seen in
the graph, the largest amount of work is performed by the worker ants, while the cheater
ants almost never appear outside the nest.

Taking Case 0 as base (100% worker ants), the flux of the outside-nest activities
represents the normal rate of work required to support a colony made up of only worker
ants. When the cheater ants increase in proportion (Cases 1, 2 and 3), the flux of workers
outside the nest increases its level, eventually doubling its value(see Case 3 in figure 2.2).

The PGs production term which will be denoted Cz(ϕ(·)) = c1ϕ(·), can be modeled
as the product of a production rate c1 with the working force and recruitment ϕ(·), which
increases the quantity of production of PGs when the latter fall below a certain level.

The behavior required for PGs production term Cz is a fixed production rate when
there are enough PGs for normal development of the nest, and an increase or higher
recruitment in the production when the PGs decreases, as follows:

Cz (ϕ(z̄)) =

c1 + c12, if z̄ ≈ 0

c1, if z̄ > 0
(2.7)

Then, following the same logic used for b1, the behavior for Cz can be written as:

Cz (ϕ(z̄)) =
(
c1 + C

1 + ᾱ3z̄

)

Choosing C = 1, the production term for the PGs, is written as follows

Cz (ϕ(z̄)) = czϕ(z̄)

10



with the working force function defined as:

ϕ(z̄) =
(

1 + 1
1 + ᾱ3z̄

)

The working force function ϕ(z̄) represents the variation in the recruitment of the worker
ants to produce PGs, which is equal to 1 when the PGs are sufficient for the development
of the nest activities (z̄ � 0), and increases to 2 in the worst case, when the PGs levels
are near zero (z̄ ≈ 0). The behavior of the ϕ(z̄) is plotted in figure 2.4.B.

Observe that there is a strong correlation between outside activities and the death
rate for the worker ants. As explained by Dobata and Tsuji, with the increase in the hard
work(maintenance of the nest and outside-nest activities), the death rate of the workers
increases. This phenomena is observed comparing graph A in figure. 2.1, with figure
2.2. It can be observed that in the cases with increased outside-nest activities (Cases 2
and 3), the proportion of survivors of worker ants decreases rapidly, as asserted by the
authors. In order to model this behavior, a death rate term dependent on the working
force is added to the workers equation, this term is proposed to be:

Dx2(x̄, ϕ(z̄)) = −d12ϕ(z̄)x̄ (2.8)

where, −d12 is the fixed death rate for work in the workers equation, and ϕ(z̄) the working
force.

Strong cheater survival rate

Cheater ants have a very high survival rate as can be seen from figure 2.1.A. In fact,
this graph shows that cheater survival is strongly dependent on the existence of public
goods: cases 1, 2, 3 show high survival rate or low death rate; however, when public
goods become scarce, the cheaters death rate increases dramatically to a mean of 76%
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Figure 2.4: Figure A (left), expected behavior for the starvation function g(z̄), near to
z̄ = 0 → g(z̄) = 1 while for z̄ � 0 → g(z̄) = 0. Figure B (right), expected behavior for
the working force ϕ(z̄) near to z̄ = 0 → ϕ(z̄) = 2 while for z̄ � 0 → ϕ(z̄) = 1.
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(only 24 cheaters survive after 64 days, from a initial condition of 100). This suggest the
use of a switching function which we will call the starvation function:

Dy2(z̄) =

d22, if z̄ ≈ 0

0, if z̄ � 0
(2.9)

Implementing a smooth function as done for b1, we propose the term,

Dy2(z̄) = − d22

1 + ᾱ3z̄
.

The behavior of the working force function ϕ(z̄) and the starvation function g(z̄) are
shown in figure 2.4. Noticing the ᾱ3 term existent in ϕ(z̄), we unify both smooth switching
functions in one for simplicity, as:

g(z̄) = 1
1 + ᾱ3z̄

(2.10)

and the starvation function and the working force become respectively,

Dy2(z̄) = d22g(z̄),

ϕ(z̄) = (1 + g(z̄)).

2.2.3 Using Holling type II functions to define the P 3G model

In ecology, smooth switching functions are called Holling type I, II and III functions
[18, 19]. In this section we use a modified version of the Holling type II function, which is
explained in more detail in the appendix A to represent the smooth switching functions
of the previous section. Assume R is the driven variable, then the proposed smooth
switching function is defined by:

h(R) = 1
1 + αR

(2.11)

α being a parameter of the curve that defines
Figure 2.5 shows the behavior of the smooth switching function, when R is large h(R)

tends to zero, while if R tends to zero, then h(R) tends to 1.
The terms b1(ȳ) the workers growth rate, Dy2 as the starvation term and the ϕ(z̄) as

the working force, all present a switching behavior as explained in section 2.2.2. To meet
the required characteristics of (2.5), (2.7) and (2.9) in the model (2.3), it is necessary
to introduce some terms in the equations to achieve the expected behavior. Given, the
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terms b1 and Dx are constants and independent of variables ȳ and z̄ respectively, in the
workers equation; the term Dy is constant and independent of the variable z̄, in the
cheater equation; the PGs production Cz(ϕ(z)) requires definition. The terms Bx2(·),
Dx2(·) and Dy2(·) were added to (2.3) to proceed with the calculations, as follows:

ẋ = (b1c2z̄ −Dx)x+Bx2(·) +Dx2(·)
˙̄y = (byc3z̄ −Dy) ȳ +Dy2(·)
˙̄z = Cz(ϕ(z̄))x− c2xz̄ − c3yz̄

(2.12)

In order to achieve the behavior for b1(ȳ) shown in (2.5),b1 was renamed as b11 and the
term Bx2(·) defined using a reproduction rate b12 accompanied with the smooth switching
function in (2.11) dependent on the variable ȳ, as follows:

Bx2(x, ȳ, z̄) = b12

1 + ᾱ2ȳ
c2z̄x, (2.13)

which vanishes when ȳ is large enough and is fully operative when ȳ is near zero.
The term Dx2(·) represents the death rate due to hard work and depends directly on

the working force, as explained in subsection 2.2.2, and is modeled by (2.8).
For cheater ants, the term Dy2(·) increases the death rate of the cheaters when the

PGs are scarce. In order to achieve the behavior in (2.9), this term is constructed similarly
to b1, with a death rate −d22 and the function dependent on the variable z̄, as follows:

Dy2(ȳ, z̄) = − d22

1 + ᾱ3z̄
ȳ, (2.14)

so that, Dy2 vanishes when PGs are enough to support the colony, and activates when
the PGs are near zero.

To reproduce the switching behavior in (2.7) in the production of the PGs Cz(ϕ(z̄)),
it was modeled with two production rates, one constant c1, and the second one called C,
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accompanied by the function dependent on the variable z̄, as follows:

Cz (ϕ(z̄)) =
(
c1 + C

1 + ᾱ3z̄

)

choosing C = c1 and simplifying the term, we obtain,

Cz (ϕ(z̄)) = c1

(
1 + 1

1 + ᾱ3z̄

)
(2.15)

where, c1 is the reproduction of PGs rate, and the terms inside the parenthesis represent
the working force, i.e., we can also write:

Cz (ϕ(z̄)) = c1ϕ(z̄) (2.16)

where,
ϕ(z̄) =

(
1 + 1

1 + ᾱ3z̄

)
(2.17)

Finally in order to complete the model, with the characteristics mentioned previously,
the following terms were substituted into (2.12):

• Bx2(x̄, ȳ, z̄) = b12
1+ᾱ2ȳ

c2z̄x̄, defined in (2.13),

• Dx2(x̄, ϕ(z̄)) = −d12ϕ(z̄)x̄ defined in (2.8),

• Dy2(ȳ, z̄) = − d22
1+ᾱ3z̄

ȳ defined in (2.14),

• Cz(ϕ(z̄)) = c1ϕ(z̄) defined in (2.16)

• Dx = d11

And after some algebra, we obtain the first attempt at our model proposal:

˙̄x =
[(

(b11 + b12

1 + ᾱ2ȳ

)
c2z̄ − (d11 + d12ϕ(z̄))

]
x̄

˙̄y =
[
b2c3z̄ −

(
d21 + d22

1 + ᾱ3z̄

)]
ȳ

˙̄z = c1ϕ(z̄)x̄− (c2x̄+ c3ȳ)z̄

(2.18)

In the absence of cheater ants, the model (2.18) could have unbounded trajectories, as
well as some other undesirable characteristics. This leads to the introduction of a refined
version of the model (2.18) in the following section.
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2.3 Model with a saturation in the worker popula-
tion

It is common to encounter growth-limiting factors in real biological systems and these are
referred to by names such as overcrowding and carrying capacity (Gurney [20], Edelstein
[21] et al), which cause populations to follow a logistic curve which saturates, rather
than an exponentially increasing one. Many mathematical models of density dependent
growth have been proposed in the literature (see Abrams [22] and Bazykin et al [23]).
Several of these were tried, and the choices which resulted in the most reasonable rates
are detailed in this section.

An overcrowding term is introduced to the worker equation in order to limit the
growth rate. This term reduces the growth rate of the predator x̄ and is proportional to
its own density, as explained by Abrams [22]. It is defined by:

Dx3(x̄) = −d13x̄
2 (2.19)

where, d13 is the additional death rate due to the overcrowding in the nest, and the
density dependence is quadratic. The graph and effect of this term on the population
dynamics is shown in figure 2.6.
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Figure 2.6: Figure A (left), behavior of the worker density dependence Dx3(x̄) with
d13 = 0.05. Figure B (right), behavior of the worker population: red curve describes
growth without the density dependence term (2.19); blue curve shows the effects of intro-
ducing the predator density dependence term (2.19) into the predator population growth
equation.

The term Dx3(x̄) is added to the worker equation in the basic model (2.18), in order
to obtain the dynamics of the proposal model with an overcrowding limiter, as follows:

˙̄x = [(b11 + b12f(ȳ)) c2z̄ − (d11 + d12ϕ(z̄) + d13x̄)] x̄
˙̄y = [b2c3z̄ − (d21 + d22g(z̄))] ȳ
˙̄z = c1ϕ(z̄)x̄− (c2x̄− c3ȳ)z̄

(2.20)
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where the functions modelling, respectively are, reproduction inhibition f(ȳ), starvation
g(z̄) and working force ϕ(z̄), are:

f(ȳ) = 1
1 + ᾱ2ȳ

; (2.21)

g(z̄) = 1
1 + ᾱ3z̄

; (2.22)

ϕ(z̄) = 1 + g(z̄); (2.23)

The interpretations of the 13 parameters in (2.20) are as follows:

b11: is the conversion rate of PGs into worker growth rate in presence of cheaters,
b12: is the conversion rate of PGs into an additional worker growth rate given the absence

of the cheaters,
b2: is the conversion rate of PGs into cheater growth rate,
d11: is the death rate due to age of the workers,
d12: is the death rate due to work, of the workers,
d13: is the death rate due to overcrowding of the workers,
d21: is the death rate due to age of the cheaters,
d22: is the cheater death rate due to absence of PGs,
c1: is the PGs production rate generated by the workers,
c2: is the consumption rate of the PGs by the workers,
c3: is the consumption rate of the PGs by the cheaters,
ᾱ2: is a factor that define the asymptotic behavior of the function f(ȳ).
ᾱ3: is a factor that define the asymptotic behavior of the function g(z̄).

2.4 The Prystomyrmex Punctatus Public Goods
Dilemma model (P 3G model)

The proposed model was normalized in z̄ and scaled in x̄ and ȳ to facilitate the under-
standing of its behavior. The ant equations were scaled using the proportion of worker
ants or cheaters ants with respect to the total population in the nest. The PGs were
normalized to the maximum value that variable can achieve along time, as explained in
the next section.

2.4.1 Normalizing the public goods

In order to normalize the PGs, it was necessary to locate the maximum value that can
be reached by the variable. Evaluating the five cases using simulations, it was observed

16



that the PGs reach their steady and maximum value when there are no cheaters in the
nest. In this case ȳ(0) ≡ 0 implying that ˙̄y(0) = 0 and furthermore that f(ȳ) = 1 for all
t > 0. Thus the model reduces to:

˙̄xnc = [(b11 + b12)c2z̄nc − (d11 + d12ϕ(z̄nc))] x̄nc (2.24)
˙̄znc = [c1ϕ(z̄nc)− c2z̄nc] x̄nc (2.25)

where, x̄nc and z̄nc are the worker population and PGs respectively, in absence of the
cheaters in the nest, (the subscript nc recalls no cheaters).

By setting ˙̄znc = 0, the equilibrium points were calculated from the PGs equation in
(2.25) as follows:

z̄∗
nc,1,2 =

−(c2 − ᾱ3c1)±
√

(c2 − ᾱ3c1)2 + 8ᾱ3c1c2

2ᾱ3c2
(2.26)

Equation (2.26) shows that there are two possible equilibrium points of which only
the positive one is admissible. This positive equilibrium point of the PGs in absence of
cheaters, called M , is given by:

M =
−(c2 − ᾱ3c1) +

√
(c2 − ᾱ3c1)2 + 8ᾱ3c1c2

2ᾱ3c2
(2.27)

We claim that M is the maximum value that the PGs can reach.
This is proved as follows. Consider the original model in (2.18) and set ˙̄z = 0 which

leads to:

z̄∗ =
−
(
c2 + c3

ȳ
x̄
− ᾱ3c1

)
±
√(

c2 + c3
ȳ
x̄
− ᾱ3c1

)2
+ 8ᾱ3c1

(
c2 + c3

ȳ
x̄

)
2ᾱ3

(
c2 + c3

ȳ
x̄

) (2.28)

Taking the positive value of the square root in 2.28 for z̄ and denoting this value My(x̄, ȳ),
we get:

My(x̄, ȳ) =
−∆y +

√
∆2
y + 8ᾱ3c1

(
c2 + c3

ȳ
x̄

)
2ᾱ3

(
c2 + c3

ȳ
x̄

) (2.29)

where
∆y =

(
c2 + c3

ȳ

x̄
− ᾱ3c1

)
.
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Clearly, if ȳ = 0 and x̄ 6= 0, My(x̄, ȳ) = M . Note that

My(x̄, ȳ) ' m√(
c2 + c3

ȳ
x̄

)
where

m =
√

2c1

ᾱ3

Thus if ȳ = 0,
My(x̄, 0) = M = m

√
c2

For positive populations of workers and cheaters, it holds that:

1
√
c2
>

1√(
c2 + c3

ȳ
x̄

)
which means that M > My(x̄, ȳ)

Thus for any positive value of x̄ or ȳ the value of My(x̄, ȳ) is less than M , as claimed.

2.4.2 Normalization of the worker and cheater populations

The idea behind the experimental nests in [3] is to use an initial total number of 100
ants, with different proportions of the two interacting populations. Thus the populations
x̄ and ȳ are scaled with respect to the initial total population in the nest. Denote the
total population of the nest as:

N(t) = x̄(t) + ȳ(t)

and the initial setup of the nest as:

N0 = x̄(0) + ȳ(0)

In order to normalize-scale the model, new variables are defined as:

x(t) = x̄(t)
N0

; y(t) = ȳ(t)
N0

; z(t) = z̄(t)
M

; (2.30)

The new model called from now on of P. punctatus public goods dilemma model in
short P 3G model, is obtained by substituting the new variables defined in (2.30) into
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(2.20), obtaining.

ẋ = [(b11 + b12f(y)) c4ρMz − (d11 + d12ϕ(z) + d14x)]x

ẏ = [b2c5ρMz − (d21 + d22g(z))] y

ż = c1ϕ(z)ρ−1
M x− (c4x+ c5y) z

(2.31)

And the new reproduction inhibition function, starvation function and working force
function, respectively are:

f(y) = 1
1 + α2y

; (2.32)

g(z) = 1
1 + α3z

; (2.33)

ϕ(z) = 1 + g(z); (2.34)

and the new parameters are defined as:

ρM = M

N0
; c4 = c2N0; c5 = c3N0; d14 = d13N0; α2 = ᾱ2N0; α3 = ᾱ3M ; (2.35)

2.4.3 P 3G model with brood population

In order to estimate the parameters of the model (2.31), is necessary to fit the simulation
results in t = 64 of the model to the experimental data presented by Dobata and Tsuji in
[3]. To do this first note that the experimental data contains information on the brood
populations, as well as the survivors (of both of cheaters and workers) at the end of
a sixty-four day time period, while the P 3G model introduced in the previous section
only considered the adult populations. To solve this issue is introduced two additional
differential equations, which bookkeep the evolution of the two brood populations.

The experimental data reported by Dobata and Tsuji [3] are reported after 64 days
of evolution from the initial population, in each of the five cases studies given. As Tsuji
[24] point out, this is not long enough to allow an egg to give rise to a productive adult.
For this reason, we propose to include two differential equations to the P 3G model that
account for the growth of a brood population but are decoupled from the three P 3G

equations, since reposition for adults does not occur in the short horizon of 64 days. In
accordance with the data in [3], we will lump together, in the offspring population, eggs,
pupae and larvae. This leads to the following extended P 3G model which is actually
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fitted to the experimental data:

ẋ1 = [(b11,adult)c4ρz − (d11 + d12ϕ(z) + d14x1)]x1

ẋ2 = (b11,offs + b12f(y)) c4ρzx1

ẏ1 = [b2,adultc5ρz − (d21 + d22g(z))] y1

ẏ2 = b2,offsc5ρzy1

ż = c1ϕ(z)ρ−1x1 − (c4x1 + c5y1)z

(2.36)

where x1, x2, y1 and y2 respectively are, the worker adult population, the offspring of the
workers, the cheater adult population and the offspring of the cheaters and z, as usual,
denotes PG. The growth rates b11 and b2 are divided into two growth rates, an adult rate
bi,adult and the reproduction rate by bi,offs. Since Dobata and Tsuji do not give data of
dead offspring, the death rate for the offspring equations is suppressed. Recalling, the
rate b12 is the additional reproduction rate of the workers in absence of the cheaters, then
it is included in the offspring equation for the workers.
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Chapter 3

Fitting the P 3G model to
experimental data

This chapter deals with the problem of fitting the P 3G model, which was inspired by
Dobata and Tsuji’s description of the behavior of P. punctatus, to the actual data provided
by them in [3]. There is a problems that arise immediately, is that the experimental data
only give the initial and final values of the state variables. In other words, it is necessary
to fit the model to a very sparse data set, which contains no intermediate values of the
state variables. This problem will be tackled with an optimal control type of approach,
which, however, uses a genetic algorithm to find the optimal “control” (i.e., parameters),
rather than optimal control theory. In addition, since the number of parameters is quite
large, a sensitivity analysis complements the fitting performed by the genetic algorithm,
in order to test the model robustness as well as the parsimony of the parametrization.

3.1 Fitting the extended P 3G model to experimental
data

When time series data on all the state variables are available, many methods are available,
such as one-step-ahead prediction. The difficult problem is to fit mechanistic models when
information about state variables is missing.

Model fitting based on one-step-ahead prediction requires time-series measurements
for all state variables in the model. This is rare in ecological applications and usually
models have to be fitted when dynamics of some important variables are unknown. In this
case, one general approach is called trajectory matching and because it is conceptually
simple and easily programmable, it is often used in ecological applications (see, for e.g. [25,
26]).
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Trajectory matching has simple underlying logic, and can be illustrated by the example
of fitting a parasitoid-host model to data. Let us suppose that we have only a set of
measurements of host data, {Nt}, t = 1, . . . , n. Suppose that the model we wish to fit has
a vector of parameters that we are interested in estimating. For any particular choice of
parameter values and initial host and parasitoid densities, we can solve the model forward
for n steps, and obtain the model-predicted sequence {N̂∗

t } (the hat superscript denotes
values generated by the model). A sequence of parasitoid densities is also obtained but
discarded, since no data against which to compare it is available. To calculate the degree
of fit between the model predictions and data, some measure, call it E, of the goodness
of fit is employed. This defines a mapping from a set of parameters and initial values to
E. The next step is to use some standard software for function minimization, and ask it
to find the set of parameters and initial values that will minimize E. Of course, one must
be extremely careful about using the trajectory-matching approach. With a dynamical
system that retains memory of its initial conditions at least for a time comparable to the
length of the data series, this approach can give meaningful results [27].

To estimate the 15 parameters in the extended P 3G model (2.36), it is necessary to
first describe the behavior of the curves for t = 64 days with the characteristics explained
before. Consider the equations for the adults for both species, the dynamic for this kind of
population will be modeled through a declining curve given they don’t receive reposition
from the broods.

With regard to the offspring populations, as was explained by Dobata and Tsuji, in
the onset of the experiment all the brood was removed. The initial offspring population
for all the cases is zero, and given that there is no death term, the dynamic is represented
by a growing curve, except for Case 4 (100% cheaters) where the eggs are neglected and
all the broods die. To visualize these dynamics, a sketch of the curves was drawn and is
shown in the figure 3.1.

With the sketch as guide, we proceeded to estimate the values for the parameters
with help of the Ithink software [28] and the Optimization Toolbox in Matlab [29]. The
initial parameters were calculated using Ithink. The P 3G model in (2.31) was simulated in
iThink (refer to appendix B). The vector of the initial parameters estimated are presented
in the table 3.1

Initial Parameters
b11 offs b11 adult b12 d11 d12 d14 b2 offs b2 adult

0.0001 0.0015 0.0035 0.003 0.0055 0.001 0.02 0.0015
d21 d22 c1 c4 c5 α2 α3

0.001 0.016 1.5 25 25 500 3

Table 3.1: Initial parameters estimated for the P 3G model.

22



0 16 32 48 64
0

0.25

0.5

0.75

1
A: Sketch of Surviving Worker

Days

W
or

ke
r 

P
op

ul
at

io
n

 

 

0 16 32 48 64
0

0.25

0.5

0.75

1
B: Sketch of Worker Offspring

Days

W
or

ke
r 

O
ffs

pr
in

g

 

 

0 16 32 48 64
0

0.25

0.5

0.75

1
C: Sketch of Surviving Cheaters

Days

C
he

at
er

s 
P

op
ul

at
io

n

 

 

0 16 32 48 64
0

0.5

1

1.5
D: Sketch of Cheaters Offspring

Days

C
he

at
er

 O
ffs

pr
in

g

 

 

C4
C3

C3

C2

C0

C1

C4

C0

C1

C2

C2

C1

C0, C4

C3

C0

C1, C2, C3, C4

Figure 3.1: Sketch of the behavior for the populations: A: Surviving workers, B: Offspring
of the workers, C: Surviving Cheaters and D: Offspring of the Cheaters, over 64 days in
five cases arrange. Blue: Case 0, Pink: Case 1, Green: Case 2, Cyan: Case 3 and Red:
Case 4.

The simulations of the model with these initial parameters still have deviations with
respect to the mean of the experimental results. In order to reduce this error, the Genetic
Algorithms optimization tool of Matlab is used, as described below. Consider:

ω(t) =



x1

x2

y1

y2

z


(3.1)

In this notation, (2.36) is written as:

ω̇(t) = ψ(ω, p, t) (3.2)

where ω ∈ R5 is the vector of the variables, p ∈ R15 is the vector of parameters of the
P 3G model and ψ(ω, p, t) the dynamics of the populations in the P 3G model in (2.31).
And the solution of 3.2 is written as:

ω(t) = Ψ(t, t0, ω,p) (3.3)

consider the results of 3.3 evaluated for t ∈ [0, 64] and defined for each experimental case
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by i=0,1,2,3,4, as follows:
ωi(64) = Ψ(64, 0, ωi0, p) (3.4)

where ωi0 are the initial of conditions of 3.2 in t = 0.
Thus the objective function is constructed under the LSE philosophy as follows:

E(p) =
4∑
i=0

[
Ωi
DT − ωi(64)

]2
(3.5)

where E(p) represents the objective function dependent to be minimized, ΩDT are the
experimental results of Dobata and Tsuji after 64 days. Finally substituting 3.4 into 3.5
we obtain the objective function to be optimized, defined as:

E(p) =
4∑
i=0

[
Ωi
DT −Ψ(64, 0, ωi0, p)

]2
(3.6)

Then this function is minimized with the Genetic Algorithms tool, finding the value
of the vector p that minimize the quadratic error, starting from the initial parameters
estimated in the table 3.1. With the procedure explained in the appendix C, was obtained
the optimized values for the parameters of the P 3G model, shown in the table 3.1.

Parameters Values Parameters Values
b11 0.0147 c1 1.8
b12 0.0066 c4 21
d11 0.0119 c5 10
d12 0.0207
d14 0.001 α2 500.01

αz 3
b21 0.0442
d21 0.0009
d22 0.0242 E(p) 0.0977

Table 3.2: Estimated values for the parameters in the P 3G model and the value of the
objective function E(p) calculated.

3.2 Model results vs experimental data

Once the parameters have been estimated, we proceed to plot the simulations and the
mean of the experimental results to verify the quality of the fit. Allowing to compare
the model performance with respect to the experimental data presented by Dobata and
Tsuji [3], (see figure 3.2. Additionally figure 3.3 presents the simulations of the evolution
of each population and the PGs.
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Figure 3.2: Comparision between the simulation results and the experimental data for
both the workers and cheaters species. (A):Proportion of surviving adults, (B): Offspring
produced. Blue curve workers experimental data, cyan curve workers simulation results,
red curve Cheaters experimental data, pink curve Cheaters simulation results.
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Figure 3.3: Simulation results for the extended model: (A) The adults workers, (B) The
offspring of the workers, (C) The adults cheaters, (D) The offspring of the cheaters and
(E) The public goods, in five cases format; Blue: Case 0, Pink: Case 1, Green: Case 2,
Cyan: Case 3 and Red: Case 4.

Figure 3.2 shows that the results of the simulations for the adult populations fits
the experimental data well, with some differences for the cases composed of only one
population (case 0 and 4). On the other hand about the worker offspring population
closely follows the experimental results, while the simulation for the cheaters shows some
difference with the experimental results.

We propose a method to determine the sensibility of the parameters of the fitted
model with respect to the parameters. Recall the experimental results are in sets of 25
data points for each population, divided into five cases. In other words, for each case
there are 5 experimental results, with a minimum, maximum and a mean value.

Figure 3.4 show plots of the four populations from the experimental results, and the
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highlighted region shows the area of the experimental results after 64 days. This region,
from now on called the DT envelope for simplicity, is delimited by an upper bound and
a lower bound given by the maximum and minimal values of each experimental case.
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Figure 3.4: Envelope of the experimental data from Dobata and Tsuji and simulation
results, (A) The adult workers, (B) The offspring of the workers, (C) The adult cheaters,
(D) The offspring of the cheaters. Blue curve: mean of the experimental results, Red
curves: maximum and minimal points for each case.

We define the measure of how large the allowed variation of one parameter can be
before the simulation result ends up outside the DT envelope, using the initial values of
the parameters shown in table 3.1. To achieve this, we use a script in Matlab to sweep
one parameter at time in steps of 1% (increasing and decreasing the value), until the
simulation result is outside the envelope. The maximum allowed deviations obtained are
shown in table 3.3.

Allowed variation of the Parameters
Responsive Necessary Indifferent
b11 adult +19% b12 +54% b11 offs �100%
b2 offs +11% d14 �100% d11 −41%
d12 −24% d22 −69% b2 adult �100%
c1 +9% α2 −91% d21 −38%
c4 −12% α3 −91%
c5 +14%

Table 3.3: Allowed variation of the parameters values in the P 3G model fitted with
respect to the dynamics of Dobata and Tsuji

The positive percentages refer to an increase in the original value, while the negative
ones refer to a decrease. The parameters with the notation� 100 are those that can even
be doubled in value, but the corresponding simulation remains inside the DT envelope.
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Thus large allowed variation in a parameter corresponds to a low sensitivity of the model
the parameter.

These sensitivity results show that there exist three sets of parameters whose variation
affects, to a greater or lesser extent, the end results of the simulations. The group named
as responsive are the more sensitive parameters, meaning, that the range of variation
is less than 25%; the groups named necessary and indifferent are the parameters whose
allowed variation is greater than 25% before the corresponding simulation fall outside
of the DT envelope, ”necessary” are the parameters that can not be removed, given
that they represent some fundamental characteristics of the model, and, the parameters
”indifferent” are possibly dispensable parameters.

As example to visualize the sensitivity of the parameters, figure 3.5 shows the variation
of two different parameters and the points where the final result begins to venture outside
the DT envelope.
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Figure 3.5: Sensitivity of the model to parameter variations. In red: maximum and
minimum adult producer population (A) and cheater offspring population (B) after 64
days from Dobata and Tsuji. In green the model results after parameter variation (A)
parameter b11,adult in 19%, (B) parameter c1 in 9% showing model sensitivity.

Finally in an attempt to simplify the P 3G model using its sensitivity to the parameters
the terms b11,offs, d12, b2,adult and d21 were suppressed generating a new model with 11
parameters instead of 15. 1

With this simplification the new vector of parameters was optimized with the same
procedure as used for the estimation, obtaining a new set of parameters shown in the
table 3.4. The objective function value for the reduced set is E(preduced) = 0, 0881 while
the objective function value with all the parameters is E(pall) = 0, 0898 showing that
removal of the parameters does not make significant difference to the error. It is also
possible to confirm visually that the reduced model figure 3.6 presents a similar behavior
to the model with all the parameters in figure 3.2.

1It should be observed that even when the model has large allowed variation to some parameters, such
as the density population limiter d14, the reproduction inhibition function f(y), and starvation function
g(z), they cannot be eliminated, since they involve specific characteristics of the model
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Figure 3.6: Comparision between the simulation results of reduced P 3G model and the
experimental data for both species. A:Proportion of surviving adults, B: Offspring pro-
duced. Blue curve: workers experimental data, cyan curve: workers simulation results,
red curve: Cheaters experimental data, pink curve: Cheaters simulation results.

3.3 Model with long term restocking

Now, with the parameters defined for the P 3G model in 2.31 and the simulation results
accompanying the experiments of Dobata and Tsuji, we proceed to analyze the P 3G

model in long term. From this section onwards, we return to the model 2.31 composed
of three variables. We assume that the adult populations receive continuous restocking
from the offspring by unifying bi offs and bi adult of each specie into one growth rate bi.

The simulations in this section show the evolution of the five cases over the time. The
curves of the five cases of each population and resource were plotted simultaneously, to
monitor the evolution of the workers and the cheaters related to the level of the PGs in
order to analyse the long term behavior.

In order to study long term behavior, we extended the simulation time to 360 days
to observe specifically the initial conditions for which nests survive and for which they
become extinct. The simulations for the P 3G model with restocking are shown in figure
3.7.

Parameters Values Parameters Values
b11 0.0136 c1 1.8
b12 0.0066 c4 21
d11 0 c5 10
d12 0.0305
d14 0.001 α2 499.99

α3 3
b21 0.0426
d21 0
d22 0.023 *E(p) 0.0881

Table 3.4: Estimated values for the reduced set of parameters in the P 3G model, and the
objective function E(p) calculated.
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Figure 3.7: Simulation for the worker population, cheater population and Public Goods
in five cases format. Blue: Case 0, Pink: Case 1, Green: Case 2, Cyan: Case 3 and Red:
Case 4.

In the evolution of the P 3G model with restocking, two behaviors are noted immedi-
ately: one behavior in presence of cheaters and another in their absence.

With the existence of cheaters in the colony, initially, the cheater population grows,
while the workers bear the weight of the non-productive cheater population. Eventually,
the worker population is overtaken by the cheater population leading to a point where the
PGs are consumed faster than they are produced. This means that the PGs production
rate ż becomes negative, which, in turn, means that a reduction in the stocks occurs
until it reaches a level where the workers and the cheaters cannot be sustained and the
system goes toward the extinction. In the context of the experiments, the low level of
PGs represents the absence of worker ants taking care of the broods of both species as
well as the hygiene in the nest.

This leads the extinction of the colony, due to the presence of cheaters, and occurs due
to the high reproduction rate of the cheater population by one side and together with the
drastic drop in reproduction rate of the workers. Recalling the model construction in the
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section 2.2 the reproduction rate of the workers is limited by the existence of cheaters,
which is modelled by the reproduction inhibition function f(y) in (2.21).

Analysing the behavior of the reproduction rate of the workers, it is possible to observe
from (2.21) and (2.31), that in absence of cheaters y = 0 which implies f(y) = 1, then
the reproduction rate is influenced only by b12 (since b11,offs = 0 from the estimation of
the parameters, table 3.4). In contrast, with the presence of cheaters in the colony, y > 0,
implying f(y) ≈ 0, in this case the reproduction rate for the worker population becomes
almost zero.

From table 3.1 it is plausible to conjecture that the cheaters have larger growth rate
than the worker. Indeed, assuming z = 1,

growthworker = [(b11 + b12)c4 − d11 − d12φ(z)] ,

growthcheater = [b2c5 − d21]
(3.7)

and using the values of the table 3.4 in (3.7), we obtain:

growthworker = 0, 4242− d11φ(z),

growthcheater = 0.426

∴ growthcheater > growthworker

verifying our conjecture.
As explanation lets take the model (2.31) without the overcrowding term d14, and ana-

lyze the possible behavior. In the absence of cheaters in the environment, the nest evolves
and the worker population grows unbounded. The PGs grows reaching a maximum value
and stabilizing even if the workers population grows indefinitely.

In absence of cheaters (case 0), analysed in section 2.3, the workers present an ex-
ponential growth behavior while the PGs stabilize at the value M . In order to arrive
at a more realistic model, the overcrowding term d14 was used. The overcrowding term
d14 makes the trajectories of the model display limited growth of the worker population
(3.8).

As is possible to observe in figure 3.8, the value selected for d14 determines the growth
limit in the workers dynamics. There are no data in the experiments of Dobata and Tsuji
about the population density limits for the P. punctatus species. Thus an arbitrary value
for the term was selected in order to demonstrate its functionality.

In order to observe the evolution of the proposal with the estimated parameters, the
term d14 was chosen as 1× 10−3 and the model was simulated. The results are shown in
figure 3.9.

It is noticeable that the cheaters trajectories (cases 1, 2, 3 and 4), do not change
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Figure 3.8: P 3G model with limiter in absence of cheaters, variation of the term d14. Red
curve d14 = 1× 10−2, Green curve d14 = 1× 10−3, Blue curve d14 = 1× 10−4.
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Figure 3.9: Simulations with d14 = 0, 001 for the worker population, cheater population
and Public Goods in five cases format. Blue: Case 0, Pink: Case 1, Green: Case 2, Cyan:
Case 3 and Red: Case 4.

their behavior with the inclusion of the term d14. In order to observe how the P 3G

model reaches steady state induced by the limiter in the Case 0, the simulation time was
extended to t = [0, 3600].
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Chapter 4

Algebraic Conditions for Positivity
and Stability of the P 3G Model
Equilibria

This chapter starts by calculating all equilibria of the proposed P 3G model. This is
followed by an analysis to establish conditions for the positivity of the equilibria. Then,
local stability of the equilibria is studied, by linearising the P 3G model. All calculations
are symbolic, resulting in algebraic conditions. Finally these conditions are calculated
numerically, using the parameters of the fitted P 3G model.

4.1 Formulas for the equilibrium points of the P 3G

model

The equilibrium points of the P 3G model were determined from (2.31). Recall from chap-
ter 2 that setting the term d14 = 0 causes the model trajectories to become unbounded,
while imposing d14 > 0 ensures that the model trajectories remain bounded.

It is easy to determine the existence of an equilibrium point P0 = (0, 0, z0) which
represents the extinction of both species of ants, independent of the initial value of z.
In order to determine other equilibrium points different from extinction, the cheaters
equation from (2.31) is set to zero as the starting point for the analysis:

We denote the equilibrium point as x∗, y∗, z∗.

b2c5ρMz
∗ − (d21 + d22g (z∗)) = 0 (4.1)

Substituting the starvation function g(z) from (2.33) into (4.1) we obtain:
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α3b2c5ρMz
∗2 + (b2c5ρM − α3d21) z∗ − (d21 + d22) = 0 (4.2)

From (4.2) the equilibria z∗
j , j = 1, 2, are:

z∗
j =
− (b2c5ρM − α3d21)±

√
(b2c5ρM − α3d21)2 + 4α3b2c5ρM (d21 + d22)

2α3b2c5ρM
(4.3)

In this analysis our interest is focused on positive PGs, thus only on the positive equi-
librium denoted as z∗

+. Defining g∗ and ϕ∗ as the results of substituting z∗
+ into the

starvation function g(z) in (2.33) and into the working force ϕ(z) in (2.34), we obtain:

g∗ = g
(
z∗

+

)
= 1

1 + α3z∗
+

(4.4)

ϕ∗ = ϕ
(
z∗

+

)
= 1 + g(z∗

+) (4.5)

The next step is to find the PG equilibria. From (2.31), setting ż = 0.

c1ϕ
∗ρ−1
M x∗ − c4x

∗z∗
+ − c5y

∗z∗
+ = 0 (4.6)

From (4.6) we solve for y∗ in terms of x∗:

y∗
i = 1

α2
e1x

∗
i (4.7)

where,

e1 =
α2
(
c1ϕ

∗ − c4ρMz
∗
+

)
c5ρMz∗

i

(4.8)

Substituting y∗
i from (4.7) into the reproduction inhibition function f(y) in (2.21),

gives
f (y∗

i ) = 1
1 + e1x∗

i

(4.9)

In order to find the equilibrium for x, setting ẋ = 0 in (2.31).

(b11 + b12f (y∗
i )) c4ρMz

∗
+ −

(
d11 + d12ϕ

(
z∗

+

)
+ d14x

∗
)

= 0 (4.10)

Substituting f(y∗
i ) from (4.9) and after some algebra, we obtain:

b12c4ρMz
∗
+

1 + e1x∗
i

− d14x
∗
i = e2 (4.11)
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where,
e2 = d11 + d12ϕ

∗ − b11c4ρMz
∗
+ (4.12)

Equation (4.11) can be rewritten as:

d14e1x
∗2
i + (d14 + e1e2)x∗

i + (e2− b12c4ρMz
∗
+) = 0 (4.13)

From (4.13), the equilibrium values in x, assuming d14 > 0, are:

x∗
i =
−(d14 + e1e2)±

√
(d14 + e1e2)2 + 4d14e1(b12c4ρMz∗

+ − e2)
2d14e1

(4.14)

Thus possible positive equilibrium points other than extinction are: Pi(xi, yi, z∗
+), where

i = 1, 2.

4.2 Algebraic conditions for the positivity of the
equilibrium points

The conditions to obtain positive equilibrium points are calculated under the assumption
that all the parameters defining the P 3G model are positive. The analysis of the con-
ditions is carried out using the same sequence as for the calculation of the equilibrium
points, in other words, first z, then y, and finally x.

4.2.1 Positivity condition for the equilibrium in the Public
Goods

The equilibrium in z∗ in (4.3) can be written as:

z∗
j =
−β3 ±

√
β2

3 + ∆3

2α3b2c5ρM
(4.15)

where,

β3 = (b2c5ρM − α3d21) (4.16)

∆3 = 4α3b2c5ρM(d21 + d22) (4.17)

From (4.15), positive z∗ results if the following condition is met.
√
β2

3 + ∆3 > β3 (4.18)
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which is fulfilled if ∆3 > 0, i.e, from (4.17)

4α3b2c5ρM(d21 + d22) > 0 (4.19)

which is clearly true if all the parameters in (4.19) are positive.
Then we conclude always exist a positive and a negative equilibrium for z∗. Given

that the PGs are positive values, from now on z∗ represents the positive equilibrium in
z.

4.2.2 Positivity condition for the equilibrium in cheater ant
population

Since all equilibrium points are positive, then x∗ > 0 and z∗ > 0. Given the equilibrium
in (4.7), y∗ is positive if:

e1 > 0 (4.20)

From (4.8), (4.20) is satisfied if:
c1

c4ρM
−
z∗

+
ϕ∗ > 0 (4.21)

4.2.3 Positivity conditions for the equilibrium in worker ant
population

Assuming (4.20) is satisfied, conditions for a positive equilibrium value in x for the P 3G

model in (2.31) to exist, are derived as follows.
Equation (4.14) is written as:

x∗
i =
−β1 ±

√
β2

1 + ∆1

2d14e1
(4.22)

where,

β1 = d14 + e1e2 (4.23)

∆1 = 4d14e1
(
b12c4ρMz

∗
+ − e2

)
(4.24)

Thus the conditions to achieve a positive value in x∗ are divided into two cases:

• Case 1: √
β2

1 + ∆1 > β1 (4.25)

(4.25) is fulfilled if ∆1 > 0, then
(
b12c4ρMz

∗
+ − e2

)
> 0, and we find, after some
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algebra, that x∗ is positive if:

b11 + b12 −
d11 + d12ϕ

∗

c4ρMz∗
+

> 0 (4.26)

• Case 2: √
β2

1 + ∆1 < β1 and β1 < 0 (4.27)

(4.27) is fulfilled if:

b12c4ρMz
∗
+ − e2 < 0 (4.28)

d14 + e1e2 < 0 (4.29)

Finally this conditions are true depending on the values taken by the parameters, which
will be analysed in section 4.5.

4.3 Local stability conditions for the P 3G model

In order to analyze local stability in the vicinity of the equilibrium points, the Jacobian
of the P 3G model is calculated from (2.31).

Denote the Jacobian matrix evaluated at the equilibrium points as Jk, for k = 1, 2.

Jk = J(Pk) =


J11 J12 J13

J21 J22 J23

J31 J32 J33


Pk

(4.30)

where, Jlm are the partial derivatives of the model evaluated at the equilibrium point,
and are presented in Appendix D .

The characteristic polynomial of the Jacobian was calculated first in order to use
the Routh-Hurwitz stability criterion to determine local stability around the equilibrium
point.

The characteristic equation of the Jacobian is given by:

Det (J − λI) = λ3 − Tr(J)λ2 − 1
2(JijJji − JiiJjj)λ−Det(J) = 0 (4.31)

which is denoted:
λ3 + s2λ

2 + s1λ+ s0 = 0 (4.32)
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so that,

s2 = −Tr(J) = −(J11 + J22 + J33)

s1 = 1
2(J22J33 − J23J32 + J33J11 − J31J13 + J11J22 − J12J21)

s0 = −Det(J) = −J11J22J33 − J12J23J31 − J13J21J32 + J31J22J13 + J21J12J33 + J11J23J32

From Routh-Hurtwitz criterion, the polynomial (4.32) is stable if the following conditions
are true:

s2 > 0 (4.33)

s1 > 0 (4.34)

s0 > 0 (4.35)

s2s1 − s0 > 0 (4.36)

4.3.1 Stability analysis for the origin

The remaining equilibrium point to analyze is the origin P0 = (0, 0, z0). Evaluating the
Jacobian in (4.30) at (0, 0, z0), we obtain the following characteristic equation:

λ3 − (J11 + J22)λ2 + J11J22λ = 0 (4.37)

The eigenvalues of (4.37) are:

λ1 = J11 = (b11 + b12)c4ρMz − (d11 + d12ϕ(z)) (4.38)

λ2 = J22 = b2c5ρMz − (d21 + d22g(z)) (4.39)

λ3 = 0 (4.40)

We now determine positive values of z for which P0 is stable. The roots of (4.38) and
(4.39) are found by setting λ1 = 0 and λ2 = 0 and with some algebra we obtain:

zλ1 =
−γ1 +

√
γ2

1 + 4α3(b11 + b12)c4ρM(d11 + 2d12)
2α3(b11 + b12)c4ρM

(4.41)

zλ2 =
−γ2 +

√
γ2

2 + 4α3b2c5ρM(d21 + d22)
2α3b2c5ρM

(4.42)
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where

γ1 = ((b11 + b12)c4ρM − α3(d11 + d12))

γ2 = (b2c5ρM − α3d21)

Knowing the values of zλ1 and zλ2 it is possible to analyze the behavior of the origin
with respect the value of z, through the following case:

• Case 1 z = 0:

The origin is attractive because the eigenvalues are nonpositives, since in this case:

λ1 = − (d11 + 2d12)

λ2 = −(d21 + d22)

λ3 = 0

(4.43)

• Case 2 z < z1λ2 < z1λ1:

The origin is attractive because, since in this case:

λ1 < 0

λ2 < 0

λ3 = 0

(4.44)

• Case 3 z1λ2 < z1λ1 < z:

The origin is unstable and repulsive in two axes because:

λ1 > 0

λ2 > 0

λ3 = 0

(4.45)

For the other cases z1λ2 < z < z1λ1 and z1λ1 < z < z1λ2 , the origin is unstable.

4.4 Local stability analysis for the P 3G model in ab-
sence of cheaters

The first part of the stability analysis, is carried out assuming the absence of cheater
ants, in order to describe the nest development in absence of the invasive cehaters. The
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inverse situation, absence of workers, as seen above, leads to the extinction of cheaters,
given that the PGs are only produced by the worker population.

The P 3G model in (2.31) without cheaters has: y(0) = 0 and ẏ = 0, f(y) = 1, i.e.:

ẋnc = [(b11 + b12) c4ρMznc − (d11 + d12ϕ(znc) + d14xnc)]xnc
żnc =

[
c1ϕ(znc)ρ−1

M − c4znc
]
xnc

(4.46)

where xnc and znc are the variables of the model in absence of the cheater population.
From (4.46) it is possible to determine an equilibrium point (0, 0, znc), which corre-

spond to the extinction of the workers, independent of the initial PG value.

4.4.1 Equilibrium for public goods in the absence of cheaters

Equilibrium points other than the extinction are obtained by setting żnc = 0:

c1ϕ(znc)ρ−1
M − c4znc = 0

α3c4ρMz
∗2
nc + (c4ρM − α3c1)z∗

nc − 2c1 = 0

Thus the possible equilibrium values for znc are:

−(c4ρM − α3c1)±
√

(c4ρM − α3c1)2 + 8α3c4ρMc1

2α3c4ρM
(4.47)

Choosing the positive value of the square root to define z∗
nc, using (2.35) and after some

algebra:

z∗
nc = 1

M

−(c2 − α3c1) +
√

(c2 − α3c1)2 + 8α3c2c1

2α3c1

 (4.48)

The expression inside the brackets in (4.48) is identical to M (defined in (2.27)), which
implies that the positive equilibrium in z∗

nc for the P 3G model without cheaters is:

z∗
nc = 1 (4.49)

4.4.2 Equilibrium for the workers in the absence of cheaters

The equilibrium for the worker ants equation was found by setting ẋnc = 0, and from
(4.46), this implies that:

(b11 + b12)c4ρMznc − (d11 + d12ϕ(znc) + d14xnc) = 0 (4.50)

From (4.50) the equilibrium value in xnc can be found by replacing z∗
nc = 1, into (4.50)
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to get:
x∗
nc = 1

d14

[
(b11 + b12) c4ρM −

(
d11 + d12

(
1 + 1

1 + α3

))]
(4.51)

From (4.51), the condition to achieve positive population in xnc is given by:

b11 + b12 >
d11 + d12

(
1 + 1

1+α3

)
c4ρM

(4.52)

4.4.3 Stability analysis in the absence of cheaters

In order to determine the stability of the P 3G model in 2.31, in absence of cheaters, the
Jacobian was recalculated, yielding:

Jnc = J (x∗
nc, 0, z∗

nc) =
 J11 J13

J31 J33

 (4.53)

Calculating the partial derivatives in (4.53), we obtain:

J11(x∗
nc, 0, 1) = (b11 + b12)c4ρM −

[
d11 + d12

(
1 + 1

1 + α3

)
+ 2d14x

∗
nc

]
; (4.54)

J13(x∗
nc, 0, 1) =

[
(b11 + b12)c4ρM + α3d12

(1 + α3)2

]
x∗
nc; (4.55)

J31(x∗
nc, 0, 1) = c1ρ

−1
M

(
1 + 1

1 + α3

)
− c4; (4.56)

J33(x∗
nc, 0, 1) = −

[
α3c1ρ

−1
M

(1 + α3)2 + c4

]
x∗
nc; (4.57)

substituting (4.51) into (4.54) yields,

J11(x∗
nc, 0, 1) = −

[
(b11 + b12)c4ρM −

(
d11 + d12

(
1 + 1

1 + α3

))]
(4.58)

Assuming the model in (4.46) in presence of the maximum production of PGs (z∗ = 1),
presents a behavior of growing population, then the value inside the brackets of (4.58)
should be positive and the component J31 in (4.56) should be positive too, given that,
with z∗ = 1, the PGs at least should present a production rate greater than or equal to
the consumption rate.

Then, assuming the equilibrium point x∗
nc > 0 for the Jacobian the following notation
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is introduced:
J11(x∗

nc, 0, 1) = −ja
J13(x∗

nc, 0, 1) = jbx
∗
nc

J31(x∗
nc, 0, 1) = jc

J33(x∗
nc, 0, 1) = −jdx∗

nc

(4.59)

where,

ja = (b11 + b12)c4ρM −
(
d11 + d12

(
1 + 1

1 + α3

))
> 0;

jb = (b11 + b12)c4ρM + α3wd12

(1 + α3)2 > 0;

jc = c1ρ
−1
M

(
1 + 1

1 + α3

)
− c4 > 0;

jd = α3wc1ρ
−1
M

(1 + α3)2 + c4 > 0;

Using (4.59) of the characteristic equation the Jacobian in (4.53) is:

λ2 + (ja + jdx
∗
nc)λ+ jajdx

∗
nc − jbjcx∗

nc (4.60)

so that its eigenvalues are:

λi,nc =
−(ja + jdx

∗
nc)±

√
(ja + jdx∗

nc)2 − 4(jajdx∗
nc − jbjcx∗

nc)
2 (4.61)

From (4.61), both eigenvalues are negative if

(jajdx∗
nc − jbjcx∗

nc) = Det(Jnc) > 0

which implies
(ja + jdx

∗
nc) >

√
(ja + jdx∗

nc)2 − 4Det(Jnc)

From (4.61), factoring the values inside the square root, we obtain:

λi,nc =
−(ja + jdx

∗
nc)±

√
(ja − jdx∗

nc)2 + 4jbjcx∗
nc

2 (4.62)

From (4.62) it follows that the eigenvalues are real, and if Det(Jnc) > 0 the eigenvalues
are real and negative.

Thus the conditions to achieve a stable positive equlibrium point in absence of
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cheaters, are given by:

ja > 0; (4.63)

jc > 0; (4.64)

Det(Jnc) > 0; (4.65)

4.5 Application of the conditions to the fitted P 3G

model

The equilibrium points for the fitted P 3G model in (2.31) are analysed for the positive
conditions.

From condition 4.19, there always exists a positive value for z∗.
Positivity for y∗ is given by the condition in (4.20) when the condition (4.21) is true.

Calculating z∗ from (4.3), and substituting the parameters of table 3.1 into condition
(4.21), we obtain:

c1

c4ρM
− z∗

ϕ∗ = 0, 812

and condition (4.21) is satisfied. From (4.7) the values of y∗
i are positive if the values of

x∗
i are positive too. Then, x∗ is positive if one of the two cases in section 4.2.3 holds:

Case 1 does not holds because condition (4.26) is violated.

b11 + b12 −
d11 + d12ϕi
c4ρMz∗

i

= −0, 0910, (should be positive)

Case 2 also does not hold because condition (4.28) is violated.

b12c4ρMz
∗
i − e2 = −0, 0303, (should be positive)

Note, for the fitted P 3G model (model in (2.31) with the estimated parameters in table
3.1), even when the conditions to obtain positive z∗ and y∗ are true, the condition for
positive x∗ fails so that, there is no equilibrium point in the first octant.

Finally the values calculated for the equilibrium values x∗
i , y∗

i and z∗ respectively
in (4.14), (4.7) and (4.3) are shown in the table 4.5, confirming the previous analysis
performed, namely, that they are all infeasible (at least one component is negative).
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Equilibrium Point x∗ y∗ z∗

P1 −1.7× 10−4 −1.92× 10−3 1.79× 10−1

P2 −3.17× 101 −3.55× 102 1.79× 10−1

Table 4.1: Summary of the equilibrium points for the P 3G model.

Stability of the origin with the fitted P 3G model

Replacing the estimated parameters in the table 3.1 into (4.41) and (4.42) we obtain the
values for which eigenvalues of (4.37) becomes zero, by:

zλ1 = 0.9555 (4.66)

zλ2 = 0.1790 (4.67)

With this values we conclude from case 2 in (4.44) and case 3 in (4.45), respectively the
origin is attractive for values in z less than 0,1790 and is repulsive for values higher than
0.9555.

4.5.1 Stability Results in Absence of Cheater Ants

In order to confirm if the estimated parameters allow stability in the model in absence
of cheater ants, were calculated the conditions 4.63, 4.64 and 4.65 from the section 4.4.3,
as follows:

ja = (b11 + b12)c4ρM −
(
d11 + d12

(
1 + 1

1 + α3

))
= 0.0016 → ja > 0

jc = c1ρ
−1
M

(
1 + 1

1 + α3

)
− c4 = 21.7066 → jc > 0;

Det(Jnc) = 0.0571 → Det(Jnc) > 0

Clearly from section 4.4.3, the P 3G model is stable if x∗
nc is positive, for that was cal-

culated the equilibrium point Pnc from (4.51) and their respective eigenvalues in (4.61),
and the results are as follows:

x∗
nc = 1

d14

[
(b11 + b12) c4ρM −

(
d11 + d12

(
1 + 1

1 + α3

))]
= 1.6228 (4.68)

Then, the eigenvalues are:

λ1,nc = −0.0016

λ2,nc = −35.2268
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The eigenvalues for the model with no cheaters are negative, indicating the model is
stable. Even more, is possible to confirm the origin becomes a repulsive equilibrium given
the value of znc fixes in 1, which is higher than zλ1 = 0, 9955 making the P0,nc unstable.
Then, the model in absence of cheaters is stable as is confirmed by the simulations in the
section 3.3 for Case 0.
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Chapter 5

Seeking Coexistence in the P 3G

Model

As shown in section 4.5, the inevitable outcome in the fitted P 3G model with presence of
cheaters is extinction. In this Chapter, we will use the conditions of Chap. 4 to carry out
a parameter sweep in order to find parameter values for which the positivity and stability
conditions are satisfied and then check through simulations if these parameter values
do indeed lead to coexistence of workers and cheaters in the P 3G model. The intuitive
reasoning behind the parameter sweep proposed to find coexistence goes as follows:

1. Extinction should no longer be a stable equilibrium point for the P 3G model.

2. From the experimental data to which the P 3G model was fitted, it is clear that
the growth rate of workers in the presence of cheaters becomes too low to sustain
the colony. Therefore increasing the worker growth rate parameter (b11) is one
possibility.

3. The experimental data also make it clear that cheater survival rate is very high. In
other words, the death rates for cheaters (d21 and d22) are too low, and thus they
are also candidates for adjustment.

5.1 Local stability in the vicinity of the equilibrium
points

In order to know which stability conditions are satisfied during the parameter sweep, a
subroutine in Madonna software [30] was constructed. Since these parameters are growth
or death rates the sweep is assumed to be between 0 and 1.
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In order to determine the positivity in the equilibrium points and the stability in their
vicinity, it is necessary to evaluate the following:

• The equilibrium points: x∗
i , y∗

i and z∗,

• The conditions in (4.33), (4.34) and (4.35) for stability, confirming positivity of the
terms s2, s1 and s0 of the polynomial,

• The condition in (4.36) for stability, confirming the stability criterion of Routh-
Hurtwitz, by the expression s2s1 − s0 > 0.

These conditions are referred to in the subsequent analysis as positivity condition (for
positive equilibrium points) and the stability condition.

Additionally, there is another condition of our interest that helps in finding a stable
equilibrium. The condition z∗ > z1λ1 described in section 4.3.1, defines the attractive or
repulsive behavior of the origin. Thus the three conditions are defined as follows:

Positivity Condition =

True, if x∗
i > 0, y∗

i > 0, z∗ > 0

False, otherwise.
(5.1)

Stability Condition =

True if s2 > 0, s1 > 0, s0 > 0, s2s1 − s0 > 0

False, otherwise.
(5.2)

Origin Stability =

Repulsive, if z∗ > z1λ1

Attractive, otherwise.
(5.3)

Based on these conditions, each parameter was varied over the interval [0,1] seeking
simultaneous fulfillment of the three conditions (5.1) - (5.3). Figures 5.1 and 5.2 show
the evolution of the satisfaction of the conditions for the equilibrium points P1 and P2,
during the sweep of the parameters b11, d21 and d22.

• Sweep of parameter b11: For values b11 ≥ 0, 115, the equilibrium point is positive
but unstable. The stability condition as well as the positivity condition are true
only for values greater than b11 = 0, 39. However, the origin is still locally attractive
since the origin stability condition in 5.3 is false over all the sweep.

• In the sweep of parameter d21, P2 is negative and unstable for the whole range
scanned. For P1, with the value of d21 > 0, 025, the third condition is true im-
plying z∗

1 > z1λ1 which makes the origin unstable. Additionally, for a very short
range between 0, 02595 6 d21 6 0, 02609, the positivity and stability conditions are
true. There is another interval between 0, 032 6 d21 6 0, 033, where the positivity
condition is true but P1 is unstable.
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Figure 5.1: Stability conditions variation for P1 with sweep of one parameter. Variation
for : b11 (upper), d21 (middle) and d22 (bottom). Red curve stability condition, green
curve positivity condition and blue curve origin stability.
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Figure 5.2: Stability conditions variation for P2 with sweep of one parameter. Variation
for : b11 (upper), d21 (middle) and d22 (bottom). Red curve stability condition, green
curve positivity condition and blue curve origin stability.

• Sweep of d22: similar to the previous sweep, P2 is unstable and negative for almost
all the variation, with an exception in the proximity of the point d22 = 0, 011,
where the equilibrium is positive, but unstable. For P1, the condition (5.3) is
true for the values of d22 ≥ 0, 670 and (5.1) and (5.2) are true too for the range
0, 670 6 d22 6 0, 732 .
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In conclusion, feasible parameter ranges for coexistence are d21 ∈ [0, 0259; 0, 0260] or
d22 ∈ [0, 670; 0, 732], however, the values for the term d22 are too high compared with the
estimated parameters in table 3.1, making these choices possibly unrealistic. The value
d21 = 0, 026 was chosen as the best option, because this value is similar to value of the
fitted d22 (see table 3.1).

By setting d21 = 0.026 the survivor rate of the cheaters takes a plausible value,
allowing the possibility of stability. The problem lies that this value the model is sensitive
and any perturbation makes the equilibrium points become unstable. In order to solve
this issue, the parameter b11 is swept again with d21 = 0.026 fixed, the figure 5.3 shows
the results of the new sweep.
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Figure 5.3: Stability conditions for P1 setting d21 = 0, 026 and sweeping the parameter
b11. Red curve stability condition, green curve positivity condition and blue curve origin
stability.

Figure 5.3 shows P1 is stable and positive for the values b11 ≥ 0, 015, where 0,015 is
the current estimated value for the fitted P 3G model. Calculating the eigenvalues of the
polynomial for P1 with b11 = 0, 015 and d21 = 0, 026, gives:

λ1 = −1, 475,

λ2 = −0, 0001 + 0, 0004i,

λ3 = −0, 0001− 0, 0004i.

This leads to lightly damped oscillatory behavior in the vicinity of P1, as shown in
figure 5.4, which shows the response to a perturbation of 10% in the initial condition P1.

In order to improve the behavior of the fitted P 3G model a new value for b11 is chosen.
Based on the sweep results in figure 5.3, we can increase b11 by 25% of its current value,
maintaining the system stable, so, we set b11 = 0.01875. The simulation with the new
parameters with a perturbation of 10% in the initial conditions is shown in figure 5.5.

As seen in figure 5.5, the system remains stable with the increase of the parameter
b11. In addition the oscillatory behavior vanishes, as can be expected on computing the
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Figure 5.4: Evolution of the P 3G model with d21 = 0, 026. Blue (upper): worker popula-
tion curve, Red (middle) cheater population curve, Green (bottom) public goods curve,
Black for the three variables denotes the equilibrium value of P1.
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Figure 5.5: Dynamics of the fitted P 3G model with new parameters, d21 = 0, 026 and
b11 = 0.01875 in the vicinity of P1. Blue (upper): worker population curve, Red (mid-
dle) cheater population curve, Green (bottom) public goods curve, Black for the three
variables denotes the equilibrium value of P1.
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eigenvalues, which are all real and negative.

λ1 = −36, 6789,

λ2 = −0, 0015,

λ3 = −0, 0002.

The fitted P 3G model with the new values in the five cases format was simulated, in
order to determine the behavior of the model with different initial populations, and the
simulation obtained from this experiment is shown in figure 5.6.
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Figure 5.6: Dynamics of the fitted P 3G model with new parameter values d21 = 0, 026
and b11 = 0, 01875 in five cases format. Blue: Case 0, Pink: Case 1, Green: Case 2, Cyan:
Case 3, Red: Case 4, Black: equilibrium values of P1.

In figure 5.6, the only case different from extinction, is the case 0 (blue curve) with no
cheaters and the case 1 (pink curve). For the rest of cases the colonies become extinct.
For the case 1, the worker ants decrease their numbers until the cheaters are totally
extinguished, in the moment the cheaters disappear, the case 1 becomes in a colony
without cheaters being similar to the case 0. Note that the quantity of PG produced for
the cases with cheaters does not reach the necessary value of z∗

λ1 (for more information
see section 4.3.1), which, in turn, maintains the origin attractive, leading the colonies to
the extinction.
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5.2 Achieving coexistence by modifying two param-
eters at a time

As noted in the previous section, to achieve stability in the five cases it was perceived
that an increment in b11 is necessary. Based on the results of figure 5.3, the parameter b11

can be increased, while maintaining stability. Choosing it to be the double of its original
value (b11 = 0.03) and simulating we obtain the results in figure 5.7.
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Figure 5.7: Dynamics of the fitted P 3G model with new parameters values d21 = 0, 026
and b11 = 0, 03 in five cases format. Blue: Case 0, Pink: Case 1, Green: Case 2, Cyan:
Case 3, Red: Case 4, Black: equilibrium values of P1.

As observed in figure 5.7, with the choices of the parameters as d21 = 0.026 and
b11 = 0.03, coexistence emerges between the two populations. As expected, the only
colony that becomes extinct is the one composed of only cheaters.

Interpretation of the values to achieve coexistence

One of the possibilities to achieve coexistence for this experimental colonies is by achieving
the following two conditions:

• Doubling the current growth rate of the worker ants, which implies doubling both
the brood production and the rate of maintenance of the adult population. This
can also be interpreted as follows: if the current growth rate of the workers is kept
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fixed, then is required to triple the reproduction rate of the broods in order to
achieve the growth rate of b11 = 0, 03.

• Changing the value of the death rate by age (d21) of the cheater ants to a similar
value of the death rate by starvation (d22). This means both the death rates by
age and by starvation have similar values, which decreases the survival rate of the
cheaters.

5.3 Achieving coexistence by reducing the influence
of the cheaters on the workers’ reproduction rate

In this section we assume that the worker population can not reach the value proposed
for b11 = 0.03. And we consider another alternative to achieve coexistence.

Observe that the reproduction rate of the workers in 2.31, is dependent on the ex-
istence of cheaters in the nest. This dependence (in the growth term for the workers)
impedes the possibility of coexistence of the two species.

In order to achieve coexistence between the populations, we return to the values of
the parameters selected in section 5.1, which are d21 = 0.026 and b11 = 0.01875, and
remove the influence of the cheaters on the growth rate of the workers, by setting α2 = 0
(which implies f(y) = 1 and (b11 + b12) = b1). Thus we obtain the model of the worker
population uninfluenced by the cheaters as follows:

ẋwu = [(b1c4ρMzwd − (d11 + d12ϕ(zwu) + d14xwu)]xwu
ẏwu = [b2c5ρMzwu − (d21 + d22g(zwu))] ywu
żwu = c1ϕ(zwu)ρ−1

M xwu − (c4xwu + c5ywu) zwu

(5.4)

where, xwu and zwu respectively are the worker population uninfluenced by the cheaters
and the PGs. The equilibrium points of (5.4) are calculated in the Appendix E.

The dynamics of the ”uninfluenced” model in (5.4) with the estimated parameters in
table 3.1 and choice of the parameters d21 = 0.026 and b11 = 0.01875 is shown in figure
5.8

The results of the simulation are presented in figure 5.8. It is possible to observe, for
the case 0, case 1 and case 2 (where the initial cheater ant population does not exceed
that of the worker ants), the colonies survive and stabilize at the calculated equilibrium
point.

Notably in the cases where the initial cheater population does not exceed the worker
population (cases 1 and 2) coexistence is achieved, while for the cases where the initial
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Figure 5.8: Dynamics of the model with workers uninfluenced by the cheaters with pa-
rameters d21 = 0, 026 and b11 = 0, 01875 in five cases format. Blue: Case 0, Pink: Case
1, Green: Case 2, Cyan: Case 3, Red: Case 4, Black: equilibrium values of Pwu.

setup of cheaters is larger than that of the workers (75 and 100 cheaters vs. 25 and 0
workers), extinction is the inevitable outcome. In absence of cheaters (case 0), the worker
population reaches the bound imposed by overcrowding term.

Interpretation of the values to achieve coexistence

One of the possibilities to achieve coexistence varying the values of three parameters in
the model, are:

• First, by eliminating dependency of worker reproduction dependency on the pres-
ence of cheaters in the nest by setting α2 = 0. This mean that the workers maintain
their growth rate fixed with or without presence of cheaters.

• Second, the worker growth rate should increase at least 25% more.

• Finally the death rate by age (d21) should be increased to a value similar to that of
the death rate by starvation.
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Chapter 6

Conclusions

The objectives of this dissertation were to propose a dynamic model capable of fitting
the experimental data of Dobata and Tsuji [3] that presented evidence for a “public
goods dilemma” between cooperator and cheater ants of the species P. punctatus. The
starting point was an existing model of Elhanati et al. [10] in the context of cooperative
protein secretion in microorganism populations, in which a heterogeneous cell population
consists of two possible phenotypic states: producing and non-producing, with the former
secreting protein that reacts with an external substrate to produce a resource (public
good).

Several modifications to this model were proposed in order to arrive at the proposed
P 3G model, as well as a more elaborate model that accounted for reproduction. This
P 3G model was then fitted to the experimental data [3] using the so-called trajectory
matching method, followed by a sensitivity analysis to check for the robustness of the
model.

Given that the experimental data point to the eventual collapse of the colony, stability
analysis of the P 3G model was carried out, to verify this for the fitted parameter values.
In addition, parameter sweeps were carried out to find other parameter ranges for which
coexistence is a possible outcome.

Thus the main conclusions of this dissertation can be summarized as follows:

• The proposed P 3G model, of the two predator - one prey type, using the usual
tools of mathematical ecology (such as population dependency terms, Holling type
responses, etc.), can be fitted to the sparse experimental data, successfully repro-
ducing its qualitative behavior.

• The fitting of the proposed P 3G model, in the absence of data on the intermedi-
ate states of the cooperator/cheater population, could only be carried out using
trajectory matching, together with a genetic algorithm, due to the relatively large
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number of model parameters.

• A sensitivity analysis was carried out to test robustness of the P 3G model, but also
served to identify parameters to which the trajectories are insensitive, as candidates
for removal, resulting in simplification of the model. It should be mentioned that
the paucity of data precluded the use of the general cross-validation and information
criteria approaches.

• Stability analysis helped to show that there exist reasonable parameter ranges for
which coexistence rather than extinction is the outcome.

Contributions of this dissertation

• Proposal of a new two predator - one prey model, for one of the first presentations
of experimental evidence for the existence of a public goods dilemma in a social
insect.

• Use of the trajectory matching method and a genetic algorithm to fit the P 3G

model to a very limited amount of experimental data.

• Investigation of long-term scenarios (for which there is no experimental data) under
which, for certain parameter choices, coexistence of the cooperator and cheaters
speciess occurs. Such investigations might be of some use to the myrmecologists
wishing to design experiments similar to those of Dobata and Tsuji.

Future work

Future work could take place along the following lines:

1. Formal proofs of positive invariance of the proposed P 3G model ODEs.

2. Investigation of conditions for the existence of globally stable behavior: equilibria
or limit cycles.

3. Extension of the proposed model to study avoidance of extinction by migration or
by adaptation of cheaters as reported in [31], [32]
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Appendix A

Development of the smooth
switching functions used in the
proposed model

In a order to smooth the curves generated by the switching functions, a modification of
the Holling Type II function is proposed. Consider the curve behavior of the Holling
type II function, red curve in figure A.1 and the curve required in our characteristics is
the inverse of it, this mean the curve approaches to its maximum value when are near to
zero, as shown in the blue curve.
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1

R

D
yn
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ic

s

Figure A.1: Behavior of the switching function, red curve represents a typical Holling
type II function, blue curve is the switching function required in the characteristics of
the section 2.2.2.

To achieve this characteristic the new function is modeled though 1 as the maximum
value and the subtraction of the Holling type II function, as:

h(R) = 1− βR

1 + αR
, (A.1)

where, R is the variable, and the second term in the right hand in the equation is the
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Holling function. Resolving the equation, we obtain,

h(R) = 1 + αR− βR
1 + αR

,

finally, choosing β = α we obtain the smooth switching function in (A.2), and the curve
behavior for h(R) is presented in the figure A.2.

h(R) = 1
1 + αR

(A.2)

α being the characteristic of the curve.
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Figure A.2: Behavior of the smooth switching function h(R).

Figure A.2 shows the behavior of the smooth switching function, when R is large
enough h(R) tends to zero, while if R tends to zero, then h(R) tends to 1.
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Appendix B

Materials

In the development of the model proposal, some software tools were used to solve different
problems in the modeling and the stability analysis. The iThink Modeling & Simulation
[28] was used to estimate the parameters, then, the Genetic Algorithms in Global Opti-
mization Toolbox in Matlab [29] was used to fit the simulated results to the experimental
results, finally Berkeley Madonna modelling software [30] was used for the seeking of
coexistence in the P 3G model.

Recall that, in the simulations in long term the P 3G model is composed of three
variables, while for the simulations the extended P 3G model is used composed of the
five variables. Normally, in the codification of our systems is generated a flag (called of
reposition switch)to switch from the P 3G model to the extended P 3G model, and with
that we obtain the required flexibility at the moment of the simulations.

Ithink Model

The Ithink software was used for the first simulations to determined the dynamic of the
model. Additionally the sweep tool in the curve tracer allowed the manual estimation of
the parameters. The model in iThink was simulated with the integration method Runge-
Kutta 4, with integration steps of 0.01. The simulation time was t in [0, 64] for the model
without reposition and t in [0, 365] for the model with reposition. In the program the
five cases were simulated at the same time, to compare the evolution of the populations.
Figures B.1 and B.3 show the model in Ithink and figure B.2 show the graphic interface.
The equations obtained from modelling in Ithink are shown in appendix F.

Genetic Algorithms Optimization

About the genetic algorithms in Matlab [29], it was used mainly for the adjustment of the
best parameter values, that allows fitting the simulation results with the experimental
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Figure B.1: Implementation of the P 3G model (2.31) in Ithink. (A) Main model by
modules, (B) Module Functions, reproduction inhibition f(y), starvation g(z), work-
ing/recruitment force φ(z).

Figure B.2: Implementation of the P 3G model (2.31) in Ithink. (A) Worker ants module,
(B) Cheater ants module, (C) PGs module.

curve of Dobata and Tsuji. To achieve this, the GA was configured with the following
options:

• The lower bound condition was set to zero, for all the parameters.
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Figure B.3: Simulation interface to estimate the parameters of the P 3G model in Ithink.

Figure B.4: Genetic algorithms tool interface to optimize the estimation of the parame-
ters.

• The selection function was configured as Stochastic Uniform.

• The initial population is given by the vector of parameters estimated in Ithink (see
appendix C for the procedure).

• The number of parameters was configured accord to the size of the vector of pa-
rameters.

The integration method used to calculate the objective function in Matlab was ODE15s,
this to avoid problems of stiffness with the variation of the parameters. Figure B.4 shows
the interface of the GA optimization tool.
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Figure B.5: Berkeley Madonna interface to sweep one parameter seeking coexistence.

Berkeley Madonna

Finally, the Berkeley Madonna software [30] was used to search coexistence in the P 3G

model, since it facilitates some useful tools, like the batch of runs tool and the parameter
plot tool(see figure B.5. In order to find parameters enabling coexistence in the model the
differential equations of the model and the conditions for coexistence shown in appendix
G, and explained in chapter 4. Later were used the parameter plot tool, and the P 3G

model was simulated along the variation of one parameter to search the values that fulfill
with the conditions of coexistence in the model. The data obtained from this software
are plotted in figures 5.7 and 5.8.
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Appendix C

Procedure to Estimate and Optimize
the Parameters Values

The table with the values of the graphs of Dobata and Tsuji in [3] are in the tables C.1,
C.2, C.3 and C.4.

Worker populations per capita
Colony Case 0 Case 1 Case 2 Case 3 Case 4
1 0.85 0.7 0.6 0.37 0
2 0.75 0.58 0.46 0.34 0
3 0.63 0.42 0.3 0.2 0
4 0.57 0.3 0.2 0.08 0
5 0.4 0.26 0.18 0 0
Mean 0.64 0.452 0.348 0.198 0
Minimum value 0.4 0.26 0.18 0 0
Maximum value 0.85 0.7 0.6 0.37 0

Table C.1: Workers population values for the experiments of Dobata and Tsuji in [3].

Offspring of the workers per capita
Colony Case 0 Case 1 Case 2 Case 3 Case 4
1 0.95 0.05 0.1 0 0
2 0.95 0 0.1 0 0
3 0.75 0 0.3 0 0
4 0.5 0 0 0 0
5 0 0 0 0 0
Mean 0.63 0.01 0.1 0 0
Minimum value 0 0 0 0 0
Maximum value 0.95 0.05 0.3 0 0

Table C.2: Offspring of the workers values for the experiments of Dobata and Tsuji in
[3].
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Cheater populations per capita
Colony Case 0 Case 1 Case 2 Case 3 Case 4
1 0 0.97 0.96 0.9 0.58
2 0 0.94 0.95 0.81 0.3
3 0 0.94 0.86 0.78 0.2
4 0 0.87 0.86 0.77 0.15
5 0 0.79 0.83 0.76 0
Mean 0 0.902 0.892 0.804 0.246
Minimum value 0 0.79 0.83 0.76 0
Maximum value 0 0.97 0.96 0.9 0.58

Table C.3: Cheater population values for the experiments of Dobata and Tsuji in [3].

Offspring of the cheaters per capita
Colony Case 0 Case 1 Case 2 Case 3 Case 4
1 0 2.1 3 1.5 0
2 0 1.7 2.3 1 0
3 0 1.25 2 0 0
4 0 0.7 1.3 0 0
5 0 0.6 0.2 0 0
Mean 0 1.27 1.76 0.5 0
Minimum value 0 0.6 0.2 0 0
Maximum value 0 2.1 3 1.5 0

Table C.4: Offspring of the workers values for the experiments of Dobata and Tsuji in
[3].

The objective of this appendix is to estimate the parameters with the best values
that minimize the objective function in (3.6). To achieve this, we perform some manual
adjustment at first, and then, was used the Genetic Algorithm (GA) tool for optimization
(refer to materials in B).

The initial parameters (initial population for the GA), were calculated manually via
the Ithink software (refer to materials in B). For that, was coded the P 3G model extended
(five variables) in (2.36) in Ithink, was initialized with the initial values of the populations,
and configured the simulation time to t=[0,64]. Then were adjusted the parameters to
meet a similar behavior that was sketched in figure 3.1. The simulation results in t=64,
were compared with the mean of the experimental results for each population (refer to
tables C.1, C.2, C.3 and C.4).

The initial parameters calculated in this way are shown in table C.5. Subsequently
was coded the P 3G model and the objective function in Matlab, and with the use of the
GA tool, were entered the initial parameters, the low bound condition (lb=0) and was
ran 20 times. The results of this experience (the mean of the results and the parameters
with the best score), are shown in table C.5. Additionally is shown the comparison figures
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in C.1 with the first parameters optimized to visualize the results.

Results of the first experience with GA
Param. Initial p0 Mean Best vect. Param. Initial p0 Mean Best vect.
b11 offs 0.0001 0.0017 0.0011 c1 1.5 1.5181 1.5466
b11 adult 0.0015 0.0045 0.0071 c4 25 25.0406 25.0263
b12 0.0035 0.0059 0.0066 c5 25 25.0079 25
d11 0.003 0.0052 0.0057 α2 500 475.0157 500.0778
d12 0.0055 0.0088 0.0119 α3 26.64 14.6062 19.3277
b2 offs 0.02 0.0286 0.031
b2 adult 0.0015 0.0037 0.0005 Fixed
d21 0.001 0.0018 0.001 d14 0.001 - -
d22 0.016 0.0182 0.0183 F (p) 0.35 0.1457 0.1181

Table C.5: Offspring for the workers values for the experiments of Dobata and Tsuji in
[3].
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Figure C.1: Comparison between the simulation results and the experimental data first
estimation of parameters for both species. (A) Proportion of surviving adults, (B) Off-
spring produced. Blue curve workers experimental data, cyan curve workers simulation
results, red curve Cheaters experimental data, pink curve Cheaters simulation results

Results of the second experience with GA
Param. Initial p0 Mean Best vect. Param. Initial p0 Mean Best vect.
b11 offs 0.0002 0.0005 0.0002 α2 500 500.006 500.0054
b11 adult 0.0015 0.0136 0.0145
b12 0.0066 0.0062 0.0066 Fixed
d11 0.014 0.0137 0.0119 c1 1.8 - -
d12 0.019 0.0174 0.0207 c4 21 - -
b2 offs 0.031 0.0434 0.0441 c5 10 - -
b2 adult 0.0052 0.0043 0 α3 26.64 - -
d21 0.0005 0.0025 0.0009 d14 0.001 - -
d22 0.025 0.0231 0.0242 F (p0) 0 0.1029 0.0898

Table C.6: Offspring for the workers values for the experiments of Dobata and Tsuji in
[3].
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Once with the best parameters, we proceeded again to a manual adjustment of some
specific parameters (specially c1, c4, c5, and α3) that we detect can improve the perfor-
mance of the P 3G model. Then this parameters were fixed (meaning they are not part
of the optimization) and the new vector of 11 parameters to optimize was entered in the
GA tool, and again was ran 20 times. The results obtained are shown in table (C.6).

After all this procedure, is confirmed that there is an improvement in the adjustment of
the parameters via Genetic Algorithms, given that the objective function for the initial
parameters is (E(p0) = 0, 3500) and for final parameters is E(pfinal = 0, 0898. The
simulations results with the improved parameters are shown in the figure 3.2.
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Appendix D

Jacobian Components

The Jacobian matrix in (4.30) was constructed from the partial derivatives of the P 3G

model in (2.31) as follows:

J11(Pk) = δẋ

δx
= (b11 + b12f(y∗

i )) c4ρMz
∗ − (d11 + d12ϕ(z∗) + 2d14x

∗
i ) ;

J12(Pk) = δẋ

δy
= −α2b12c4ρMf(y∗

j,i)2x∗
i z

∗;

J13(Pk) = δẋ

δz
=
[
(b11 + b12f(y∗

i )) c4ρM + α3wd12g(z∗)2
]
x∗
i ;

J21(Pk) = δẏ

δx
= 0;

J22(Pk) = δẏ

δy
= b2c5ρMz

∗ − (d21 + d22g(z∗)) ;

J23(Pk) = δẏ

δz
=
[
b2c5ρM + α3d22g(z∗)2

]
y∗
i ;

J31(Pk) = δż

δx
= c1ϕ(z∗)ρ−1

M − c4z
∗;

J32(Pk) = δż

δy
= −c5z

∗;

J33(Pk) = δż

δx
= −α3wc1ρ

−1
M g(z∗)2x∗

i − (c4x
∗
i + c5y

∗
i );
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Appendix E

Equilibrium points for model
without the reproduction inhibition
function

In this appendix are calculated the equilibrium points for the P 3G model in 2.31 with
αy = 0, observing the model without α2 in (5.4) still persists the equilibria in the origin
with P0α2 = (0, 0, zwd). The other equilibrium points are calculates next:
From (5.4), and setting ẏwd = 0, we obtain:

b2c5ρMz
∗
wd −

(
d21 + d22

1 + α3z∗
wd

)
= 0

α3b2c5ρMz
∗2
wd + (b2c5ρM − α3d21)z∗

wd − (d21 + d22) = 0

Solving the roots of the equation, we obtain the equilibrium values for z∗
wd

z∗
iα2 =

−(b2c5ρM − α3d21)±
√

(b2c5ρM − α3d21)2 + 4α3b2c5ρM(d21 + d22)
2α3b2c5ρM

, (E.1)

and replacing z∗
wd into ϕ(·) we obtain,

ϕi = ϕ(z∗
iα2) = 1

1 + α3z∗
iα2

Then, equating the workers equation to zero,

ẋ∗
wd = 0,

b1c4ρMzwd − (d11 + d12ϕi + d14x
∗
wd) = 0,
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and isolating the xwd, we obtain the equilibrium with:

x∗
iα2 = b1c4ρMzwd − (d11 + d12ϕi)

d14
(E.2)

Finally, equating to zero the PGs we obtain,

żwd = 0,

c1ϕiρ
−1
M x∗

iα2 − c4xiα2z
∗
iα2 − c5y

∗
wdz

∗
iα2 = 0,

and isolating the y∗
wd, we obtain the final equilibrium to compound the equilibrium point

in the model, with:

y∗
iα2 =

(
c1ϕiρ

−1
M − c4z

∗
iα2

)
x∗
iα2

c5z∗
iα2

(E.3)
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Appendix F

Equations in Ithink

The equations obtained from modelling in Ithink [28] are as follows:

P3G Model:
offspring__repostion_switch = 1

Cheater Ants:
Cheaters_Offspring[first_dimension](t) = Cheaters_Offspring[first_dimension]...
...(t - dt) + (Offspring_production[first_dimension]) * dt
INIT Cheaters_Offspring[first_dimension] = 0
INFLOWS:
Offspring_production[first_dimension] = b21_offspring*...
...PGs.y_public_goods_consumption[first_dimension]
Cheater_Ants[first_dimension](t) = Cheater_Ants[first_dimension](t - dt) +...
...(Y_production[first_dimension] - Y_decease[first_dimension]) * dt
INIT Cheater_Ants[first_dimension] = Initial_Y[first_dimension]
INFLOWS:
Y_production[first_dimension] = y_production_eq[first_dimension]
OUTFLOWS:
Y_decease[first_dimension] = (d21+CA_death_by__PG_absence[first_dimension])...
...*Cheater_Ants[first_dimension]
b21_feeding = 0.0004
b21_offspring = 0.03
CA_death_by__PG_absence[first_dimension] = d22*Functions.gz[first_dimension]
d21 = 0.0005
d22 = 0.025
Initial_Y[case_0_CA] = 0
Initial_Y[case_25_CA] = 25
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Initial_Y[case_50_CA] = 50
Initial_Y[case_75_CA] = 75
Initial_Y[case_100_CA] = 100
y[first_dimension] = Cheater_Ants[first_dimension]
y_offspring__per_capita[first_dimension] = if(Cheater_Ants[first_dimension]>=1)...
...then (Cheaters_Offspring[first_dimension]/Cheater_Ants[first_dimension])...
...else(0) y_production_eq[first_dimension] = (b21_offspring...
...*.offspring__repostion_switch + b21_feeding)*...
...PGs.y_public__goods_consumption[first_dimension]
y_survivor_per_capita[first_dimension] = if(Initial_Y[first_dimension]>1)...
...then (Cheater_Ants[first_dimension]/Initial_Y[first_dimension]) else (0)

Functions:
u(t) = u(t - dt) + (var_increment) * dt
INIT u = 0
INFLOWS:
var_increment = 1
u_2(t) = u_2(t - dt) + (var_increment_2) * dt
INIT u_2 = 0
INFLOWS:
var_increment_2 = 1
alfa_y = 5
alfa_z = 3
fy[first_dimension] = 1/(1+alfa_y*Cheater_Ants.y[first_dimension])
fy_evol = 1/(1+alfa_y*u)
gz[first_dimension] = 1/(1+alfa_z*PGs.z[first_dimension])
gz_evol = 1/(1+alfa_z*u_2)
working_force[first_dimension] = 1+gz[first_dimension]

PGs:
Public_Goods[first_dimension](t) = Public_Goods[first_dimension](t - dt) +...
...(Public_Goods_production[first_dimension] -...
...Public_goods_consumption[first_dimension]) * dt
INIT Public_Goods[first_dimension] = Initial_Public_Goods
INFLOWS:
Public_Goods_production[first_dimension] =...
... Public_good__production_eq[first_dimension]
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OUTFLOWS:
Public_goods_consumption[first_dimension] =...
...x_public__goods_consumption[first_dimension]...
...+y_public__goods_consumption[first_dimension]
c1 = 1.8
c2 = 0.21
c3 = 0.1
Initial_Public_Goods = 0
Public_good__production_eq[first_dimension] =...
...c1*Functions.working_force[first_dimension]*...
...Worker_Ants.x[first_dimension]
x_public__goods_consumption[first_dimension] =...
...c2*Worker_Ants.x[first_dimension]*Public_Goods[first_dimension]
y_public__goods_consumption[first_dimension] =...
...c3*Cheater_Ants.y[first_dimension]*Public_Goods[first_dimension]
z[first_dimension] = Public_Goods[first_dimension]

Worker Ants:
Worker_Ants[first_dimension](t) = Worker_Ants[first_dimension](t - dt)...
... + (Worker_growth[first_dimension] - X_decease[first_dimension]) * dt
INIT Worker_Ants[first_dimension] = Initial_X[first_dimension]
INFLOWS:
Worker_growth[first_dimension] = Worker_production[first_dimension]
OUTFLOWS:
X_decease[first_dimension] =...
...(d11+d12*Functions.working_force[first_dimension]...
... + d13*Worker_Ants[first_dimension])*Worker_Ants[first_dimension]
Worker_Offspring[first_dimension](t) =...
...Worker_Offspring[first_dimension](t - dt)...
... + (Offpring_production[first_dimension]) * dt
INIT Worker_Offspring[first_dimension] = 0
INFLOWS:
Offpring_production[first_dimension] = (b11_a_offspring...
...+ b12*Functions.fy[first_dimension])...
...*PGs.x_public__goods_consumption[first_dimension]
b11_a_offspring = 0.0002
b11_b_feeding = 0.015
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b12 = 0.004
d11 = 0.0145
d12 = 0.019
d13 = 0.00001
Initial_X[case_0_CA] = 100
Initial_X[case_25_CA] = 75
Initial_X[case_50_CA] = 50
Initial_X[case_75_CA] = 25
Initial_X[case_100_CA] = 0
Worker_production[first_dimension] = ((b11_a_offspring...
...+ b12*Functions.fy[first_dimension])*.offspring__repostion_switch...
...+ b11_b_feeding)*PGs.x_public__goods_consumption[first_dimension]
x[first_dimension] = Worker_Ants[first_dimension]
x_offspring_per_capita[first_dimension] =if(Worker_Ants[first_dimension]>=1)...
...then (Worker_Offspring[first_dimension]/Worker_Ants[first_dimension])...
...else (0)
x_survivor__per_capita[first_dimension] = if (Initial_X[first_dimension]>1)...
...then (Worker_Ants[first_dimension]/Initial_X[first_dimension]) else (0)
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Appendix G

Equations and sweep for stability in
Berkeley Madonna

The equations to code the P 3G model in Berkeley Madonna are as follows:

;P3G Model coded in Berkeley Madonna

METHOD RK4
STARTTIME = 0
STOPTIME=64
DT = 0.01

;Some calculations
r=5 ;Five populations format
repo_sw=0;Switch of model with or without reposition 0=without, 1=with.
M=(-((c4/100)-alfaz*c1)+sqrt(((c4/100)-alfaz*c1)ˆ2+...
...8*alfaz*(c4/100)*c1))/(2*alfaz*(c4/100)); M value calculated.

;Initializationof the variables
init_xn[1..r]=(1-0.25*(i-1)) ;workers in 5 cases format
init_yn[1..r]=0.25*(i-1) ;cheaters in 5 cases format
init_zn[1..r]=0 ;PGs

init xn[1..r]=init_xn[i] ;assignment of workers initialization
init yn[1..r]=init_yn[i] ;assignment of cheaters initialization
init zn[1..r]=init_zn[i] ;assignment of PGs initialization

init xn_offs[1..r]=0 ;Initialization of worker broods
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init yn_offs[1..r]=0 ;Initialization of cheater broods

;Differential Equations
;P3G Model
d/dt(xn[1..r])=((b11_offs*repo_sw+b11_feed+b12*fyn[i]*repo_sw)*...
...c4*rho*zn[i]-(d11+d12*phin[i]+d14*xn[i]))*xn[i];workers equation
d/dt(yn[1..r])=((b21_offs*repo_sw+b21_feed)*c5*rho*zn[i]-...
...(d21+d22*gzn[i]))*yn[i] ;cheaters equation
d/dt(zn[1..r])=(c1/rho)*phin[i]*xn[i]-(c4*xn[i]+c5*yn[i])*zn[i]
;PGs equation

;Offspring equation (extended model)
d/dt(xn_offs[1..r])=(b11_offs+b12*fyn[i])*c4*rho*zn[i]*xn[i]
;workers broods equation
d/dt(yn_offs[1..r])=(b21_offs)*c5*rho*zn[i]*yn[i]
;cheaters broods equation

;Funtions
fyn[1..r]=1/(1+hat_alfay*yn[i]) ;reproduction inhibition function
gzn[1..r]=1/(1+hat_alfaz*zn[i]) ;starvation function
phin[1..r]=1+gzn[i] ;working/recruitment function

;Per capita calculations
xn_offscap[1..r]=if(xn[i]>=0.01) then (xn_offs[i]/xn[i]) else 0
yn_offscap[1..r]=if(yn[i]>=0.01) then (yn_offs[i]/yn[i]) else 0

;Parameters values
b11_offs=0.0002
b11_feed=0.015
b12=0.004
d11=0.0145
d12=0.019
d14=0.001

b21_offs=0.03
b21_feed=0.0004
d21=0.0005
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d22=0.025

c1=1.8
c4=21
c5=10

hat_alfay=500
alfaz=3
hat_alfaz=alfaz*M
rho=M/100

;Calculation of the Equilibrim point
b11=b11_offs+b11_feed
b21=b21_offs+b21_feed
ze=(-(b21*c5*rho-hat_alfaz*d21)+sqrt((b21*c5*rho-hat_alfaz*d21)ˆ2...
...+4*hat_alfaz*b21*c5*rho*(d21+d22)))/(2*hat_alfaz*b21*c5*rho)
;equilibrium in z (PGs).
gze=1/(1+hat_alfaz*ze)
phie=1+gze
e1=(hat_alfay*(c1*phie-c4*rho*ze))/(c5*rho*ze)
e2=d11+d12*phie-b11*c4*rho*ze
xe=(-(d14+e1*e2)+sqrt((d14+e1*e2)ˆ2+4*d14*e1*(b12*c4*rho*ze-e2)))...
.../(2*d14*e1) ;equilibrium in x (worker ants).
ye=e1*xe/hat_alfay ;equilibrium in y (cheater ants).

And the equations to sweep the parameters seeking stability are as follows:

;Stability test for P3G Model

METHOD RK4
STARTTIME = 0
STOPTIME=1
DT = 0.01
n=1
repo_sw=1 ;Reposition switch 0 =without, 1 =with.
M=(-((c4/100)-alfaz*c1)+sqrt(((c4/100)-alfaz*c1)ˆ2+...
...8*alfaz*c1*(c4/100)))/(2*alfaz*(c4/100)) ;M value calculation.
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;Parameters
b11_offs=0.0002
b11_feed=0.015
b12=0.004
d11=0.0145
d12=0.019
d14=0.001

b21_offs=0.03
b21_feed=0.0004
d21=0.0005
d22=0.025

c1=1.8
c4=21
c5=10

hat_alfay=500
alfaz=3
rho=M/100
hat_alfaz=alfaz*M
b11=b11_offs+b11_feed
b21=b21_offs+b21_feed

;Equilibrum point values calculation
ze=(-(b21*c5*rho-hat_alfaz*d21)+sqrt((b21*c5*rho-hat_alfaz*d21)ˆ2...
...+4*hat_alfaz*b21*c5*rho*(d21+d22)))/(2*hat_alfaz*b21*c5*rho)
;PGs equilibrium (positive value)
gze=1/(1+hat_alfaz*ze)
phie=1+gze
e1=(hat_alfay*(c1*phie-c4*rho*ze))/(c5*rho*ze)
e2=d11+d12*phie-b11*c4*rho*ze
xe=(-(d14+e1*e2)+sqrt((d14+e1*e2)ˆ2+4*d14*e1*(b12*c4*rho*ze-e2)))...
.../(2*d14*e1) ;workers equilibrium (positive value)
ye=e1*xe/hat_alfay ;cheaters equilibrium
fye=1/(1+hat_alfay*ye)
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;Jacobian calculation
;Partial derivates for x
J11=(b11+b12*fye)*c4*rho*ze-(d11+d12*phie+2*d14*xe)
J12=-(hat_alfay*b12*c4*rho*fyeˆ2*xe*ze)
J13=(b11+b12*fye)*c4*rho*xe+hat_alfaz*d12*gzeˆ2*xe

;Partial derivates for y
J21=0
J22=b21*c5*rho*ze-(d21+d22*gze)
J23=b21*c5*rho*ye+hat_alfaz*d22*gzeˆ2*ye

;Partial derivates for z
J31=c1*phie/rho-c4*ze
J32=-c5*ze
J33=-hat_alfaz*c1*gzeˆ2*xe/rho-c4*xe-c5*ye

;Polinomial terms
s2=-(J11+J22+J33)
s1=J22*J33-J23*J32+J33*J11-J31*J13+J11*J22-J12*J21
s0=-J11*J22*J33-J12*J23*J31-J13*J21*J32+J31*J22*J13+J21*J12*J33+...
...J11*J23*J32

;Ruth Hortwitz criterion stability for the P3G model
;(all conditions must be greater than zero)
Cond1=s2
Cond2=s1
Cond3=s2*s1-s0

;General conditions for Stability Sweep
Cond_stability=if(Cond1>0 AND Cond2>0 AND Cond3>0) then 1 else 0
;Condition for stability 0=false, 1=true.
Cond_positivity=if(xe>0 AND ye>0 AND ze>0) then 1 else 0
;Condition for positivity 0=false, 1=true.
Cond_origin=(-((b11+b12)*c4*rho-hat_alfaz*(d11+d12))+...
...sqrt(((b11+b12)*c4*rho-hat_alfaz*(d11+d12))ˆ2+4*hat_alfaz*...
...((b11+b12)*c4*rho)*(d11+2*d12)))/(2*hat_alfaz*((b11+b12)*c4*rho))
;Condition for stability in the origin, 0=attractive, 1=repulsive.
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